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Abstract

As the �eld of gravitational wave astronomy strides rapidly towards its �rst
direct detection, developing e�cient data analysis strategies become crucial
due to the low signal to noise ratio in the data. The noise level is compara-
ble to the signal strength and this poses a serious threat of false detection.
The �rst part of my thesis addresses the issues of false-alarm caused by an
important family of glitches that can be modeled as sine-Gaussian in the
data analysis technique used for detecting signals from coalescing compact
binaries. We develop three approximate analytical expressions that allows
us to predict the nature of spurious triggers generated by these glitches. The
second part of my thesis concerns with the map-making in stochastic grav-
itational wave background. Here again, the weakness of the signal and the
nature of the detector beam makes the problem non-trivial. We incorporate
a prior knowledge on the source distribution through regularization functions
and investigate the improvement in quality of reconstructed map. This work
will have implications in placing an upper limit on the source parameter in
the absence of detection.
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Chapter 1

An Overview : Gravitational

Waves

1.1 Introduction and Motivation

Einstein's theory of relativity tells us that a changing matter-energy distri-
bution leads to a changing space-time curvature. Far away from the source
where the gravitational �eld is weak, one can approximate the gravitational
e�ects of changing mass-energy distribution as perturbations on otherwise
�at Minkowski space-time. These perturbations of the space-time metric
propagate as gravitational waves (GW) at the speed of light. Any varying
mass quadrupole generates gravitational waves.

The experimental veri�cation of Einstein's theory of gravity has been lim-
ited to a few astrophysical phenomenons like perihelion precession of Mercury,
bending of light and gravitational redshift. Although these phenomenons
strongly indicate the correctness of the theory, they are not su�cient proofs.
The direct detection of gravitational waves, on the other hand, would serve
as a concrete test of Einstein's theory of relativity. In the light of current
quest for uni�ed theory, it has to be emphasized that validating the theory
of gravitation is crucial and has a great bearing to the development of fun-
damental physics. Studying the properties of the gravitational waves will
either substantiate or revolutionize our current theoretical understanding of
gravity. Discussions on this can be found in work like [Vallisneri, 2012, Arun
and Pai, 2013, Chamberlin and Siemens, 2012].
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Further, a con�uence of GW astronomy with EM astronomy would o�er us
a great advantage to understand many astrophysical phenomenons. Grav-
itational radiations contain information that is hidden to electromagnetic
astronomy. For instance, using EM radiation one can only get an indirect
inference on the dynamics of black holes. On the contrary, detecting the
waveform of gravitational waves emitted by the mergers of black hole bi-
naries would be a direct detection of these objects. It can give us crucial
information about the masses and spins of the black holes. Studying gravi-
tational wave emission will also help us develop an insight to the dynamics
in strong gravitational �eld regime.

Although there has been no direct detection till today, there is a strong
but indirect evidence, con�rming the existence of gravitational waves. The
Nobel Prize winning work of Russell Hulse and Joseph Taylor shows that the
observed orbital period of the binary system PSR 1913 + 16 (better known
as Hulse-Taylor binary pulsar), decreases exactly (with an error less than 0.2
%) as predicted by the theory of relativity ([Weisberg and Taylor, 2004]).
As they orbit, energy is lost as gravitational radiation. The binary pulsar
system will inspiral and eventually merge.

There have been extensive e�orts towards direct detection of GW in the
past few decades using Weber bars, spherical gravitational-wave antennas,
pulsar timing arrays and laser interferometric detectors. Since the gravi-
tational coupling constant is very small (G = 6.7×10−11Nm2kg−2 ), the
interaction of GW with the detector is extremely weak. As a consequence,
the GW signals are so faint that their strength is comparable to the intrin-
sic noise produced in the detector. Typically, the order of magnitude of the
strain amplitude generated in a kilometer scale interferometer is about 10−22.
This makes their direct detection one of the most challenging problems . A
detailed review can be found on this subject can be found in ([Thorne, 1997,
Hough et al., 2005] ).

1.2 Formalism

Gravitational waves are solutions to the Einstein's equation in the weak �eld
limit. In a region where gravitational �eld is weak, the space-time metric
can be approximated as,

gαβ = ηαβ + hαβ (1.1)
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Where hαβ is small perturbation on the �at space-time ηαβ. Perturbation are
such that |hαβ| � 1. Trace-reversed metric perturbation is de�ned as,

h̄αβ := hαβ −
1

2
ηαβh (1.2)

Where,
h := ηαβh

αβ (1.3)

One can exploit the gauge freedom to demand that the spatial metric per-
turbations should have only transverse components. Mathematically,

h̄αβ,β = 0 (1.4)

Further, trace of the metric perturbation is also set to zero.

h̄αα = 0 (1.5)

Such a gauge is referred to as transverse-traceless (TT) gauge.

Since the perturbations are small, the contribution from higher order term
in hαβ can be neglected. The Linearized Einstein's equation in TT gauge
simplify to a tensor wave equation and solutions to it are gravitational waves.

�h̄αβ = 0 (1.6)

h̄αβ = Aeαβe
ikγxγ (1.7)

eαβ denote the polarization tensor. In the TT gauge, one can show that only
2 of the 16 components hαβ turn out to be independent. These correspond
to the two polarization of the gravitational wave - the plus polarization h+

and the cross polarization h×.

1.3 Interferometric Gravitational Wave Detec-

tors

As gravitational waves pass, they stretch and squeeze the space transverse
to the direction of their propagation. The laser interferometric detectors
use this e�ect to detect a passing gravitational wave. They are essentially
sophisticated Michaelson interferometer with kilometer long arms that are
nearly orthogonal to each other. In the interferometer, a beam splitter splits
and sends the incident high power laser beam to the two orthogonal arms. A
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highly polished mirror is placed at the end of each arm to re�ect these laser
beams back to the beam splitter. The interference of these beams are then
studied to infer the di�erential change in its arm-length. A simpli�ed setup
of the detector is shown in Figure 1.1.

(a)

Figure 1.1: This schematic diagram of laser interferometric gravitational-
wave detector is taken from Page44 of IEEE Spectrum | July 2006 | NA.

The mirrors of the interferometer can be considered to be free falling test
masses. The free falling mirrors follow a geodesic equation. In the proper
frame of the detector, mirrors move as the space-time fabric is stretched and
squeezed. A di�erential change in the arm length ∆L, leads to a change in
the light travel path. The phase shift ∆Φ of the light emerging from the two
arms is given by,

∆Φ = n
∆L

λ
(1.8)

Here, n is the number times the light bounces back and forth in the arm and λ
is the wavelength of the gravitational wave. The design of the interferometer

8



is such that in the absence of gravitation wave, the interference leads to a
dark fringe. The phase shift caused by a passing gravitational wave creates
an interference pattern.

The di�erential length change between the mirrors in the detector creates
a strain. This strain (∆L

L
) is measured as a signal.

∆L

L
= h(t) (1.9)

The stretching and squeezing of the space-time happens as a superposition of
e�ects due to the plus and the cross polarizations of the passing gravitational
wave. The strain developed due to the motion of the mirrors can thus be
expressed as a linear combination of the h+ and h× polarization.

h(t) = F+h+(t) + F×h×(t) (1.10)

F+ and F× are coe�cients that capture the information of orientation of the
detector with respect to the source.

A network of highly sensitive ground based laser interferometers estab-
lished around the globe are working towards the �rst direct detection of grav-
itational wave signal. The largest of them are the two LIGO detectors with a
4 km arm length located in Livingston, Louisiana and Hanford, Washington.
VIRGO and GEO are gravitational wave observatories located in Europe.
The frequency bandwidth of these detectors are limited by their intrinsic
noise. At low frequencies seismic noise, thermal noise from the suspension
and radiation pressure noise cause a serious hindrance. At high frequency
(above 200 Hz) photon shot noise is a dominant noise source ([Abbott et al.,
2009]). Advanced LIGO detectors are designed to have to a broadband of
frequency around 100 Hz with a lower cuto� frequency at 10 Hz. The LIGO
(Laser Interferometric Gravitational-wave Observatory), GEO and VIRGO
detectors have been undergoing constant improvements in their design and
sensitivity. The advanced LIGO has about 10 folds increased sensitivity.
They have now reached a sensitivity level where one can expect to detect
gravitational wave with con�dence and they are scheduled to be in operation
in 2015.

1.4 Sources of Gravitational Waves

The detector output contains faint signals and there has been a lot of em-
phasis on developing e�cient data analysis strategies. The data analysis

9



techniques are optimized depending on the nature of source. The sources
that emit GW signals in the sensitivity band of LIGO and VIRGO detectors
are roughly categorized into four groups.

• Compact Binary Coalescence

• Continuous Wave Sources

• Burst Sources

• Stochastic Gravitational Wave Source

This thesis concerns itself with the data-analysis techniques used for grav-
itational waves emitted during compact binary coalescence and by stochastic
gravitational wave sources. Chapter 2 introduces the matched �ltering tech-
nique used for searching compact binary Coalescence. Chapter 3, presents
our study of how sine-Gaussian glitches e�ect the matched �ltering operation.
Chapter 4 builds a framework for stochastic gravitational wave map-making.
In Chapter 5, we discuss the implementation of regularized deconvolution in
the context of map-making.
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Chapter 2

Compact Binary Coalescence

Compact binary systems are astrophysical systems comprising of two black
holes and/or neutron stars orbiting around a common center of mass. A
system of orbiting compact spherical masses has a time-varying quadrupole
moment and will emit gravitational waves. As they lose energy, their or-
bits decay and the compact masses spiral inwards. Their orbital frequency
increases and towards the �nal stage of their coalescence, their orbital fre-
quency is very high. For a short time before colliding, the binary systems
that lie in a suitable mass range, emit gravitational waves that fall in the
sensitivity band of the LIGO detectors. This insprial phase is followed by
a violent merger. After they undergo a merger, there is gravitational recoil
and this phase is called as the ringdown phase.

The dynamics of orbital evolution of a inspriling compact binary system
is relatively well understood. It is primarily driven by the loss of energy
due to gravitational radiation. Functional form of the gravitational wave
signals emitted during compact binary coalesces have been computed to a
reasonable accuracy ([Blanchet et al., 2004]). Having prior knowledge on the
signal waveforms o�ers a huge advantage in the data analysis. One can use
pattern matching strategies like matched �ltering to extract these signals.
These sources are thus, promising candidates for the �rst direct detection
([Abadie et al., 2010]).

In this chapter, we shall brie�y discuss the signal emitted during compact
binary coalescence and the data analysis techniques associated with them.
It aims at building the necessary framework required to describe the work
presented in the next chapter.
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2.1 Gravitational Waves Emitted During Com-

pact Binary Coalescence

When the perturbations are small, one can use linearized Einstein's equation
where the higher order terms in perturbation are ignored. The linearized
Einstein's equations can be solved to obtain,

h̄αβ(t,x) = 4

∫
d3x′

[Tαβ(t′,x′)]retarded−time

|x− x′|
(2.1)

Here Tαβ is the energy-momentum tensor. For a far away non-relativistic
source, this expression can be approximated to

h̄αβ(t,x) −→ 2
¨Iαβ(t−R)

R
(2.2)

Here, R is the distance of the source from the observer and Iαβ is the second
mass moment.

The eccentricities of the inspiraling binary orbits decay as they evolve.
By the time GW signals emitted by the system enter the detector sensitivity
bandwidth, their orbits are almost circular. Therefore, for our purposes we
can consider their orbits to be circular with an instantaneous radius r(t). Let
the instantaneous orbital frequency be ω(t). At this point, one has to notice
that there are two timescales involved in this problem - the orbital period
and the timescale over which the orbits shrink. The timescale over which the
orbit shrinks is much larger than the orbital period and hence, one can use
the adiabatic approximation to write down the trajectory of the masses as -

x(t) = rcos(ωt) (2.3)

y(t) = rsin(ωt) (2.4)

z(t) = 0 (2.5)

The second mass moment of such a system is,

Ixx =
1

2
µr2[1 + cos(2ωt)] (2.6)

Ixy =
1

2
µr2sin(2ωt) (2.7)

Iyy =
1

2
µr2[1− cos(2ωt)] (2.8)
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Here, µ is the reduced mass of the system. For equal mass binaries, one can
plug this in the linearized Einstein's equation and get,

h̄αβ = −8ω2Mr2

R

cos(2ω(t− r)) sin(2ω(t− r)) 0
sin(2ω(t− r)) −cos(2ω(t− r)) 0

0 0 0

 (2.9)

Notice that the frequency of gravitational waves emitted is twice their
orbital frequency (i.e) ωGW = 2ω. As the system losses energy, their orbital
frequency increases and so does the frequency of emitted GW radiation.
Also from the above equation, it is clear that amplitude of the radiation
also increases. Thus, the GW signal emitted by an inspriling binary system
increases in both amplitude and frequency over time and the waveform is
popularly called as chirp. Figure 2.1 shows a typical chirp waveform.

(a)

Figure 2.1: This �gure shows a typical chirp signal. Notice that both ampli-
tude and frequency of the signal increases with time.

De�ning symmetric mass ratio as

η =
µ

Mtotal

(2.10)

And ν = rωGW From Kepler's law,

GMtotalωGW = ν3 (2.11)
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Using virial theorem, the energy is given as ,

E = −1

2
µν2 (2.12)

Gravitational wave luminosity is given by -

LGW =
32

5
η2ν10 (2.13)

Using LGW = −dE
dt
, one can easily see that,

dν

dt
=

32η

5Mtotal

ν9 (2.14)

From this one can obtain -

t(ν) = tc −
5

256η
Mtotalν

−8 (2.15)

Further the phase (φ) evolution can be calculated as follows,

dφ

dν
=
dφ

dt

dt

dν
(2.16)

φ(ν) = φc −
1

32η
ν−5 (2.17)

Now, we again use fGW = ν3

πMtotal
and get the time-frequency relation as-

df

dt
=

96

5
π8/3ηM

5/3
totalf

11/3 (2.18)

A detailed derivation of the gravitational radiation from point masses in
Neetonian limit is given in [Peters and Mathews, 1963].

2.2 The Technique of Matched Filtering

Detection of a signal concerns with deciding presence or absence of a known
signal in a given detector output. According to Neyman Pearson lemma,
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the likelihood ratio is an optimal detection statistic in presence of stationary
Gaussian noise. It can be shown that likelihood function is directly propor-
tional to the inner-product of detector output with the expected waveforms
([Mohanty and Dhurandhar, 1996]). The waveforms of signal emitted during
inspiring phase have been accurately modeled and are commonly referred to
as templates. Their inner product is de�ned in such a way that the contri-
bution from di�erent frequency components are inversely weighted with the
detector noise power spectrum.

The inner product is de�ned as,

< s̃(f)|h̃(f) >= 2

∫ fupper

flower

s̃(f)h̃∗(f) + s̃∗(f)h̃(f)

Sh(f)
df . (2.19)

Here, s(f) is the signal in the frequency domain and h(f) is the template. The
function Sh(f) is called the detector sensitivity curve and is the noise power
spectrum of the detector. It is the Fourier transform of the auto-correlation
function N(τ) of the detector n (t). The auto-correlation function captures
the statistical property of detector noise.

N(τ) =< n(t)n(t+ τ) > (2.20)

In the Fourier domain,

Sh(f) = 2

∫ ∞
−∞

N(τ)e2πifτ dτ (2.21)

Matched �ltering is an operation of taking this inner product and is the
optimal detection statistics when the signal waveform is known accurately.
It compares the pattern present in the data against the modeled waveform.
Match �ltering takes the correlation C(τ), where τ is the time-lag between
the signal and the template. The correlation C(τ) is given by

C(τ) =

∫ fupper

flower

s̃(f)h̃∗(f)

Sh(f)
e2πifτ df . (2.22)

The integration is done from the lower cuto� frequency of the detector band
width. The upper cuto� is generally taken as the frequency corresponding
to inner most stable orbit.
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2.3 An Introduction to Searches for Binary Co-

alescence

A very naive and simpli�ed description of the compact binary search is dis-
cussed below. For a black hole binary system, the source parameters that
e�ect the waveforms of the GW signal are the masses, orbital eccentricity and
spins. A bank of templates that are optimally spaced in these parameters are
constructed. A detailed discussion on optimal placement of templates can be
found in [Owen, 1996, Sathyaprakash and Dhurandhar, 1991, Sathyaprakash
and Schutz, 2009, Balasubramanian and Dhurandhar, 1998]. A matched �l-
tering operation is performed on each of the detector outputs against these
templates. The correlation output that crosses a certain threshold limit gen-
erates a trigger. If the trigger is found in more than one detector, they are
considered to be candidates for true signals. A second round of matched
�ltering is performed on the coincident events and triggers are generated
again. A next level of data analysis like veto analysis is performed on these,
to establish absence or presence of signal. A more detailed description can be
found in papers like [Messaritaki and LIGO Scienti�c Collaboration, 2005,
Babak et al., 2013]
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Chapter 3

E�ect of sine-Gaussian Glitches

on Searches for Binary

Coalescence

A wide class of glitches that e�ected the search of compact binary coalescent
in the �rst generation detector data can be modeled by sine-Gaussians. These
glitches are known to produce spurious triggers and pose a threat of false
detection ([Blackburn et al., 2008]). For a short stretch of insprial template
where the frequency of template waveform matches the frequency of the sine-
Gaussian glitches, a high correlation is obtained. It may raise the SNR large
enough to exceed the trigger generating threshold. Further, one has to realize
that these the triggers are generated at the coalesce time of the associated
template. There is a delay between the time of occurrence of these glitch and
the trigger. A crude way to deal with this is to neglect the whole stretch of
data in the time-series that may contain the e�ect of the glitch. However,
when one deals with long templates, this strategy is very ine�cient.

A more detailed analysis of the on the trigger generated by these sine-
Gaussian glitch becomes very important, especially with the advent of aLIGO
([Harry and the LIGO Scienti�c Collaboration, 2010]). Lowering the cuto�
frequency to 10 Hz from 40 Hz will necessitate longer templates ([Allen et al.,
2012]). In such cases, we �nd that the delay in the trigger can be as large as a
few minutes. Given such circumstances, the ability to predict the exact time
and nature of trigger generated will o�er a huge advantage in vetoing false
triggers. For instance, one could consider neglecting just a narrow window
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in the time series where the trigger is expected to peak. With this motiva-
tion, we present a study on the e�ect sine-Gaussian glitches on the matched
�ltered search of coalescing binaries. Speci�cally, we develop approximate
analytic expressions for the correlation C(t) and validate it against numeri-
cal simulations. Using these expression one can obtain both amplitude and
time-delay associated with these spurious triggers.

This work has been done in collaboration with Tito Dal Canton, Sanjeev
Dhurandhar and Andrew Lundgren. It is currently in manuscript preparation
stage.

3.1 Sine-Gaussian Glitches

In the following analysis, we consider a unit amplitude Sine-Gaussian glitch
characterized by central frequency f0 and quality factor Q,

s(t) = e−
t2

τ2 sin(2πf0t) , (3.1)

where, τ is the decay factor.

In the positive frequency domain, this translates to a Gaussian around f0

given by,

s̃(f) = Ae−π
2τ2(f−f0)2

, (3.2)

where,

A =
1

2i
π1/2 Q

2πf0

. (3.3)

De�ning the quality factor Q of the Sine-Gaussian as,

Q = 2πf0τ , (3.4)

the Sine-Gaussian can be expressed as,

s̃(f) = Ae
− (f−f0)2Q2

4f2
0 . (3.5)

Figure 3.1 depicts a typical sine-Gausian glitch.
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(a)

Figure 3.1: Sine-Gaussian Glitches : A unit amplitude sine-Gaussian glitch
with a central frequency 60 Hz and the quality factor Q=20 is injected at
the center of 1024 seconds long data segment, at 512 seconds.

3.2 Chirp Waveform

The Newtonian insprial binary template computed in the frequency space us-
ing stationary phase approximation (SPA) ([Sathyaprakash and Dhurandhar,
1991]) is given below.

h̃(f) = h0f
−7
6 e−iψ(f) . (3.6)

h0 is the normalization constant. The phase ψ(f) of the template is given
by,

ψ(f) = 2πftc − φc −
π

4
+

3

128
(πMf)

−5
3 (3.7)

Here,M is the chirp mass of the binary system. We set tc and φc to zero so
that the chirp appears at the end of the time-series. The template is shown
in Figure 3.2.

Further, we express the inspiral binary template in terms of a more con-
venient parameter - the chirp time τ0 (as de�ned in [Sathyaprakash and
Dhurandhar, 1991] and [Sengupta et al., 2002]) instead of chirp mass M.
When chirp time is used as a parameter to construct the template banks,
the metric components in the parameter space are nearly constant. This im-
plies that the templates are placed equidistantly and simpli�es the analysis.
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Physically, τ0 is the time taken for a binary system to coalesce starting from
a �ducial frequency fa. Usually, in the literature, the �ducial frequency is
taken to be the seismic cut-o� frequency. When �ducial frequency is set to
seismic cut-o� frequency, τ0 gives the duration of the signal that falls in the
detector bandwidth.

(a)

Figure 3.2: Chirp Waveform : An unnormalised binary inspiral chirp wave-
form is shown in this �gure below. This template corresponds toM = 5M�.
Note that only relevant segment of the data segment is shown in the �gure.

However, the natural choice of �ducial frequency fa in our analysis is not
the seismic cut-o� frequency . Here, a more appropriate choice of fa is the
central frequency of the Sine-Gaussian f0. This is a natural choice because
the correlation builds up only when the phase of the sine-Gaussian and the
template match. Thus, we de�ne τ0 as

τ0 =
5

256πηf0

(πMf0)−5/3

= 11.72

(
f0

60Hz

)−8/3(M
M�

)−5/3

sec , (3.8)

where, η = µ/M and µ and M are the reduced and total mass of the binary
respectively.
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3.3 E�ect of sine-Gaussian Glitches on Matched

Filtering

We �nd three approximate analytical expression for the correlation. These
approximation compliment each other and cover the whole parameter space.
The parameters in our analysis is the central frequency f0 and Q factor of
the sine-Gaussian and chirp mass associated with the templateM.

3.3.1 Correlation

The matched �ltering operation results in the complex correlation C(t),
where t denotes the time-lag parameter between the signal and the template.
The statistic is |C(t)|. The correlation C(t) is given by:

C(t) =

∫ fupper

flower

s̃(f)h̃∗(f)

Sh(f)
e2πift df ,

=

∫ fupper

flower

1
2
π1/2 Q

2πf0
e
− (f−f0)2Q2

4f02 h0f
−7
6 eiψ(f)

Sh(f)
e2πift df . (3.9)

The range integration is from flower = 15 Hz to fupper = 500 Hz. h0 is the
normalization constant of the template which is determined by,∫ fupper

flower

|h̃(f)|2

Sh(f)
df = 1 . (3.10)

The correlation is inverse weighted by the zero detuning, low power sen-
sitivity curve (from Ajith 2011) Sh(f),

Sh(f) = (0.0152
f

245.4

−4

+ 0.2935
f

245.4

9
4

+ 2.7951
f

245.4

3/2

− 6.5080
f

245.4

3
4

+ 17.7622) .

(3.11)

We are interested in �nding the peak of |C(t)|. Speci�cally, we want to �nd
the time at which the correlation peaks tmax and the amplitude of correlation
peak |C(tmax)| .
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We begin with correlation integral,

C(t) =
Qh0

4i
√
πf0

∫ fupper

flower

e
− (f−f0)2Q2

4f02 eiψ(f)+2πift

f 7/6Sh(f)
df ,

= B

∫
e
− (f−f0)2Q2

4f02 eiφ(f)

f 7/6Sh(f)
df , (3.12)

where B anf φ are de�ned as follows,

B =
Qh0

4i
√
πf0

e
−iπ

4 , (3.13)

and

φ(f) = 2πft+
6πf0τ0

5

(
f

f0

)−5/3

. (3.14)

Note that this correlation integral does not have a exact analytical expression
and one needs to use appropriate approximations.

3.3.2 Numerical Implementation

We model the response of matched �ltering operation to validate our analyt-
ical approximations. The following is the range of integration considered in
our analysis,

Fmin = 15Hz (3.15)

Fmax = 500Hz (3.16)

We consider a data train of length 512 seconds. A Nyquist frequency
of 1024 Hz is set. Sine-Gaussian glitch of known central frequency and Q
is injected in the middle of the data train at 256 second. This noiseless
sine-Gaussian is then correlated with a Newtonian insprial template. The
correlation is plotted in the time domain. The amplitude of correlation and
time-delay between the injection of glitch are then compared to the analytical
predictions.

The following de�ne the parameter space we investigate. The central
frequency of the sine-Gaussian ranges from f0 = 30 Hz to 400 Hz. Q is
varied from 5 to 20. The insprial template we use correspond to a mass
range ofM = 1.2 M� to 5 M�
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3.3.3 Approximation 1

Since the correlation integral has no exact analytical expression, we aim to
simplify it using certain approximations. We can Taylor expand the phase
term φ(f) up to quadratic order about some frequency f1. In approximation
1, we choose f1 to be the frequency fs that corresponds to stationary point
of phase. We obtain fs by solving the equation,

φ′(fs) = 2πt− 2πτ0

(
fs
τ0

)−8/3

≡ 0 , (3.17)

Here, the prime denotes the derivative with respect to the argument. Thus,

fs(t) = f0

(
t

τ0

)−3/8

. (3.18)

Notice that fs is a fucntion of t.

Further, the phase φ(f) can be approximated as,

φ(f) ' φ(fs) +
1

2
(f − fs)2φ′′(fs) , (3.19)

where,

φ′′(fs) =
16πτ0

3f0

(
fs
f0

)−11/3

. (3.20)

Since f−7/6 and Sh(f) are slowly varying functions as compared to the nu-
merator of the correlation integral over most regions of parameter space, we
evaluate them at fs. Using these approximations, the correlation integrand
can be expressed as a product of real Gaussian centered at f0 with standard
deviation σsg and a complex Gaussian centered at fs with a standard devia-
tion σf .

The standard deviations of the Gaussians are as below,

σf (fs(t)) =
1√
φ′′(fs)

=

√
3f0

16πτ0

(
fs
f0

)11/6

, (3.21)

σsg =

√
2f0

Q
. (3.22)
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The correlation integral can be expressed as,

C(t) = B
1

f
7
6
s Sh(fs)

eiφ(fs)

∫ fupper

flower

e
− (f−f0)2

2σsg e
i
(f−fs)2

2σf df (3.23)

= B
1

f
7
6
s Sh(fs)

eiφ(fs)J (3.24)

We now de�ne the following quantities,

∆f = f0 − fs(t) (3.25)

x =
f − f0

σsg
(3.26)

Σ =
σsg
σf (t)

(3.27)

∆ =
∆f

σf
(3.28)

At this point, one has to notice that except for ∆f , all other quantities are
dimensionless. Σ and ∆ are functions of time through σf . Σ quanti�es
the ratio of the two standard deviations. In the correlation integral, we now
switch to the dimensionless quantity x and complete the square.

J = σsge
i∆f2

2σ2
f e
− 1

2
∆2Σ2

1−iΣ2

∫ xupper

xlower

exp−

[
1

2

(√
1− iΣ2x− i Σ∆√

1− iΣ2

)2
]
dx

(3.29)

Using Cauchy's theorem to appropriately shift contours in the complex plane
we �nally obtain,

J = σsge
i∆f2

2σ2
f e
− 1

2
∆2Σ2

1−iΣ2

√
2π√
R
e−

iχ
2 (3.30)

where,

R2 = 1 + Σ4, tanχ = −Σ2 . (3.31)

Simplifying this leads us to our �nal expression of correlation C(t).

|C(t)| = 1

2

h0

f
7/6
s (t)Sh(fs(t))(1 + Σ4)1/4

e
− 1

2
∆2Σ2

1+Σ4 . (3.32)

We refer to this equation as approximation 1.
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(a) f0=60 HzM=1.2 M� Q=5 (b) f0=60 HzM=1.2 M� Q=20 (c) f0=400HzM=5 M� Q=5

Figure 3.3: Validating approximation 1 against numerical simulation : In
the �gures above, the blue curve depicts the analytic expression predicted by
approximation 1. The black curve corresponds to the numerical simulation
of the matched �ltering operation. In �gures (a) and (b) the blue and black
curves are indistinguishable and thus the agreement is excellent. In (c) one
can spot the di�erence but the di�erence is not too large. Thus, on a whole
approximation 1 seems to work well. Sine-Gaussians with central frequency
f0 and quality factor Q have been injected symmetrically about the middle of
the data segment at tinjection = 512 seconds in the time-series data segment
of length 1024 second as shown in �gure 1 (a). The sampling rate is 2048
Hz. The frequency range for integration is flower = 15 Hz to fupper = 500 Hz.

This expression gives excellent result for the peak value of correlation and
the time at which it occurs over most of the range of the parameter space.
This has been exempli�ed in Figure 3.3

Despite of the fact that the predictions of the peak values and the time
of occurrence of peak matches reasonably well with the numerical simulation
for this approximation, we �nd that the shape of the correlation curve C(t)
does not always match well when σsg is comparable to σf . For instance,
it can be seen in the sub-�gure (c) that shape of the numerically obtained
curve and the curve predicted by approximation 1 are do not overlap exactly.
Here, σf (fs) ∼ 70Hz and σsg ∼ 28Hz. On the contrary, sub-�gure (a) and
(b) show that the predictions of this approximation exactly matches the
numerical simulation when the value of σsg � σf (fs) .

The expansion about the stationary point fs works best when the function
φ(f) has a deep minima. This means that stationary point should be sharply
de�ned. In other words, the inverse of curvature of φ(f), σf should be small
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around the stationary point for stationary phase approximation to be valid.
In the region of parameter space where the function φ(f) has a very shallow
minima, expanding the phase about fs is no longer justi�ed. We �nd that
in such a situation, expanding phase about f0 yields a more accurate result.
Approximation 3 is based on this argument.

Another point that should be noted is that the correlation has a non-
trivial dependence on t. Both fs and σf are time-dependent function. What
complicates it evaluation is that the correlation is dependent on the PSD of
the noise through Sh(f). Hence, the time of occurrence of the correlation
peak has to be found numerically. However, one must highlight that this
expression, although complicated, models the correlation very well for a large
parameter space.

3.3.4 Approximation 2

This approximation is a slightly di�erent application of stationary phase
approximation. We write the integral in the form,

C(t) =

∫
G(f)eiΦ(f) df , (3.33)

where,

G(f) =
h0Af

−7
6

0

Sh(f0)
e
− (f−f0)2Q2

4f2
0 , (3.34)

and,

Φ(f) = 2πft− ψ(f) . (3.35)

f=fs is the same stationary point as in approximation 1 and is given by Eq.
(3.18). Evaluating the integral:

|C(t)| ' G(fs)

√
2π

mod Φ′′(fs)
,

=

√
3

128π

(tτ0)−1/4

f
5/3
0

h0Q

Sh(fs)
e
−Q

2

4

[
1−

(
t
τ0

)−3/8
]2

. (3.36)

Again, this has a complicated dependence on t and hence the time at
which the correlation peak needs to be calculated numerically.
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(a) f0=60 HzM=1.2 M� Q=5 (b) f0=60 HzM=1.2 M� Q=20 (c) f0=400HzM=5 M� Q=5

Figure 3.4: Validating approximation 2 against numerical simulation : In
the �gures above, the green curve depicts the analytic prediction by approx-
imation 2. The black curve corresponds to a numerical simulation of match
�ltering. Here again, the approximation matches very well in (a) and (b)
but not in (c). At this point, one has to notice that approximation 1 gives a
better result than approximation 2 for (c).

The results obtained using this approximation are shown in Figure 3.4.

We now show that approximation 2 can be obtained from approximation
1 in the regime σsg � σf which is the same as Σ � 1. In such a case,
approximation 1 can be written as,

|C(t)| ' 1

2

h0

f
7/6
s Sh(fs)Σ

e−
1
2

∆2

Σ2 ,

=
1

2
σf

h0Q√
2f0f

7/6
s Sh(fs)

e−
1
2

∆2

Σ2 ,

=

√
3

128π

f
1/2
0

τ
1/2
0

f
2/3
s

f
17/6
0

h0Q

Sh(fs)
e
− 1

2
(fs−f0)2

∆f2 .
(3.37)

On simplifying the above expression, we indeed �nd that expression de-
rived using approximation 1 reduces to that obtained by approximation 2.

|C(t)| =
√

3

128π

(tτ0)−1/4

f
5/3
0

h0Q

Sh(fs)
e
−Q

2

4

[
1−

(
t
τ0

)−3/8
]2

(3.38)

We �nd that this approximation breaks down when ∆f ≈ σf . In such
situations, G(f) can no longer be approximated to a constant G(fs). This

27



happens because the Fourier transform of the Sine-Gaussian changes signif-
icantly over the range σf . Further, for high Q values, the assumption that
integral is dominated by the region around fs is no longer valid. However, it
should be highlighted that the time delay estimated by this approximation
is valid over almost the whole parameter space.

3.3.5 Approximation 3

This approximation is derived to deal with large Q limit and high M. Al-
though one might less often encounter this situation in real data, we inves-
tigate it for the sake of completeness. In this approximation, procedure we
adopt is very similar to approximation 1. The di�erence lies in the fact that
the phase is expanded about the central frequency of Sine-Gaussian f0 in-
stead of fs. We consider that major contribution to the correlation integral
come from a narrow band around f0.

C(t) =
h0Af

−7
6

0

Sh(f0)

∫ fupper

flower

e
− (f−f0)2

2δf2 eiψ(f)e2πift df (3.39)

We de�ne the following dimensionless variable α as,

α =
3(πMf0)

−5
3

128
=

6

5
πτ0f

8/3
0 (3.40)

Expanding the ψ(f) about f0 to quadratic order, we get

C(t) =
h0Af

−7
6

0

Sh(f0)

∫
e
− (f−f0)2

2δf2 ei
−π
4 e

iα− 5
3
i
α(f−f0)

f0
+i 20

9
α

(f−f0)2

f2
0 e2πift df (3.41)

Let η be the constant term given by

η =
h0Af

−7
6

0 ei(
−π
4

+2πf0t+α)

Sh(f0)
(3.42)

Next, we simplifying the exponent Θ inside the integral by de�ning a dimen-
sionless variable -

x =
f − f0

f0

(3.43)
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Θ = iα(
−5

3
x+

20

9
x2)− (x2Q2)

4
+ 2πixtf0 (3.44)

= (iγ − 1)
x2Q2

4
+ 2πif0x(t− β) (3.45)

Here,

β =
5

3

α

2πf0

(3.46)

γ =
20

9

4

Q2
α =

32

3

f0πτ0

Q2
(3.47)

Completing the square, we obtain

Θ = (iγ − 1)
x2Q2

4
+ 2πif0x(t− β) +

4π2f 2
0

Q2(1− iγ)
(t− β)2 − 4π2f 2

0

Q2(1− iγ)
(t− β)2

(3.48)

Putting them back in the correlation equation,

C(t) = ηe
−2π2(t−β)2δf2

1−iγ

∫
e

(
√
iγ−1Qx

2
+

2πf2
0 (t−β)

Q
√

1−iγ )2

dx (3.49)

Once again we use Cauchy theorem to simplify the integral. We de�ne R as
the real part of 1− iγ (i.e)

R =
√

1 + γ2 (3.50)

One can calculate the �nal expression for correlation as,

C(t) = ηe
−2π2(t−β)2δf2

1−iγ (

√
2πδf√
R

) (3.51)

The results are illustrated in Figure 3.5.

3.4 Conclusion

In this work we have developed three approximate analytical forms for the
correlation of sine-Gaussian glitch with the insprial template. These approx-
imation compliment each other and cover the entire parameter space. This
analysis has bearing on vetoing inspiral triggers associated with the sine-
Gaussian glitches. Further, it should be highlighted that a sine-Gaussian
glitch might generate trigger in multiple templates. We anticipate that using
this analysis, a large number of false-detection can be reduced. However,
a quantitative investigation on reduction in the number of false-alarm on
implementing this analysis is yet to be done and would be interesting study.
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(a) f0=60 HzM=1.2 M� Q=5 (b) f0=60 HzM=1.2 M� Q=20 (c) f0=400HzM=5 M� Q=5

Figure 3.5: Validating 0th order approximation against numerical simula-
tion: In the �gures above, the red curve depicts the analytic approximation
predicted by 0th order approximation. The black curve corresponds to the
numerical simulation of match �ltering.The rest of the condition are similar
to that described in Figure 2
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Chapter 4

Stochastic Gravitational Wave

Background

Unresolved astrophysical sources that produce gravitational waves by inde-
pendent processes and gravitational radiation from cosmological origin con-
stitute the stochastic gravitational wave background (SGWB). These are
weak signals but their strength builds up when statistically averaged over
a su�ciently long observation time. A general discussion on SGWB can be
found in literature like [Allen and Romano, 1999, Allen and Ottewill, 1997].
The time averaged signals from SGWB can be used to build a sky map.

4.1 Radiometry

The technique of radiometry or aperture synthesis is used to make SGWB sky
maps. A schematic diagram of a radiometer is shown in Fogure 4.1. The basic
assumption here is that the noise in the two detectors will be independent
while the gravitational wave signal will be correlated. It essentially involves
cross-correlating signals received by a pair of detectors separated by a baseline
length. When the phase of the signal received at the two detectors match,
the signal builds up. Because of the geometric separation between the two
detectors, the signal is received with a relative time delay. The time delay
is a function of the e�ective baseline length and the source direction. The
e�ective baseline length changes as the earth rotates and this phenomenon is
used for aperture synthesis. The signals from the direction that correspond

31



to zero time-lag interfere constructively and the detector pair is said to be
'pointing in' this direction. The signal from all other direction statistically
cancel out and do not contribute to the cross-correlation statistic. A pair
of detectors can be made to point in any particular direction by arti�cially
compensating the time-delay before carrying out the cross-correlation. To
construct a SGWB map of the whole sky, the sky is divided into pixels and
radiometry is performed on each of these pixels.

(a)

Figure 4.1: Radiometry : This �gure is taken from [Mitra et al., 2008]. This
�gure depicts a basic radiometry setup. The seperation between the two
detectors introduces a phase-lag and by compensating this appropriately, we
can point the radiometer to any desired location in the sky.

4.2 The Beam and SGWB map-making

The total observation time T is broken into smaller time segment ∆t in
order to optimize the signal to noise ratio. Time ordered short-term fourier
transform (SFT) is computed for each of these segments.

X̃I(t; f) =

∫ t−∆T/2

t+∆T/2

XI(τ)e−2πifτ dτ . (4.1)

An optimum cross-correlation statistic S(t) is obtained by using direction
depndent �lter function Q̃(t, f) for each of these individual smaller time
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segments.

s(t) =

∫ −∞
∞

X̃∗1 (t; f)X̃2(t; f)Q̃(t, f) df . (4.2)

The �lter function is given as,

Q̃(t, f) = λ(t)
H(f)γ∗(t, f, Ω̂)

P1(t; |f |)P2(t; |f |)
(4.3)

Where H(f) is the frequency power spectrum of the source and P1,2(t; |f |)
are the one-sided power spectral density of detector noise. γ∗(t, f, Ω̂) is the
overlap reduction function that contains the information of relative orienta-
tion and the time delay between the detectors. The form of overlap function
is given in [Flanagan, 1993]

γ∗(t, f, Ω̂) = Γ(Ω̂, t, f)e2πifΩ̂.∆x(t)/c (4.4)

∆x(t) = x2(t)− x1(t) is the geometrical seperation and

Γ(Ω̂, t, f) =
∑
A

FA
1 (Ω̂, t)FA

2 (Ω̂, t) (4.5)

The polarization are denoted A = {+,×} and FA
1,2(Ω̂, t) is the antenna func-

tion.

The �lter function is used to adjust the phase lag between the two detector
outputs and point the radiometer to a desired patch (in the direction Ω)in
the sky. The statistic developed over these smaller time segments are then
linearly combined to obtain the �nal statistic for the whole observation time
for each patch in the sky. This linear combination is done in such a way that
the contribution from each segment is weighted by the inverse of its variance.
This ensures a lower contribution from the noisy time segments. The statistic
developed on each patch is then put together to make a sky map.

The map generated in this way is sky 'seen' through the detectors. The
true sky signal is convolved with the response function (also called as the
beam pattern of the detector) and this introduces a non trivial pixel-to -
pixel covariance. The beam pattern captures the e�ect that a source in the
direction Ω̂ has on an observation in the direction Ω̂′. Convolution equation
is of form,

D(Ω̂) =

∫
dΩ̂′B(Ω̂, Ω̂′)S(Ω̂′) + n(Ω̂) (4.6)

33



The functional form of the beam pattern B is derived in [Mitra et al.,
2008] and is,

B(Ω̂, Ω̂′) = Λ(Ω̂)

∫
dt

∫ −∞
∞

H(f)H ′(f)

P1(t; |f |)P2(t; |f |)
Γ(Ω̂′, t, f)Γ(Ω̂, t, f)e−2πifΩ̂.∆x(t)/c df .

(4.7)

Gravitational wave detector network has a beam pattern that extends over
a large area in sky. The e�ect of the beam on a point source is illustrated in
the Figure 4.2. Further, the smearing pattern of a point source depends on
its location in the sky.

(a) Source Map (b) Dirty Map

Figure 4.2: E�ect of the detector beam on a point source : The left panel
shows the true sky map and the right panel shows the true sky convolved
with detector beam. In these �gures the colorbar indicates the intensity of
the pixels.

4.3 Statistical Properties of Signal and Noise

SGWB signals are assumed to be stochastic and uncorrelated, both in fre-
quencies and dirrections. Further, SGWB signal are also assumed to be gaus-
sian random processes and that the second-order moments< h̃∗(f, Ω̂)h̃∗(f ′, Ω̂′) >
are su�cient to describe their statistical properties completely.

Statistical properties of the signal can be infered by the correlation func-
tion which is given as [Mitra et al., 2008, Allen and Romano, 1999]

< h̃∗(f, Ω̂)h̃∗(f ′, Ω̂′) >= δ(f − f ′)δ2(Ω− Ω′)P (Ω̂)H(f) (4.8)
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The noise across the pixels in the dirty map is assumed to have a Gaussian
probability distribution with a zero mean. However, it has a non-trivial pixel-
to-pixel covariance matrix as a result of radiometry technique. The pixel-to-
pixel noise covariance matrix happens to be equal to the beam matrix up to
a factor of scalar constant [Mitra et al., 2008]

〈n〉 = 0 (4.9)

And,
N = 〈nnT 〉 ∼ b (4.10)

Here, b is the symmetrized beam pattern.
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Chapter 5

Probing Anisotropy of Stochastic

gravitational wave background

using prior knowledge on source

distribution

The map constructed directly from the detector output contains the e�ect
introduced by the detector response function and is not a true sky represen-
tation. A true signal S is observed as data D and is the result of convolution
of the beam pattern (also called as response function) B with the signal S.
The map also contains a Gaussian random noise n with covariance matrix N.
In pixel basis, the above mentioned convolution equation simpli�es to a set
of linear expressions,

D = BS + n (5.1)

Where D is the detector output vector such that Di contains intensity
observed at ith pixel. In the context of map making, D is often referred as
dirty map, S as source map and the recovered signal Ŝ which is an estimate
of true sky is called cleaned map. To obtain a true sky representation from
the dirty map, one has to undo the e�ects introduced by the beam pattern
and this process is known as deconvolution.

However, the deconvolution of SGWB maps is not trivial because of the
ill posed nature of the detector beam. The weakness of gravitational waves
signals further complicates this problem, as the e�ect of noise becomes very
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crucial for weak signals. For instance, one cannot undo the convolution e�ect
of the beam by direct inversion of the beam.

Ŝ = B−1D (5.2)

Doing so boosts the noise associated with the low sensitivity modes of detec-
tor beam. This results in a sky reconstruction dominated by noise. It has
been demonstrate in the panel (d) of Figure 5.1. The only exception to this
is when the source is the unrealistically strong.

(a) Source Map (b) Dirty Map

(c) Reconstruction by Direct In-
version

(d) Regularized Reconstruction

Figure 5.1: Regularized Deconvolution. The problem of deconvolution in
SGWB is not trivial. Multiplying the inverse of the detector beam to undo
its e�ect introduces noise. One generally casts this problem as a set of linear
equations and then �nds the clean map as a solution to them.

In this chapter, we show that implementing regularization along with de-
convolution greatly helps to reproduce sky map faithfully. For instance, from
panel (c) of the Figure 5.1, one can clearly see the merits of regularized de-
convolution. We develop the formalism for regularized deconvolution in a
Bayesian framework.
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5.1 Bayesian Analysis

5.1.1 Most Likely Solution Sml

Map-making deals with recovering the true signal from the detector output
given the statistical properties of the noise n. In a Bayesian framework, this
translates to �nding the signal that maximizes the probability of obtaining
the given detector output. When noise has a Gaussian probability distribu-
tion, as in the case of GW map making, one can express this mathematically
as

P (D|S,B) = ZLe
− 1

2
(BS−D)TN−1(BS−D) (5.3)

This function is called as likelihood function and ZL is the normalization
constant. The signal that maximizes likelihood function is called the most
likely solution Sml.

One can recognize the exponential part of the likelihood function as nega-
tive of the well-known χ2 estimator. χ2 is used to estimate the goodness-of-�t
of the data to the model. In terms of χ2, the likelihood function can be ex-
pressed as,

P (D|S,B) =
1

ZL
e−

1
2
χ2

(5.4)

This leads to an alternative interpretation of Sml as the solution that mini-
mizes the χ2. Sml is thus, the best �t solution to the set of linear equations
describing convolution.

∇χ2(Sml) = 0 (5.5)

This gives,

Sml = (BTN−1B)−1(BTN−1D) = B−1D (5.6)

5.1.2 Ill-Posed Problem and Regularization

Likelihood maximization in context of SGWB map-making turns out to be
an ill posed problem. The GW detector beam matrix has a large number of
singular values that are very closed to zero and thus, inversion of the beam
matrix is non-trivial. A plot of singluar values of the detector beam is shown
in Figure 5.2. Physically, this means that the detector network is insensitive
to certain directions in sky. The information contained in the detector output
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(a)

Figure 5.2: Singular values of the Beam (768 Pixels Resolution): The ill-
posed-ness of the system is directly related to di�erence between the highest
and the lowest singular values. Notice that a large number of singular val-
ues are close to zero. Very small singular values in the graph indicates the
insensitivity of the detector to those modes.

is not su�cient to establish a unique one-to-one mapping between the true
signal and the dirty map.

Another perspective to this problem can be obtained by looking at the
χ2 estimator. The set of linear equations that describe deconvolution, are
not independent and thus, the problem has an ill-posed nature. Number of
free parameters in the problem are much more that the number of constraint
equations. This invokes the risk of over-�tting by minimizing χ2 to an un-
realistically small value. In an optimal case, χ2 should attain a value close
to the number of degrees of freedom in the problem. Thus, minimum χ2

solution is not the best estimate of the true sky signal.

Problems of this nature exist in many �elds and the well known way to
tackle it is to implement regularization. For instance, one could �nd regu-
larized image reconstruction used in gravitational strong lensing in ([Warren
and Dye, 2003, Brewer and Lewis, 2006, Suyu et al., 2006]). The problem
one deals in reconstructing sources in strong gravitational lensing is slightly
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more complicated than our case, as the convolution kernel (lens potential)
itself is not fully known.

Regularization provides additional information on the true sky signal.
Generally, regularization functions are such that they penalize the solutions
that di�er from what is already known of the true signal. From the χ2 per-
spective, regularization serves as a set of additional constraints and prevents
data over-�tting.

5.1.3 Most Probable Solution Smp

In a Bayesian framework, regularization is incorporated through prior. A
prior distribution function gives the probability of true signal being S, if we
choose to incorporate some addition information on the signal in form of a
function R(S). Given R(S) and regularization strength λ, the prior distribu-
tion can be written as,

P (S|R(S), λ) =
1

Zr
e−λR(S) (5.7)

where Zr is the normalization constant.

Using Bayes theorem, the posterior probability of getting the signal S,
given the detector output D , the beam B and regularization function R(S)
is given as follows,

P (S|D,B, λ,R(S)) =
P (D|S,B)P (S|R(s), λ)

P (D|λ,B,R(S)
(5.8)

The posterior probability is the product of likelihood and the prior divided
by the normalization function called evidence. Unlike in case of likelihood
which depends only on data, posterior probability distribution evaluates the
probability with which a given solution S could be the true signal by com-
bining the observation (detector output) with what is already known about
the true signal.

P (S|D,B, λ,R(S)) =
1

ZP
e−M(S) (5.9)
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Where M(S) is de�ned as,

M(S) := χ2(S) + λR(S) (5.10)

Most probable solution Smp is obtained by maximizing the posterior prob-
ability with respect to S. The function M(S) contains two competing function
- χ2 and R(S). The most probable solution minimizes the a linear combination
of these functions.

For our analysis, we construct R(S) as quadratic functions in S. Choosing
a quadratic form of the regularization function ensures that the operations
on the dirty map is always linear. This o�ers simplicity in terms of formu-
lation and is also computationally less expensive. At this point, it should
also be mentioned that a non-quadratic form of regularization like maximum
entropy formulation, although complicated and computationally expensive,
o�er other kinds of advantages. For instance, a quadratic regularization
function does not impose positivity of the source intensity as a prior. In
fact, having quadratic form implies that positive and negative intensities are
equally likely. The regularization functions we use are such that they favor a
smooth reconstruction which contains as little source structure as possible.
Say, the regularization function attains a minima at Sreg. We set Sreg = 0 to
incorporate the condition of Occam's razor. This implies a prior preference
to blank sky and helps in suppressing the noise.

∇(χ2(Smp) + λR(Smp)) = 0 (5.11)

This gives the expression for Smp as,

Smp = (B + λC)−1D (5.12)

Here, C is the hessian of R(S), i.e C = ∇∇R(S) . From the above equa-
tion, regularization can be also be viewed as modifying the convolution kernel
such that the problem becomes less ill-posed.

In summary, it should be noted that the reconstruction of source map
without a prior corresponds to evaluating the expression for Sml while regu-
larized deconvolution corresponds to �nding Smp.

5.1.4 Strength of Regularization

The strength of regularization λ decides the balance between the goodness-of-
�t and bias towards our prior knowledge. While low values of λ increase the
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risk of over �tting the data, setting λ to large numbers will give us a highly
biased solution. Setting a very high value for λ ensures that the solution is
consistent with our prior knowledge, but it might have very little to do with
the actual detector output. Thus, tuning λ to attain an optimal balance is
crucial to obtaining reliable solution.

Besides the obvious dependence on the beam matrix, optimal value of λ
also depends on the data itself. For instance, if the data contains a very
strong source, low strength of regularization would su�ce. On the contrary,
if the source is weak and is highly contaminated by noise, a higher strength
of regularization would be needed for a good reconstruction of the sky.

To �nd the optimal strength of regularization, we follow the formalism
presented in ([Suyu et al., 2006]). The optimal strength for regularization is
found by maximizing P (λ|D,B,R(S)) with respect to λ. Bayes rule tells us
that,

P (λ|D,B,R(S)) =
P (D|λ,B,R(S))P (λ)

P (D|R(S), B)
(5.13)

Since the order of magnitude of λ is unknown, a uniform prior in log
λ is assumed. The denominator of the above expression is independent in
lambda. This implies,

P (D|λ,B,R(S)) ∝ P (D|λ,B,R(S)) (5.14)

Further, P (D|λ,B,R(S)) can be identi�ed as the evidence. Finding the
optimal value of λ boils down to maximizing evidence with respect to log λ.

d

dlogλ
(logP (D|λ,B,R(S)) = 0 (5.15)

For Sreg = 0, this gives a non-linear equation whose solution corresponds
to optimal value of λ. This equation is non-linear in λ but can be solved
numerically by methods like bisection.

2λ̂optimalR(Smp) = Npixels − λ̂optimalTr((B + λ̂C)−1C) (5.16)

Where Npixels is the number of pixels in the source map.
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5.2 Quantifying the Quality of Reconstruction

- Normalised Scalar Product (NSP)

In order to have noise suppression e�ect a prior preference towards blank
sky is chosen. The cost associated with this is that the reconstructed map
is biased towards minimum power (sum of intensities squared) solutions. It
often happen that there is a huge di�erence in the amount of power contained
in the dirty map and the cleaned map. In such cases, the usual estimators
like root mean squared error (RMS) may not be a reliable estimator.

Since we aim at restoring the structures and patterns of the true sky rather
than intensity at each pixel, it is useful to quantify amount of structural sim-
ilarity between the reconstructed map and the true source map. One can
express the map as a vector of dimension equal to the number of pixels.
A simple estimator to do measure the similarity is the scalar product be-
tween normalize source map vector ( ˆStrue) and normalize reconstructed map
( ˆSclean) vector. This quanti�es the extent of overlap between the two maps.
Higher the value of normalised scalar product (NSP), better is the quality of
deconvolution.

NSP = Ŝclean.Ŝtrue (5.17)

5.3 Numerical Implementation of Regularized

Deconvolution

The following procedure is employed in our analysis. Sources are injected at
desired pixels in the map to generate a source map. A dirty map is simulated
from this source map by convolving it with the symmetrized GW detector
beam given in [Mitra et al., 2008]. A Gaussian noise with appropriate statis-
tical properties is added to it. This dirty map serves as the detector output
vector and we aim to accurately estimate the pattern in the source map from
this. We implement Bayesian regularization and compared to the true source
map to the reconstructed map. The quality of reconstruction is quanti�ed
by NSP.
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5.3.1 Pixelization Scheme

The sky is divided into pixels using Hierarchical, Equal Area, and iso-Latitude
Pixelisation (HEALPix) scheme [Górski et al., 2005]. The resolution of the
maps are set using the HEALPix parameter Nside. The total number of pix-
els NPixels in the maps are related to Nside as NPixels = 12N2

side. We use
Nside = 8 to generate our maps and in this resolution the sky is divided into
768 pixels.

5.3.2 Simulating Source Map

The sky is pixelized into 768 patches. The source is inject at a desired
location to produce a source map. We simulate three main kind of source
for our study - point source, extended di�used source and localized broad
source.

The signal is integrated over a period of one day (approx. 86400 s). How-
ever, in reality, the integration time is generally much longer than this and
thus, one can expect the signal strength to be higher. To give a rough idea
of the signal strenght used in our study, we present a graph of the source
power spectrum versus the detector power spectrum for a typical simulated
source in Figure 5.3.

5.3.3 Quadratic Regularization function

The formalism described above is valid for any quadratic form of regulariza-
tion function. In our analysis, we choose to investigate the e�ect of gradient
minimization on source reconstruction. Following is the forms of regulariza-
tion function used in our analysis -

• Gradient Regularization
Gradient regularization incorporates a preference to smooth source re-
construction by penalizing the intensity di�erence between two neigh-
boring pixels. It prefers minimum variation of intensities in the recon-
structed map. The gradient across the reconstructed map is minimized
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(a)

Figure 5.3: Power Spectrum of the Source Distribution and the detector :
This �gure compares the detector power spectrum with the power spectrum
of a typical source we simulate for our analysis. The red curve corresponds to
the detector power specturm and the blue line corresponds to power spectrum
of the source. It indicates the strength of the source we use.

by using the following form of regularization.

Rgradient(S) =

No.ofP ixels∑
i=1

Ni8∑
Nij=Ni1

(Si − Sj)2s (5.18)

Where Nijindicates the j
th nearest neighbor to ith pixel.

5.3.4 Computing Sml and Smp

Matrix inversions used in computing Sml and Smp are not numerically well-
de�ned and hence, a direct inversion is not reliable. The numerical error
on direct inversion for the matrix B happens to be very large. As an alter-
native, we formulate them into system of linear equations and solve them
using suitable linear equation solver. In our implementation, we formulate
the expression into a set of linear equations and solve for solve for Sml and
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Smp. We use MATLAB's in-built solver cgs(), which uses modi�ed conjugate
gradient method to solve the below equation.

D = BSml (5.19)

D = (B + λC)Smp (5.20)

5.3.5 Calculating the Hessian Matrix C

C is the hessian of the regularization function R(S) and plays a very impor-
tant role in reconstruction. It is an indicator of how sensitive the regulariza-
tion function R(S) is to change in S. It is de�ned as,

Cij :=
∂

∂Si

∂

∂Sj
R(S) (5.21)

For gradient regularization, one can compute C as-

C(i, j) = 2(Nη(i))δij − 2δjηi (5.22)

Here, ηi denotes pixels neighboring ith pixel and Nη(i) is the number of
neighbors of ith pixel. Because of the choice of the pixelization scheme, each
pixel has either 7 or 8 neighbors.
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5.4 Results of Source Reconstruction using Gra-

dient Regularization

As a demonstration, we show the results of source reconstruction for 5 dif-
ferent source intensity distribution. In �rst three cases the strength of the
source is weak and regularization helps the reconstruction. The last two cases
demonstrate two extreme scenarios - a very bright source and an extremely
weak source. In these two cases, blind regularization does not o�er much
bene�t.

(a)

Figure 5.4: This table summarizes the quantitative results obtained on im-
plementing gradient regularization.The norm of source map indicates the
signal strength. The �rst three rows contain results from the cases where
regularization helps to improve the reconstruction greatly. The fourth row
shows that regularization is unnecessary for very strong source. The �fth
row corresponds to a very weak signal and one sees that blind regularization
is not su�cient for the reliable reconstruction.
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(a) Source Map (b) Dirty Map

(c) Reconstruction without Regu-
larization

(d) Regularized Reconstruction

Figure 5.5: A Weak 9-pixels-wide source : In these �gures the colorbar in-
dicates the intensity of the pixels. When the source is weak, regularization
helps the reconstruction greatly. From the panel (c) and (d) one can clearly
see the improvement brought by regularization. The regularization strength
used here is λ = 40

5.5 Source Reconstruction Using Prior Knowl-

edge on Source Location

In many instances, some information about the stochastic gravitational source
location is known through electromagnetic observation. Incorporating this
information, o�ers an enormous advantage, especially if we are reconstructing
faint sources from noisy data.

The most natural way of incorporating the source location is by construct-
ing a regularization function of the following form -

Rnorm(S) =

No.ofP ixels∑
i=1

[S(i)− Smodel(i)]2 (5.23)

Where Smodel is the prior map that contains the information on the source
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(a) Source Map (b) Dirty Map

(c) Reconstruction without Regu-
larization

(d) Regularized Reconstruction

Figure 5.6: A Point Source : From the panel (c) and (d) one can clearly see
the improvement brought regularization. Here we use λ = 10

location. This function penalizes the di�erence between the reconstructed
map and the prior map. However, the one encounters a serious problem
when using this form of regularization. The biases introduced by the prior
map is very large and one �nds that signal is picked up even from a pure
noise map. Figure 5.10 depicts our attempt to use this functional form of
regularization.

To reduced this problem of false alarm, we construct an alternative form
of regularization function -

R(S) =

NPixels∑
i=1

[
|S(i)|2

|Smodel(i) + κ|
(5.24)

Essentially, we modify the norm regularization function in such a way that
penalty per pixel is inverse weighted by the intensity of that pixel in the
prior map. This ensures that the reconstructed map is penalized less for
pixel-intensities where we expect the source to be present. The factor κ in
the above function is an ad-hoc factor. This factor relates to the maximum
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(a) Source Map (b) Dirty Map

(c) Reconstruction without Regu-
larization

(d) Regularized Reconstruction

Figure 5.7: Di�used Source : The regularization strength used here is λ = 20.
Here again, one can see the improvement brought by incorporating regular-
ized deconvolution.

uncertainty expected in the intensity of the prior map. It is set to 10−2 in
our analysis. We �nd that setting κ = 10−2 does not pick up the signal from
pure noise map but picks up the signal if the data actually has a weak signal
resembling the prior map. The most probable map in this case becomes,

Smp = (B + µC)−1D (5.25)

Where,

C(i, j) ≈ δij
1

Smodel(i) + κ
(5.26)

The regularization constant is denoted as µ . This result obtained by this
form of regularization function is shown in Figure 5.11.
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(a) Source Map (b) Dirty Map

(c) Reconstruction without Regu-
larization

(d) Regularized Reconstruction

Figure 5.8: A Very Strong Point Source : When the source is strong, there is
no need of regularization. It is clear from the panel (c) and (d) that regular-
ization brings no signi�cant improvemnet in reconstruction. A regularization
strength λ = 3 is used. Increasing λ to a large value smears out the image
and is unfavorable.

5.6 Bias Introduced by Regularization

The map reconstructed map using regularization is a biased estimator while
the unregularized reconstruction is unbiased. Regularization introduce the
bias in the reconstructed map and alters the pixel-to-pixel co-variance matrix
of the reconstructed map. For unregularized reconstruction,

< Ŝ >= (BTN−1B)−1BTN−1BStrue = Strue (5.27)

Bias B is de�ned as the di�erence between the Strue and < Ŝ >. It is clear
that B = 0 for unregularized deconvolution. For the case of regularized
deconvolution,

Ŝ = (BTN−1B + λC)−1BTN−1D (5.28)
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(a) Source Map (b) Dirty Map

(c) Reconstruction without Regu-
larization

(d) Regularized Reconstruction

Figure 5.9: Very Weak Di�used Source : When the source is very weak,
a blind regularization like gradient regularization does not help much. Al-
though, there is an improvement, from the panel (c) and (d) it is clear that
reconstruction is unreliable.

And,

< Ŝ > = < (BTN−1B + λC)−1BTN−1D > (5.29)

= (BTN−1B + λC)−1BTN−1 < BStrue + n > (5.30)

= (BTN−1B + λC)−1BTN−1BStrue (5.31)

When N=B the above expression reduces to,

< Ŝ >= (B + λC)−1BStrue (5.32)

The bias B for this case is,

B = Strue− < Ŝ >= (1− (B + λC)−1B)Strue (5.33)
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(a) Noise-Only Dirty Map (b) Prior Map

(c) Regularized Reconstruction

Figure 5.10: Noise Only Map : When regularization function in Eq. 5.23 is
used, we �nd that the prior introduces a bias su�cient to obtain signal even
from pure noise map. This is dangerous as it leads to spurious detection

5.7 Discussion

The above results demonstrate the merits of incorporating gradient regu-
larization. Figures 5.5, 5.6 and 5.7 clearly show that gradient regularized
reconstruction brings a signi�cant visual improvement. Here, the di�erence
in intensities of two neighboring pixels is penalized. There is a preference
towards reconstructed map that has less random �uctuations leading to a
noise suppression e�ect. For a qualitative measure of the improvement, one
can compare the NSP value of the regularized and the unregularized recon-
struction. The NSPreg is signi�cantly higher than NSPunreg for weak sources
(refer row 1,2 and 3 of the table).

At this point, it is worth highlighting that gradient regularization is a blind
prior. It contains no information about the location of the source. Therefore,
the bias introduced by implementing gradient regularization does not pose
a threat of false detection. The only disadvantage in using smoothness of
the reconstructed map as a prior is that information about the small scale
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(a) Noise-Only Dirty Map (b) Clean Map for Noise Only
Case

(c) Prior Map (d) Dirty Map with Faint Source

(e) Reconstruction for Faint
Source Using the Source Location
as Prior in Regularization

(f) Reconstruction for Faint
Source Using Norm Regulariza-
tion

Figure 5.11: Source reconstruction using Prior Knowledge on Source Loca-
tion : We use the modi�ed norm regularization function that incorporates
the source location information. We �nd that signal is picked up only in
presence of signal. One can compare the results obtained on incorporat-
ing prior knowlwdge of the source again results obtained using norm (blind)
regularization.

structure might get wiped o� when strength of regularization is high. For
instance, if we over-regularize deconvolution of a very strong di�used source,
its blurs out and the details in its structure is lost.
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Further, we �nd that the optimal choice for regularization strength de-
pends on the data itself. More the map is contaminated with noise, more is
the necessity to implement prior information and higher should be the value
of λ. As we increase λ, the value of χ2(S) increases and value of penalty
function R(S) decreases. For instance, for very high value of λ, the small-
scale structures in the reconstructed map is completely removed. For very
low value of λ, over-�tting of the data takes place. The strength of regular-
ization dictates the weight on these two competing functions. In our analysis,
we set the strength for regularization (λ) by numerically solving Eq. 5.16.

In Figure 5.8, we investigate the e�ect of regularization in an extreme
case. Here the source injected is very bright. In such cases, one expects that
regularization should not bring signi�cant di�erence to the reconstruction.
From this �gure, one can see that regularization is, indeed, unnecessary when
the source is bright. The improvement in the value of NSP of the regularized
map is very tiny compared to NSP of unregularized map (refer row 4 of the
table). The source map contains su�cient uncontaminated information and
adding a prior doesn't really improve the recovery.

Figure 5.9 considers the other extreme scenario where the injected source
is very faint. The dirty map is highly contaminated with noise and a blind
prior like gradient regularization is not su�cient to produce a faithful recon-
struction. However, if we happen to know some information on the source
location, incorporating this information appropriately will help to greatly in
improving the quality of reconstruction. This is demonstrated in the Figure
5.11.

We implement the prior information on the source location as described in
section 5.5. Although this method gives excellent reconstruction even when
the signal is very weak, one has to be careful in its implementation. Unlike
gradient regularization, the prior in this cases has an explicit information on
the source location. There is a preference towards those reconstructed map
that have high intensity at that particular location in sky. Over-regularizing
thus, will lead to false source reconstruction. Here, it becomes crucial to
set a right balance between the weights to the prior information and to the
information contained in data. Also, one has to notice that there are two
parameters (µ and κ) to be tuned in the regularization function in Eq. 5.24.
At the moment, we have set µ = 2 and κ = 10−2 by trial-and-error method.
We have checked that this works well for a wide range of source intensity
distribution. Further, it has to be noted that for this choice of µ and κ,
the signal is only picked up from the dirty map that has a weak signal and
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not from the pure noise map. However, we do not claim that this choice is
optimal. In-fact, our future plans include devising an more logical method
to chose the value of these factors. We anticipate that for an optimal choice
of µ and κ, the quality of reconstructed map can be improved even more. At
this point, our only claim is that this form of regularization function has a
potential to e�ciently reconstruction the true sky even in presence of very
weak signals.

Next, we discuss a few di�erences between regularized deconvolution and
the well established likelihood statistic ([Talukder et al., 2011]). In the detec-
tion problem, one is interested to know the presence or absence of a particular
known pattern in the data. In such a case, likelihood ratio is the optimal
detection statistics according to Neyman-Pearson criteria. The assumption
here is that the pattern in the sky is accurately known. However, most often
in the real scenarios, we only have a partial information about the source
intensity distribution and it becomes important to be able to regulate the
strength of the prior. Implementing regularization in a Bayesian framework
provides this �exibility. Further, even when the source location is completely
unknown, it allows us to use blind prior like gradient and norm regular-
ization. At this point one has to also notice that map-making problem is
fundamentally di�erent from the detection problem as they address two dif-
ferent questions. Unlike the detection problem where one is interested to
know if a particular pattern in present in data, the map-making problem
concerns with reconstructing the most probable pattern in the sky given the
data. One can then use this reconstructed map to detect the presence or
absence of a particular signal.

In the extreme case, where we known the exact source intensity distribu-
tion, the problem of map-making becomes similar to the detection problem.
It will be interesting to compare the results obtained using our method to the
results of maximum likelihood method for this particular case. The primary
di�erence between the two will be that while maximum likelihood ratio is an
estimator that is de�ned on dirty map, the statistic developed using Bayesian
inference will be de�ned on the reconstructed map.

This part of the thesis is still an ongoing work. Our further plan is to use
the above result to address the following question - "Given that a stochastic
gravitational wave source is located at a particular position in the sky, what
can we say about the source parameters in the absence of its detection."
Such priors on source location is not unrealistic. For instance, one expects to
observe stochastic gravitational waves from the Virgo cluster and its location
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is well known to us through the electromagnetic observation. We can use such
an analysis to place an upper limit on the parameters of the sources in the
Virgo cluster in the absence of its detection.
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Appendix A

Stationary Phase Approximation

In this section we shall brie�y discuss the stationary phase approximation.
Physically, this approximation uses the fact that a rapidly oscillating phase
intergrated over a long duration cancels itself. The contribution to the in-
tegral dominantly comes from stationary point of phase. It is a very useful
tool that has been used many times in the work described below to evaluate
the integral of the following form -

I =

∫ ∞
−∞

F (x)e−iφ(x) dx . (A.1)

If xs is the stationary point of the phase, such that

φ′(xs) = 0 (A.2)

We can expand the phase about the stationary point as -

φ(x) ≈ φ(xs) +
1

2
φ′′(xs)(x− xs)2 (A.3)

The integral becomes ,

I ≈ F (xs)e
−iφ(xs)

∫ ∞
−∞

e−iφ(xs)
(x−xs)2

2 dx . (A.4)

Finally, from this one can obtain,

I ≈

√
2π

iφ′′(xs)
F (xs)e

−iφ(xs) (A.5)

62



Appendix B

Derivation of expression for Sml

The most likely solution Sml is got by minimizing the χ2 value with respect
to S.

1

2
χ2 =

1

2
(BS −D)TN−1(BS −D) (B.1)

Minimizing,

∇s(χ
2) =

D

dS
((BS −D)TN−1(BS −D)) (B.2)

Using the product rule of di�erentiation,

∇s(χ
2) = (

d

dS
(BS−D))TN−1(BS−D)+(BS−D)TN−1 d

dS
(BS−D) (B.3)

Using the result, d
dx
Ax = AT and the using the fact that B is symmetric we

get,

∇s(χ
2) = BN−1(BS −D) + (BS −D)TN−1B = 2BTN−1(BS −D) (B.4)

This quantity should be equal to zero for S = Sml. So, to �nd Sml, we set
the above expression to zero

BTN−1(BS −D) = 0 (B.5)

On rearranging the equation we get,

Sml = (BTN−1B)−1BTN−1D (B.6)

But the pixel-to-pixel covariance matrix N is proportional to beam matrix
B. Using this, we can simplify the above equation further as,

Sml = B−1D (B.7)
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Appendix C

Derivation of expression for Smp

The most probable solution is got by maximizing the posterior probability,
which is equivalent to minimizing the value of M(S).

M(S) = χ2 + λR(S)2 (C.1)

If the source covariance matrix is denoted by Q =< SST >, then by analogy

λR(S) = STQ−1S (C.2)

On comparing with the taylor expansion of R(S) about Sreg = 0, it can be
identi�ed that,

Q = (λC)−1 (C.3)

Using the above arguments, it is clear that M(S) can be expressed as,

M(S) == (BS −D)TN−1(BS −D) + ST (Q)−1S (C.4)

∇M(S) = 0 for S = Sml. So we �nd SmlS by setting the expression to zero

BTN−1(BS −D) +Q−1 = 0 (C.5)

On simpli�cation we get,

Smp = (S−1 +BTN−1B)−1BTN−1D (C.6)

Now, if we de�ne A to be the hessian matrix of M(S)

A = ∇∇M(S) = B + λC (C.7)
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Further, we write the explicit form of A by double di�erentiating A with
respect to S

A = Q−1 +BTN−1B = Q−1 +∇∇χ2 (C.8)

Rearranging Smp to express in terms of A and ∇∇χ2,

Smp = (Q−1 +BTN−1B)−1BTN−1D = A−1BTN−1D (C.9)

= A−1(∇∇χ2)(∇∇χ2)−1BTN−1D = A−1(∇∇χ2)Sml (C.10)

This further simpli�es to

Smp = (B + λC)−1D (C.11)
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