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In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q¼ 1)

has been simulated numerically. The controversy over the nonlinear fate of such electrostatic

perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815–2818 (1997)] using long-time

simulations up to t ¼ 1600x�1
p . The oscillations were found to continue indefinitely leading to

Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as “BGK

structures”). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on

piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau

damping in 1D plasma described by toy q-distributions for long times, up to t ¼ 3000x�1
p . We show

that BGK structures are found only for a certain range of q-values around q¼ 1. Beyond this

window, for the generic parameters, no BGK structures were observed. We observe that for values

of q < 1 where velocity distributions have long tails, strong Landau damping inhibits the formation

of BGK structures. On the other hand, for q > 1 where distribution has a sharp fall in velocity, the

formation of BGK structures is rendered difficult due to high wave number damping imposed by the

steep velocity profile, which had not been previously reported. Wherever relevant, we compare our

results with past work. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794320]

I. INTRODUCTION

Exponential damping of small vibrations in uniform,

one-dimensional, collisionless, Maxwellian, electronic plasma

was first pointed out by Landau by correctly accounting for

the singularity in the contour integral for the dispersion rela-

tion.1 It meant that damping occurs in a perturbed plasma de-

spite the absence of any dissipative term. Since then, this has

been shown in innumerable simulations for collisionless plas-

mas. As is well known, Landau’s treatment is restricted to in-

finitesimal perturbations, which helps approximate the system

to be linear. This helps simplify the system and, from there

on, is solved rigorously.

However, as the amplitude of perturbation becomes

larger, contribution from the nonlinear terms become more

significant, and the behaviour deviates from uniform expo-

nential damping. The approximate analytical solutions

available for nonlinear damping are not valid for long-

times. For example, O’Neil analytically showed that the sys-

tem undergoes oscillations with trapping time s as the pe-

riod and that the damping rate goes to zero with times much

greater than the trapping time.2 However, O’Neil’s treat-

ment is not applicable for times much greater than the trap-

ping time.

For a many decades, the fate of nonlinear finite ampli-

tude electrostatic perturbations for times much greater than

O’Neil trapping time was an open problem. The question of

whether electrostatic perturbations will damp away at t!1
or would lead to the formation of Bernstein-Greene-Kruskal

(BGK)3 structures was hotly debated. For example, in 1997,

Isichenko proposed that such perturbations undergo Landau

damping following an algebraic decay.4 However, this

derivation itself was under the assumption of decay of the

field. Soon, Manfredi observed from long-time numerical

simulations up to 1600x�1
p that for a finite amplitude pertur-

bations the plasma undergoes a few amplitude oscillations

(O’Neil oscillations) and then approaches a steady-state5

similar to BGK mode. Furthering this debate, in 2000, Firpo

and Elskens proposed a Hamiltonian model wherein it was

shown that there exists a critical wave-intensity above which

Landau damping leads to a finite field amplitude and below

which equilibrium amplitude vanishes.6 Later in 2004,

Ivanov et al., using Vlasov simulations, have also found the

existence of such a critical perturbation amplitude.7 Further,

in 2009, Barr�e and Yamaguchi, using a Hamiltonian mean-

field model, have shown that systems with repulsive interac-

tions, such as plasmas, can indeed sustain long-lasting small

travelling clusters and have discussed the existence of an

upper limit on the value of the perturbation amplitude for

which trapping occurs.8

However, these studies were for Maxwellian plasmas.

As is well known, Maxwellians may not adequately describe

systems with long-range interactions. It is also well-known

that for a system with short range interactions, the energy of

the system is additive or extensive. Therefore, maximizing

Boltzmann-Gibbs-Shannon (BGS) entropy under energy

constraints leads to a Maxwellian. For systems which inter-

act with long-range interactions and for which energy is not

additive or extensive, deviations from BGS statistics have

been attempted leading to non-extensive generalizations. For

example, Tsallis defines a q-nonextensive entropy func-

tional,9 where q is the strength of nonextensivity, and the

corresponding q-distribution is derived as an extremum state

of this new entropy functional.10 The q-distributions lend
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themselves to applications in vast number of problems in

plasmas.11,12 The q-distribution has also been able account

for the velocity distributions of gravitational systems such as

galaxy clusters.13

The trapping of particles for nonlinear Landau damping

in q-distributions has been studied by Valentini in the past.14

However, these simulations performed were for relatively

smaller deviations around q¼ 1, for gridsizes smaller than

Manfredi’s simulations and for times up to 1200x�1
p . Also,

this work14 is exclusively concerned with the dependence of

trapping of particles on perturbation amplitude and the

resulting bounce time. In this work, it is argued that the

effect of increasing damping rate and bounce time with

decreasing value of q limits trapping for q < 1 whereas trap-

ping is efficient for q > 1. However, to the authors’s knowl-

edge, the phenomenon has not been studied for variations of

perturbation wavenumber and its effect on limiting the range

of q for which such trapping can be found. We explore the

presence of BGK structures over a broader range of q around

q¼ 1 and determine numerically the extent to which trapping

depends on the value of perturbation wavenumber. The sim-

ulations undertaken have been run till 3000x�1
p on gridsizes

comparable to Manfredi’s simulations. In the case of q > 1,

we also find that simulations till 1200x�1
p do not let the nu-

merical entropy settle to a stable value, hence making it nec-

essary to prolong the simulations in order to confirm a

numerical steady-state. This, for q < 1, brings to our atten-

tion a new behaviour of the system. On extending the simu-

lations, we confirm that the increasing damping rate with

decreasing q puts a lower limit on q beyond which no trap-

ping occurs. This confirms Valentini’s findings for q < 1.14

We find additionally that for q > 1, damping is restricted by

an upper limit on the perturbation wavenumber k, which in

turn imposes an upper limit on the value of q for trapping,

which was previously not addressed.

We proceed to describe the mathematical model and the

numerical code in Sec. II and the simulations in Sec. III, and

we present our conclusions in Sec. IV.

II. THE NUMERICAL CODE

We first construct a numerical solver that can self-

consistently solve both the Vlasov and Poisson equations

and advance the solution in time. A one-dimensional, colli-

sionless plasma can be modelled using the Vlasov-Poisson

system, given by

@f

@t
þ v

@f

@x
þ E

@f

@v
¼ 0;

@E

@x
¼
ð

f dv� 1; (1)

where f(x, v, t) is the electron distribution function and

E(x, t) is the electric field. For this system, time has been

normalized to the plasma frequency xp, space has been nor-

malized to the Debye length kD, and velocity has been nor-

malized by vth ¼ kDxp. Consequently, f gets normalized by

n0=vth and E by �mev2
th=ekD. In this model, the ions form a

stationary neutralizing background of number density n0.

Hence, the numerical value of “1” in the Poisson equation.

One can see that any unperturbed normalized velocity

distribution function, in the absence of a background electric

field, is a solution of the Vlasov-Poisson system.

In order to solve Eq. (1), we use the time-stepping

method suggested by Cheng and Knorr.15 We apply the fol-

lowing time-stepping for one time step Dt:

• Solve @f=@tþ v@f=@x ¼ 0 for Dt=2, for a given v in the

v-domain.
• Solve the Poisson equation to obtain E(x).
• Solve @f=@tþ E@f=@v ¼ 0 for Dt, for an E in the obtained

E(x).
• Again, solve @f=@tþ v@f=@x ¼ 0 for Dt=2, for a given v

in the v-domain.

Thus, the solution of the system is reduced to solving

two 1D advection equations and a Poisson equation. This

method formally incurs an error of the order OððDtÞ3Þ.
Further, this requires a reliable advection solver and a

Poisson solver. There are several methods of implementing

this time-stepping method depending on how one chooses

to evolve the advections.16 We select an Eulerian fixed grid

advection scheme for the solution of the advection equa-

tion. The advantage of doing so is that the advections are

constant speed advections, for which various methods are

available. Some of the advection methods are, for example,

are flux-balance (FB) method,16,17 piecewise-parabolic

method (PPM),16,18 and flux-corrected transport (FCT)

method.16,19

From the conclusions of Arber and Vann,16 we choose

the PPM advection method as our advection solver. The

PPM advection method is formally third-order accurate

away from the extrema and first-order accurate at the

extrema. Also, the monotonicity limiters of the PPM method

ensure that the positivity of the distribution function is main-

tained. However, since the PPM advection method is an

explicit method, it is restricted by the Courant-Frederichs-

L€owy (CFL) condition. Therefore, we avoid the restriction

set forth by the CFL condition by shifting the function by an

integral number of grid points (depending on the CFL num-

ber) and then apply PPM advection on the remainder of the

timestep which satisfies the CFL condition.16

We let 0 < x < L, where L is the system size in x, and

�vmax < v < vmax, where vmax is chosen sufficiently large so

that the velocity distribution function approaches zero as jvj
approaches vmax. We apply periodic boundary conditions

(PBC) along both boundaries for x and v. The unphysical

effects of the PBC on the velocity grid are mitigated by

choosing a sufficiently large value of vmax. The grid spacing

is given by Dx ¼ L=Nx and Dv ¼ 2vmax=Nv.

Also, we use a Fourier transform based method to solve

the Poisson equation. To the Poisson equation

@EðxÞ
@x
¼ qðxÞ; (2)

we apply Fourier transform and get

ik ~EðkÞ ¼ ~qðkÞ; (3)

where ~ represents the Fourier transformed variable in

k-space. On inverse Fourier transform (FT�1) we get

032106-2 M. Raghunathan and R. Ganesh Phys. Plasmas 20, 032106 (2013)

Downloaded 21 Mar 2013 to 202.131.103.196. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



EðxÞ ¼ FT�1 ~qðkÞ
ik

� �
: (4)

We use FFTW3:2 for the required Fourier transforms.20 For

large grid sizes in x, as used in this work, error in this method

approaches machine precision. We incorporate these algo-

rithms to construct a Vlasov-Poisson solver.

III. SIMULATIONS

In order to simulate Landau damping, following

Manfredi,5 we perturb the distribution function with one

mode. Therefore, we initialize the following distribution

function:

f ðx; v; 0Þ ¼ ð1þ a cosðkxÞÞfq0
ðvÞ; (5)

where fq0
ðvÞ is the initial q-nonextensive velocity distribution

function. The q-nonextensive velocity distribution function11

is given by

fq0
ðvÞ ¼ Cq 1� ðq� 1Þ v

2

2

� �1=ðq�1Þ
; (6)

where q is the strength of nonextensivity and Cq is the nor-

malization constant given by

Cq ¼

C
1

1� q

� �

C
1

1� q
� 1

2

� �
ffiffiffiffiffiffiffiffiffiffiffi
1� q

2p

r
for � 1 < q < 1

1þ q

2

� �C
1

q� 1
þ 1

2

� �

C
1

q� 1

� � ffiffiffiffiffiffiffiffiffiffiffi
q� 1

2p

r
for q > 1;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

where CðnÞ represents the standard gamma function. Also,

for q > 1, the distribution exhibits a velocity cut-off given

by jvcutoff j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðq� 1Þ

p
. For q¼ 1, this distribution

reduces to the Maxwellian with C1 ¼ 1=
ffiffiffiffiffiffi
2p
p

.

The independent parameters are the strength of pertur-

bation a, the wave number k, and the nonextensive parame-

ter q. In addition, we also consider the bounce time

s ¼ a�1=2, after which the linear solution breaks down and

nonlinear effects become prominent (the bounce time s is

the time in which nonlinear trapping becomes important2).

Therefore, we have developed a nonlinear Vlasov-Poisson

solver in order to study this phenomenon for times t� s.

For the present problem, we use the following parame-

ters: We set L ¼ 2p=k. Throughout the simulations per-

formed, unless mentioned otherwise, we set the strength of

perturbation a ¼ 0:05 and k¼ 0.4. For the amplitude consid-

ered, the bounce time s � 4:47. We also choose Dt ¼ 0:1, in

accordance to the Shannon theorem.21 With the independent

parameters chosen, we now proceed to benchmark the

solver.

A. Benchmarking the Vlasov-Poisson solver for linear
Landau damping

In order to benchmark the correctness of our Vlasov-

Poisson solver, we have developed a numerical solver for

the dispersion relation22 for linear Landau damping. In the

past, analytical solutions for the dispersion relation of linear

Landau damping for j-distributions (where j ¼ 1=ð1� qÞ)
have been carried out in terms of special functions, by

Valentini and D’Agosta.23 However, these solutions were

constructed for linear Landau damping under the weakly

damped limit, where jc=xj � 1. As the damping rate

increases, we find that analytical solutions relying on this

assumption deviate significantly from the observed values.

Therefore, we have developed a dispersion relation solver

valid for arbitrary values of jc=xj. We also look at the

results of our dispersion relation solver for the weakly

damped case and compare it with Valentini and D’Agosta

as an additional benchmark.

We solve the Ampere equation instead of the Poisson

equation in order to replicate the results obtained previously

by Vann.22 We first linearize the Vlasov-Ampere system of

equations by choosing f ðx; v; tÞ ¼ fq0
ðvÞ þ f1ðx; v; tÞ and

similarly Eðx; tÞ ¼ E0ðxÞ þ E1ðx; tÞ, where the subscript “0”

refers to the unperturbed equilibrium solution and the sub-

script “1” refers to the perturbed correction. At t¼ 0,

we assume that the zeroth order or equilibrium electric

field to be zero, i.e., E0ðxÞ ¼ 0. Then, we choose ansatz:

f1;E1 � exp iðkx� ðxþ icÞtÞ, where we have chosen a gen-

eral angular frequency xþ ic, where x and c are real.

Substituting the obtained expression for f1 from the Vlasov

equation to the Maxwell equation results in the following

dispersion relation:

�x� ic ¼
ðþ1
�1

vð@fq0
=@vÞ

ðkv� xÞ � ic
dv: (8)

The real and the imaginary parts can be separated to obtain

Oðx; cÞ :

ðþ1
�1

ðkv� xÞvð@fq0
=@vÞ

ðkv� xÞ2 þ c2
dv� ImðzÞ � x ¼ 0; (9)

Gðx; cÞ :

ðþ1
�1

cvð@fq0
=@vÞ

ðkv� xÞ2 þ c2
dvþ ReðzÞ � c ¼ 0; (10)

where

z ¼
0 for c > 0

2p v
@fq0

@v

� �
v¼v/i

for c < 0

8><
>: (11)

and where the complex phase velocity v/i is given by

kv/i ¼ xþ ic. We numerically solve both Oðx; cÞ and

Gðx; cÞ simultaneously to arrive at the analytical value of x
and c to required tolerance.22

For a given initial equilibrium distribution function

fq0
ðvÞ and a value of k, a domain for x and c is chosen.

These domains are divided into, say, N, equally spaced parts,
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thus creating N2 cells on the ðx; cÞ grid. Then, the values of

LHS of OðxÞ and GðcÞ are calculated over each point on the

ðx; cÞ grid. The solution lies in cell in which the curve for

the zeroes for Oðx; cÞ and Gðx; cÞ intersect. For this pur-

pose, it is required to search for cells for which both the LHS

of Oðx; cÞ and Gðx; cÞ have different signs on the corners of

the cell. Once such a zone has been obtained, it is further di-

vided into N2 cells, and the procedure is repeated in order to

get the solution with better precision. In order to ensure that

the solution is detected, one has to choose a large value of N,

say, N¼ 100. Also, to reduce the number of cells which sat-

isfy the criteria, but do not contain the solution, we also test

for the zeroes of ðOþ GÞðx; cÞ and ðO� GÞðx; cÞ in addi-

tion to the zeros of Oðx; cÞ and Gðx; cÞ. Also, we choose the

maximum and minimum values for the domains for x; c by

ensuring that these limits contain x; c calculated from the

results of the corresponding simulation.

The solver for linear Landau damping provides us with

a precise value for the angular frequency x and, conse-

quently, the real phase velocity v/ ¼ x=k and damping rate

c for arbitrary jc=xj. Also, this solver works for an arbitrary

values of k, q, and hence an arbitrary initial q-distribution

fq0
. This helps us benchmark the Vlasov-Poisson solver for

linear Landau damping, for arbitrary values of x; k, for arbi-

trary q-values. From here on, we refer to solutions obtained

from numerically solving the dispersion relation (8) as

“analytically” obtained value.

We now benchmark the nonlinear Vlasov-Poisson solver

using the “analytical” solver for a short period of t¼ 200. For

this purpose, we run our simulations for values of q from 0.5

to 1.2. We also have used the analytical solver to compute

the values of x and c for these runs. We calculate the values

of x and c from the data obtained from the simulations. x is

calculated from the data for E1 till t¼ 200 and c is calculated

till the linear phase of Landau damping which lasts till about

t¼ 25. Since nonlinear behavior sets in soon after t � 25,

measuring x till t¼ 200 takes into account the nonlinear

oscillations also. This leads to a small discrepancy in x val-

ues between the “analytically” obtained and the observed

results. Even so, the observed values are within 3% of the an-

alytical value. The plot for comparison of analytically

obtained and observed values of c can be found in the Fig. 1.

We can see that the analytically obtained and values of c

obtained during the linear phase of the nonlinear solution

match well, demonstrating the correctness of the numerical

solver. Also, for q > 1:2, the damping rate c is analytically

obtained to be zero, and the corresponding value of x is such

that v/ > vcutoff , and hence is unphysical. Also, for q¼ 1.2,

even though v/ < vcutoff , the phase velocity lies very close to

the cut-off velocity. Therefore, the PBC applied on the veloc-

ity domain might result in unphysical effects. Hence, we do

not consider cases for q � 1:2. However, for q¼ 1.15, when

changing k from 0.4 to 1.2, for a ¼ 0:05, the value of

v/ ¼ x=k decreases to lie within the “bulk” of the q-distribu-

tion, which enables us to calculate c accurately. However, on

increasing k, the value of the damping rate c also increases.

This can be seen in Fig. 2 for the numerically obtained values

of c varying with q for different k within the linear domain.

One can see that the values of jcj for a higher k are larger

than those with a lower k. Thus, in general for any value of q,

we find that increasing k results in a higher damping rate.

This observation has great impact in formation of nonlinear

structures. We shall come back to this point later.

As discussed earlier, we have performed an additional

benchmark. For example, for sufficiently lower values of k
where jc=xj � 1, we have compared our analytical solver

with the solution given by Valentini and D’Agosta. We find

that for q¼ 0.95 and k¼ 0.01, the analytically obtained value

of x from our dispersion relation solver matches with the

result from Valentini and D’Agosta’s to 0.016%. Also,

among all simulations reported in the present work, the maxi-

mum change in energy is observed to be within 0.012%. Now

that we are confident about the accuracy of the solver, we

proceed to extend the simulations into the long-time regime.

B. Nonlinear Landau damping

1. Case q 5 1

Let us consider the simulation for the q¼ 1 case, which

is the normalized Maxwellian. For the value of k¼ 0.4, this

simulation corresponds to Manfredi’s case.5 Also, we choose

Nx and Nv in such a manner that there is sufficient resolution

in x and v. Also, a large value of Nv is needed to push the re-

currence as far away as possible, which occurs at TR ¼ L=Dv.

We now proceed to show that we have been able to replicate

Manfredi’s results with our solver.
FIG. 1. Comparison of the “analytically” obtained and simulated values of

the damping rate c varying with q (k¼ 0.4, a ¼ 0:05).

FIG. 2. Plot of damping rate c as a function of q for values of k¼ 0.4, 0.7,

1.2. One can see that as k increases, the values of jcj are higher than those

for a lower k.
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Following Manfredi, the gridsize is set to Nx ¼ 512;
Nv ¼ 4000, which has been shown to be quite accurate for

long-time simulations.5 The choice of parameter results in

the recurrence time TR � 5326. Also, in the past, BGK

structures were seen to be sustained till t¼ 1600.5 We have

extended Manfredi’s run till t¼ 5000 and find the electric

field structure to sustain. This can be seen in Fig. 3, where

we have plotted the amplitude of the fundamental harmonic

of the electric field, denoted by E1, evolving with time. The

vertical grey line indicates the duration of Manfredi’s

simulations.

In the phase-space, a vortex structure is created by parti-

cle dynamics during nonlinear evolution. The resonant

region is the region in phase-space where phase velocity v/

matches with the particle velocity facilitating resonant

exchange of energy between the wave and the particles lead-

ing to trapping-detrapping dynamics. Therefore, we look for

the vortex in the distribution function f around the phase ve-

locity v/ ¼ x=k obtained by solving Eqs. (9) and (10)

(around which particles exchange energy with the wave). In

this case, the analytical value of x ¼ 1:28506 for k¼ 0.4,

and hence v/ ¼ x=k ¼ 1:28506=0:4 � 3:21. The plot for

phase-space vortex is a frame moving with velocity v¼ 3.21,

shown in Fig. 4(a) at time t¼ 5000.

One can see from this figure that there is a phase-space

vortex in the distribution function. This, and the figure for

E1, implies that there is a prominent potential well formed,

and particles keep getting trapped and detrapped to sustain

the steady-state potential well. We can see that this process

continues till t¼ 5000, far beyond Manfredi’s run of

t¼ 1600, demonstrating clearly that such trapping oscilla-

tions are sustained for long-time. We now would like to

check the velocity distribution function f̂ ðvÞ for non-

monotonicity generated by nonlinear Landau damping, at

t¼ 5000. The velocity distribution function is given by

f̂ ðv; tÞ ¼

ðL

0

f ðx; v; tÞdxðvmax

�vmax

ðL

0

f ðx; v; tÞdxdv

: (12)

In Fig. 4(b), we show the resultant nonmonotonous steady-

state velocity distribution function. Existence of phase-

space vortex in the frame moving with the phase velocity

v/ ¼ 63:21 is clearly demonstrated. We can also infer that

the non-monotonicity of log10 f̂ ðvÞ plot can be used to assess

the final form of a steady-state travelling wave solution.

In the original work, BGK solutions are constructed by

“arranging” number of particles trapped (and untrapped) in

potential-energy troughs (and crests), leading to vortices in

phase-space and nonmonotonicity in f(v).3 In our simulations,

we observe phase-space vortex structures and its sustenance

throughout the time of the simulation. Moreover, this BGK-

like structure moves with a constant velocity which accurately

matches with the phase-velocity analytically obtained. We,

hereon, refer to such solutions as “BGK structures,” which,

we believe based on the above said arguments, are close to

analytically constructed steady BGK modes.

We study the numerical entropy for q¼ 1. The numeri-

cal entropy S(t) is computed by

SðtÞ ¼
ðL

0

ðþvmax

�vmax

f ðx; v; tÞlog f ðx; v; tÞ dv dx: (13)

We plot relative entropy, defined as Srel¼ðSðtÞ�Sð0ÞÞ=Sð0Þ,
with time. This can be seen in Fig. 5.

Because of the numerical scheme, the entropy monot-

onically increases with time. The numerical entropy is a

measure of the information “lost” from the simulation. As is

well known, the evolving distribution function exhibits fila-

mentation which generates a small-scale structure in phase-

space. The numerical entropy saturates when the small-scale

FIG. 3. A run corresponding to Run I of Manfredi,5 who had shown the

oscillations to continue till t¼ 1600. We extended the run till t¼ 5000. The

vertical grey line indicates the duration of Manfredi’s simulations. Notice

the continuation of the oscillations.

FIG. 4. For q¼ 1, at t¼ 5000, the phase-space vortex can be seen around at

v¼ 3.21.
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structures generated are dissipated when this filamentation

reaches the gridsize,24 rendering a numerical steady-state

(nevertheless, the growth of entropy is small, signifying that

the information loss is small). Obviously, one can see that

the entropy has saturated at around t¼ 1500. It has been

shown in the past that such dissipation of small-scale struc-

tures do not affect the large-scale solution obtained.5,24 Also,

one can notice that the numerical entropy saturates nearly at

the same time the value of E1 reaches steady-state.

Saturation of this numerical entropy in time may be used as

a diagnosis to determine the numerical steady-state of the so-

lution in the nonlinear phase.

To summarize q¼ 1 results, we observe that the electric

field E1 initially undergoes few oscillations and then settles

to oscillate around a non-zero value. On inspection of the

phase-space, we find the phase-space vortex which leads to

nonmonotonicity in the velocity distribution function. Also,

we find that the phase-space vortex moves with a constant

velocity for the entire simulation. Also, the numerical en-

tropy (which we use as a measure of whether the system has

attained a numerical steady-state) saturates at a constant

value. Thus, we can infer that this non-zero electric field

structure, in a neutral Vlasov plasma, moving with a constant

phase velocity, is a BGK-like solution which we call a

“BGK structure.”

Now that we have observed nonlinear Landau damping

on q¼ 1 distribution leading to BGK structure, we wish to

study the long-time fate of similar perturbation on q 6¼ 1 dis-

tributions. For this purpose, we perform runs for two differ-

ent sets of q values.

2. Case q < 1

In case of q < 1, the distribution functions, as compared

to the Maxwellian, exhibit a lower peak and a longer tail.

Therefore, we choose the following parameters in the solver

to accommodate for these changes.

We give runs for 0:5 � q < 1 varied in steps of 0.05

and will be referred to as “Set I.” For Set I, we choose

vmax ¼ 12:5; Nv ¼ 8000; Nx ¼ 512 and keep rest of the initial

conditions same as Manfredi’s. For these runs, the recurrence

time TR � 5026, and thus we choose to run the simulation till

t¼ 2000. Also, it is important to note that for any q-distribu-

tion in this set, we observe that the phase velocity v/ ¼ x=k
lies well within the bulk of the distribution, far from vmax.

Now, similar to the case for q¼ 1, we wish to see the

evolution of E1 with time. The graphs obtained for E1 are plot-

ted in Fig. 6. We have not shown graphs for q < 0:80 because

for q � 0:80, E1 damps and stays damped. Furthermore, with

decreasing value of q, the value of jcj increases, and hence the

time in which the system damps decreases. Hence, the lesser

the value of q, the faster it damps. Also, the behaviour shown

FIG. 6. Plots for the amplitude of the

first harmonic of the electric field E1

with time for Set I. One can notice that

the oscillatory structures are not found

for q � 0:80. Also, as damping rate

increases, one can notice that the ampli-

tude of oscillations decreases. This is

similar to the result obtained by

Valentini.14 The vertical line represents

the time of Valentini’s simulations.

FIG. 5. Plot of relative entropy Srel with time. The vertical line represents

the duration of Manfredi’s simulation.
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by the system is maintained even when the simulation is

extended to run till t¼ 3000.

We can see that the oscillations cease to exist some-

where in the interval q 2 ½0:80; 0:85	. We ran the code for an

intermediate value of q¼ 0.825. We observe that for this

case too the oscillations in E1 arise, albeit at later time. In

fact, we observe that, for those values of q for which BGK

structures arise, as q decreases and jcj increases, the time

taken for oscillations to arise increases.

Now again, we wish to see the plots for relative entropy

with time Srel. In this case, entropy S(t) is defined as9

SqðtÞ ¼
ðL

0

ðþvmax

�vmax

f ðx; v; tÞ 1� f ðx; v; tÞq�1

q� 1

 !
dv dx; (14)

which is the same as q-nonextensive entropy. Note that for

the limit q¼ 1, Eq. (14) reduces to Eq. (13). The plots for

relative entropy for Set I can be seen in Fig. 7. For the cases

where BGK structures are found, the entropy curves are sim-

ilar to the curve for q¼ 1. Also, one can notice that smaller

the value of q, the later the entropy seems to grow and stabi-

lize. Also, we extended the simulation till t¼ 3000 in order

to confirm the formation of a steady-state solution. From the

figures for E1, we conclude that the long-time solution is

indeed a BGK structure for 0:85 � q � 0:95.

Also, for q � 0:80, the curves for entropy (not shown)

have a different shape, and do not saturate at a fixed value.

The phase-space plots of the distribution functions, in the vi-

cinity of v/, also does not reveal any vortices. For this rea-

son, we believe that within t¼ 3000, cases q � 0:8 do not

lead to phase-space vortices and consequently do not exhibit

BGK-like solutions (in order to verify that the monotonic

damping for case q¼ 0.8 is not a numerical phenomenon, we

ran the same code with higher resolution in x and v, with

Nx ¼ 2048; Nv ¼ 16000, and vmax ¼ 25, keeping rest of the

parameters the same. For this run too, the oscillations damp

quickly and stay damped. Thus, the lack of formation of a

BGK structure is not simply a numerical phenomenon).

For the case of q¼ 0.85 (which is close to the value of

q for which BGK structures do not form), we wish to see

the structure of the distribution function. For q¼ 0.85, the

analytic value of x ¼ 1:31135 for k¼ 0.4 and, hence,

v/ ¼ x=k � 3:28. Thus, we plot the distribution function

around v/. The plot can be seen in Fig. 8. Even though, for

q¼ 0.85, a phase-space vortex is formed in the vicinity of

v ¼ v/. This structure is better formed for q¼ 0.9, for which

the amplitude of E1 is greater than that of q¼ 0.85 and thus

looks “weak” in the figure, which is similar to the result

obtained by Valentini.14 We can also see that this structure

has sustained till t¼ 3000. Thus, from E1, Srel, and the

phase-space vortex, we can conclude that the solution is a

BGK structure.

Furthermore, in terms of the independent parameters in

the simulation, for k ¼ 0:4; a ¼ 0:05, the value of q � 0:8
seems to be the critical q at which the transition of behavior

from completely damped to formation of BGK mode occurs.

Therefore, one can say that the window for sustaining BGK

modes in q < 1 is restricted by the damping rate jcj which

increases for decreasing q. Thus, below the critical q, the

electric field is damped away before a potential well for trap-

ping is formed.

Now, we move on to the next set of runs corresponding

to q > 1.

3. Case q > 1

We can notice from the velocity distribution function

Eq. (7) that for q > 1, the distribution function exhibits

higher peak and a shorter tail. Also, it exhibits a velocity cut-

off at vcutoff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðq� 1Þ

p
, beyond which the function

becomes unphysical.

Again, similar to Set I, we give runs for 1 < q � 1:15 in

steps of 0.05 and refer to this set of runs as “Set II.” For the

Set II, we choose vmax ¼ vcutoff and keep grid sizes and rest

of the initial conditions the same. The minimum value for

the recurrence time TR � 9934 (as a result of smaller vmax).

In this case, the periodic boundary conditions (PBCs)

set on the v-domain may affect the simulations if the reso-

nant region is close to the boundaries. Therefore, we con-

sider only those cases for which the resonant region is

sufficiently far away from the boundaries. Hence, as men-

tioned earlier, we do not consider cases q � 1:2, as

vcutoff � v/ for increasing q > 1. Clearly, one can increase

the value of k so as to make the value of v/ ¼ x=k lie within

the “bulk” of the distribution function. However, as we have

FIG. 7. Plot of relative entropy Srel with time for q < 1 till t¼ 3000. The

vertical line represents the time up to which Valentini’s simulations were

performed.

FIG. 8. Plot of distribution function for the run with q¼ 0.85, around

v/ ¼ 3:28, at t¼ 3000.
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observed, increasing k leads to an increase in c and, there-

fore, the advantage of having v/ more distant from vcutoff is

overshadowed by the field being damped rapidly (Fig. 2).

We shall come back to this point soon.

For the cases 1:05 � q � 1:15, we now wish to see the

evolution of E1 with time. These can be seen in the Fig. 9.

One can notice that the oscillations continue at a non-zero

amplitude, similar to q¼ 1. Next, we now check SrelðtÞ to

see whether filamentation affects the long-time solutions.

This can be seen in Fig. 10. The shape of entropy curves are

different from the earlier cases, which may be because of

higher resolution in v domain. One can see that the entropy

has not saturated within t¼ 1200. However, it can be clearly

seen, for 1:05 � q � 1:15, that the relative entropy curves

settles to steady-state at a higher value than the other q val-

ues, within t¼ 3000.

For q¼ 1.15, we wish to see the distribution function

at around v ¼ v/. In this case, the analytically obtained

x ¼ 1:22917 and, hence, v/ � 3:07. Thus, we plot the distribution function around v/ at t � 2000. This can be seen

in Fig. 11. In this case too we can see the phase-space vortex

clearly and see the corresponding value for E1, which resem-

bles the case for q¼ 0.95 and q¼ 1. Thus, this long-time state

is also a BGK structure solution.

However, for higher q-values, the decrease in v/ is offset

by a competing higher k damping. To keep v/ � vcutoff , k has

to be increased. For this purpose, we perturb with a higher

value of k, initialized with q¼ 1.30 distribution. We keep a
and the grid sizes same as in the earlier cases. Increasing k
causes the value of v/ to decrease. We perturb with k¼ 0.7,

1.2, which corresponds to v/ � 2:29; 2:07, respectively, both

under vcutoff � 2:58. On perturbing with k¼ 0.7, we see oscil-

lations in E1 (implying a BGK mode solution) and perturbing

with k¼ 1.2, we see that E1 gets damped quickly and stays

damped. This occurs because, with increasing k, keeping a
constant, as mentioned earlier, the absolute value of c
increases (Fig. 2), which renders difficult the formation of

BGK structures. For Maxwellian plasma, this effect has been

observed in the past.24 Therefore, we may reasonably expect

such a transition for any q-distribution which shows BGK

structures for some value of a; k. This phenomenon was not

considered by Valentini, who states that trapping for q > 1 is

extremely efficient.14 We, however, find that the efficiency of

FIG. 9. Plots for the amplitude of the first harmonic of the electric field E1

with time. The vertical line represents the time of Valentini’s simulations.

As we can see, the field has not saturated within this time.

FIG. 10. Plot of relative entropy Srel with time for 1:05 � q � 1:15. It can

be seen that the entropy saturates within t¼ 3000. The vertical line repre-

sents the time up to which Valentini’s simulations were performed.

FIG. 11. Plot of distribution function for the run with q¼ 1.15, around

v/ ¼ 3:07, at t¼ 3000.
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trapping decreases with increasing k, eventually leading to

monotonic damping at a critical k.

As discussed before, the change in behaviour from trap-

ping to monotonic damping is also known to occur for

Maxwellian (q¼ 1). In order to check, we gave runs for q¼ 1

with k¼ 0.4–1.2, with the same a, till t¼ 2000. We found that

the critical value of k lies between 0.49 and 0.5, between

which the behaviour changes from BGK mode formation to

exponential damping. For q¼ 1, for this critical value of k, for

a ¼ 0:05, we find that cs � 0:67. As pointed out empirically

by Manfredi, the index cs plays a critical role in determining

the long-time behaviour of the system. For an initial

Maxwellian, it has been previously reported by Manfredi that

there seems to be a critical value of cs � 0:5 around which

the behaviour of a system changes.5 However, Ivanov et al.
have reported a critical cs � 1 for such a change.7 Valentini

has subsequently studied the dependence of critical value of s
on q for q-distributions.14 Furthermore, for another value of

k¼ 0.5, we have studied the variation in the value of cs for

different values of q in the linear phase of Landau damping.

We observe that for q � 0:9; cs > 1. Since we have already

seen that k¼ 0.5, q¼ 1 represents a critical value of the

change in behaviour and that the damping rate increases with

decreasing q, we can reasonably conclude that trapping is not

observed for those q-values for which cs > 1. It is also rea-

sonable to generalize that damping at k values higher than a

critical value occurs for any q-distribution. Especially for

q-distributions with q > 1, this phenomenon severely restricts

the window in k within which one can observe BGK modes.

Now, we wish to compare the results obtained from the runs

corresponding to 0:85 � q � 1:15, for which a BGK mode

solutions are formed. To do so, we construct a semi-log plot

for the velocity distribution function f̂ ðvÞ to see where the

phase-space vortex is. This can be seen in Fig. 12. For these

values of q, from Fig. 12, one can notice that distinct non-

monotonicity is observed the vicinity of v ¼ 6v/. Also, for

the case of q¼ 0.85, for which the field E1 is weak, we can

see that this structure looks rather diminished. Also, this non-

monotonicity becomes more prominent and visible with

increasing q. Thus, one can say that BGK structures, for a

given perturbation, can occur beyond the critical value of q as

long as vcutoff is greater than and sufficiently far away from

v/. Also, as q increases higher damping rate at larger k values

severely limits the window in q for the formation of steady-

state BGK structures.

IV. SUMMARY

For a given perturbation amplitude a and perturbation

wavenumber k, we demonstrate existence of a window in q
where BGK structures are shown to sustain for very long

times. For example, for k¼ 0.4, a ¼ 0:05, there is a window

around q¼ 1 for which we can see BGK structures. As q
decreases below q¼ 1, the electric field damps quicker.

After a critical value of q, damping renders the existence of

BGK structures difficult and, hence, the electric field is

found to monotonically damp away. Therefore, for q < 1,

the formation of BGK modes is limited by the increasing

damping rate c with decreasing q and, in the process, con-

firmed Valentini’s observation up to t ¼ 3000x�1
p .

As q increases beyond q¼ 1, the perturbation causes the

phase velocity to come closer to the velocity cutoff of the

q > 1 distribution. Because of this, there exists an upper limit

on q below which we find BGK structures. Beyond this limit,

the perturbation does not cause Landau damping (hence ren-

dering such a situation unphysical). To remedy this, we

increased the value of k, which causes the phase velocity to

lie within the bulk of the distribution. But, this also causes the

damping rate to increase, and, thus, a critical value of k exists

beyond which BGK structures cannot be found. Thus, in the

q > 1 domain, whenever nonlinear Landau damping occurs,

the formation of BGK structures is limited by an upper limit

on k. This had not been observed previously and leads to a

severe restriction on the window for q > 1 within which trap-

ping occurs.

We have shown, using high-resolution Vlasov-Poisson

solver for long-times up to t ¼ 3000x�1
p that the formation

of BGK structures seems to depend critically on the inde-

pendent parameters q; k; a. Further work needs to be done to

explore the dependence of formation of BGK structures on

the independent parameters of the simulation, which will be

reported in a future publication.
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