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Abstract

The aim of the present study is to investigate the low temperature bulk mag-
netic properties and transport properties of a low dimensional quantum magnet
SrCuQ;. Along with another member from the cuprate family SroCuQjg, this
compound offers an excellent realization of 1D spin chains in a bulk crystal.
However, unlike SroCuQg3 which has well separated linear chains of Cu-O-Cu,
the basic structural units of the spin chains in SrCuQs comprises of two linear
chains of Cu-O-Cu coupled together to form a ribbon. The nearest neighbour
(with a localized spin) of each Cu ion in such an arrangement is another Cu
ion in the neighbouring chain of the ribbon. Thus, the Cu-Cu chain is a zig-zag
chain which explains why this compound is also popularly known as a zig-zag
chain compound. This unique structure leads to an inherent frustration in the
system due to the fact that the next nearest neighbour Cu spins along the lin-
ear Cu-O-Cu chain couple antiferromagnetically, while the nearest neighbour Cu
spins couple ferromagnetically. This inherent frustration is understood to play
a key role at determining the behaviour of the system at very low temperatures.

Previous studies on the magnetic ground state of this compound have re-
vealed that there is no long range order (LRO) down to temperatures as low
as 2K. Frustration is believed to play a key role in suppressing the LRO in the
system. In order to better understand the role played by frustration we have
successfully grown single crystals of SrCuQs, which are lightly doped with vary-
ing concentrations (0.25%, 0.5% and 1%) of non-magnetic (Zn) and magnetic
(Co) impurities. The technique used to grow these crystals is the Traveling
Solvent Floating Zone (TSFZ) method using the four-mirror optical furnace at
IISER (Pune).

DC Magnetization /Susceptibility measurements were performed by Koushik
Karmakar (PhD Student, Physics, IISER Pune) at IISER, where it was found
that the non-magnetic impurities (Zn®") break the chains into segments, where
at the free ends of these segments effective paramagnetic moments are induced.
However, no LRO is observed down to 2K. For magnetic impurities (Co?")
the behaviour is more complex. The susceptibility shows a highly anisotropic
behaviour which is also temperature dependent. There is no transition peak ob-
served in susceptibility measured along the crystallographic a and b directions,
whereas a prominent peak in the susceptibility at around 5K is measured along
the ¢ direction, which indicates a highly anisotropic ordering behaviour. The
transition temperature scales with the concentration of the Co?* ions which



can be taken as an evidence to assert that the Co ions are present in the spin
chains. Below the transition peak, ZFC and FC measurements reveal a split-
ting/hysteresis which points towards a spin glass/freezing behaviour.

Thermal transport studies were performed on two concentrations of Co
doped samples at the IFW Dresden under the supervision of Dr. Christian
Hess to gain an improved understanding of the effect of doping of magnetic
impurities on the elementary excitations (spinons) in the spin chains and their
coupling with phonons.

In the near future it is planned to perform pSR and neutron scattering
studies at the Paul Scherrer Institute (PSI), Switzerland in the temperature
range below 5K to understand the local spin behaviour in the case of Co doped
single crystals of SrCuQ,.
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Chapter 1

Introduction

The simplest system with a permanent magnetic moment in its ground state is
the hydrogen atom.! The magnetic moment arises due to the intrinsic degree of
freedom of the electron called spin. The magnitude of this moment is given by,

w=gups (1.1)

where g is the Landé factor and S is the magnitude of the component of spin
along a given axis. As it turns out according to Dirac’s Relativistic Theory,
g =~ 2, and we know that the magnitude of S for a single electron which is a
fermion, is S = 1/2. Therefore the effective magnetic moment of this system is,

W= B (1.2)
where pp = 52 = 0.927 x 10~2°emu (in CGS-Gauss units) is called the Bohr

Magneton. I?Srovides a natural realization of a unit in which the magnetic
moments of other systems can be expressed and compared.

However, an isolated magnetic moment in space offers very little information
when it comes to explaining the behaviour of a multitude of magnetic systems
found in nature. In order to understand the physics of magnetic systems we
have to understand the nature of the interactions between the magnetic mo-
ments. The simplest system which helps us take the first step towards such an

understanding is a dimer.

1.1 Magnetic Dimer

As the name suggests a Magnetic Dimer consists of two interacting magnetic
moments or spins (henceforth in this text, only the term spin will be used
without any loss of information). Is it possible to write down an expression

IRemarkably, the magnetic moment of an isolated electron measured in a frame of reference
in which it is at rest is the same as the magnetic moment of the hydrogen atom in its ground
state.



which accounts for the interaction of these two spins? As it turns out, it is
possible to write down a simple expression for the interaction as,

H = J(Slsz) (13)

Here J determines the strength of the coupling between the two spins, while
S; denotes a three dimensional vector in the classical case or a three dimensional
spin operator expressed in terms of the three Pauli matrices for the quantum me-
chanical case. This model was first suggested by Heisenberg in 1928 [3|, wherein
he also gave the correct microscopic explanation for the exchange interaction
J. He showed that exchange interaction is not a fundamental force in itself but
is a quantum mechanical effect with the fundamental force responsible being
the Coulomb force. We will discuss both the classical case and the quantum
mechanical case for this model, in turn now.

1.1.1 Classical Dimer

Assuming that the spin vectors behave like classical three dimensional vectors,
we can write down the energy term as,

HClassical = J(Sl SQ COSs 9) (14)

We want to arrive at the ground state of such a system. Depending on the sign
of J we will have two cases:

e +ve J (Antiferromagnetic): The system has lowest energy when the spins
are aligned antiparallel to each other (6 = 180°).

e -ve J (Ferromagnetic): The system has lowest energy when the spins align
parallel to each other (6 = 0°).

The energy of the ground state for both the cases is,

Ey = —|J|S? (1.5)

Note that the ground state energy of the system is rotationally invariant since
it is solely dependent on the relative orientation of the two spins (parallel or
antiparallel). The energy of the excited system can itself vary continuously from
the ground state energy to the highest energy (since cosf varies continuously
between —1 to +1) ,

EHigh,est = |J|S2 (16)

1.1.2 Quantum Mechanical Dimer

In the quantum mechanical case the spin terms are replaced by spin operators
which are expressed in terms of the Pauli Matrices as,



ol (1.8)

S? = gof (1.9)

We need to find a complete set of eigenstates for this system. This can be
done by first identifying a complete orthonormal set of states for the system.
After expressing H in this basis, we can subsequently diagonalize to find the
eigenstates for this system. A convenient basis for the dimer can be written
down in Dirac notation as,

|+4+ > +=—>]-+>|—-—> (1.10)

where the first sign (+ or -) corresponds to the spin state of the first spin (up or
down), while the second sign corresponds to the spin state of the second spin.
Writing down H in terms of spin operators we get,

H - J(S]_Sg)
H = J(5755 + 575 + S75%) (1.11)

We can re-express H in terms of raising and lowering operators which are defined
as,

+ _ Q= .
Si =57 +is!

Sy =87 —iSY
to write,
1
H=J[S{S; + 5(5?5; + 5780 (1.12)

Now we can evaluate the elements of the matrix of H expressed in terms of the
basis states listed out in (1.10). While evaluating the matrix elements we must
keep in mind the following point:

e The operators which act on different spins commute with each other.

This means that the order in which these operators act on the state vectors
of the basis set is immaterial since the operator which acts on spin 1 does not
affect the other spin and vice versa. The matrix of  obtained for the basis set
of (1.10) is,

10 0 0
0o -+ 4 0
2 4
o 0o o 1

10



The eigenvalues of the characteristic equation of this matrix are,

J J J 3J
SR 1.14
4’47 4 4 ( )
The eigenstates corresponding to the eigenvalue %are,
1 (1) 0
0 7 0
P = = | P s = (1.15)
0 7 0
2
0 0 1
While for the eigenvalue —% the eigenstate is,
0
1
Ya=| V3 (1.16)
V2
0

Let us have a look at the most important results that we have obtained so
far:

e First, in contrast to the classical case, states with only two discrete energy
levels are allowed, i.e. the energy levels are quantized.

e Second, if we compare the energy of the ground state for the case of
antiferromagnetic coupling between the two spins of the dimer, we see

that the ground state energy for the quantum case(—%) is significantly
lesser than the energy of the ground state for the classical case (—%).

The second result brings to light the role an additional symmetry plays in de-
terming the energy levels of the system. This symmetry is the intrinsic rotational
symmetry of the spin space and is called the SU(2) symmetry in Group Theory
notation.

1.2 1D Chain with S=1/2

The case of the magnetic dimer has shown us a few pointers as to the role
played by the quantum nature of the spins. Can we extend the same model
of interaction between the spins to explain the behaviour of the next logical
extension of spins, namely a 1D spin chain? Suppose we assume the same form
of interaction between the nearest-neighbour (NN) spins, then we can write
down the Hamiltonian for the system as,

N
H=1J) S:S; (1.17)
i=1
Assuming periodic boundary conditions, we can write this down as,

11



N
H=J7> SiSit (1.18)
i=1
where i + N = 1.

1.2.1 Classical Case

As for the case of the magnetic dimer, we have two cases corresponding to the
sign of J:

e -ve J (Ferromagnetic): The lowest energy of a pair of spins is attained
when the two spins align in parallel to each other. For the entire system
the pairwise interaction will yield the lowest energy when all the spins
align along the same direction. The energy of this state is given by,

E = —N|J|Ss? (1.19)

e +ve J (Antiferromagnetic): The lowest energy for every pair of spins in
this case is attained for an even number of spins and is the same as the
energy for the ferromagnetic case.

1.2.2 Quantum Mechanical Case

As was the case for the magnetic dimer, the ground state energy of 1D chain
with ferromagnetic (-ve J) coupling between NN spins for the quantum me-
chanical case is the same as the classical ground state energy. We can calculate
this energy as the solution of the eigenvalue problem with the eigenstate cor-
responding to the state with all the spins aligned along a given direction (say
along z).

The case for antiferromagnetic (+ve J) coupling offers more insight into
the role played by the quantum nature of spins in determining the ground state
properties of the 1D chain. Obtaining the ground state for the antiferromagnetic
case is a highly non-trivial problem since the state corresponding to the classical
ground state configuration (with all NN pairs aligned antiparallel to each other)
is no longer an eigenstate. Hans Bethé in 1931 was the first to give a form for
the ground state wavefunction using his famous ansatz[4]. In the following the
basic ideas used by Bethé to arrive at the ansatz equations are briefly sketched:

e As the first step, free particle wavefunctions for the elementary excitation
(single spin inversion) in a ferromagnetic chain are assumed.

e The case for two inverted spins leads to additional constraints on the quasi-
momentum of the free particle solutions resulting from the consideration
of the case when the two inverted spins sit on neighbouring sites.

e Gradually the number of inverted spins may be increased while respecting
the additional constraints obtained for the case of two inverted spins.

12



e The antiferromagnetic ground state consists of the case when exactly half
the spins of the chain are inverted.

The actual value of the ground state energy was calculated by Hulthén in 1938
[1].

The Bethe ansatz works for S = 1/2 chain and while it does not work for
any S > 1/2. This result implies that the chain of S = 1/2 Heisenberg spins is
an integrable system.

Hopefully, the fundamental difference between the quantum and classical
nature of spins and the role played by it in determining the ground state energy
has been sufficiently impressed in the discussion so far. However, it is not just the
ground state energy which is modified, the nature of the elementary excitations
in these systems as well as the possibility of realization of new exotic phases, all
make the study of low dimensional quantum magnets very interesting.

1.3 The S = 1/2 Heisenberg Chain?

While we briefly discussed the 1D Spin-Half Chain, it will serve us well to discuss
a little more on this system as it constitutes the most important paradigm of
low-dimensional quantum magnetism. It helps us understand various scenarios
such as broken symmetry and the emergence of incommensurate phases, gapped
and gapless excitation continua etc.

The Hamiltonian for this model is,

1 - - zQz
H=J) 5 (STSm + 87 ST) + ASS ] (1.20)
The term,

1 _ _
§(S;Sn+1 + Sn S:—ﬁ-l)

is called the transverse part of the Hamiltonian. This term acts as a spin
interchange operator as it simply interchanges two oppositely aligned spins
(I H>=]1>).

For different values of A, there exist different phases of the 1D chain which
are briefly discussed below.

1.3.1 Ferromagnetic Phase

For A < —1, the XXZ chain exists in the ferromagnetic Ising phase, with all
the spins aligned along +z or —z direction. This phase is representative of a
phase with broken symmetry as it does not exhibit the discrete symmetry of
spin inversion S* — —S%. The application of an external magnetic field results

2The discussion in this section is based extensively on the review of 1D Quantum Mag-
netism by Mikeska and Kolezhuk [2]

13



in an additional energy contribution, however the wavefunctions of the system
are not modified.

The low-lying excitations of the ferromagnetic phase are magnons which
obey the dispersion relation (for any arbitrary S),

e(q) =2J8(1 —cos(q) — (A + 1))+ 2gupHS (1.21)

These states arc exact eigenstates of the XXZ Hamiltonian. In zero field the
excitation spectrum has a gap at ¢ = 0 of magnitude |A| — 1 for A < —1.For
A = —1, the discrete symmetry of spin reflection generalizes to the continuous
rotational symmetry and the spectrum becomes gapless.

While the ground state for A < —1 exhibits long-range order, the low-lying
excitations ensure that there is no long range order at any finite temperature.

1.3.2 Neél Phase

For A > +1, the XXZ chain exists in the antiferromagnetic Ising or Neél phase
with broken symmetry and one of the two possible ground states. The period of
the spin lattice becomes 2a, and the states have to be described in the reduced
Brillouin zone with wave vectors 0 < ¢ < 7/a. Although, S7.,,, = 0 for the
ground state, nevertheless, the sublattice magnetization defined by,

Sjublattice = Z STZL (1'22)

n=odd(even)

has a finite value.

However, quantum fluctuations prevent the order from being complete since
the sublattice magnetization does not commute with the XXZ Hamiltonian,
which was true for the ferromagnetic phase.. The elementary excitations for this
phase are described as domain wall states, where a single spin flip corresponds
to two domain walls. Each of these domain walls mediate between two different
Neél states. Although, these domain wall states are not eigenstates for finite
values of A™!, it is possible to obtain approximate solutions in the limit A= <« 1
using a perturbative expansion. Thus, the excitation spectrum in the first order
in A~1[42] is given by,

w(gq, k) = A4 2cosqcos2¢ (1.23)
=€(q/2+¢) +e(q/2 - 9) (1.24)

where,
6(/{71) = % + cos 2k; (1.25)

q is the total momentum and takes the values ¢ = % with [ = 1,2...N/2,

while k;(i = 1,2) is the individual momentum of each domain wall excitation.
¢is essentially a relative momentum and for S, = +1 takes the values ¢ = 75

14



with m = 1,2...N/2. The precise values reflect that the two domain walls are not
interpenetrating. The two domain walls propagate independently with momenta
kiand ko, which is reflected in the fact that the relative momentum ¢ can take
from a range of values. These domain walls were first described as magnetic
soliton-like excitations by Villain [41]

1.3.3 The Isotropic Heisenberg Chain

The point A = 1, corresponds to the isotropic Heisenberg antiferromagnet. The
ground state energy of the Isotropic Heisenberg Chain is given by,

E=-NJn2 (1.26)

The asymptotic behaviour of the static spin correlation function is given by,

1 (Inn)
(2m)3/2°  n

The uniform susceptibility at the HAF point is given by [11],

(0]5n-S0[0) oc (=1)" (1.27)

n2g2 12 1
T)=-—=""L1(1 1.28
X(T)==37 ( (T fkeT) T ) (1.28)
where Ty =~ 7.7J, g is the Lande g-factor, ngsis the number of spin chains
per unit cell and ppis the Bohr Magneton. This singular behaviour of the spin
chain susceptibility as 77 — 0 has been observed experimentally in SroCuQOgs
and SrCuOs [12]. Another expression for the susceptibility of the isotropic

Heisenberg chain derived using the series expansion method by Johnston et al
[13],

N 2,2
(T) = A9 HB
4kgT

(1.29)

Ny
1+, (T/i)]
T D.,
L+ @5

The elementary excitations of the isotropic Heisenberg chain are spin-half
fermions which are formed in pairs and propagate independent of each other
and are not interpenetrating. The dispersion relation first derived by Cloizeaux
and Pearson [14] is given by,

J
e(k) = %| sin k| (1.30)

This describes the lower bound of the two-spinon continuum (see Figure 1.1).
k in Eq.1.30 doubles up as the total momentum (¢) and the momentum of a
single spinon as the lower bound corresponds to the case where only one spinon
propagates while the other remains stationary.

It will be quickly summarized at this stage that any anisotropy in the chain
opens a gap which is directly proportional to the magnitude of the anisotropy
(A). The presence of a gap at k = 0 implies that the low-energy spin excitations
will be suppressed in such systems.

15
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Figure 1.1: The two-spinon-continuum of the isotropic spin 1/2 Heisenberg-
chain. The lower bound of the continuum corresponds to the dispersion of one
spinon given by Eq. 1.30[15]

With this introduction to the elementary physics of the 1D spin chain, we will
proceed to discuss the general idea of order in magnetic systems and discuss the
role played by quantum fluctuations in disrupting such order in low dimensional
quantum magnets.

1.3.4 Magnetic Order and Quantum Fluctuations

It is interesting to note that early theoritical interest in low dimensional mag-
netism stemmed from the fact that these systems provided the possibility to
obtain exact results which are extremely difficult to obtain in 3D systems. Ising
proposed his model with the hope of explaining the origin of spontaneous mag-
netization in 1D [5] . However, it was found that the model did not show any
spontaneous order at any finite temperature. He used this result to erroneously
conclude that there is no spontaneous order in 2D and 3D magnets, despite
experimental evidence pointing to the contrary. Onsager subsequently proved
that the 2D Ising Model indeed shows spontaneous order [6].

In order to fully comprehend the role played by dimensions of the magnetic
system, we need to first have a clear picture of an ordered system. For 3D mag-
netic systems, countless experiments have revealed the emergence of long-range
order below a certain critical temperature, T.. This is conveniently revealed by
the order parameter known as magnetization, which attains a finite value below
T.. Physically, long range order means that the relative orientation of the spins
even at very large distances is fixed, this information is contained in a very

16



important function known as the spin-spin correlation function.

How the spins actually orient depends crucially on the nature of the cou-
pling. In general, the orientation of the spins change from one lattice site to the
next. To make this clear, consider the case of a Bravais lattice. For this lattice
the spins order in a helical arrangement as shown in Figure 1.2. The helical
configuration is characterised by a pitch vector Q. The correlation function is
given by,

where M is the staggered magnetization.

P f o =

Figure 1.2: Helical Order

The pitch vector () is given as the minimum of the Fourier transform ;(q)
of the coupling constants.

This helical configuration includes the ferromagnetic alignment (Q = 0) and
antiferromagnetic alignment (Q = (%, %, 7)) as special cases on a cubic lattice
of side a.

The discussion so far has been on the classical limit, where S is treated as
a classical three dimensional vector. In the quantum case, apart from thermal
fluctuations which effectively reduce M, at finite temperatures, we also need
to take into account additional contribution from gquantum fluctuations which
extend down to 0K.

At this point we must mention a very important theorem due to Mermin
and Wagner [10], which states that in 2D systems with continuous symmetry
of the spins long range order is not possible at any finite temperature, while in
1D systems with continuous symmetry of the spins there is no long-range order
down to absolute zero due to the quantum fluctuations present in the system.

A major consequence of the presence of long range order is the presence
of low-energy hydrodynamic fluctuations. In order to account for these low-
energy excitations, the linear spin wave theory was proposed by Anderson for
ferromagnets [7] and later on extended to antiferromagnetic systems by Oguchi

8] .
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’ Dimension | (657) ]

3D (Simple cubic) | 0.078
2D 0.20
1D 00

Table 1.1: Comparison of (§57) for systems of different dimensions

1.3.4.1 Spin Wave Theory

Quantum fluctuations can be treated in the context of a 1/S expaunsion, such
that they vanish in the limit S — +oo (the classical limit) . A systematic way
of performing this expansion is to use the Holstein—Primakoff representation of
spin operators in terms of bosonic creation and annihilation operators:

S7 =S —ala;, ST =a;\/(2S —ala;),S” =alr\/(28 — ala; 1.32
(3 7 7 M 7 ( ) 2)7 7 7 ( ) 2) ( )

Subsequently, the terms of the Hamiltonian need to be classified according
to the powers of 1/S. If we only keep terms upto orders of 1/S and 1/52, this
approximation corresponds to what is known as linear spin-wave theory.

The advantages offered by the spin-wave theory are that it works for many
different Hamiltonians and for any number of dimensions, gives approximate
results for non-zero temperatures for arbitrary S and gives a simple physical
picture of the spin excitations in the system. While it is not possible to give
a detailed introduction to the methods of this theory for which the reader is
referred to [9]. An important result obtained therein provides a marker on the
role played by the quantum nature of the excitations and the fluctuations in
determining the behaviour of these systems at low temperatures. Evaluation of
the quantum correction(dS?) = S — (S7)for S = 1/2 yields the values listed in
Table 1.1.

While the values obtained for the 2D and 3D case are in good agreement with
the values obtained with more sophisticated methods, the result for the 1D
case is unphysical and this problem is known as infrared divergence. This
indicates that the spin-wave theory is not applicable for small values of S and
low dimensions. Therefore, the approximation of the elementary excitations in
these systems as classical spin waves turned out to be incorrect and was in
need of a revision. The paradox of S = 1/2 was resolved when it was realized
that the low-lying excitations are not spin waves but soliton-like topological
(domain wall) excitations. In the next section the thermal transport properties
in the 1D spin chains due to the spinons is discussed extensively.

1.3.5 Geometrical Frustration

The mechanism of frustration is believed to enhance the low-dimensionality in
some compounds (for eg. SrCuQ:). The simplest template to understand the

18



e I

Figure 1.3: A triangle with Ising (black) and Heiseuberg (red) spins. The Ising
spins are unable to satisfy all nearest neighbour couplings simultaneously, result-
ing in a ground state degeneracy. In the case of Heisenberg spins, the frustration
is relieved by adoption of a coplanar 120°state

origin of geometrical frustration comprises of a triangle with Ising spins at the
three vertices. If the spins interact antiferromagnetically with each other, then
it is not possible for the system to satisfy all the interactions and attain a unique
ground state (see Figure 1.3).

In real materials where spin chains may be approximately realized, the in-
terchain interactions are always present. However, depending on the underlying
structure of the lattice these interactions may be frustrated. This leads to the
enhancement of the one dimensionality of the spin chains. Moreover, it is be-
lieved that due to the fact that a unique ground state configuration cannot be
realiized in a frustrated system, the quantum fluctuations are actually enhanced,
which suppresses the onset of magnetic order.

1.4 Thermal Transport?

1.4.1 Phonons

Any theory which attempts to explain transport of heat must include a descrip-
tion of the motion of the carriers of energy. In metals, free electrons are the
foremost contenders, however the material we have investigated is an insulator
which eliminates the possibility of heat transport by conduction electrons. The
simplest form of motion in a solid comprises of the vibration of the atoms/ions
about their equilibrium positions. However, since the atoms/ions are coupled
to each other (thus forming the lattice), the individual motion of the atom /ion
is not an elementary motion form of the motion of the atoms in a solid. Waves
of displacements of the atoms from their equilibrium position can be considered
as an elementary form of motion in a solid. The quantum (corpuscular) nature
of the waves is revealed due to the existence of the minimum packet of energy

3For the description of the theory of heat transport in low dimensional quantum magnets
the references [15, 16, 17] have been quoted extensively.
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of the crystal’s vibration with a fixed frequency. This makes it possible to pro-
pose the existence of specific quasiparticles for the lattice vibrations known as
phonons.

A crystal comprising of p distinct atoms will have 3p dispersion branches.
Three of these branches are strongly k-dependent and correspond to sound waves
with velocity v, in the lattice. These are known as the acoustic branches. The re-
maining 3p — 3 branches are known as optical branches (so named because they
were first determined by optical excitation). These branches are not strongly
dependent on k and are normally excited only at high energies which means
their contribution to the thermal conductivity at low temperatures is usually
negligible and can be ignored.

In an ideal harmonic crystal, the phonon states are stationary, i.e. the
distribution of states does not change with time. Therefore, a heat current in-
troduced at any given time will remain unchanged forever which would imply
infinite thermal conductivity. In real crystals, however, there are always im-
perfections which act as extrinsic scatterers. Additionally, the lattice potential
always contains terms of higher order, i.e. cubic and higher. These nonharmonic
parts of the potential can be treated as small perturbations which describe the
interaction of phonons. This consitutes an intrinsic scattering mechanism for
the phonons. The presence of these different scattering mechanism render the
thermal conductivity in a solid, finite.

1.4.1.1 Thermal Conductivity due to Phonons

At very low temperatures only a small number of phonons are excited. In a pure
defect-free sample they can travel vast distances with only the crystal boundaries
limiting the mean free path 4. The specific heat in Debye approximation
depends on temperature as C' ~ T2. Therefore, with a constant mean free path
lpq, with the Kinetic Theory equation for thermal conductivity,

_oul
3

it follows, that the thermal conductivity also increases as k), ~ T°.

At temperatures around the peak region, defect scattering is the dominating
process in limiting the mean free path l4cf..; and therefore in limiting xp,.

At higher temperatures the specific heat becomes temperature independent
as it attains the Dulong-Petit value C' = 3Nkp. At high temperatures the
number of phonons increase, alongwith the contribution due to the anharmonic
terms. As already mentioned, the extension of the lattice potential to higher
orders leads to a scattering mechanism for the phonons, where the order value
corresponds to the number of particles involved in the scattering process. A
process of third order corresponds to a three particle process, i.e. a phonon
from a branch s with a wave vector k is annihilated and two new phonons in
the branches s’ and s” , with wave vectors k’ and k” , respectively, are created,
or vice-versa. In collisions of quasiparticles the energy is always conserved, so
we can write,

K (1.33)
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Figure 1.4: Phonon-phonon scattering a) Normal process and b) Umklapp pro-
cess [18]

ws(k) = we (k) + wer (k) (1.34)

The quasi-momentum may not be conserved in collisions of quasiparticles.
However, even if the quasimomentum is not conserved it changes by a defi-
nite quantity which is equal to the reciprocal lattice vector, . Thus for the
quasimomentum we can write,

k=k +k +G (1.35)

The collisions in which the quasimomentum is conserved are said to be Nor-
mal processes, which correspond to G = 0. The normal processes involve scat-
tering of two phonons which results in a third with a wave vector that is still
located in the first Brillouin zone (see Figure 1.4(a)).

The scattering processes which violate the conservation of quasimomentum
are known as Umklapp processes. These are processes in which the scattering
of two phonons results in a third with a wave vector that lies outside the first
Brillouin zone (see Figure 1.4(b)).

Since such a vector can always be folded back into the first Brillouin zone,
it reflects a net change in the direction of the resultant momentum vector after
the scattering. The constant reversal in the direction of phonons due to the
Umklapp-process leads to the generation of a gradient which opposes the motion
of phonons in a given direction.

To determine the nature of thermal conductivity due to phonons at temper-
atures where the phonon-phonon scattering dominates we must first recognize
that in this temperature regime the mean free path of the phonons is inversely
proportional to the concentration of the phonons. Therefore according to Bose-
Einstein statistics,
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eFsT — 1]
This leads to,
Ly ~ e —1 (1.37)
where 6 is obtained from,
_ kpbp
- 2h

In the limiting case of high 7", the mean free path is given as,

p 1
I~v14 — ~ = 1.
+ o7 ~ T (1.38)
Since at high temperatures the specific heat attains the constant Dulong-
Petit value, then according to Eq. 1.33,

1

All of the above discussion is summarized in Figure 1.5.

1.4.2 Transport due to Spin Excitations

The Heisenberg chain represents is an integrable model, which means that it is
characterised by a macroscopic set of conservation laws [19]. The most relevant
conservation from the point of view of transport of heat is the conservation of
energy current,

(H, ju] = 0 (1.40)

This implies that the thermal conductivity is infinite along the chains for
T > 0 [20]. Similar to the case for phonons, the presence of imperfections and
defects remove the integrability of the chain and render the thermal conduc-
tivity finite. Additionally the spinon excitations may couple to the phononic
excitations and therefore act as an extrinsic scattering mechanism. The precise
nature of the mechanism for these interactions is yet to be understood. An
approach to deal with the infinity of the thermal conductivity was devised, by
treating the magnetic thermal conductivity k..., as a product of an effective
thermal conductivity, D;;, (Thermal Drude weight) and a delta-function. This
can be expressed as a function of frequency as,

Kmag(w) = Dtiz5(t) + Kv‘eg(w) (1'41)

The regular part of the thermal conductivity is usually considered to be
small and neglected. For a real system at zero frequency, the idea is that the
weight will be the same but the delta function will broaden due to the extrinsic
scattering as,
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function of temperature. [18]
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Kmag(w) = Dyp,. (1.42)

Generally, the temperature dependence of 7 is unknown. However, in the
regime where the static chain defects are the dominating scattering mechanism.,
7 will be a constant, independent of temperature.

The thermal Drude weight for the XXZ Model has been calculated by Kliim-
per and Sakai [21]. At low temperatures, the Drude weight increases linearly
and may be approximated as,

(71']63)2
3h

Alongwith the broadening proposed in Eq. 1.42, we obtain the low temper-
ature approximation of the magnetic thermal conductivity,

Dy, =

oT (1.43)

KT
Komag = mTB.lmaﬂ (1.44)

where I, = v7 and n; is the number of spin chains per unit area.

This model cannot reproduce the high temperature behaviour of SroCuQOj3
and SrCuQ;. In these compounds, the maximum of k,,.4 is at a much lower
temperature than the prediction from the Drude weight. It is argued in [16]
that this deviation is due to strong spinon-phonon scattering and consequently
a strong 7' dependence of the scattering rate 7(7).

In experiments, the quantity that is actually measured is 44 Which is then
used to calculate [,,q;. We will use Matthiessen’s rule [23, 22|, which states
that it is possible to define a combined scattering rate which is the sum of the
scattering rates from different mechanisms (the assumption is that the different
scattering mechanisms are dominant in different temperature regimes). Thus
we can write down,

lmig =g "+ 15, (1.45)

mag

where [y describes the T -independent spinon-defect scattering, whilel,, (T
) accounts for the T-dependent spinon-phonon scattering. At low temperatures
the number of spinons is too less for spinon-spinon scattering to play a significant
role. For [, a general Umklapp process with a characteristic energy scale kgT};
of the order of the Debye energy is assumed,

75t = BueTP e~ (1.46)
Together with the semi-empirical parameters « = 0 and 5 = 1 [24, 25] we
obtain,
@z /mN !
1 -1 e\u
Zmag - ]’O + ( AST ) (1'47)

where Agcorresponds to the coupling strength.
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1.4.2.1 Spinon-Defect Scattering

A commonly accepted theory which explains the interaction of the spinons with
the defects is so far available. In [16], Nikolai discusses a result for a single
impurity in a Luttinger liquid. I will briefly present the main results of that
discussion. Treating the Hamiltonian as a perturbation the overall temperature
dependence comes out as,

Fomag(T) ~ T*971 (1.48)

for g > 0.5. The generalization to the bulk disorder case is a highly non-
trivial problem. A solution has been found by Li and Orignac [26]. They find,

K(T) ~T379 (1.49)

This implies a different T-dependence for the non-interacting case.

1.4.2.2 Spinon-Phonon Coupling

A method, devised by Chernyshev and Rozhkov [27, 28] takes spinon-phonon
and spinon-defect scattering into account. It is proposed, that spinons are
mainly dissipated by scattering on phonons, which in turn relax their momen-
tum via an Umklapp process. According to the assumptions, the results for
the temperature dependence of k,,4, is valid in the limit of weak spin-lattice
coupling and fast spin excitations. The results obtained by them for different
temperature regimes are,

Kmag ~ T? T < Ty
1 eD
~T Ty <<T<<Z

0
~T T > ZD

where T, is the crossover temperature between the impurity and phonon
scattering dominated regimes.

However, these relations do not work for SrCuQs;. An additional trans-
port mechanism called the spinon-phonon drag was proposed. The temperature
dependence of this drag contribution is discussed in detail in [29]. The drag
conductivity at low temperatures is given by,

Rdrag ™~ T2+Ds+m (150)

where D, represents the dimensionality of the spin system and m depends
on the details of the spin-phonon coupling, which, for standard coupling should
result in m = 3 according to [29]. Therefore, the expected proportionality
of ~ T is subleading, with regard to the previously discussed mechanisms.
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For very high temperatures, the drag conductivity reduces like the phononic
conductivity,

Kdrag ~ 1/T (1.51)

The spinon-phonon drag can only occur in sufficiently pure systems.
Another approach [30] to understand the coupling of the spinons to the
phonons leads to the following dependence on T,

Fomag ~ €1 /T (1.52)

where T* is predicted to be close to 6p/2. This effectively reproduces Eq.
1.47

1.5 The Quasi-1D Spin Chain Compound SrCuO,

Strictly speaking, all the systems are three dimensional (3D), however it is
possible that the couplings in one or two dimensions are much stronger than
other couplings. This effectively renders the system 1D or 2D in character.
This is precisely the case for cuprates, especially SroCuQ3 and SrCuQ, which
are recognized to be the best realizations of a 1D quantum magnet.

1.5.1 Structure

SrCuQ- is orthorhombic in structure with Cmcm symmetry (see Figure 1.6).
The main structural units which determine the physical properties of this com-
pound are the CuQ, zigzag ribbons which extend along the crystallographic
c-direction. Each ribbon is composed of corner-sharing CuQs chains. The
straight Cu-O-Cu bonds of each double chain structure result in very large
antiferromagnetic exchange é ~ 2100 — 2600K of the S = 1/2 spins of the
Cu?*ions as predicted by Goodenough and Kanamori [49, 48]. The 90°Cu-O-
Cu bonds between two Cu ions on adjacent chains results in a much weaker
ferromagnetic coupling, %I ~ 200 — 500K . In the zigzag configuration, the
nearest neighbour interaction is the weak 90°ferromagnetic interaction, while
the next nearest neighbour interaction is the strong antiferromagnetic interac-
tion. Irrespective of the sign of the NN interaction, the antiferromagnetic nature
of the NNN interaction results in frustration in the system. The inherent frus-
tration alongwith quantum fluctuations are believed to be responsible for the
suppression of 3D long range order in SrCuQ; down to 2K. Therefore, at higher
temperatures it is possible to approximate the two chains comprising the ribbon
to be magnetically independent.

The zig-zag chain with frustrated NNN interaction offers the possibility of
realizing many exotic phases depending on the relative strength of the couplings.
Some of them are summarized in Figure 1.8 [31]. The region of our interest in
that diagram is near the upper vertex, since in our system J, > Jyand J;is
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Figure 1.6: Crystal structure of SrCuQ,. The lattice constants are a — 3.56 A,
b=16.32 A, c = 3.92 A [16]
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Figure 1.7: The double chain ribbon of CuQO; [16]

negligible. The shaded regions represent those where open questions need to be
addressed.

At large J, the problem is one of chains with competing ladder and frus-
trated couplings. The ladder coupling opens a gap A linear in Jé /Ja to the
nondegenerate state. The zigzag chain coupling opens an exponentially small
gap A ~e~72/71 to the multiply-degenerate state [43]. How each bond type
affects the gapped state established by the other is unknown, as both gaps may
close, leaving some intermediate phase, or there may be a crossover between the
gapped states.

This schematic phase diagram in Figure 1.8 has been obtained for the system
shown in Figure 1.9 [31]
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Figure 1.8: A schematic phase diagram of the frustrated coupled ladder system
(Normand reference). The region of our interest is the area near the upper
vertex along the left side.[31]

Figure 1.9: A schematic representation of the frustrated coupled ladder system
[31]
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Chapter 2

Crystal Growth!

2.1 Principles of single crystal growth

Figure 2.1 shows a schematic binary phase diagram of a two component system
with limited miscibility in the solid state, which consists of three discrete solid
phases, o, 8 and ~. The first two phases represent the homogeneity region
of the components A and B, respectively, with small amounts of the opposite
component in solution. v represents the homogeneity region of the chemical
compound X, which is described by the formula A;_,1sB,+s , where 0 describes
a doping deviation. The compound X shows an incongruent melting behavior,
since it decomposes at the peritectic temperature into the B-doped a-phase P,
and a melt of the composition Cr .

The intersection points of the isotherms with the liquidus and solidus lines
indicate which liquid and solid phases with compositions C;, and Cg are in
equilibrium. The respective temperature specifies the melting temperature Ty,
, which is a function of the liquid composition. The ratio between the liquid
and solid compositions is called the distribution coefficient: k& = g—f .

The concentration of the solute in the melt is higher than in the solid phase,
when k£ < 1. This is the case for all the phases shown in Figure 2.1, for instance,
if we consider the component B as the solute in the phases o and +, or component
A as the solute in the phase 5. If a melt with a solute concentration Cp, is
cooled down, solid material with a lower solute concentration Cyg solidifies at
the liquidus line, this leads to a progressive enrichment of the solute in the
melt. For the case of directional solidification of a melt, realized by translation
of a temperature gradient along an elongated (e.g. cylindrical) melt volume, as
shown schematically in Figure 2.2 , the change of the solute concentration in
the melt reads [34, 33],

Cr(g) = Co - (1—g)to V) (2.1)

IFor the principles of the crystal growth, the text [15] has been extensively quoted in this
chapter.
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where g is the quotient of the solidified volume Vs and the total volume
Virotai, 1.6. g = Vs/Vrotar , and Cq is the initial concentration of the liquid
phase. For the sake of simplicity the distribution coefficient was set to a constant
value, kg = k = Cg/Cy, , a situation which is realized for instance by considering
straight liquidus and solidus lines (shown as inset in Figure 2.1). For kg # 1
equation 2.1 describes a continuous change of the solute concentration in the
melt (a solute enrichment for kg < 1) and, according to Cs = ko - Cr , in
the solidified material as well (see Figure 2.3 ). It is possible to reduce this
effect by making g small, i.e. by growth of small amounts of material out of
comparatively large melt volumes.

Fergsotatiire

olute concentration

Temperature

g .

Cs B

Composition

melt

i |

g+

H P Heereaas P ———
T

A

Figure 2.1: Example of a binary phase diagram with an incongruent melting
phase 7. The inset shows the distribution coefficient set constant by assuming
straight liquidus and solidus lines. [15]

2.1.1 Travelling Solvent Floating Zone Technique

A method that can avoid the appearance of concentration gradients during the
solidification process is the so called zone melting technique, which involves the
translation of the molten zone along a solid rod, as shown in Figure 2.2b . The
zone, created by local heating, is confined to an extension, I, much smaller than
the total rod length L. The translation of the zone along the rod causes the
material to melt at one zone boundary and subsequently recrystallize at the
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Figure 2.2: Schematic representations of a directional solidification (a) and the
zone melting technique (b). Ths denominates the melting temperature and T (x)
the temperature profile (indicated by the dashed lines.)[15]

solidification front. The principles of the zone melting were established 1952 by
Pfann [32].

The growth of a crystal of the incongruently melting compound X, shown
in the phase diagram of Figure 2.4, is done from a melt of different (constant)
composition C7 along the peritectic line PT. This can be done by the zone
melting technique. In the growth of an incongruent system the melt plays the
role of a solvent, for this reason the technique is also known as ‘The Travelling
Solvent Zone Method’. Using this technique it is possible to realize crucible-
free growth by taking advantage of the surface tension of the melt to confine
it between two vertical rods (feed rod and seed). This method is better known
as the ‘ Travelling Solvent Floating Zone Method’. Tt is highly suited for crystal
growth for a wide range of compounds with high melting temperature and/or
high reactivity.

2.1.1.1 Stabilization Process

The molten zone is created by locally heating a polycrystalline rod composition
X (P! in Figure 2.4). By translating the melt zone along the feed rod, material of
the A-rich a-phase solidifies at the lower zone boundary, while at the same time
material from the feed rod of the composition X melts into the zone. Effectively
the zone becomes enriched with component B until it reaches Cr and instead
of the phase a, material of the composition X solidifies along the peritectic line
PT. Once this situation is reached, no further change of the zone composition
takes place, since the feed material and the crystalized material possess identical
composition.

The TSFZ-growth (assuming we know the phase diagram) can be initiated
from a (solvent) pellet which possesses the correct composition C7 of the peri-
tectic point. This allows the quick establishment of the steady state. It is
possible to obtain the phase ~ from any melt composition lying between Cr
and the eutectic composition. However, it must be emphasised that the exact
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Figure 2.5: Phase diagram of the pseudo-binary SrO-CuQ system in air [35]

compound X can only be grown at the peritectic point, since the other inter-
mediate compositions can be obtained during the growth (which is the case for
the ~ phase shown in Figure 2.4).

2.1.2 Phase Diagram of SrO-CuO Binary System

The phase diagram for the (pseudo) binary SrO-CuQ system is shown in Figure
2.5 for air atmosphere at ambient pressure [35] . Under these conditions three
ternary solid phases are stable, namely SroCuQOj3 , SrCuQOs and Sr14Cuz404; -
All three of them exhibit an incongruent melting behavior. SrCuQO2 decomposes
at 1080°C into SroCuQO3 and a melt with a Sr to Cu ratio of approx. 4 : 6. Both
SryCuOzand SrCuQ, possess rather large temperature windows where the solid-
liquid equilibrium is present, while for Sr14Cus404; this temperature window is
very small.
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2.2 Experimental Realization of the TSFZ-Method

This section addresses some general practical aspects concerning the different
stages of the crystal growth of the Co and Zn doped SrCuQs-.

2.2.1 Furnace for Crystal Growth

For the growth of the strontium cuprates by the travelling solvent floating zone
technique a four-mirror optical furnace equipped with four 300W lamps was used
(see Figure 2.6). This device can be operated at pressures up to 10 bar of air,
oxygen, argon atmosphere and allows flux rates of 100cm?3 /min for oxygen and
1000cm? /min for argon, at ambient pressure as well as under pressure. The
upper and lower shaft, to which feed and seed rod are respectively attached,
can independently perform vertical translations with stable velocities (which
correspond to the growth rates) in the range of 0.1—-10mm/h and rotate in
opposite directions with the rates of rotation between 1 rpm to approximately
40 rpm. A video monitoring system which provides a visual feedback via the
operating computer allows for direct observation of the crystal growth.

2.2.2 Feed Rod

The success of a crystal growth using the TSFZ method depends directly on the
quality of the feed rod. It should have:

e High density
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e Constant diameter throughout the length
e High level of homogeneity.

All of these factors together ensure a stable melting zone during the growth pro-
cess. Any variation of either the rod density, diameter or chemical composition
leads to a change in the zone composition which may destabilize the molten
zone. The importance of a high density mainly ensures that the liquid from
the molten zone does not seep through the pores in the feed rod by capillary
action. The homogeneity of the chemical composition throughout the entire rod
is also of utmost importance. The rod should be perfectly cylindrical, i.e. with
a constant diameter and no curvature along its length. This ensures that there
is no off-axis component of rotation during the growth. As much as possible,
the feed rod should be accurately centered at the common focus of the lamps,
this ensures a regular and homogenous heating and melting of the rod.

To ensure the chemical homogeneity, a great deal of attention needs to be
given to the initial mixing and grinding of the precursors. The process of grind-
ing and sintering is repeated over multiple steps as the sintering temperature
is gradually increased in steps from 870°C to 960°C. To ensure the formation
of the correct phase regular X-ray phase analysis of the powder was carried out
after every sintering step. To ensure a high density of the rod, a special atten-
tion was given in the last grinding step to make the powder grain size as small
as possible.

The feed rods were prepared by putting the finely ground powder after the
final sintering at 960°C' in rubber tubes which were periodically shaken while
putting the powder in to ensure uniform density of powder. Once the tube is
filled, it is closed with a silicon cap and the air is evacuated using a syringe
attached to a vacuum pump. The powder is pressed inside the rubber tube in
a hydraulic press under a pressure of upto 700 bar. After the rods are prepared
using the hydraulic press, they were put in for a final sintering at 995°C for a
duration of 24 hrs to ensure good homogeneity of the feed rod.

2.2.3 Choice of Solvent

The choice of the solvent depends on the accuracy of the phase diagram, on the
estimated peritectic temperature and composition. For all the growths a solvent
pellet with a Cu is to Sr ratio of 7 : 3 was used. For the case of Zn and Co doped
samples, proportional levels of Zn and Co concentrations were introduced in the
pellet composition such that the (Cu+Zn (or Co):Sr) ratio is preserved. The
pellet was prepared in the same way as the feed rod and sintered for 24 hrs at
850 — 870°C.

For the growth, the pellet is first fused onto the feed rod which is fixed onto
the lower shaft. Subsequently, the feed rod is suspended from the upper shaft
and the growth is initiated with the seed fixed on the lower shaft.
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:.« Cleaved surface

Figure 2.7: Pictures of cleaved single crystals of: a)SrCuQOqand
b)SrCug.9975C00.002502. The mirror-like cleaved surfaces are the crystallo-
graphic ac-plane

2.2.4 Growth of Co and Zn doped SrCuO,?

The polycrystalline powder of single phase of pure SrCuQ,, SrCug.g95Zng.00502,
SrCuyg.99Zng.0102, SrCug.9975C00.0025 O2, SrCup.995 Cop.005O2and SrCug.99Cop.01 02
were prepared by the standard solid state reaction process by heating the sto-
ichiometic mixture in air at 850°C uptil 975°C in steps. As precursors for the
synthesis very fine powders (< 10um) of SrCQ3 (Sigma-Aldrich: 99.9 %), CuO
(Sigma-Aldrich: 99% for the pure compound and Alfa-Aesar: 99.995 % was used
for all the doped compounds), ZnO (Sigma-Aldrich 99.99 %) and for Co doped
samples Co30, (Sigma-Aldrich) was used. The powders of the starting precur-
sors were ground thoroughly using a mortar and pestle in their stoichiometric
ratio (SrCQO3; was preheated and dried over night at 900°C before weighing).
The ground powder was subsequently calcined in an alumina crucible at 850°C.
In each subsequent step uptil 975°C , the powder was ground thoroughly for an
average duration of 35-40 minutes and put for sintering for an average duration
of 12-24 hrs. The phase analysis of the final product was done using powder
x-ray diffraction (Bruker D& Advance Powder X-Ray Diffractometer). If ad-
ditional phases were found, the sintering step at 975°C was repeated until a
single-phase powder was obtained. After the single phase powder was obtained,
it was filled in rubber tubes and cold-pressed under 700 bar pressure to prepare
the feed rods (about 5 mm in diameter and 80 — 100 mm in length) for the
growth. These rods were subjected to a final heat treatment at 995°C to ensure
excellent homogeneity. The solvent disk was prepared separately in the form of

2Details of the growth of all the samples of Co and 7Zn doped SrCuOg are currently in the
process of submission to the Journal of Crystal Growth
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a pellet of thickness 3 — 4 mm and of the same diameter as that of the rods.
The pellet composition was taken as SrQ:CuQ=3:7 (molar ratio). For the doped
samples, a proportional amount of dopant was introdued to replace CuQ in the
solvent disks. For the growth, the solvent disks were first fused to the feed rod
before initiating the growth. All the crystals were grown under a constant Oz
flow. The growth rates were maintained at 0.7 — Imm /h to obtain a stable float
zone throughout the growth. The rate of translation of the lower shaft was kept
faster than the upper shaft to prevent the rods from touching each other at any
time during the growth. The rods were rotated in opposite directions to ensure
uniform melting and chemical homogeneity in the float zone.
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Chapter 3

Magnetic Susceptibility and
Thermal Transport

3.1 Magnetic Susceptibility’

Susceptibility and magnetization of the crystals was measured by applying the
field along the three different crystallographic directions using a superconduct-
ing quantum in- terference device (SQUID) (Quantum Design-MPMS XL) and a
vibrating sample magnetometer (VSM) (Quantum Design- PPMS-Evercool II).
The susceptibility and magnetization measurements were done in static mag-
netic fields upto 7T in magnitude. The different crystallographic directions were
identified using a Back Reflection Laue Diffractometer and the measurements
were accordingly performed on the samples.

3.2 Thermal Transport Measurement

3.2.1 Principles of Measurement of Heat Trasnport

The thermal conductivity x(7,,) at a temperature T, is defined by Fourier’s law.
The schematic setup depicted in Figure 3.1 shows an experimental realization
for utilization of the core of Fourier’s Law. A cuboidal sample is glued on one
of its small faces of area A to a heat reservoir which is at a temperature T, ..
A heat source with a temperature 77 > Ty, in the form of a resistive heater,
is glued onto the opposite face. This leads to the establishment of a steady
thermal current j; through the sample. The heater power P, is determined by
supplying a constant electrical current I;, and measuring the voltage drop Uj, .
Hence the generated thermal current is given as,

TAll the magnetization and susceptibility measurements were carried out by Koushik Kar-
makar (PhD Student) under the supervision of Dr. Surjeet Singh at TISER Pune
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Figure 3.1: Schematic Representation of Real Setup
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Ji = A A
This heat current will give rise to a temperature gradient V7 that is mea-
sured in form of a thermal voltage U, by a differential thermocouple with its
junctions placed on the sample at a distance of [ from each other on the sam-
ple. The temperature difference between both contacts can be obtained by
AT = U”‘ , where Sy, is the temperature and magnetic field dependent thermo
power of the thermocouple. To get rid of possible background voltages the ther-
mal voltage is measured twice, with and without an applied thermal gradient.
Assuming the thermal gradient to be homogeneous throughout the sample one
gets,

(3.1)

AT, U
VT, = = — 3.2
Y (3-2)
The mean sample temperature during the measurement is given by,
l
T =10+ (d+ )(VT) (3.3)

where d is the distance from the heat reservoir to the nearest thermocou-
ple junction. Using this we ultimately obtain the following expression for the
measured thermal conductivity:
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K(Tm) = A f}:l ~ Ufohff = AACZ"Z (34)

Since this method involves the establishment of a stable thermal gradient it
is known as the steady state method for thermal transport

3.2.2 Experimental Setup

The experimental setup used for the measurement of the thermal conductivity
allows for measurement down to 6K. For this purpose, the probe, in which the
sample is installed, is immersed into liquid helium. The sample chamber which
is present at the bottom side of the probe (consult Figure 3.2), is connected by
capillaries to a brass stage, which is in direct contact with the liquid helium,
allowing a cooling of the sample down to temperatures around 6 K. The heat-
ing of the sample chamber is done by means of a heater cup which is made of
wound up high resistant manganin wires. An additional inner cup shields the
chamber space from eventual radiation of the heater cup. The measurement
of the temperature is carried out by using commercial sensors? and a tempera-
ture controller 3 , which controls the current supply to the heater cup. Under
steady state conditions, the sample chamber possesses a homogenous tempera-
ture distribution and a stability of few mK. The probe can be evacuated down
to pressures of 10~ mbar or lower which ensures that there is no loss of heat
to the environment by convection.

The samples were glued onto the heat bath at the bottom of the probe using
a glue?, which was verified in measurements performed earlier to be a good
heat conductor [16]. For a successful measurement it is very important that the
sample glues well onto the surface of the heat bath.

The thermocouples used for the measurement of the temperature gradient
were made using a combination of Augg3Fep o7 and Chromel-P wires. The
contact of the thermocouple junctions onto the sample were made using silver
paste since silver has a very high thermal and electrical conductivity (this is
needed as the thermal gradient across the two junctions sets up a small but
finite current along the thermocouple wires which is what is measured by a
nanovoltmeter).

3.2.3 Sources of Error
Geometry of the sample and the thermal contacts

The biggest uncertainty in the measurement of thermal conductivity arises from
inaccuracies in the determination of the exact dimensions of the sample (the
sample, unless cut with precision is never perfectly cuboidal), as well as the
uncertainty in the estimation of the distance between the two thermocouple

2CernoxT™ Sensors from Lakeshore
3Lakeshore 340 or Lakeshore DRC-93CA
4UHU Sekundenkleber
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contacts. The lower bound for this uncertainty is 10% for a good sample geom-
etry, however this error may be larger. It is difficult to quantify the extent of
this error in every measurement. However, since this error exists as an invariant
for all the data points in the measurement, it can simply be seen as an overall
scaling factor.

Thermocouple

The uncertainty in the thermocouple arises due to uncertainty in the gauge of
the thermocouple. This uncertainty is usually smaller than 5%.

Measurement Devices

A high quality heat sensor and temperature controller was used to reduce tem-
perature fluctuations to less than 5mK during the measurement. The thermo-
couple was monitored by a nanovoltmeter with appropriately shielded cables
and for the heater a separate current source and multimeter were used to en-
sure that all uncertainties of the electrical measurements were smaller than 1%
and could be safely ignored

Heat Losses

In the calculation of « it is assumed that the entire heat from the heater flows
through the sample, however this is an idealization. In any real system there
will be losses due the three modes of heat transfer in any system: conduction,
convection and radiation. The first two are substantially reduced by using ex-
tremely thin lead wires to connect the probe head to the sample holder and
ensuring a good vacuum in the probe during the measurement. It is not pos-
sible to reduce the heat loss due to radiation, but a correction to the thermal
conductivity can be made by estimating the amount of heat loss from radiation.
This can be done as follows:

The net radiation from a solid at a finite temperature T5,; is given by the
Stefan-Boltzmann Law:

Prag = GO_A(TZLOZ - ﬁurr) (35)

where A is the total surface area of the sample, o is the Stefan-Boltzmann
constant and e the emissivity (= 1 for a perfect black body). If the temperature
of the solid is, To; = Tsurr + 01 with 0T < Ty, then we can write for P,.q
in the first approximation,

Proq = 4ec AT3, 6T (3.6)

Since the heater is kept at a constant temperature, the above equation may
be used to estimate the loss due to radiation by integrating the radiation loss
over the entire sample surface. Performing the integration yields,
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P, =4do[(w + h)esT + ShehT]T‘ oT (3.7)

surr

The new variables introduced in this equation are the dimensions of the
sample (L length, w width, h height), the surface area of the heater Sj, the
emissivities: €, of the sample and ¢, of the heater. With equation for the
radiation loss the actual heat flow through the sample P, can be calculated
as P,—P, = Py. Hence Eq. 3.4 can be written down as comprising of two
contributions, one describing thermal conduction and an additional term for
the radiation loss.

Pyl P, P,
T = = T .
The corrected thermal conductivity is therefore given as,
l
t0(Trm) = K(Tp) — CT¢ (3.9)

A

Thus the correction due to radiation losses will only be appreciable at higher
temperatures, at low temperatures the error due to neglect of the radiation loss
can be estimated to be around 0.05% to 3%, which is well below the error due
the estimation of the geometry of the sample.

Assumption of Isotropy of k;;,

It must be mentioned here that there is an additional contribution to the error at
low temperatures due to the assumption that the phononic contribution to the
thermal conductivity is identical along the spin chain and perpendicular to the
chain. It is not possible to estimate the error due to this assumption, however
qualitatively it can be said that the magnitude of this error is higher at lower
temperatures (temperatures around the peak of the thermal conductivity) since
at higher temperatures Umklapp-scattering is expected to reduce the thermal
conductivity thus making the difference due to anisotropy negligible at high
temperatures.

An upper limit to the combined error at low temperatures due to all the
sources discussed above is placed at 30 of the measured value in [40].
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Chapter 4

Magnetic Susceptibility and
Transport Properties

4.1 Magnetic Susceptibility!

The susceptibility for all the compositions was analyzed using the relation,

X(T) = Xcore T XCW + XChainBreaks + XChain (4-1)

Xeore = X0 + Xvv(Xois the constant diamagnetic contribution whileyyy is
the Van Vleck contribution to paramagnetism which is independent of temper-
ature)

Xow = % =Curie Weiss Law (Accounts for the paramagnetic contribu-
tion due to impurities (mostly attributed in cuprates to the presence of extra

interstitial oxygen ions))

. _ Nag®u3S(5+1) p _ -
XChainBreaks = s ey —contribution from free param-

agnetic moments induced around a break in the chain [36]

q Ny
XChain = NAgzp,Jz,3 1+377 (Té])n
hain — ™ )

kT 43201

] =Susceptibility of an isotropic Heisen-

berg spin chain obtained from series expansion [13]
The susceptibility data obtained for the pure compound was found to be in
good agreement with previously reported measurements|12]

TAll the measurements and analysis were done by Koushik Karmakar (PhD student) as
part of his research work at IISER Pune under the guidance of Dr. Surjeet Singh and therefore
only a few representative data for Co doped samples which are proposed to be submitted in a
paper to the Journal of Crystal Growth are discussed in this thesis to assist in the formation
a holistic picture.
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Figure 4.1: Magnetic susceptibility data of Srg g9Cog.o1CuQ2 along the three
crystallographic directions. Inset: ZFC and FC data of susceptibility below 7},

4.1.1 Effect of Magnetic Impurity

Susceptibility measurements performed along the three crystallographic direc-
tions for Srg.99Cop.91 CuQs2 are shown in Figure 4.1

No fit for the magnetic susceptibility using Eq.4.1 is possible for the obtained
data. The susceptibility measured along the chain direction shows a strong
anisotropic increase below 150K with an ordering transition peak around 5K.
Moreover, around 2K-2.5K below the main transition peak (7,), Zero Field
Cooled (ZFC) and Field Cooled (FC) measurements of susceptibility at 500 Oe
clearly show a splitting which is a clear signature of spin glass/spin freezing
behaviour. The magnetization measurements at 2K also reveal a small M-H
hysteresis loop which supports the suggestion of glassy behaviour of spins at
these temperatures.

The peak in susceptibility exists for all the doping concentrations of Co
(0.25%, 0.5%, 1%), however the temperature (7},) at which the transition takes
place is found to scale almost linearly with the concentration of Co as shown in
Figure 4.3. This can be seen as strong evidence that the transition peak is not
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due to the establishment of long range order (LRO) as observed in SroCuQs.
This is because Neel-like LRO is a “disorder to order” bulk transition which
involves spontaneous 3D ordering of the entire magnetic lattice. If we assume
the establishment of LRO at T, for 0.25% Co, then T}, for 0.5% Co and 1%
Co should not show any appreciable variation with the the concentration of the
doped impurities. However, we have evidence to the contrary.

Additionally, the presence of another transition below 7}, indicates that the
transition at T}, is not due to Neél ordering (which is a “disorder to order” tran-
sition). The fact that the system reorders below T, clearly suggests that the
ordering is not Neél-like. Instead, the strong dependence of 7}, on the concen-
tration of the dopant suggests some kind of effective interaction between the
impurity moments which depends inversely on the average separation between
the impurity moments. Higher doping concentrations imply lesser average sep-
aration between the moments which would lead to an increase in the strength
of the effective interaction between the moments, thus explaining the shift of 7,
to higher temperatures.

It is clear that Co drastically alters the magnetic ground state of the system.
Co is known to show anisotropic magnetic behaviour due to an unquenched
orbital contribution. Assuming that the Co?" ions are in their high-spin (HS)
state, then in the square planar coordination the splitting of the d-orbitals of
Co is as shown in Figure 4.4(d)

The e, orbitals (d.> and d,2_,2) have completely quenched orbital angular
momentum. The spin-orbit coupling is irrelevant for these states. On the other
hand, an incompletely filled t5, shell can have a pseudo orbital moment of
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(c) [38].

L = 1[37]. This is due to the fact that eventhough the basis wave functions
dyy , dy. and d,, are real, their linear combinations are in general complexr.
Therefore, we can have new wavefunctions with their orbital moment quantized
along the z, y and z axis respectively as,

w 1 :
1 ,
diy = —=(Edy: + idyy) (4.3)

V2

= %(:I:du +1idy.) (4.4)

In the case of a partially filled ¢35, shell with a large crystal field splitting
between the ¢y, and e, levels in an octahedral environment, the moment is
isotropic. The isotropy arises due to the fact that in an incompletely filled {2,
shell all the linear superpositions listed above exist and are degenerate. The 5,
electrons have even been compared to p electrons because of this isotropy [39].

The orbital moment can show anisotropic behaviour if there is a crystal field
of a lower symmetry which will lead to a further splitting of the t5, and e,
levels. A tetragonal crystal field (relevant to Co doped in SrCuQs) splits the
eg4 states into non-degenerate a4, and b4 levels, while the #,, level splits into a
non-degenerate by, (d,,) state and a two-fold degenerate e; (dy- and dy.) level.
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If we now consider the case of Co?™, a low spin (LS) scenario would mean that
the by, level and the e; level are completely occupied. Therefore there is only
one hole which resides in one of the split e, state (either a4 or b1,4). Thus, the
LS configuration of Co?*cannot be expected to show anisotropic behaviour of
the magnetic moment in a tetragonal crystal environment, as there is no orbital
contribution to the total angular momentum. On the other hand, the high spin
(HS) configuration for Co would imply two holes in the e, levels and a single hole
in one of the 2, levels. The single hole can occupy either the non-degenerate
byg state (dgy) [corresponding to an elongation along the z-axis| or the two-fold
degenerate €/ state (dy, and d,,) [corresponding to a compression along the

g
z-axis|. Let us consider each case in turn:

1. If the hole is present in the degenerate d,. and d,,, orbitals, it will essen-
tially occupy a linear combination of the d,. and d,. orbitals, which is
precisely what Eq. 4.4 represents. The spin-orbit interaction will lead to a
state with the orbital moment of 1up directed along the z-direction. The
spin moment (and hence the magnetic moment) will also be constrained
to point along this direction due to the spin-orbit coupling.

2. If the hole is present in the non-degenerate d,, orbital, then no linear
combinations like the ones in Eqns. 4.2, 4.3 and 4.4 are possible. The or-
bital moment in this case would be completely quenched, as a consequence
the magnetic moment would be expected to show isotropic behaviour in
conformity with the isotropic nature of the spin moments. However, there
is a caveat here: If the magnitude of the spin-orbit coupling is the same or
greater than the splitting between the by, state and the e state, then it
can lead to a mixing between the states and result in a net orbital moment
contribution.

It can be inferred from Figure 4.4 that in the square planar limit (which is of
relevance for our system), there will be a large orbital contribution directed
along the z-direction. This is due to the presence of a single hole in the e}, level
which occupies a linear superposition of the two orbitals d,., and d,. ( as given by
Eq. 4.4) and consequently leads to an orbital contribution along the z-direction.
However, our susceptibility measurements reveal a huge anisotropy along the
crystallographic c-direction which suggests that the orbital contribution lies
along this axis. This suggests an even lower symmetry in the local environment
of Co?>* which further splits up the degenerate e, levels. It must be pointed
out here that while Figure 4.4d illustrates the splitting for the HS state of Co,
even for Co in LS state there will be a finite orbital contribution which would
lead to an anisotropic behaviour of the spin of Co. Another point to remember
is that in order for the orbital contribution to be present along the c-direction
the magnitude of the spin-orbit interaction has to match the splitting between
the d,, and d,, (or d,,) orbitals.

An important piece of information that we can get out of the discussion
above is that Co ions lead to a local distortion in the lattice which should lead
to:

53



e Modulation of the exchange integral, J, in the neighbourhood of the Co
ions.

e Local distortion of the lattice which will act as an effective scatterer for
phonons.

Both of these are expected to play an important role in determining the dy-
namical behaviour of the elementary excitations of the system which can be
verified from transport measurements. This is our topic for discussion in the
next section.

4.2 Thermal Transport

4.2.1 Effect of Magnetic Impurity (Co)

Evidence for ballistic heat transport in SrCuQ, was first reported by Hlubek
et al [40]. The dramatic increase in the magnetic contribution to thermal con-
ductivity along the spin chains with an increase in the purity of the precursors
(particularly CuQ) provided clear proof of ballistic heat transport in SrCuQs.
The aim of the present study was to probe the effect of doping of magnetic
and non-magnetic impurities in the spin chains. Unfortunately, no data for the
non-magnetic impurities could be obtained. In this section, we focus on the
magnetic dopant (Co?"). Irrespective of whether the Co ions are in the high
spin state (S=3/2) or the low spin state (S=1/2) the spins are half-integer mul-
tiples. This is in contrast to the case of Ni which has an integer spin (S=1),
which was investigated as a magnetic dopant in [16].

4.2.1.1 Co = 0.25%

The thermal conductivity measured along the crystallographic ¢ and a directions
are shown in Fig. 4.5 . The maximum value of the thermal conductivity mea-
sured along ¢, k. is &~ 560 W/K/m at a temperature 18.5K which is about 0.6
times less than for pure SrCuO; (see Figure 4.6). A comparison with Ni reveals
that the thermal conductivity k. of the Ni sample is higher than Co for the same
concentration of doping around the region of the peak (Figure 4.6), however .
of Co clearly exceeds k. of Ni above 50K. A comparison of x, shows that there
is an anomalous increase in the phononic conductivity along the a—direction
for Ni, which also explains the increase of the peak along the c—direction. A
comparison at high temperatures of the thermal conductivity, x., also reveals
that . of Co exceeds k. of Ni upto room temperature. The contribution due
to magnetic excitations was obtained by subtracting the phononic contribution
from x.. Thus,

Kmag = Kc — Ka (4.5)

According to the discussion in Section 3.2.3, due to large errors expected at
low temperatures, only the data above 50 K is taken into consideration. f,qq4
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’ | lo(pm) [ T;in K | Ay in 10 °m "K'

2N 0.3 219 81.6
4N 1.48 209 61.2
0.25% Co 0.22 202.5 66.8
1% Co 0.15 147 56.9

Table 4.1: Fit Parameters for the Magnetic Mean Free Path using Eq. 1.47
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Figure 4.10: l,,,4 obtained for 0.25% Co doped SrCuQ»(red open circles) along
with the fitted curve (solid black line) using Eq. 1.47

obtained using Eq. 4.5 for both 0.25% Co and 0.25% Ni are shown in Figure
4.9.

Kmag Was analyzed quantitatively by extracting the spinon mean free path
linag using the Drude weight Dy, approach. The extracted /,,,,, obtained in the
temperature range of 50K - 300K is plotted in Figure 4.10. The parameters
obtained for the fit using Eq. 1.47 are summarized in Table 4.1. A comparison
of the value of [y which is the mean free path of spinons between defects shows
that [y is about 0.66 times the value [y for an undoped sample with 2N purity
(data for 2N and 4N purity samples was taken for comparison from [16]), while
it is 0.15 times the value of [y for an undoped sample of 4N purity. This indicates
that Co is not acting simply as a point defect in the chains but is leading to the
confinement of the spinons, which may explain the reduced magnitude of [, for
the Co doped sample.
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4.2.1.2 Co =1%

The thermal conductivity measured along the crystallographic ¢ and a direc-
tions for 1% Co are shown in Figure 4.11. The maximum value of the thermal
conductivity, k., is suppressed further to ~ 350 W/K/m at a temperature of
~ 18.5K. A comparison with Ni for the same doping concentration again reveals
that the thermal conductivity k. of the Ni sample is higher than Co for the same
concentration of doping around the region of the peak (Figure 4.12), however
the enhancement in the peak in Ni doped sample is again understood to be
due to phonons. k. of Co again exceeds that of Ni above 50K and continues to
be greater uptil room temperature (see Figure 4.14). The contribution due to
magnetic excitations was again obtained by subtracting the phononic contribu-
tion from k.. Thus, k.., obtained by using Eq. 4.5 for both 1% Co and 1%
Ni are shown in Figure 4.15. The extracted /,,,,4 obtained in the temperature
range 50K - 300K is plotted in Figure 4.16. The parameters obtained for the
fit using Eq. 1.47 are summarized in Table 4.1. A comparison of [,,,44 for both
concentrations of Co is shown in Figure. 4.17
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Figure 4.15: Comparison of k,qg of 1% Co doped (red squares) and 1% Ni
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Figure 4.16: l,,,4 obtained for 1% Co doped SrCuOs(red open circles) along
with the fitted curve (solid black line) using Eq. 1.47
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SrCuOqalong with fitted curves (solid black lines) using Eq. 1.47
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Chapter 5

Attempt towards a coherent
picture

It is quite amazing to note the drastically different behaviours that the two
different magnetic impurities induce in the quasi-1D quantum magnets. Ni
which is an S = 1 impurity induces a spin gap [16] . We know that a spin gap
appears in the following cases:

e Finite size of the spin chain
e Anisotropy in the spin chain
e Spin-Integer chains (Haldane Gap)

In principle, it should be possible to identify one of the cases listed above as
the causative agent when a spin gap appears in any system. However, this is
difficult due to the complex inter-relation of the various couplings present in the
lattice (this has already been discussed for the frustrated coupled ladder system
in the Introduction).

The thermal transport measurements on Ni doped samples of SrCuQ- by
Nikolai [16] indicate the absence of low-energy excitations along the spin chain,
this together with the observation of a spin gap implies an exponential decay of
the correlation function. This is an extraordinary result as this behaviour is the
signature of antiferromagnetic chains with integer spins. According to Haldane
[45, 46], S = 1 antiferromagnetic Heisenberg spin chains are disordered at 0K,
with a correlation function which decreases exponentially at large distance as,

(S:.8;) o (—1)(=D el (IRi=Ry1/C)] (5.1)

where ( is the correlation length along the spin chain.

It does not appear to be reasonable to expect the entire chain to behave like
a chain comprising of integer spins, nevertheless only by the determination of
the correlation length in the spin chains by a magnetic probe can this mystery
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be cleared. Just to emphasize the dramatic effect of Ni spins on the behaviour
of the spin chain, note that Ni does not exhibit any on-site anisotropy, thus
opening of a spin gap opening due to anisotropy can be ruled out. We are
therefore left with either the contribution of the finite size or the spin integer
case. Thermal conductivity measurements for the case of Mg (S = 0) doping
[16], which breaks the chain into finite segments does not show any significant
suppression of the magnetic contribution to conductivity along the spin chains.
All of the measurements therefore appear to point towards a radical change to
spin integer behaviour at low temperatures for Ni doping.

Continuing with the discussion for the case of Ni doped samples, an anoma-
lous increase in the phonon contribution along the directions perpendicular (as
well as parallel) to the chain direction was observed. In [16] the explanation
given for such an increase in the phonon conductivity along the direction per-
pendicular to the chain is that the spinons at low temperatures which used to
scatter some of these phonons in the pure compound are now absent in the Ni
doped crystals, thus in the absence of the spinons which acted as scatterers, the
phonon conductivity is enhanced. In the following text, an attempt is made to
elaborate a little more on this idea.

To begin with, it must be emphasized that for the low-energy excitations
to be established in the chain, the magnitude of the coupling J between the
nearest neighbours comprising a 1D spin chain should be uniform. Any mod-
ulation in J results in the confinement of the spinons (as seen for Ca doping
of SrCuQ; [16]). From the information obtained from measurements done on
the Ni doped samples, it appears that in pure SrCuQOs there is a resistance to
change of the exchange coupling J . Any phonon mode which would result
in the modification/modulation of the exchange integral gets suppressed. A
more useful way to model such a behaviour where we take recognition of the
soliton-like behaviour of the spinons is to assume that the spinons act as effec-
tive point scatterer/defects. Thus, according to this model some of the phonon
modes perceive these fast moving spinons as defects. A merit of this scheme
is that since the spinons are always created in pairs, the one which propagates
away from the heat bath towards the heat sink is almost never scattered due to
the phonons since the phonons are comparatively very slow moving excitations.
These spinons are therefore unaffected and contribute to the conduction of heat,
while the other may get scattered due to a phonon. The modelling of spinons
as dynamic point defects is also consistent with the experimental observation
that the enhancement of the phonon contribution for Ni doping occurs most
prominently in the regime (region around the peak) where defect scattering is
the dominant scattering mechanism.

For Co doped samples, which induces an anisotropy in the chains, there must
be a finite gap in the spin excitation as well. However, the thermal conductivity
measurements on the two concentrations of Co indicate that the size of this gap
is not comparable to the gap induced by Ni. The reduction in the thermal con-
ductivity therefore appears to arise from modulation of the exchange integral
in the spin chain which leads to a confinement of the spinons. The fact that
the phonon contribution also decreases substantially, indicates a local distor-
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tion in the lattice due to the Co ions which further supports the assertion of the
modulation of J. The susceptibility measurements for all the doping concen-
trations of Co (0.25%, 0.5%, 1%) reveal that the temperature (7},) at which the
transition takes place, scales almost linearly with the concentration of Co. This
indicates that the transition peak is not due to the establishment of Neél-like
long-range-order (LRO) as observed in SroCuQj. This is because Neel-like LRO
is a “disorder to order” bulk transition which involves spontaneous 3D ordering
of the entire magnetic lattice. If Neél order is established at T}, for 0.25% Co,
then T, should not show an appreciable change for 0.5% Co and 1% Co.

The presence of another transition below 7T}, further supports the assertion
that the transition at 7}, is not due to Neél ordering (which is a “disorder to
order” transition). The fact that the system reorders below T, clearly sug-
gests that the ordering is not Neél-like. Instead, the strong dependence of T,
on the concentration of the dopant suggests some kind of effective interaction
between the impurity moments which depends inversely on the average separa-
tion between the impurity moments. Higher doping concentrations imply lesser
average separation between the impurity moments. Consequently, there is an
increase in the strength of the effective interaction between the moments with
increased doping concentration, which would explain the shift of T, to higher
temperatures.

Adcitionally, Zero Field Cooled (ZFC) and Field Cooled (FC) measurements
of susceptibility around 2K-2.5K below the main transition peak (7},), at 500
Oe clearly show a splitting which is a clear signature of spin glass/spin freezing
behaviour[47].

Further experimental studies which probe the local level behaviour of the
spins in the Co doped systems are expected to provide further insight into the
physics of this system.
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