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Abstract

Graph Algorithms using Rank and Determinant

by Vivek Krishna Pradhan

KEYWORDS: Matchings, planar graph, spanning tree, algebraic algorithm

Algebraic algorithms are important since they provide elegant and easy solutions

to many problems. Even though most fast algorithms for graph problems exploit

graphs structure or combinatorial properties, in some situations algebraic solutions

out perform these algorithms. Also with future improvements to the basic matrix al-

gorithms and with novel parallel algorithms emerging, algebraic algorithms are set to

become faster. In this thesis I explore important algebraic graph theoretic algorithms.

All the algorithms discussed here use the same tool at their core i.e. equivalence of

computing the determinant, multiplying two matrices, inverting a matrix, and per-

forming Gaussian Elimination. All of these operations take time O(nω), where ω is

the matrix multiplication constant (< 2.373)[1]. Problems discussed are Existence of

Bipartite Perfect Matchings, Size of Maximum Bipartite Matching, Counting perfect

matchings in planar graphs and counting the number of spanning trees.
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Chapter 1

Introduction

There are many important algorithms that make use of matchings in graphs. There

are many problems to study with respect to matchings, for example finding - maximal

matchings, maximum matchings and perfect matchings in a graph. Also counting

problems like, counting matchings or counting perfect matchings in a graph. Solving

these graph problems has important applications in computational chemistry and

thermodynamics. Some of these problems like counting perfect matchings are believed

to be hard and have no efficient solutions and others like the maximum matching

problem have polynomial time solutions.

Spanning trees are an important part of many graph algorithms. There are many

algorithms for finding, enumerating and counting spanning trees. Optimization al-

gorithms like minimum spanning trees is also well studied. There are many variants

of these problems like the k-minimum spanning tree, degree constrained minimum

spanning tree etc. Applications of finding spanning trees and minimum weight span-

ning trees come up in network design, circuit design, transportation and logistics.

The problem of counting spanning trees has also been studied extensively. It has

application in assessing reliability of a network represented by a graph.

Initially algorithms in matching theory were algebraic in nature. Early results

in bipartite matchings were formulated in terms of matrices. Later results giving

efficient algorithms to find matchings are purely graphical in nature. The algebraic

algorithms may not be the most efficient but with improvements in algorithms for

finding determinant and rank their efficiency will improve, but more importantly they

are simple and easy to understand. This makes them important from an academic

standpoint.
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2 CHAPTER 1. INTRODUCTION

In this thesis I have studied some important algebraic algorithms in graph theory.

First I introduce the necessary background in graphs and algorithms. Then, in Chap-

ter 3, I discuss algorithms that decide the existence of various types of matchings,

then move on to the problem of counting the number of perfect matchings in a planar

graph. Then in Chapter 4, I discuss a theorem called the matrix tree theorem, which

counts the number of spanning trees in a given graph. Proofs are adapted from a

bachelor’s thesis[2] and a phd thesis[3].



Chapter 2

Preliminaries

2.1 Definitions

Definition 1 (Graph). A graph G = (V,E) consists of a finite set of vertices V and

edges E. An edge is an unordered pair of vertices of the form (u, v) where u, v ∈ V .

We say a vertex v is adjacent to another vertex u is (u, v) ∈ E.

Definition 2 (Planar Graph). A graph G = (V,E) is a planar graph if it can be

drawn on a plane in such a way that none of the its edges intersect only at their

endpoints.

Definition 3 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if the set of

vertices can be divided into two disjoint sets U and V such that all edges (u, v) ∈ E
are of the form u ∈ U and v ∈ V .

Definition 4 (Matching). In graph G = (V,E) a matching M is a set of edges, such

that no two edges in M share a vertex. It is also called an independent edge set.

Definition 5 (Spanning Tree). Given graph G = (V,E) a spanning tree is an acyclic

connected subgraph of G of the form T = (V, Ẽ), with |Ẽ| = n− 1

Note that this tree spans all the vertices of G using the minimum number of edges.

Definition 6. The sign of a permutation M of n elements {1, 2...n} is defined as

(−1)t, where t is the number of times we need to exchange of two elements to get back

the identity permutation i.e. sgn(M) = (−1)t

3
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Chapter 3

Matchings - Existence and

Counting

3.1 Introduction

Matching theory has contributed immensely to the development of many fields like

graph theory, combinatorial optimization and computer science. For example, Ed-

mond’s seminal paper titled “Paths, Flowers and Tree”[4] inspired the definition of the

class P, and started the field of polyhedral combinatorics. There are many classes of

matchings. A few of them are bipartite, non-bipartite, perfect, maximum, weighted

etc. Some solutions are combinatorial in nature i.e. they exploit graph and com-

binatorial properties. Another class of solutions are the algebraic solutions, these

algorithms have less to do with the actual graph representation and work by using

properties of some special matrices. In this section I explore some of the important

algebraic solutions of some matching problems.

First I discuss the problem of deciding if there exists a perfect matching in a

bipartite graph. Using a result by Edmonds we describe an algorithm for deciding if

a perfect matching exists in a bipartite graph. The next section discusses how this

algorithm can also be used to find the size of the maximum matching in a bipartite

graph. Then finally we discuss an algorithm to count the number of perfect matchings

in a planar graph.

Counting perfect matchings in general graphs was shown to belong to a class of

problems called #P − Complete in 1976 by L. Valiant[5]. Hence it is believed that

there is no efficient solution possible for counting perfect matchings in general graphs.

5



6 CHAPTER 3. MATCHINGS - EXISTENCE AND COUNTING

In fact this problem is hard even when restricted to bipartite graphs. Due to a result

by Kasteleyn[6] there is a polynomial time algorithm to count the number of perfect

matchings in planar graphs.

3.2 Preliminaries

Definition 7 (Adjacency Matrix). Given a graph G = (V,E) with n = |V |, a n× n
matrix is called an adjacency matrix of the graph G if

Aij =

1, if (i, j) ∈ E

0, otherwise

Definition 8 (Maximum Matching). In graph G = (V,E) a matching M is a max-

imum matching if M contains the largest possible number of edges. There are many

maximum matchings, but the size of the maximum matching is fixed.

Definition 9 (Perfect Matching). Given a graph G = (V,E), a Matching M is called

a perfect matching if it contains all the edges of the graph.

Note that for a graph to have a perfect matching it must have an even number of

edges.

Definition 10 (M-Alternating Cycle). Given a graph G = (V,E), a Perfect Matching

M , an M-Alternating Cycle is a cycle that alternates between edges in M and edges

not in M .

Note that every M-Alternating Cycle is a even cycle i.e. it has an even number of

edges.

Definition 11 (M,N-Alternating Cycle). Given a graph G = (V,E), Perfect Match-

ings M and N , an M,N-Alternating Cycle is a cycle that alternates between edges in

M and edges in N .

Definition 12 (dual Graph). Given a planar graph G = (V,E) the dual graph of G is

a graph G∗ = (V ∗, E∗), with V ∗ = {fi|fi is a face of the planar representation of G}
and E∗ = {(fi, fj)| There exists an edge between fi and fj in the planar representation

of G}.
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3.3 Bipartite Perfect Matching

In this section we give an algorithm that can decide if there exists a perfect matching

in a given bipartite graph or not in polynomial time. We then define the n×n matrix

Figure 3.1: A bipartite graph

A (Perfect Matching Matrix) as,

Aij =

xe, if viuj ∈ E

0, otherwise

Here xe is a unique variable for each edge in the graph.

Example The matrix for the bipartite graph in figure 3.1 is

A =


U →

V x1 x2 0

↓ x3 0 x4

x5 0 0


Theorem 1. G has a perfect matching iff det(A)(Perfect Matching Matrix) is not

the zero polynomial.

Proof. Consider, the expansion of the determinant of the matrix A.

det(A) =
∑
σ∈S2n

Sgn(σ)
2n∏
i=1

Aiσ(i)

Notice that every term
∏2n

i=1Aiσ(i), is unique since different set of variables are chosen

in each term. Additionally, if the edges (1, σ(1)), (2, σ(2))...(n, σ(n)) all exist then

they form a perfect matching and also the product is non-zero. Since all the terms
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are unique (except the zero terms) this proves that if there exists a perfect matching

the determinant will be non-zero.

The converse is also true since any non-zero term in the determinant provides us with

a perfect matching.

3.3.1 A randomized algorithm

Since computing the determinant of a variable matrix is not easy, using the above

result we can devise a randomized algorithm. We substitute each non-zero variable

of A by a random element in a large enough finite field to obtain the matrix B. Now,

finding the determinant of the matrix B is straight forward.

Lemma 1. With high probability if det(A) 6= 0, then det(B) 6= 0, if we use elements

from a large enough finite field.

Proof. The proof of this lemma follows directly from the well known Schwartz-Zippel

lemma.

Lemma 2. If P ∈ F[x1, x2...xn] is a non-zero polynomial of degree d,then P (r1, r2...rn) =

0 with probability at most d/|F|, where r1, r2...rn are random elements in F.

The determinant is a polynomial of degree n. So, if we choose the size of the field

to be |F| > n2, then probability of error is less than 1/n

Now, due to Bunch and Hopcroft, the determinant of A, the rank of A, the inverse

of A can all be computed in O(nω) time, with ω < 2.376. Therefore we have a O(nω)

randomized algorithm to decide if a bipartite graph has a perfect matchings.

3.4 Maximum Bipartite Matching

Maximum bipartite problem can be solved by reducing the problem to the maximum

flow problem. In this section we show that the results from the previous section(3.3)

can be used to as an algebraic algorithm to find the size of the maximum bipartite

matching. Note that the determinant of the matrix A defined in Section 3.3 will

vanish if a perfect matching does not exist in the graph. We show here that the rank

of the matrix gives us some information about the size of the maximum matching.
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Lemma 3. The size of the maximum bipartite matching is equal to the rank of the

matrix A

Proof. Consider a matching M of the graph G = (V,E) of size k. Now M is a

perfect matching of the subgraph G′, where G′ is formed by deleting vertices of G

that are not in M . Note that the matrix A′(k × k) that corresponds to the Perfect

Matching Matrix(section 3.3) of G′ is a submatrix of A. From previous theorem 1,

the matrix A′ is a full rank matrix( of rank k). This shows that rank(A) ≥ rank(A′)

i.e. rank(A) ≥ k

Now, consider a maximum rank submatrix of A, this represents a subgraph of G.

From the theorem 1 (reversed), since the submatrix is a full rank matrix, there exists

a perfect matching in the subgraph represented by this matrix. This shows that,

rank(A) ≤ k.

3.5 Counting Perfect Matchings in a Planar graph

Definition 13. We define PM(n) to be the set of partitions of n elements to pairs.

For example, PM(4) = {{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}}. Also note

that each partition of the set of n numbers can be thought of as a permutation into

pairs. If the number of vertices is taken to be n then PM(n) gives us all the potential

perfect matchings of the graph G, i.e. if M ∈ PM(n) represents a perfect matching

then the quantity Aij = 1 if (i, j) ∈M . So to count the number of perfect matchings

in a graph we need to compute the quantity

PerfMatch(G) =
∑

M∈PM(n)

∏
(i,j)∈M

Aij

Example Let us illustrate this by using a simple graph on four vertices, the square

graph. The Adjacency Matrix of this graph is given by,

A =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0





10 CHAPTER 3. MATCHINGS - EXISTENCE AND COUNTING

Figure 3.2: A square graph

and PM(4) = {{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}}.

PerfMatch(G) =
∑

M∈PM(n)

∏
(i,j)∈M

Aij

= A12A34 + A13A24 + A14A23

= 1 + 1 + 0

= 2

Figure 3.3: The two perfect matchings of the square graph

Definition 14 (Pfaffian). We define the Pfaffian of a n × n matrix as Pf(A) =∑
M∈PM(n) sgn(M)

∏
(i,j)∈M Aij, where sgn(M) is the sign of M as a permutation of

n elements.

Example Let us compute the pfaffian of the adjacency matrix of the square graph
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used before,

Pf(A) =
∑

M∈PM(n)

Sgn(M)
∏

(i,j)∈M

Aij

= A12A34 − A13A24 + A14A23

= 1− 1 + 0

= 0

It is clear that the definitions of the pfaffian of a matrix A and the value that we

want to compute PerfMatch(G) are very similar. We are interested in computing

the value of PerfMatch(G) using the value of the Pfaffian, since due to the following

result of Muir[7] it is easy to compute Pf(A) for skew-symmetric matrices.

Lemma 4 (Muir, 1882). Let A be a skew-symmetric matrix, then Pf(A)2 = det(A),

where det(A) is the determinant of A.

Since we can compute the pfaffian of a skew-symmetric matrix easily we now

construct a skew-symmetric matrix from the graph G. We do the following:

1. From the given undirected graph G we construct the directed graph G′ by

orienting each edge of G in some direction.

2. Now the resultant adjacency matrix A′ is skew-symmetric since if there is an

edge i→ j then we have A′ij = 1 and A′ji = −1.

3. We can now compute Pf(A′) =
√
det(A′).

But, we want to be sure that

Pf(A′) = ±PerfMatch(G)∑
M∈PM(n)

sgn(M)
∏

(i,j)∈M

A′ij = ±
∑

M∈PM(n)

∏
(i,j)∈M

Aij

Since the terms are non-zero only when M is a perfect matching, we want that

sgn(M)
∏

(i,j)∈M

A′ij = ±
∏

(i,j)∈M

Aij, whereM is a perfect matching.
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Hence, if we find a way to orient the edges in G such that sgn(M)
∏

(i,j)∈M A′ij = s,

where s is either +1 or -1 and it is the same for all M which are perfect matchings

in G.

Definition 15. The Orientation for which the above property is satisfied is said to be

a Pfaffian Orientation of G i.e. if G′ is a Pfaffian orientation of G then, for any two

perfect matchings M and N , we must have sgn(M)
∏

(i,j)∈M A′ij = sgn(N)
∏

(i,j)∈N A
′
ij

Example Recall that in a previous example the Pf(A) = 0, while PerfMatch(G) =

2, where G had A as the adjacency matrix. In this example we show that when using

a Pfaffian orientation, Pf(A) = PerfMatch(G).

The Adjacency Matrix of this graph is given by,

Figure 3.4: Pfaffian orientation of the square graph

A =


0 −1 −1 0

1 0 0 1

1 0 0 −1

0 −1 1 0


and PM(4) = {{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}}.

Pf(G) =
∑

M∈PM(n)

Sgn(M)
∏

(i,j)∈M

Aij

= A12A34 − A13A24 + A14A23

= (−1)(−1)− (−1)(1) + 0

= 2

We have now reduced the problem of counting the number of perfect matchings

to the problem of finding a pfaffian orientation. To show that we can find the pfaffian

orientation of planar graphs we first need to prove the following lemma.
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Definition 16 (Nice Cycle). An even cycle C such that, if C were removed, G would

still have a perfect matching is called a nice cycle.

Definition 17 (Oddly Oriented). If a cycle C, has has odd number of edges going in

clockwise and anti-clockwise direction.

Lemma 5. Let G be a graph and G′ be an orientation of G. Then G′ is a pfaffian

orientation if every nice cycle in G is oddly oriented in G′. Here

Proof. Let us assume that G′ is an orientation of G such that every nice cycle in G is

oddly oriented in G′. Now let M and N be any two perfect matchings of G. Suppose

C is a M-Alternating Cycle. We know that C is even. Notice that M −C is a perfect

matching for the graph formed by deleting C from G. Therefore an M-Alternating

Cycle is a nice cycle and it is oddly oriented. Similarly an M,N-Alternating Cycle is

oddly oriented.

Now, M ∪ N may contain many oddly oriented even cycles. Let us consider one

such cycle C formed by edges M̃ ⊆ M and Ñ ⊆ N . Let us write the cycle by

listing the vertices in clockwise order, M̃ = {(i1, i2), (i3, i4)...(i2k−1, i2k)}, then Ñ =

{(i2, i3), (i4, i5)...(i2k, i1)}. Since C has odd number of edges oriented clockwise, one

of Ñ and M̃ have even number of clockwise edges while the other has an odd number.

Without loss of generality let us assume that M̃ has even number of clockwise edges,

say there are 2t number of edges. Therefore,
∏

(i,j)∈M̃ Aij = (−1)|M̃ |−2t(+1)2t =

(−1)|M̃ | = +1.

Now let us compute
∏

(i,j)∈Ñ Aij, we know Ñ has odd number of clockwise edges say

2l + 1, therefore
∏

(i,j)∈Ñ Aij = (−1)|Ñ |−(2l+1)(+1)2l+1 = −(−1)|Ñ | = −1

Now, suppose M = {M̃1 ∪ M̃1...M̃γ} ∪ (M ∩N), here every M̃i is a cycle of M ∪N .

Therefore∏
(i,j)∈M Aij =

∏
(i,j)∈M̃1

Aij ·
∏

(i,j)∈M̃2
Aij · · ·

∏
(i,j)∈M̃γ

Aij ·
∏

(i,j)∈M∩N Aij

= 1γ ·
∏

(i,j)∈M∩N Aij

Similarly
∏

(i,j)∈N Aij = (−1)γ ·
∏

(i,j)∈M∩N Aij. Therefore,∏
(i,j)∈N Aij ·

∏
(i,j)∈M Aij = (−1)γ ·

(∏
(i,j)∈M∩N Aij

)2
.

The square of (±1) is 1, so we get,∏
(i,j)∈N

Aij ·
∏

(i,j)∈M

Aij = (−1)γ

Now, Sgn(M) = Sgn(M̃1 ∪ M̃1...M̃γ)
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= Sgn(i11, i12...i1(2k1), i21, i22...i2(2k2)......iγ1, iγ2...iγ(2kγ))

= (−1)Sgn(i12, i13...i11, i21, i22...i2(2k2)......iγ1, iγ2...iγ(2kγ))

Since we have done 2k1 − 1(odd) number of swaps of two numbers in this step
... Repeating the above steps γ number of times (for each M̃i)

= (−1)γSgn(i12, i13...i11, i22, i23...i21......iγ2, iγ3...iγ1)

= (−1)γSgn(Ñ1 ∪ Ñ1...Ñγ) = (−1)γSgn(N), i.e.

Sgn(M) · Sgn(N) = (−1)γ

Therefor multiplying the above two equations we get,Sgn(M)
∏

(i,j)∈M

Aij

Sgn(N)
∏

(i,j)∈N

Aij

 = (−1)2γ = 1

This shows that if a graph G has an orientation G′ such that every nice cycle in G

is oddly oriented in G′ then all terms of the form Sgn(M)
∏

(i,j)∈M Aij, where M is a

perfect matching have the same sign i.e. this is a pfaffian orientation.

Now we prove the main result that shows the existence and a method to find the

pfaffian orientation of planar graphs.

Theorem 2. Let G be a planar graph. Then

1. G can be oriented efficiently so that each face except one has an odd number of

edges oriented in clockwise (called clockwise odd orientation) and,

2. This is a Pfaffian Orientation of G.

Proof. Proof of Part-I

We prove this by construction. Let us consider the dual graph G∗ of the given planar

graph. We find a spanning tree of this dual graph. Now we choose a face of our

original graph starting from the leaf nodes of the spanning tree of the dual graph and

orient all the edges arbitrarily except one edge. This remaining edge can be oriented

in such a way that the face has an odd number of edges. The next face to be chosen

has to be adjacent to the leaf nodes face on the spanning tree of the dual graph. We

repeat the process until all the faces have been oriented in clockwise odd orientation,

except the final face for which we may or may not be able to give a clockwise odd
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orientation.

This method works since suppose we are orienting the face fi, with i < |faces|. Then

there exists a face fk which is adjacent to fi is yet to be oriented. This means that

the edge that is shared by fi and fk is not yet given an orientation. Hence we can

use this edge to correctly orient fi. This property is true until the last face that we

are orienting. So we can orient all the faces except one.

Figure 3.5: Spanning tree of the dual graph. All the directed edges can be oriented
arbitrarily, the undirected edges can be used to make each face clockwise odd

Proof of Part-II

Due to the previous lemma, if suffices to show the following result.

Lemma 6. Let G be a planar graph. If G′ an orientation so that each internal face

has an odd number of lines oriented clockwise, then every nice cycle in G is oddly

oriented in G′

We use the following version of Euler’s formula:

Lemma 7. For any cycle C, e = v+ f − 1, where e is the number of edges inside C,

v is the number of vertices inside C, and f is the number of faces inside C
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Let C be a nice cycle, let ci be the number of clockwise lines on the boundary of

face i in C. and c be the number of clockwise lines on C. Since our orientation is

clockwise odd, we have, ci ≡ 1 mod 2, so f ≡
∑f

i=1 ci mod 2.

But,
∑f

i=1 ci = c+e, since each interior line is clockwise on one face and anti-clockwise

on another and so is counted once.

This shows that, f ≡ c+ (v + f − 1) mod 2, so c ≡ (v − 1) mod 2. But, since C is a

nice cycle v ≡ 0 mod 2. This proves that C is oddly oriented.



Chapter 4

Counting Spanning Trees

4.1 Definitions

Definition 18 (“weakly” connected components). Given a directed graph G = (V,E)

a weakly connected component is a subgraph in which the undirected graph formed by

replacing all directed edges with undirected edges, is connected.

4.1.1 Incidence Matrix

Definition 19 (Incidence Matrix). Given a graph G = (V,E) with V = {1, 2...n}
and E = {e1, e2...em} be a directed graph. Then the incidence matrix SG is a n×m
matrix, defined as:

(SG)ij =


1, if ejends in i

−1, if ejstarts in i

0, otherwise

Note that for an undirected graph G any incidence matrix S−→
G

of some arbitrarily

oriented directed variant
−→
G of G can be taken as the incidence matrix. As an example

consider the graph K4 in figure 4.1, the complete graph on four vertices. The incidence

matrix can be computed on any directed variant of this graph, let us use the directed

17
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Figure 4.1: The complete graph on 4 vertices

Figure 4.2: Directed variant of the complete graph on 4 vertices

version given in figure 4.2. The incidence matrix for this graph is:

SK4 =


−1 0 0 1 −1 0

1 −1 0 0 0 1

0 0 1 −1 0 −1

0 1 −1 0 1 0



We will exploit the following property of incidence matrices in subsequent proofs.

Theorem 3 (Incidence Matrix Rank). The rank of the incidence matrix of a graph

on n vertices is :

rank(SG) = n− |“weakly” connected components of G|

Proof. Let us assume that |“weakly” connected components of G| = r, then we can

rearrange the columns of SG to make SG be comprised of the incidence matrices of

the “weakly” connected components, SG1 , SG2 ...SGr as shown

SG =


SG1 · · · 0

SG2

...
...

. . .

0 · · · SGr


All entries outside of the submatrices SGk are zero since if there was a non-zero

entry in any other place it would mean that there exists an edge from some SGi
to some other SGj . Since each of these are “weakly” connected components such
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an edge cannot exist and hence all entries outside of the submatrices SGk are zero.

Now further this shows that the number of independent columns of SG = sum of the

number of independent columns of all submatrices SGi i.e.

rank(SG) =
r∑
i=1

rank(SGi),where each SGi is a “weakly” connected component of G

(4.1)

Now if we prove that rank(SGi) = ni − 1, where Gi is a connected graph and ni

is the number of vertices of Gi, then substituting in the above equation 4.1 get the

statement of this theorem. Hence we only need to show:

Lemma 8. rank(SGi) = ni − 1, where Gi is a connected graph and ni is the number

of vertices of Gi

Now, let us consider a connected graph G and its incidence matrix SG. If we find

cycles in the graph G we can delete an edge from the cycle. Analogously we can

delete the column corresponding to such an edge without changing the rank(SG).

Since if the edges ek1 , ek2 ...ekt form a cycle then the columns k1, k2...kt sum up to

zero. Repeating this deletion of edges we can reduce this graph G to a spanning

tree G′ of G, such that rank(SG′) = rank(SG). We find that G′ is a graph having n

vertices and n− 1 edges since it a connected tree on n vertices. Hence the incidence

matrix SG′ is a n × n − 1 matrix. We claim that all columns of SG′ are linearly

independent.

This can be proved by assuming the contrary i.e. there exist some set of columns

k1, k2...kt and corresponding set of integers α1, α2...αt such that
∑t

i=1 αiSG′(; , ki) = 0.

But we know that if sum of columns of SG′ adds to zero then they must form a cycle.

This is a contradiction since G′ is a tree it cannot have cycles.

Since all columns of SG′ are independent it is a full rank matrix. This shows that

rank(SG) = rank(SG′) = n− 1. Hence the lemma is proved. This in turn proves the

theorem.

Definition 20. For any n×m matrix A define the n−1×m matrix Ã as the matrix

A without the n-th row.
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4.2 Kirchoff’s Matrix Tree Theorem

Theorem 4 (Matrix Tree Theorem). The number of spanning trees of a graph G can

be calculated as: det(DG), where DG = S̃G · S̃TG

Remark: Note that DG is a n− 1× n− 1 matrix and it is of the form

(DG)ij =


deg(i), if i = j

−1, if (i, j) ∈ E

0, otherwise

Let us start the proof by proving some basic lemmas that will be useful to us in

this proof.

Lemma 9. Let T = (V,E) be a undirected tree that is rooted at n. We can order and

orient the edges so that ei ends at the vertex i.

Proof. We start with a undirected tree with vertices labeled from 1 to n. Since the

edges are still unlabeled, we label the edges as ei := (p(i), i), where p(i) is the parent

of i. Now we have a undirected tree with edges labeled such one of the vertices in

every edge ei is i. Now we direct the edges such that ei ends in i. Note that the

orientation of each edge is such that ei ends in i.

Note that for every spanning tree of a graph G, there is a unique directed tree

rooted at n and such that ei ends in i. So for counting spanning trees it is enough to

count all directed trees of this form.

Lemma 10. Let G = (V,E) with |E| = n− 1 be a directed graph which is not a tree.

Then det(S̃G) = 0.

Proof. Since G is a graph on n vertices with n− 1 edges and is not a tree, it cannot

be a connected graph. To see this we know that it has at least one cycle and hence if

we remove an edge from each cycle in G we end up with a acyclic graph G′. Number

of edges in this graph |E ′| < n − 1 since it had at least one cycle. We know that

for an acyclic graph to be connected it requires at least n− 1 edges. Hence we have

shown that the graph is not connected.

Now by Theorem 3 we know that

rank(SG) = rank(S̃G) = n − |“weakly” connected components of G|, but we know
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that |“weakly” connected components of G| ≥ 2.

Hence, the rank(S̃G) ≤ n− 2 and S̃G is a n− 1×n− 1 matrix. Since S̃G is not a full

rank matrix, det(S̃G) = 0.

Lemma 11. Let T = (V,E) be a directed tree with ei ∈ E ending in i ∈ V . Then

det(S̃T ) = 1

Proof. Since every edge ei ∈ E ending in i ∈ V , all the diagonal entries in the

n − 1 × n − 1 matrix will be 1 (recall definition 19). If we simultaneously reorder a

row and a column the determinant will not change. We can reorder the vertices in S̃T

so that p(i) > i while simultaneously reordering a corresponding edge to make sure

that the edge ei ∈ E ending in i ∈ V . Then the matrix will look like

S̃T =


1 ∗ · · · ∗
0 1

. . .
...

...
. . . . . . ∗

0 · · · 0 1


Hence the det(S̃T ) = 1.

Proof of Matrix Tree Theorem: Notice that the i-th column of DG can be thought

to be composed of sum of incidence vectors that each correspond to an edge in an

orientation
−→
G of G, such that the edge ends in the vertex i. Consider the i-th column

of the determinant. It is a vector that contains the value deg(i) as the i-th entry, rest

of the terms are either −1 or zero. Note that the number of −1s in the vector can

be deg(i) or deg(i) − 1 (since row corresponding to n-th vertex is deleted). Hence

we can split the i-th column into deg(i) vectors each having the value 1 as the i-th

entry, one entry as −1(all except one) and rest zero. These vectors now have the

same property as the columns of S̃G (representing edges). The i-th column may look

like the following:

( 1 2 i n− 1

0 −1 · · · deg(i) · · · −1
)

=

Note that the above vector represents a vertex. This can be split into deg(i) vectors

that represent edges of some subgraph that end in the i-th vertex(columns of S̃G)

( 1 2 i n− 1

0 −1 · · · 1 · · · 0
)

+ · · ·+
( 1 2 i n− 1

0 0 · · · 1 · · · −1
)
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If we split the determinant using this property on every column (linearly of deter-

minant in every column) then we obtain

det(DG) =
∑
H∈H

det(S̃H)

Here, H is the family of graphs that are subgraphs of G having |E| = n− 1 and the

property that every edge ends in i. Using the previous two lemmas we know that the

determinants in the summation output 1 if they correspond to a spanning tree and 0

otherwise. Hence we have det(DG) =
∑

H∈H det(S̃H) = number of spanning trees ofG

Example Let us take the example of a square graph and work through the above

proof. For this graph,

(a) The square graph (b) The four spanning trees of a square graph

D̃G =

 2 −1 −1

−1 2 0

−1 0 2


But, not that each column can be split as,

 2

−1

−1

 =

 1

0

−1

+

 1

−1

0

 ;

−1

2

0

 =

−1

1

0

+

0

1

0

 ;

−1

0

2

 =

−1

0

1

+

0

0

1


Splitting DG along its first column gives us,

det(D̃G) =

∣∣∣∣∣∣∣
2 −1 −1

−1 2 0

−1 0 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 −1 −1

0 2 0

−1 0 2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
1 −1 −1

−1 2 0

0 0 2

∣∣∣∣∣∣∣
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Similarly splitting over other columns we can split det(DG) into determinants of in-

cidence matrices of eight candidate spanning trees as shown,

det(D̃G) =

∣∣∣∣∣∣∣
2 −1 −1

−1 2 0

−1 0 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 0 0

0 1 0

−1 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0 −1

0 1 0

−1 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 −1 −1

0 1 0

−1 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 −1 0

0 1 0

−1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 0

−1 1 0

0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0 −1

−1 1 0

0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 −1 −1

−1 1 0

0 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 −1 0

−1 1 0

0 0 1

∣∣∣∣∣∣∣
det(D̃G) =

∣∣∣∣∣∣∣
2 −1 −1

−1 2 0

−1 0 2

∣∣∣∣∣∣∣ =

1 + 0 + 0 + 1

+

1 + 1 + 0 + 0

det(D̃G) = 4, this is the number of spanning trees of a square graph.
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