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Abstract

A quantum measurement with post-selection defines measurement out-
comes consistent with given initial and final states of the system being
measured, through a change recorded on a measuring device or pointer.
As the initial and final states of the system, known as pre-selection and post-
selection respectively, need not be eigenstates of the measurement operator,
post-selected measurement can consistently give rise to non-eigenvalue
measurement outcomes, particularly if the initial pointer state has a large
associated uncertainty. In the limit of a very weak interaction between
the system and the device, the measurement outcome is the weak value,
which can be larger than any known eigenvalue and can even be complex.
Even though their physical meaning is debated, weak values show pat-
terns consistent with classical logic and have been used to address concep-
tual problems in quantum mechanics. Weak measurements have found
immense use in experimental techniques to amplify and detect small sig-
nals, and for precision measurements. In this thesis, we review the theory
of post-selected measurements and consequently that of weak measure-
ments. We demonstrate the possibility of achieving higher signal-to-noise
ratio of amplification using simplified Hermite Gauss and Laguerre Gauss
modes instead of Gaussian wavefunction as pointer. We also explore the
upper limit of amplification by calculating exact expressions of pointer
shifts. Finally, we propose a method of reconstructing the state of a spin-1

2

particle using post-selected quantum measurements.
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Chapter 1

Introduction

Measurement occupies a special place in quantum mechanics. In classi-
cal physics, a measuring process is subject to the usual laws that govern
all physical processes. For example, consider a free particle moving in an
electric field. Its motion is according to the laws of classical mechanics and
electromagnetism. Now, if we measure its position by flashing light on it,
the process might introduce some change in its motion, but the change
would be as per the same laws. In quantum mechanics, however, this
does not happen. The "motion", or rather the evolution of the particle’s
wavefunction, is governed by the Schrödinger’s equation. But a descrip-
tion of the measurement of its position requires a postulate of wavefunction
collapse. This is because quantum mechanics allows the particle to be in
a superposition of multiple possible states of position but a measurement
invariably locates the particle at one particular location.
Mathematically, a quantum mechanical system is described by a vector in
Hilbert space, denoted by the ket |ψ〉 in the Dirac notation. The evolution
of the system can be described by the action of unitary matrices on this
state vector, |ψ〉 → Û |ψ〉. But unitary matrices are insufficient to describe
a measurement on |ψ〉. In quantum theory, any measurable property has a
corresponding Hermitian operator, whose eigenvalues correspond to the
possible measurement outcomes. In general, |ψ〉 can be some combination
of the eigenvectors of an observable Â, i.e.,

|ψ〉 =
∑
i

ci|ai〉 (1.1)

where Â|ai〉 = ai|ai〉. Measurement of Â will give an outcome ai with
probability |〈ai|ψ〉|2 as calculated from the Born rule, in the process chang-
ing the state to the corresponding eigenvector |ai〉. The problem is that
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the projection of |ψ〉 to |ai〉 is non-unitary. Following a model given by
von Neumann, the system and the measuring device can be thought of
as interacting quantum systems, together undergoing a unitary evolution.
However, if the system being measured is initially in a superposition state,
at the end of the evolution a projection is required to yield definite mea-
surement outcomes. The quantum interaction between the two fails to
capture the dynamics of collapse.

As a quantum measurement is probabilistic, specifying an initial state of
a system is generally not sufficient to predict the outcome of any mea-
surement performed on it. Based on this consideration, Aharonov et al.
introduced the concept of a post-selected measurement where, in addition
to an initial state |χi〉, a final state |χf〉 of the system is also specified [1].
Generally, |χf〉 need not be an eigenstate of the observable Â being mea-
sured, and the post-selection would therefore disturb whatever state of Â
the system was it. Therefore, Aharonov, Albert and Vaidman devised the
notion of a weak measurement [2] - involving a von Neumann type mea-
surement interaction with a very small coupling strength - that would
minimally disturb the state being measured. The measurement interac-
tion is followed by a post-selection, only after which the measuring device
was observed. In the von Neumann model, the measurement outcomes
are determined from the shifts in a pointer observable of the measuring
device.

It was found that for such a weak measurement, the pointer shifts can be
arbitrarily large, implying that the measurement outcomes, or weak val-
ues, defined in this manner can be many times larger than the eigenval-
ues of the measurement operator. In the most general case, weak values
of an operator are different from its eigenvalues, which has led many to
question the validity of labelling these weak values as measurement out-
comes [3][4]. The proponents of weak measurements, however, insist that
weak values are physically meaningful quantities, characterizing the sys-
tem between its initial and final states [5][1]. The question of whether post-
selection can produce errors in normal measurement procedures has also
been addressed [6]. These strange weak values have also been observed
experimentally [7][8]. Well-known conceptual paradoxes in quantum me-
chanics have been revisited and analysed in the context of weak values [9],
and weak measurement based versions of these have been experimentally
implemented [10].

Notwithstanding the conceptual issues surrounding them, weak measure-
ments have found considerable practical applications. It has emerged as
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a powerful technique for amplifying and detecting small signals [11][12].
Weak values have also been used to calculate average trajectories of pho-
tons [13], as well as to compute tunnelling times [14][15]. In addition, they
have provided new methods of reconstructing quantum wavefunctions
[16] and quantum state tomography [17]. The connection between sub-
Planck structures in phase-space and weak measurements have also been
explored in the context of quantum cat states [18].
In this thesis, we review weak measurements as a special case of more
general measurements with post-selection and study a few applications.
The second chapter introduces the basic theory, starting with the von Neu-
mann measurement model and then adding post-selection, in the process
re-deriving the weak measurement condition. The third chapter studies
weak-value amplification for different pointer states, where we show that
the amplification can be enhanced by using non-Gaussian pointer states.
We also estimate the amplification limits through exact calculations. In the
final chapter we show that post-selection can be a useful tool to reconstruct
and extract information from quantum states. Throughout this thesis, we
have used units where ~ = 1.

7



8



Chapter 2

Quantum Measurements:
Projective, Post-selected and
Weak

The aim of this chapter is to introduce the concept of post-selected and
weak measurements. For this purpose, we begin with the von Neumann
model of projective measurements. Post-selection is introduced in the con-
text of this model, and weak measurement is later shown to be a special
case of post-selected measurements. The actual physical phenomenon tak-
ing place is clarified using the example of a spin-1

2
particle. Subsequently

we discuss the physical implications of such measurements and their ex-
perimental implementations. The chapter ends with general methods of
deriving the necessary expressions, both approximate and exact.

2.1 The von Neumann measurement model

A commonly used model of quantum measurement was given by John
von Neumann [19], which we shall be using extensively in this thesis.
Here, we outline this model following the treatment of Aharonov and
Rohrlich [20]. In this model, the measuring process is devised as a quan-
tum interaction between a "system" S and a "measuring device" D. The
aim is to measure some observable Â of S, as recorded by an observable
Q̂ of D. The interaction should be such that it produces a change in Q̂ that
corresponds to the value of Â, and in the process, the value of the observ-
able should not change. The simplest interaction Hamiltonian that can be
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written down following these criteria is

Ĥint = g(t)Â⊗ P̂ (2.1)

where [Q̂, P̂ ] = i, and g(t) is essentially the strength of the interaction. The
measurement interaction is assumed to take place for a finite time interval
t0, i.e., g(t) is non-zero only for 0 ≤ t ≤ t0. The change in Q̂ due to this
interaction can be determined from the Heisenberg equation of motion,

dQ̂

dt
= i[Ĥ, Q̂] (2.2)

where Ĥ also includes the individual Hamiltonians of S and D, Ĥs and Ĥd

respectively.
Ĥ = Ĥs + Ĥd + Ĥint (2.3)

The total change in Q̂ after the interaction is therefore,

∆Q̂d = i

∫ t0

0

dt[Ĥ, Q̂]

= i

∫ t0

0

dt[Ĥd + Ĥs + g(t)Â⊗ P̂ , Q̂]

= i

∫ t0

0

dt[Ĥd, Q̂] + gÂ (2.4)

If we now further assume that the interaction occurs for a vanishingly
small time, i.e., t0 → 0, only gÂ survives in the above expression.
Now, how do we perform a measurement of Â with such an interaction?
First, we initialize our device or pointer as |q〉, an eigenstate of Q̂. If our
system’s state is an eigenstate of Â, i.e., Â|ai〉 = ai|ai〉, the combined system
S +D evolves as

|ai〉 ⊗ |q〉 → |ai〉 ⊗ |q + gai〉

The change in the meter observable Q̂ is thus δq = gai. As the interaction
strength g is previously known, ai can be calculated from the meter shift.
If the initial state is a superposition, e.g., |ψ〉 = 1/

√
2 (|a1〉+ |a2〉), the final

state of the combined system is

|Φ〉 =
1√
2

(|a1〉|q + ga1〉+ |a2〉|q + ga2〉) (2.5)

This is an entangled state, and a one-to-one correspondence has been achieved
with an eigenstate of Â and that of Q̂. Each possible measurement outcome
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of Â is correlated to a unique shift in q. But the final is still a superposition.
To measure the shift in our meter, we still have to perform a projection to
the eigenbasis of Q̂. Such a projection is an additional imposition, not cap-
tured by the unitary interaction between S and D.
The answer to the question why and how collapse of the state vector oc-
curs is not the subject of this thesis. For the moment, we note that this is
still considered an open problem. It has been shown by Zurek and others
that decoherence due to interaction with the environment leads to even-
tual loss of superposition, or coherence. Decoherence cannot, however,
predict which particular outcome will arise in a particular measurement.

2.2 Measurements with post-selection

The idea of measurement with a post-selection was introduced by Aharonov
et al. in 1988 in the context of weak measurements [2]. However, post-
selection can be implemented without resorting to the conditions that weak
measurements require. We therefore introduce post-selection prior to a
discussion of weak measurements.
The idea of post-selection is as follows:
we perform a measurement on a quantum system, conditioned to the fact
that the system is later detected, i.e., post-selected in a particular state. Given
an initial quantum state |χin〉, a measurement of Â with post-selection |χfi〉
implies that we record the outcome of the measurement only if the system
is found in the state |χfi〉 after the measurement. Usually, we shall be deal-
ing with measurements on an ensemble of identically prepared systems.
In the classical case, a post-selection would then be equivalent to choosing
a particular sub-ensemble. For quantum systems however, post-selection
is generally more complicated. The initial preparation step is often re-
ferred to as the pre-selection step and an ensemble of systems, identically
pre- and post-selected in this manner is called a pre- and post-selected
ensemble (PPS).
There are two possible scenarios for measurements with post-selection in
the quantum case. Firstly, a post-selection can be performed after the me-
ter is observed, i.e„ after a state vector collapse. In this case, the measure-
ment outcomes are the eigenvalues of Â; the probability of an outcome aj
(i.e., a shift of gaj in the pointer) is given by

P (aj) =

(
|〈χin|aj〉||〈aj|χfi〉|
|〈χin|χfi〉|

)2

(2.6)
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whereas without post-selection it would have been |〈aj|χin〉|2.
In the other case, the measurement interaction Ûint precedes the post-selection,
but the projection on the measuring device is performed after post-selection.
Then, the final state of a measuring device previously initialized in the
state |ψin〉, is

|ψfi〉 =
〈χfi|Ûint|χin〉|ψin〉∣∣∣〈χfi|Ûint|χin〉|ψin〉

∣∣∣ (2.7)

If the measurement interaction is of the von Neumann type and |ψin〉 = |q〉,
we can write

|ψfi〉 =
1

N

∑
j

〈aj|χin〉〈χfi|aj〉|q + gaj〉 (2.8)

where N is the normalization.
If we now perform a projection of Q̂, we get a distribution of discrete shifts,
ga1, ga2, ...etc, as before. The probability of obtaining the shift gaj is again
given by 2.6. Thus, for |ψ〉 = |q〉, it does not really matter whether the
post-selection occurs before or after the final projection.
The situation is more interesting if the measuring device is initialized as a
superposition of different |q〉 states. In fact, in a realistic measurement pro-
cess, preparing a definite eigenstate of Q̂ might be difficult and the latter
is more likely. We shall now examine what happens when the measuring
device is initialized as such a superposition. As a specific example, we
consider the case when the initial probe state is a Gaussian wave packet,
i.e.,

〈q|ψin〉 =
1

(2πσ2)1/4
e−

q2

4σ2 (2.9)

The final probe wavefunction in q-space is given by (up to a normaliza-
tion),

ψfi(q) = 〈χfi|e−i
∫
Ĥ(t)dt|ψin〉|χin〉

= 〈χfi|e−igÂP̂ |ψin〉|χin〉

= 〈χfi|
∑
j

〈aj|χin〉
∫
dqe−gÂ

∂
∂q e−

q2

4σ2 |aj〉|q〉

=
∑
j

〈χfi|aj〉〈aj|χin〉e−
(q−gaj)

2

4σ2 (2.10)

where we have used Ĥ(t) = Ĥint = g(t)ÂP̂ and hence,
∫
dtĤ(t) = gÂP̂

from the previous section. Note that the post-selection will not always be
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successful. The probability of post-selection can be calculated as

Pr = 〈ψfi|ψfi〉 = 〈ψin|〈χin|eigÂP̂ |χfi〉〈χfi|e−igÂP̂ |χin〉|ψin〉 (2.11)

2.2.1 Post-selected measurements on spin-12 particles

We shall perform a post-selected measurement of spin with a von Neu-
mann measuring device on spin-1

2
particles, where the measuring device is

initialized as a Gaussian wave-packet. The analysis in this section closely
follows the treatment by Duck et al. [21].
The experimental implementation requires a sequence of three Stern-Gerlach
apparatus. We pass a beam of spin-1

2
particles, moving along the y-direction

through an SG apparatus oriented such that the magnetic field makes an
angle θ with the z-axis. The beam of particles splits into two beams, of
which we select the one which is displaced upwards. This is our pre-
selection step. By performing a projective measurement of σ̂θ, and selecting
only the +1 eigenstate, we are preparing our system in the initial state,

|χin〉 =
1√
2

((
cos

α

2
+ sin

α

2

)
| ↑〉+

(
cos

α

2
− sin

α

2

)
| ↓〉
)

(2.12)

where | ↑〉 and | ↓〉 are the ±1 eigenstates of σ̂z respectively.
We measure the spin along z-direction on this pre-selected beam by pass-
ing it through a second SG apparatus, oriented along z-direction. The
Hamiltonian for the measurement interaction is

Ĥ = g(t)σ̂zẐ (2.13)

coupling the σ̂z observable (system) with the position Ẑ (measuring de-
vice). Following the von Neumann model, the measurement outcomes
will be read off from the shifts in P̂z.
The final step is the post-selection, implemented by measuring σ̂x with
the third SG apparatus and considering only those particles that give +1
outcome. Therefore,

|χfi〉 =
1√
2

(| ↑〉+ | ↓〉) (2.14)

The initial state of the measuring device is a Gaussian in momentum space,

〈pz|ψ〉 =
1

(2πσ2)1/4
exp

[
−p2

z

4σ2

]
(2.15)

The entire momentum-space wavefunction of the device will have px, py
dependence but this is not relevant to the discussion and shall therefore
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be ignored.
Then, using (2.10), the final wavefunction of the device in momentum
space is,

φ(p) =
(

cos
α

2
+ sin

α

2

)
exp

[
− (pz − g)2

4σ2

]

+
(

cos
α

2
− sin

α

2

)
exp

[
− (pz + g)2

4σ2

]
(2.16)

which is a superposition of two Gaussians. The corresponding probability
density function is given by

g(pz) = |φ(p)|2 (2.17)

As there are two possible eigenvalues of σ̂z, we expect the pointer distri-
bution to be peaked around two distinct shifts. This is in fact what we see
if we observe our measuring device, before performing the post-selection.
Post-selection would in that case only change the probability of outcomes
±1.
But if we post-select prior to observing the pointer, because of interference,
the probability density shows interesting behaviour at certain values of
the parameters g, σ, α. For ease of analysis, we rewrite (2.16) in terms of
the dimensionless quantities P = pz

2σ
and s = g

2σ
as,

f(P ) =
(

cos
α

2
+ sin

α

2

)
exp

[
− (P − s)2]+(cos

α

2
− sin

α

2

)
exp

[
− (P + s)2]

(2.18)
Let us now examine the behaviour of f(P ) at different ranges of the pa-
rameters s and α.
Firstly, for α = 0, our pre- and post-selected states are identical and the
final probability distribution of the pointer is as we would expect. For
large values of s, the distribution is sharply peaked at ±s [Fig. 2.1]. As s is
decreased to 1, the two Gaussians start to overlap [Fig. 2.2], finally merg-
ing to give a probability distribution with a single peak for s = 0.5 [Fig.
2.3]. The large s limit is what we would demand for an ideal measure-
ment, so as to clearly distinguish between the two peaks. Note that as the
wavefunction is symmetric, the average shift in pz is 0.
On increasing α to π

8
, we find that in the large s limit, the behaviour is as

expected, with two peaks of unequal magnitude at ±s [Fig. 2.3]. As s is
decreased to 1, two peaks are still distinguishable, but they are now lo-
cated at P = −0.872 and P = 0.983, i.e., the peaks are effectively displaced

14



-40 -20 20 40
P

0.2

0.4

0.6

0.8

1.0

f@PD
s=50, Α=0

(a) s = 50. Graph shows two spikes at
P = ±50

-3 -2 -1 1 2 3
P

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f@PD
s=1, Α=0

(b) s = 1. The two Gaussians inter-
fere, but two peaks at ±1 are still dis-
tinguishable.

Figure 2.1: Graph of f(P ) against P for α = 0 and s = 50, 1.
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Figure 2.2: Graph of f(P ) against P for α = 0 and s = 0.5.
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by an amount less than s. For s = 0.5, the two Gaussians merge to give
approximately a single Gaussian, the peak being displaced through a dis-
tance δP = 0.305. s = 0.01 again gives a single Gaussian. The results are
similar for α = π − 0.4 [Fig. 2.5, Fig. 2.6].
We recall from chapter 2 that the measurement outcome is calculated as
δq/g, i.e., δpz/g in this particular example. As the pointer states here are
not eigenstates of P̂z, we can substitute in place of δpz the displacements of
the peaks of the probability distributions. While in several cases, the peaks
are displaced by ±s, thereby indicating outcomes ±1, in many cases, the
displacements are different from ±s. A few such eccentric "measurement
outcomes" mz calculated in this manner are tabulated below: For α = π

8
,

α s P mz = δP/s

π/8 1 0.973, −1 0.973, −1

0.5 0.184 0.368

π − 0.4 1 1.022, −1.047 1.022, −1.047

0.2 0.514, −1.014 2.57, −5.07

0.01 0.0491 4.91

Table 2.1: Pointer shifts and post-selected measurement outcomes

post-selected measurements yield outcomes which are less than or equal
to 1. As we increase α, the measurement outcomes become larger than 1
in magnitude, as seen for α = π− 0.4. For small values of s, we effectively
have only one measurement outcome, which is many times larger than
the largest eigenvalue of σz. In a way, this is puzzling, as classically post-
selection is equivalent to choosing a particular sub-ensemble from a larger
ensemble. From a probability distribution given by |χi〉, we are selecting
out a definite state |χf〉 and asking what is the value of σ̂z recorded by the
measuring device for particles in this particular state. As there are only
two possible values of the outcome, classically there is no way in which we
can obtain such eccentric values. Quantum mechanically however, this is
not that surprising, as our post-selected state has no well-defined value of
spin along z-direction and is therefore not equivalent to a sub-ensemble.
The measurement interaction entangles the system and the probe states,
and in case of an ideal von Neumann measurement, establishes a one-to-
one correspondence between the eigenvalues and pointer shifts. As we
allow uncertainty in our pointer state, a clear one-to-one correspondence
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is not established, which is why we see a single peak in the final pointer
state for small s.
The limit of small s where the final distribution tends to a single Gaus-
sian is the weak measurement limit mentioned previously. We discuss weak
measurements and weak values more generally in the next section.

2.3 Weak measurements

As indicated in the previous section, weak measurements are a special case
of measurements with post-selection. In this section, we show how weak
values arise and introduce the general formalism for studying weak mea-
surements. The starting point of our discussion on weak measurements is
the final pointer state after post-selection,

|ψfi〉 = 〈χfi|e−igÂP̂ |ψin〉|χin〉 (2.19)

Expanding in powers of g,

|ψfi〉 = 〈χfi|
(
I − igÂP̂ + · · ·

)
|ψin〉|χin〉

=
(
〈χfi|χin〉 − ig〈χfi|Â|χin〉P̂ + · · ·

)
|ψin〉 (2.20)

If the coupling strength g is small, it is sufficient to retain terms up to first
order,

|ψfi〉 ≈ 〈χfi|χin〉
(
I − ig〈Â〉wP̂

)
|ψin〉 (2.21)

and re-sum to get the exponential back,

|ψfi〉 ≈ 〈χfi|χin〉e−ig〈Â〉wP̂ |ψin〉 (2.22)

where we define 〈Â〉w as the weak value of Â, given by

〈Â〉w =
〈χfi|Â|χin〉
〈χfi|χin〉

(2.23)

If our initial state is a Gaussian, using (2.9) in (2.22), we get

ψ(q) = e−
(q−g〈Â〉w)2

4σ2 (2.24)

which is the displaced Gaussian we obtained for our post-selected mea-
surement of spin in the previous section. The approximations used in this
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calculation are, however, valid subject to several conditions. Firstly, the
resummation performed to obtain (2.22) from (2.21) requires

|gp〈Â〉w| � 1 (2.25)

Then, to neglect higher order terms in (2.20), we need

|gnpn〈χfi|Ân|χin〉| � |gp〈χfi|Â|χin〉| (2.26)

Both (2.25) and (2.26) can be derived from an expansion of (2.20) in the |p〉
basis.
Now, note that for a Gaussian wave packet as in (2.9), the uncertainty in
p, ∆P is of the order 1/σ. Effectively, the wavefunction is localized within
the limits ±∆p, which allows us to replace p in (2.25) and (2.26) with 1/σ,
giving

σ

g
� |〈Â〉w| (2.27)

σ

g
�

∣∣∣∣∣〈χfi|Ân|χin〉
〈χfi|Â|χin〉

∣∣∣∣∣
1/(n−1)

∀n ≥ 2 (2.28)

If these conditions are satisfied, the final pointer state is approximately a
single Gaussian displaced through the weak value. Therefore, the weak
measurement outcome as recorded by the measuring device is the weak
value 〈Â〉w. As expected, conditions (2.27) and (2.28) are similar to the
limit of small s = g

2σ
for which we obtained the final probability distribu-

tion as a single Gaussian in [2.2.1].

2.3.1 Weak measurement of spin

We go back to our example of spin-1
2

particle on which we performed a
post-selected measurement of σ̂z. For the PPS defined by equations (2.12)
and (2.14), the weak value is

〈Â〉w = tan
α

2
(2.29)

which means that our Gaussian has been shifted by an amount δpz =
g tan α

2
as a result of the weak measurement.

The conditions (2.27) and (2.28) reduce to

σ

g
� min

[
tan

α

2
, cot

α

2

]
(2.30)
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A large weak value, and hence a larger shift in the pointer, is observed
when | tan α

2
| is greater than 1, i.e., α > π/4. By letting α→ π, the measure-

ment outcome can be made arbitrarily large, provided we have, σ
g
� cot α

2
.

Under these conditions, the two small shifts of ±g combine to give a large
shift of g tan α

2
. As noted by AAV in their original work [2], the weak mea-

surement outcome can be as much as 100 times larger than the maximum
eigenvalue.

2.3.2 Properties of weak values

Firstly the weak values depend on our choice of PPS and can accord-
ingly be larger or smaller than the corresponding eigenvalues. For suit-
able choice of PPS, they can even be complex. In that case, only measuring
shift in Q̂ does not give us complete information about the weak value.
Starting with a Gaussian pointer state, the final pointer wavefunction in q
space is then,

ψ(q) ∝ exp

[
−(q − g<〈Â〉w − ig=〈Â〉w)2

4σ2

]
(2.31)

From this we obtain the following results:

δq = g<〈Â〉w
δp =

g

2σ2
=〈Â〉w (2.32)

i.e., the shift in the probe coordinate is now proportional to the real part of
the weak value. The imaginary part of the weak value manifests itself as
a shift in the momentum of the measuring device [22]. Also, it should be
noted that even for a finite dimensional observable, the set of weak values
is infinite.
Secondly, weak values are obtained in the limit σ � g〈Â〉w, which implies
that a single weak measurement has a very large associated uncertainty.
Therefore, a statistically significant result is obtained only when the aver-
age weak value is computed over a large number of trials. This average
approaches our theoretical weak value. Unlike an ideal projective mea-
surement, a single ideal weak measurement is essentially of no use.
Also, as post-selection is not always successful, to obtain N successful
weak measurement outcomes,NP such measurements are required, where
P is the probability of successful post-selection. It is related to the overlap
|〈χin|χfi〉| for general post-selected measurements and reduces to exactly
that in the 1st approximation.
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Unlike projective measurement outcomes, weak values display properties
that one would expect from classical measurement. For instance, weak
values are additive: the weak values of three operators related as Ĉ =

Â + B̂, are also similarly related, 〈Ĉ〉w = 〈Â〉w + 〈B̂〉w. This holds even
if Â and B̂ do not commute. In that case, however, they cannot be mea-
sured jointly using standard projections and therefore such a relation can-
not arise. For instance, we may take Â, B̂ and Ĉ to be σ̂x, σ̂y and 1√

2
(σ̂x+σ̂y)

respectively. These are operators for measuring spin along three different
directions, the eigenvalues for all of them being ±1. We cannot have a set
of outcomes {a, b, c} that will follow c = a+ b. But for weak measurement
outcomes, such additivity seems to hold, as one would expect for classi-
cal measurement outcomes. This allows weak values of non-commuting
observables to form a consistent truth table.

2.3.3 Are weak measurements at all measurements?

Promoting weak values to the status of actual properties of a system on the
basis of them obeying rules of classical logic is questionable, as this invites
the problem of eccentric and even complex measurement outcomes.
Furthermore, von Neumann devised his model so that the changes in the
measuring device had a one-to-one correspondence with the eigenvalues.
As noted before, post-selection along with an uncertainty in initial pointer
state destroys this correspondence. The subsequent definition of post-
selected measurement outcome as the pointer shift divided by the cou-
pling strength is therefore a departure from von Neumann’s model and
needs to be justified. Additionally, in the limit of the weak measurement,
the measuring device fails to resolve the different eigenstates of an observ-
able.
The weak values, and post-selected pointer shifts in general, do charac-
terize the particular pre- and post-selection, but how it relates to the mea-
surement of an observable continues to be debated.

2.4 General method for calculating average shifts

A single weak measurement has a large associated uncertainty, which is
why average displacements of the pointer observables are more relevant
than the displacements of the peaks. In this section we outline a gen-
eral method for calculating average pointer shifts for general post-selected
measurements, used previously Wu & Zukowski [23] and Puentes et al.
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[24]. Weak-value induced shifts are obtained by taking the appropriate
limit. These will be subsequently used in the Chapter 3 to calculate ampli-
fication factors.
Here, our measurement interaction is Ĥ = g(t)ÂP̂ with

∫
g(t)dt = g, pre-

selected and post-selected states are |χin〉 and |χfi〉 respectively, and initial
pointer state |ψin〉. The pointer state after measurement interaction and
post-selection is (up to a normalization)

|ψfi〉 = 〈χfi|e−igÂP̂ |χin〉|ψin〉 (2.33)

The average shift in any observable M̂ of the pointer is given by,

〈δM̂〉 = 〈M̂〉fi − 〈M̂〉in (2.34)

where

〈M̂〉fi =
〈ψfi|M̂ |ψfi〉
〈ψfi|ψfi〉

(2.35)

We can calculate these quantities by expanding e−igÂP̂ is powers of g. Re-
taining terms up to 2nd order,

|ψfi〉 = 〈χfi|χin〉(I − ig〈Â〉wP̂ −
g2

2
〈Â〉2wP̂ 2)|ψin〉 (2.36)

The probability of post-selection is

W = 〈ψfi|ψfi〉

= |〈χfi|χin〉|2
[
I + 2g=〈Â〉w〈P̂ 〉in + g2(|〈Â〉w|2 −<〈Â2〉w)〈P̂ 2〉in

]
(2.37)

The term=〈Â〉w〈P̂ 〉in disappears if our initial device state is centred around
p = 0, which is what we have taken previously.
The final expectation value of M̂ up to second order is

〈M̂〉fi =
1

W
|〈χfi|χin〉|2

[
〈M̂〉in + 2g=(〈Â〉w〈M̂P̂ 〉in)

+g2
(
|〈Â〉w|2〈P̂ M̂P̂ 〉in −<(〈Â2〉w〈M̂P̂ 2〉in)

)]
(2.38)

For 1st order approximation

W = |〈χfi|χin〉 (2.39)

〈M̂〉fi = 〈M̂〉in + 2g=(〈Â〉w〈M̂P̂ 〉in) (2.40)
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The shift in M̂ in this approximation is

〈δM̂〉 = 2g=(〈Â〉w〈M̂P̂ 〉in) (2.41)

Substituting Q̂ and P̂ in place of M̂ in (2.41), we get the following shifts
for the initial Gaussian pointer state given by (2.9),

〈δQ̂〉 = g<〈Â〉w
〈δP̂ 〉 =

g

2σ2
=〈Â〉w (2.42)

which are effectively identical to (2.32).

For observables of the type Â2 = I , the average shifts can be calculated
exactly. We can expand the unitary as

e−igÂP̂ = I cos(gP̂ )− iA sin(gP̂ ) (2.43)

The probability of post-selection can be computed as

W = |〈χf |χi〉|2
〈

cos2(gP̂ ) + |〈Â〉w|2 sin2(gP̂ ) + =(〈Âw)〉 sin(2gP̂ )
〉

in
(2.44)

The final expectation value of M̂ is given by

〈M̂〉f =
1

Z

〈
cos(gP̂ )M cos(gP̂ ) + |〈Â〉w|2 sin(gP̂ )M̂ sin(gP̂ )

+ i〈Â〉w sin(gP̂ )M̂ cos(gP̂ ) + i〈Â〉w cos(gP̂ )M̂ sin(gP̂ )
〉

in
(2.45)

where
Z =

W

|〈χf |χi〉|2
(2.46)

2.5 Experimental realization and applications

Duck et al. in their paper proposed an optical version of post-selected
measurements, whose experimental implementation documented eccen-
tric weak values as predicted by AAV [7]. Here, the state of polarization
is treated as a two-level system with two orthogonal directions of linear
polarization as a basis. The position degree of freedom of the photon acts
as a the pointer and the weak measurement interaction takes place in bire-
fringent plate which separates the two polarization components spatially.
Since then, other experiments using, for instance, spin-orbit interaction
[11] and interferometry [12] have independently confirmed the existence
of weak values and demonstrated their applicability in detecting and am-
plifying small signals.
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2.6 Summary

In this chapter, we have modified the notion of quantum measurements
in succeeding steps. We started with the von Neumann model of projec-
tive quantum measurements where pointer shifts probabilistically yield
eigenvalues as outcomes. Applying a post-selection on the system being
measured, we demonstrated how the measurement outcomes, as recorded
by the pointers start to differ from the eigenvalues. Finally, we introduced
the limit of a weak measurement, where the pointer’s uncertainty is so
large that it fails to reveal the individual eigenvalue and records a single
shift with a very large spread. This measurement outcome of an operator,
if it may be called so, is not constrained to be, or even constrained in the
range of, the eigenvalues. It can even be complex, in which case shifts in
the pointer’s coordinate and its conjugate momentum record the real and
imaginary parts of the weak value respectively. Despite these strange fea-
tures, weak values follow some rules that classical measurement outcomes
are expected to follow and hence there is an ongoing debate on whether
these can be taken as actual measurement outcomes and elements of real-
ity.
The derivation of post-selected measurements and weak values is, how-
ever, mathematically consistent and indeed weak values have been doc-
umented experimentally. Weak measurements have also found immense
applications as tools in various precision measurement and signal ampli-
fication schemes. Weak measurements have also been utilized for directly
measuring the quantum wavefunction and quantum state tomography.
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Chapter 3

Weak-value Amplification

Weak measurements have found extensive use as a technique for signal
enhancement. These have been used to amplify a tiny spin Hall effect[11],
for ultrasensitive measurements of beam deflection[12] as well as for pre-
cision frequency measurements[25]. The advantage of using weak mea-
surements is that they can produce larger pointer shifts than that possible
through standard projection while contributing negligibly to the noise in
the process.
In a first order approximation for Gaussian pointer states, the pointer shifts
δq and δp are of order g. The noise introduced in the process can be esti-
mated through the corresponding standard deviations, ∆q and ∆p. It is
seen from (2.41) that the 2nd order moments, 〈Q̂2〉 and 〈P̂ 2〉 do not have
any corrections up to 1st order in g. The uncertainties ∆q and ∆p are thus
unaffected in this approximation. Weak measurements therefore provide
a means to improve the signal-to-noise ratio (SNR), which is defined as
R = δq

∆q
.

At this point, the following objection may be raised: Given an interaction
strength g, large pointer shifts are only obtained in the limit of very large
∆q, which makes weak measurements imprecise to begin with. There-
fore, surely an improved SNR can be easily obtained by merely perform-
ing standard von Neumann measurements using a probe with small ∆q.
How is then weak-value amplification at all useful?
The answer is that weak value amplification is useful only when the in-
teraction concerned is so small that standard projective measurement in-
duced shifts are below the noise inherent in the experimental apparatus.
Post-selected measurements provide a means to increase shifts beyond the
noise threshold, without adding to the noise significantly.
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In this chapter, we study higher order corrections to the pointer shifts,
SNR’s and amplification factors for observables of the type Â2 = I by com-
puting exact expressions of the first and second order moments of pointer
observables Q̂ and P̂ . We also investigate the possibility of increasing
pointer shifts and improving SNR by using modified pointer states such
as Hermite Gauss (HG) and Laguerre Gauss (LG) modes. Both HG and LG
optical beams can be easily produced experimentally and therefore these
results have direct relevance.

3.1 Exact calculations of pointer moments and SNR

We are interested in calculating exactly the pointer shifts and uncertainties
for observables of the type Â2 = I . We shall compare the maximum shifts
achievable for three different initial states of the pointer. As before, our
interaction Hamiltonian is of the form

Ĥint = g(t)Â⊗ P̂ (3.1)

where Â and P̂ are observables of the system and the pointer respectively.
The pre- and post-selections are |χin〉 and |χfi〉 respectively. We use (2.45)
and (2.46) from the previous chapter in our calculations. Z refers to the
probability of post-selection divided by |〈χin|χfi〉| and 〈M̂〉fi is the expecta-
tion of an observable M̂ after post-selection.
We proceed to calculate the moments 〈X̂〉fi, 〈P̂ 〉fi, 〈X̂2〉fi and 〈P̂ 2〉fi with the
following three different initial pointer states.

(i) ψ(x) ∝ e−
x2

4σ2

(ii) ψ(x) ∝ xe−
x2

4σ2

(iii) ψ(x, y) ∝ (x+ iy)e−
x2+y2

4σ2 (3.2)

(i) is the Gaussian wave packet which we used in our calculations of post-
selected measurements using Stern-Gerlach apparatus.
(ii) is the same Gaussian with an x up front. It is the simplest example of
what are know as Hermite Gauss modes, whose general expression would
be

Hn

(x
σ

)
e−

x2

4σ2

(iii) is the simplest example of Laguerre Gauss mode with radial index
zero, whose general expression is

ψ(x, y) ∝ (x+ iSgn(l)y)|l|e−
x2+y2

4σ2 (3.3)
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The motivation behind using these as pointer states is that these can be
generated as optical beams and are therefore relevant to quantum optics
implementations of weak-value amplification techniques.
For the remainder of this section, we shall drop the subscript "fi" and
all expectation values will be assumed to have been calculated for the fi-
nal pointer state after post-selection. Now, there are two different length
scales here whose relative magnitudes essentially determine whether the
measurement interaction is weak or not. These are g and σ, and it is conve-
nient to express everything in terms of the dimensionless quantity s = g2

2σ2 .
For pointers initialized as Gaussians, we get the following results in terms
of s and the weak values 〈Â〉w,

Z =
1

2

[
1 + |〈Â〉w|2 +

(
1− |〈Â〉w|2

)
e−s
]

(3.4)

g〈P̂ 〉f =
=〈Â〉wse−s

Z
(3.5)

〈X̂〉f
g

=
<〈Â〉w
Z

(3.6)

g2〈P̂ 2〉w =
s

4Z

[(
1 + |〈Â〉w|2

)
+ e−s

(
|〈Â〉w|2 − 1

)
(2s− 1)

]
(3.7)

〈X̂2〉w
g2

=
1

4sZ

[(
1− |〈Â〉w|2

)
e−s +

(
1 + |〈Â〉w|2

)
(1 + 2s)

]
(3.8)

The same quantities for the HG mode we have used are,

Z =
1

2

[
1 + |〈Â〉w|2 +

(
1− |〈Â〉w|2

)
(1− 2s)e−s

]
(3.9)

g〈P̂ 〉f =
=〈Â〉w
Z

se−s(2s− 3) (3.10)

〈X̂〉f
g

=
<〈Â〉w
Z

(3.11)

g2〈P̂ 2〉w =
s

4Z

[
3 + 3|〈Â〉w|2 +

(
1− |〈Â〉w|2

)
e−s(4s2 − 12s+ 3)

]
(3.12)

〈X̂2〉w
g2

=
1

4sZ

[(
|〈Â〉w|2 − 1

)
e−s(2s− 3) +

(
1 + |〈Â〉w|2

)
(2s+ 3)

]
(3.13)
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Finally, for the LG mode we have,

Z =
1

2

[(
1 + e−s (1− s)

)
+ |〈Â〉w|2

(
1 + e−s (s− 1)

)]
(3.14)

g〈P̂ 〉f =− =(〈Â〉w)

Z
s (s− 2) e−s (3.15)

〈X̂〉f
g

=
<〈Â〉w
Z

(3.16)

g2〈P̂ 2〉f =
s

2Z

[(
1 + |〈Â〉w|2

)
+ e−s

(
1− |〈Â〉w|2

)(
s2 − 7s

2
+ 1

)]
(3.17)

〈X̂2〉f
g2

=
1

4Z

[
2
(

1 + |〈Â〉w|2
)(

1 +
1

s

)
+ e−s

(
|〈Â〉w|2 − 1

)(
1− 2

s

)]
(3.18)

As can be seen, the factor Z is significantly changed in the exact calcula-
tion. This in turn also modifies the 1st order moments, 〈X̂〉 and 〈P̂ 〉. Note
that 〈X̂〉is virtually unchanged in all cases expect for that due to the factor
Z. The second order moments 〈X̂2〉 and 〈P̂ 2〉, which were unchanged up
to 1st order in g are also noticeably changed.

3.1.1 Comparison of pointer shifts after post-selection

We estimate and compare the maximum shifts achieved using these three
different pointer states. For this purpose, we choose the following pre-
and post-selected states

|χin〉 =
1√
2

((
cos

α

2
+ sin

α

2

)
| ↑〉+

(
cos

α

2
− sin

α

2

)
| ↓〉
)

(3.19)

|χfi〉 =
1√
2

(| ↑〉+ | ↓〉) (3.20)

where α ∈ (0, π) To observe shifts in X̂ , which are due to the real part of
the weak value, a weak measurement of σ̂z is performed, giving,

〈σ̂z〉w = tan
α

2
(3.21)

The weak value here is entirely pure and the consequent shift in P̂ will be
0. For observing shifts in P̂ , a weak measurement of σ̂x will be performed,
which gives a purely imaginary weak value

〈σ̂x〉w = −i tan
α

2
(3.22)
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Figure 3.1: δx = 〈X̂〉
g as a function of the coupling parameter s = g2

2σ2 and the pre-
selection angle α for pointers initialized as (a) Gaussian, (b) HG and (c) LG modes.
For each value of s there exists an optimum pre-selection angle that maximizes
δx.
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Figure 3.2: δp = g〈P̂ 〉 as a function of the coupling parameter s = g2

2σ2 and the pre-
selection angle α for pointers initialized as (a) Gaussian, (b) HG and (c) LG modes.
For each value of s there exists an optimum pre-selection angle that maximizes
δp.

The pointer shifts in both X̂ and P̂ for the different initial pointer states in
this scheme can be compared using the same parametrization of the weak
value.
In all the figures, we have plotted scaled pointer shifts, viz. δx = 〈X̂〉

g
and

δp = g〈p̂〉. The 3D plots of Fig. 3.1 and Fig. 3.2 show that for each value
of the coupling parameter s, an optimum value of α may be chosen, so as
to maximize the pointer shift, either in x or in p. This has been previously
indicated by Wu and Li, who calculated the pointer shifts up to second or-
der in g[26], and also by Zhu et al.[27]. Maximum pointer shifts have also
been calculated using exact expressions for Gaussian pointer states and
Â2 = I type observables by Nakamura et al.[28]. Here, we have demon-
strated similar results using alternate pointer states.

31



0.5 1.0 1.5 2.0 2.5 3.0
Α

0.2

0.4

0.6

0.8

1.0

1.2

∆x
s=0.5

0.5 1.0 1.5 2.0 2.5 3.0
Α

0.2

0.4

0.6

0.8

1.0

∆x
s=1.0

0.5 1.0 1.5 2.0 2.5 3.0
Α

0.2

0.4

0.6

0.8

1.0

∆x
s=1.5

Figure 3.3: δx = 〈X̂〉
g as a function of the pre-selection angle α for different values

of the coupling parameter s = g2

2σ2 . Solid, dotted and dashed lines correspond
to Gaussian, HG and LG modes respectively. For s = 0.5, Gaussian gives the
maximum (over all possible α) shift, followed by LG and then HG. Gaussian and
HG give comparable maximum shifts for s = 1, while LG gives a smaller shift.
For s = 1.5, HG gives the largest possible shift, whereas the maximum shifts due
to Gaussian and LG are smaller and almost equal.
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Figure 3.4: δp = 〈P̂ 〉
g as a function of the pre-selection angle α for different values

of the coupling parameter s = g2

2σ2 . Solid, dotted and dashed lines correspond
to Gaussian, HG and LG modes respectively. For s = 0.5, HG gives the largest
maximum shift, followed by LG and then Gaussian. For s = 1, the shifts pro-
duced by HG and Gaussian are equally large whereas LG gives a smaller shift.
Gaussian gives the maximum possible shift for s = 1.7, with HG and LG giving
successively smaller shifts.
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Next, we compare the maximum shifts achievable for each of the three
pointer states. With regard to maximum x-shifts, HG and LG both perform
worse than the Gaussian pointer state for small values of s, i.e., in the limit
of weak measurements, as seen from Fig. 3.3. The limit of s is the limit
where the distinct eigenvalues are relatively well-resolved and therefore of
relatively lesser interest. HG and LG give larger shifts than the Gaussian
when s is increased. HG and LG perform better than a Gaussian initial
state when s is small, but not as well when s is increased. In the limit where
the weak measurement approximation holds, the HG and LG modes help
in achieving larger shifts only in the momentum observable.

3.1.2 Comparison of signal-to-noise ratios

We now use the exact expressions for the various pointer moments to cal-
culate the signal-to-noise ratio (SNR) for the three different initial states.
For a single measurement, with a shift (which is the signal) δq and an as-
sociated uncertainty (noise) ∆q, the signal-to-noise ratio is defined as

R =
δq

∆q
(3.23)

For N repeated standard projective measurements, the signal will be re-
placed by the expectation of an observable Q̂, and the noise will be re-
duced by a factor

√
N ,

Rp =
√
N
〈Q̂〉
∆q

(3.24)

In the case of the von Neumann model, 〈Q̂〉 = g〈Â〉, where Â is the ob-
servable being measured and Q̂ is the pointer observable that records it.
So

Rp =
√
N
g〈Â〉
∆q

(3.25)

For post-selected measurements, both the numerator and denominator
will be changed. In the specific case of weak measurements, where a 1st

order approximation is sufficient, the uncertainty is unchanged and the
average shift in Q̂ is g<〈Â〉w. However, the number of successful trials in
the post-selected case is reduced toNP , where P is the probability of post-
selection and N is the total number of trials performed. The SNR in Q̂ for
a general post-selected measurement is

R(q)
w =

√
NP

〈Q̂〉√
〈Q̂2〉 − 〈Q̂〉2

(3.26)
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In the 1st order approximation using Gaussian pointer states, the pointer
shifts in x and p are

δx = g<〈Â〉w

δp =
g2

2σ2
=〈Â〉w (3.27)

while the uncertainties are

∆q = σ

∆p =
1

2σ

Therefore, to first order the SNR’s are ,

R(x)
w =

√
N |〈χin|χfi〉|

g<〈Â〉w
σ

(3.28)

R(p)
w =

√
N |〈χin|χfi〉|

g=〈Â〉w
σ

(3.29)

The amplification factor over projective measurements are

Kx = |〈χin|χfi〉|
<〈Â〉w
〈Â〉

(3.30)

As both <〈Â〉w and =〈Â〉w can be increased indefinitely by choice of pre-
and post-selection, it appears from the first order expressions that the
SNR’s can be increased indefinitely. But quite obviously, this is not true.
As seen in the previous section from exact expressions, the pointer shifts
have an upper bound. Moreover, the uncertainties also increase due to
higher order corrections. Consequently, there is a maximum value of the
SNR that can be achieved using post-selection. We compare the maximum
enhancement of SNR achieved for the three different pointer states using
exact expressions. This can be calculated as,

R(q)
w√
N

= |〈χin|χfi〉|
〈Q̂〉√

〈Q̂2〉 − 〈Q̂〉2
(3.31)

in which all the expectation values are to be calculated in the final pointer
state.

From Figs. 3.5 and 3.6, it is clearly seen that the enhancement in SNR us-
ing post-selection has an upper limit. There exists an optimum angle of
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Figure 3.5: Representative plots of the SNR using x, R(x)
w /
√
N , plotted against α

for s = 0.1, 0.5, 1.0, 1.5, 4.5, 20 . Solid, dotted and dashed lines correspond to
Gaussian, HG and LG modes respectively. The SNR for each has a maximum for
at certain optimum values of α. Initially, for small s, the optimum angle shows s
dependence but approaches π/2 for large s. Gaussian gives better SNR than HG
and LG for all values of s.

pre-selection, which maximizes the SNR. The value of this optimum angle
depends on the strength of the coupling, which here is given by s.
It is seen in Fig. 3.5 that the Gaussian wave packet as the initial pointer
state gives the maximum possible SNR enhancement for pointer shifts
in the x-variable. Using the alternate wavefunctions as initial states do
not give any further enhancement. However, for shifts in the p-variable,
use of LG and HG modes can in some cases give better SNR than the
Gaussian. The alternate states give higher maximum SNR only in certain
ranges of the coupling parameter s, the exact dependence on which is not
clearly evident. Nevertheless, we have shown that exact calculations of the
SNR yield an upper limit to signal enhancement. Furthermore, we have
demonstrated that use of alternate wavefunctions as pointer initial states
can produce further signal enhancement through observation of shifts in
the pointer momentum.

3.2 Summary

In this chapter, we have studied the possibility of signal amplification
through weak measurements. It has been shown how weak value in-
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Figure 3.6: Representative plots of the SNR using p, R(p)
w /
√
N , plotted against α

for s = 0.1, 0.5, 1.0, 1.7, 2.1, 3.5 . Solid, dotted and dashed lines correspond
to Gaussian, HG and LG modes respectively. The SNR for each has a maximum
for at certain optimum values of α, which again depends on the value of s. For
s − 0.1, 0.5, LG gives the maximum possible SNR, followed by HG and then
Gaussian. When s = 1, LG still gives the highest, but Gaussian does better than
HG. For s = 1.7, 2.1, Gaussian performs better than either. For s = 3.5 again,
Gaussian performs worse than the other two.

duced large pointer shifts can be used to amplify and enhance the quality
of small signals, as measured by the signal-to-noise ratio (SNR). Through
exact calculations for idempotent observables, we have demonstrated that
there is an upper limit to both maximum possible pointer shifts and SNR
enhancement for post-selected measurements. We have also shown that
by using alternate initial pointer distributions, such as simplified HG and
LG modes, we can produce larger pointer shifts than that produced by
Gaussian states. Likewise, the SNR of amplification, when measured for
the p-variable shows an improvement in certain cases when such alternate
pointer distributions are used.
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Chapter 4

State Reconstruction with
Post-selected Measurements

Weak measurements and more generally post-selected measurements have
so far been defined according to a known pre- and post-selected ensemble.
While weak measurement is a method of assigning a value to an observ-
ables consistent with the pre- and post-selection, it ought to be noted that
if we already know the pre-selection, we know the projective measure-
ment statistics of any observable on this system. We already know every-
thing we can possibly determine by performing any quantum operation,
including weak measurements. In the case of weak-value amplification,
"system" and "pointer" are merely names and the essential process is that
of amplifying and detecting an interaction using appropriate PPS and ini-
tial pointer states.

Now we ask the question, can post-selected measurements reveal any-
thing about an unknown initial state of the system?
To answer this, we note that the average shifts of the pointer variable in-
duced by a post-selection reveal some information about our pre-selected
state, whether in the weak limit or beyond. It stands to reason therefore
that post-selection induced pointer shifts can be used to determine various
properties of an unknown quantum system. We can even infer the initial
quantum state from the average shifts. Here, we illustrate this in the case
of a spin-1/2 particle. The procedure is, however, fairly general and can be
easily extended to more general systems. Weak measurements have been
used in [16] to reconstruct a wavefunction. Also, methods quantum state
tomography using weak measurements have been suggested by Hoffman
[17] and Wu [29].
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4.1 Reconstruction of a spin-1
2 state

In the typical post-selected measurement, we look at the shifts of the probe
observable(s) after a post-selection, achieved through projective measure-
ment of some operator, after which we chose to look at only one particular
outcome of the final projection. However, nothing is stopping us from
looking at all the possible outcomes of the final projection. That in fact,
reveals information about the initial state of the system. Here we study
this for a spin-1

2
system.

4.1.1 Pure state reconstruction

Suppose that we are given an unknown initial state (pre-selection) of this
system,

|χi〉 = cos θ| ↑〉+ eiφ sin θ| ↓〉 (4.1)

where 0 ≤ θ ≤ π
2

and 0 ≤ φ ≤ 2π. We perform a weak measurement of σ̂z,
i.e., spin along z-direction, followed by a projection to the |±〉 basis, where
|±〉 = 1√

2
(| ↑〉 ± | ↓〉). This implies that we finally perform a projective

measurement of σ̂x and observe the pointer shifts separately for each of
the two outcomes. In other words, we determine the average pointer shifts
for the |+〉 and |−〉 post-selection separately.
We recall that, given an interaction Hamiltonian of the form gδ(t)Â ⊗ P̂ ,
and the initial probe state as a Gaussian with ∆q = σ the average shifts in
our probe observables, Q̂ and P̂ are, up to first order,

δq = g<〈σ̂z〉w (4.2)

δp =
g

2σ2
=〈σ̂z〉w (4.3)

The weak values of σ̂z for the |±〉 post-selections are respectively,

z+
w =

cos 2θ − i sinφ sin 2θ

1 + cosφ sin 2θ
(4.4)

z−w =
cos 2θ + i sinφ sin 2θ

1− cosφ sin 2θ
(4.5)

where z±w refers to the weak value of σ̂z in the |±〉 post-selection respec-
tively. By observing the average shifts in the pointer observables, we can
determine the real and imaginary parts of the weak value for each post-
selection. Now, as Q̂ and P̂ are canonical conjugates, at a time we can
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determine shifts in only one of these two quantities. Therefore, we can ac-
cess either the real part or the imaginary part of the weak value at a time.
The real parts of the two weak values, as determined from the δq’s are

δq+

g
=

cos 2θ

1 + cosφ sin 2θ
(4.6)

δq−
g

=
cos 2θ

1− cosφ sin 2θ
(4.7)

The above two equations can be inverted to give,

cos 2θ =
δq+δq−

g(δq+ + δq−)
(4.8)

cosφ =
1

sin 2θ

δq− − δq+

δq− + δq+

(4.9)

Therefore, by calculating the average q-shifts in the pointer corresponding
to each of the |±〉 eigenstates, we can calculate θ and φ. Likewise, average
p-shifts can also be used for the same purpose.

The final projective measurement can be of the spin along any arbitrary
direction instead of σ̂x, i.e, we can project on the basis

|α1〉 = cosα|0〉+ sinα|1〉
|α2〉 = sinα|0〉 − cosα|1〉 (4.10)

The q-shifts in the weak measurement limit for these two post-selections
will be, respectively,

δq1

g
=

cos 2θ + cos 2α

1 + cos 2θ cos 2α + cosφ sin 2θ sin 2α
(4.11)

δq2

g
=

cos 2θ − cos 2α

1− cos 2θ cos 2α− cosφ sin 2θ sin 2α
(4.12)

We can again solve for cos 2θ and cosφ from these two equations and de-
termine them in terms of the pointer shifts and α,

cos 2θ =
2δq1δq2

g(δq1 + δq2)
− cos 2α (4.13)

cosφ =
cot 2α

sin 2θ

g

δq1 + δq2

+
1

sin 2θ sin 2α

δq2 − δq1

δq1 + δq2

− cot 2θ cot 2α (4.14)

The pointer shifts given in (4.2) and (4.3) and hence the subsequent es-
timates for θ and φ are valid only to first order in g, as we have noted
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before. For exact calculations, we may refer to equations (3.4), (3.5) and
(3.6) which for the |±〉 post-selection will give

δq

g
=

2<(z±w )

1 + |(z±w )|2 + (1− |(z±w )|2) e−s
(4.15)

gδp =
2=(z±w )se−s

1 + |(z±w )|2 + (1− |(z±w )|2) e−s
(4.16)

where z±w are as defined in (4.4) and (4.5) and s = g2

2σ2 . From these, we get

|z±w |2 =
cos2 2θ + sin2 φ sin2 2θ

1 + cos2 φ sin2 2θ ± 2 cosφ sin 2θ
=

1∓ cosφ sin 2θ

1± cosφ sin 2θ
(4.17)

∴ 1 + |(z±w )|2 +
(
1− |(z±w )|2

)
e−s =

2(1± cosφ sin 2θe−s)

1± cosφ sin 2θ
(4.18)

Substituting the above and <(z±w ) in (4.15), we get

δq+

g
=

cos 2θ

1 + cosφ sin 2θe−s
(4.19)

δq−
g

=
cos 2θ

1− cosφ sin 2θe−s
(4.20)

gδp+ =
se−s sinφ sin 2θ

1 + cosφ sin 2θe−s
(4.21)

gδp− =
se−s sinφ sin 2θ

1− cosφ sin 2θe−s
(4.22)

which can again be inverted to give,

cos 2θ =
δq+δq−

g(δq+ + δq−)
(4.23)

cosφ =
1

e−s sin 2θ

δq− − δq+

δq− + δq+

(4.24)

These two shifts allow us to completely characterize the initial state of the
system, both in the weak measurement limit and exactly.

4.1.2 Mixed state reconstruction

The most general mixed state for an ensemble of spin-1
2

particles can be
parametrized as follows:
p fraction in the state |ψ1〉 = cos θ| ↑〉+ eiφ sin θ| ↓〉 and

40



(1− p) fraction in the state |ψ2〉 = sin θ| ↑〉 − eiφ cos θ| ↓〉.
The corresponding density matrix is

ρ =

(
sin2 θ + p cos 2θ − sinφ sin 2θ

sinφ sin 2θ cos2 θ − p cos 2θ

)
(4.25)

When the final projection is on the |±〉 basis, the average pointer shifts are

δq+

g
= (cos 2θ)

2p− c− 1

1− c2
(4.26)

δq−
g

= (cos 2θ)
2p+ c− 1

1− c2
(4.27)

gδp+ = (se−s sinφ sin 2θ)
2p+ c− 1

1− c2
(4.28)

gδp− = (se−s sinφ sin 2θ)
2p− c− 1

1− c2
(4.29)

(4.30)

where
c = e−s cosφ sin 2θ (4.31)

As there are four equations and three parameters to be determined, we can
solve for θ and φ once we know all four average shifts. But here we run
into a problem, as shifts in both q and p cannot be determined simultane-
ously. A possibly method to circumvent this would be to measure shifts in
q for half the systems in the ensembles and shifts in p for the other half.

We once again outline the general procedure we have followed:

1. Given an unknown spin-state, perform an interaction of spin along
any direction ~n, ˆsigma · ~n with the pointer, which is initiated as a
Gaussian in position basis.

2. Perform projective measurement of spin along a different direction
~m and observe the pointer shifts corresponding to each projection.

3. Reconstruct initial state from the average shifts.

This is slightly different from the usual process of state tomography where
one measures average spin along three independent directions and com-
putes the different elements of the density matrix from the three averages.
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4.2 Summary

This chapter looked at post-selected measurements from the viewpoint of
what they can tell us about the system on which we perform these mea-
surements. With the spin-1

2
system as an example, we showed that post-

selected measurements can be utilized to reconstruct unknown quantum
states. For this purpose, it became necessary to look at more than one post-
selection, i.e., we computed average shifts corresponding to both possible
outcomes of the final projection. For reconstructing a pure state, observ-
ing the shifts in only one pointer variable proves sufficient. In the case of
a mixed state however, observing both the position and momentum shifts
of the pointer is necessary.
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Chapter 5

Conclusion

In this thesis we have studied the theory of quantum measurements with
post-selection, which in a specific limit reduces to the weak measurements
introduced by Aharonov, Albert and Vaidman. These were introduced to
answer the following question: what is the value of a quantum observable
on a system which is measured to be in a particular state of a different
observable at a later time, i.e., a system which is post-selected? As two
quantum observables do not commute and therefore disturb the measure-
ments of each other, Aharonov, Albert and Vaidman came up with the idea
of a weak measurement - a process that minimally disturbs the state of a
quantum system and ideally does not affect the outcome of a latter mea-
surement. Formulated as a modification of von Neumann’s model of a
quantum measurement, a weak measurement requires three conditions -
a) the measuring device, or pointer, is prepared in an initial state which
has a large uncertainty, b) the interaction with the measuring device is
so weak that it does not affect the system, and c) the measuring device
is observed once the system is later detected in a particular state of an-
other observable. It was found that in certain cases, a measurement so
defined repeatedly gives a single measurement outcome, but with a very
large uncertainty. These outcomes of weak measurements, called weak
values, form a consistent pattern but their validity as actual measurement
outcomes is undermined by the fact that they can lie outside the range of
eigenvalues and can even be complex. Nevertheless weak measurements
have aided in re-analysing conceptual problems and paradoxes in quan-
tum mechanics.

In the second chapter, we reviewed the basic theory of the measurement
process, starting with the von Neumann model of measurement. We in-
troduced post-selection and studied its implications, demonstrating the
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limit in which weak measurements are obtained. The strange properties
of post-selected measurement outcomes were shown to be a consequence
of interference between non-orthogonal pointer states, which can give rise
to the pointer state being shifted through a greater value than otherwise
possible. Subsequently, we re-derived the weak measurement limit ana-
lytically and outlined the properties of weak values. A general method for
calculating pointer shifts after post-selected measurements was also pro-
vided for use in subsequent chapters.

While the physical meaning of weak values continues to be debated, the
fact that post-selected measurements can produce large shifts in the pointer
device has found extensive use in signal amplification. A number of weak
measurement based precision measurement and signal detection techniques
have been proposed in recent years. The third chapter discussed weak
value amplification and examined the possibility of using alternate pointer
states such as simplified Hermite Gauss and Laguerre Gauss modes, com-
paring their performances with the commonly used Gaussian state. To
explore the limits of signal amplification, exact calculations were done for
the class of idempotent observables in a two-level system. The results con-
firmed previous observations that there is a limit to signal amplification
achievable through post-selection. Further, it was shown that further en-
hancement of signal quality, as measured by the signal-to-noise ratio, is
possible in certain cases using alternate pointer distributions.

The last chapter dealt with the subject of state reconstruction using post-
selection based techniques. Differing from the earlier description of post-
selected measurements where the initial state is already known, the aim
in this case was to use pointer shifts to determine the initial state. It
was shown that a pure state of a spin-1

2
system can be determined from

post-selected pointer shifts, using both approximate and exact results. A
method for reconstructing mixed states was also proposed. As the method
outlined is fairly general, it can be easily extended to higher-dimensional
systems.

Whether weak measurements constitute elements of quantum reality and
can be given physical meaning may continue to be debated. However,
post-selection along with appropriately designed measurement interac-
tions and initial pointer states provide new ways to controlling, tweaking
and extracting information from a quantum system. Post-selected mea-
surements are therefore likely to find wide applications as useful tools for
quantum information processing.
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