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Abstract

Most of the real world systems are complex and their dynamics is studied by

modeling them by many subunits interacting with one another. Such systems

with interactions are well studied in the last few decades and are found to

exhibit many emergent phenomena. In real world situations, the systems are

not isolated, but are in contact with some environment. Studies of nonlinear

systems in interaction with the environment are very rare. There are many

cases where the different dynamical activities are regulated, monitored or

triggered by a common medium or environment. The actual mechanism in

such cases are not fully understood and hence this forms a topic of great

relevance for a detailed study.

In this thesis, we report the study of emergent phenomena such as syn-

chronization and amplitude death in nonlinear dynamical systems caused by

coupling via a common shared environment. We first consider a simple case

where, an environment interacts with two uncoupled chaotic systems. The

environment has an intrinsic damped dynamics of its own, which is modu-

lated via feedback from the systems. The environment in turn, gives feedback

to both the systems. Taking standard chaotic systems such as Rössler and

Lorenz systems as examples, we show that such an interaction can be tuned to

induce a variety of synchronization phenomena such as in-phase, anti-phase,

complete and antisynchronization.

We then consider a case where, two systems are coupled directly such that

with sufficient strength of coupling, they can exhibit synchronous behaviour.
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The indirect feedback coupling through the environment is introduced in

them in such a way as to induce a tendency for anti-synchronization. We

show that, for sufficient strengths, these two competing effects can lead to

amplitude death. By choosing a variety of dynamics such as periodic, chaotic,

hyperchaotic and time-delay systems, we illustrate that this mechanism is

quite general and works for different types of direct coupling such as diffusive,

replacement and synaptic and different damped dynamics for environment.

The specific systems considered in this study are chaotic Rössler and Lorenz

systems, Landau-Stuart and van der Pol oscillators, hyperchaotic systems

such as hyperchaotic Rössler and Mackey-Glass time-delay systems, non-

autonomous systems such as driven van der Pol and Duffing systems.

We further extend the study to the case of a complex network of non-

linear oscillators, in interaction with a common environment. We study the

onset of amplitude death in networks of Rössler systems and Landau-Stuart

oscillators. An important result of our analysis is that there exists a uni-

versal relation between the critical value of coupling strength for amplitude

death and the largest non-zero eigenvalue of the coupling matrix for different

network topologies.

We develop the stability analysis for all these cases independent of sys-

tem dynamics and network topology to obtain the criteria for transition to

synchronization or amplitude death in each case. Extensive numerical sim-

ulations are provided to illustrate the generality of the mechanisms. The

results from direct numerical simulations are found to support the results

from the stability analysis.

We apply the theory developed in the general case, to the special case of

neuronal systems. using Hindmarsh-Rose system as the nodal dynamics, we

study in detail the occurrence of synchronized and suppressed neural activity

in neurons coupled via gap-junctions and synapses.

Keywords: Coupled oscillators, Complex networks, Environmental cou-

pling, Synchronization, Amplitude death.
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Chapter 1

Introduction

Nonlinear dynamical systems have been in the focus of intense research ac-

tivity since the 1960’s. Research in this area has lead to many path breaking

discoveries like chaos, solitons, stochastic resonance etc. Studies of such

nonlinear phenomena have been extremely useful in analysing and under-

standing the complexity of many real world systems which are inherently

nonlinear in nature. Such studies have led to many new fundamental and

useful techniques and methods like bifurcation analysis, time series analysis

and control theory. Moreover, nonlinear systems are found useful in many

practical applications like secure communication [1–4], logic gates [5–9], and

optimal control and resonances [10–12].

Nonlinear dynamical systems arise in all branches of science, engineering

and technology and in diverse fields such as economics and social dynamics.

Such systems in general can be modeled by nonlinear differential equations

that occur in several forms, ordinary, partial, delay, difference etc., depending

on the nature of the dynamics of the system. The nature of the underlying

dynamics derived from these systems has interesting variety depending on the

number of independent variables, order of the highest derivative, degree of

nonlinearity, numerical value of the control parameter and initial conditions.

In our work, we deal with continuous dynamical systems which are rep-
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resented by nonlinear differential equations of the form

ẋ = F (a, x), (1.1)

where, x is an m-dimensional vector defining the phase space of the system,

F is the nonlinear function governing the dynamics and a is the set of control

parameters involved in the dynamics.

For a given set of initial values of x at time t = 0, x(0), the above equation

can be analysed either analytically or numerically to study the evolution of

the system in its phase space. Most of the systems are dissipative in nature,

which means,

∇ · F < 0. (1.2)

Therefore, the phase space volume contracts as the system evolves and asymp-

totically reaches a state called attractor. Depending on the nonlinearity of

F and the values of the control parameters a, different types of attractors

can arise in the systems, viz, steady state or fixed point, periodic limit cy-

cle, quasiperiodic, chaotic and hyperchaotic behaviors. The nature of this

attractor determine the asymptotic dynamics of the system. The set of ini-

tial conditions that settle to a given attractor is called the basin of that

attractor. If more than one attractor exist for a given set of parameter val-

ues, the system is said to have multistability, with basins separated by basin

boundaries.

The set of parameters a, called control parameters, controls the asymp-

totic state of the system and often such systems undergo transitions from one

type of attractor to another as these parameters are changed. Such transi-

tions, called bifurcations can explain the change of a dynamical system from

fixed point behavior to chaotic behavior.

If the system asymptotically settles to steady state behavior,

ẋ = 0. (1.3)
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Therefore, the steady state or fixed point, x∗, can be obtained by solving,

F (x∗) = 0. (1.4)

Depending on the nonlinearity of F , the system in general can have p fixed

points. However, all of them need not be stable. The stability of a fixed

point is decided by the eigenvalue of the Jacobian of the system evaluated

at the fixed point. The Jacobian is defined as the matrix J , whose elements

are given by

Jij =
∂Fi

∂xj

∣

∣

∣

∣

∣

x∗

. (1.5)

Based on the nature of eigenvalues of the Jacobian, the fixed points can be

classified as nodes, spiral nodes, repellers, saddle point etc. [13]. If all the

eigenvalues have negative real parts, the fixed point is stable.

When the control parameters change, the stable fixed point can become

unstable giving rise to another type of fixed point or limit cycle. Such tran-

sitions, or bifurcations can be identified by studying the eigenvalue of the

Jacobian as the parameter changes. In general, a limit cycle can undergo a

series of bifurcations called period doubling bifurcations to reach aperiodic

or chaotic behavior. This is called the period doubling route to chaos [13].

There are other routes like intermittency and Ruelle-Takens-Newhouse sce-

nario or quasiperiodic route [13] by which a dynamical system can exhibit

chaotic behavior as the control parameter is changed. Such phenomena will

be described in detail by taking specific examples later, in section 1.1.1

1.1 Chaos and its characterization

Among the various attractors possible for nonlinear dynamical systems, the

chaotic attractor is highly special with peculiar properties like irregularity,

aperiodicity, and sensitive dependence on initial conditions. [14, 15]. Chaos

represents the third revolutionary concept and paradigm shift in the history

3



of physics in the last century, and the modern history of chaos starts from

E. Lorenz who discovered the existence of long term unpredictability in a

system of equations called the Lorenz system [16].

As mentioned earlier, chaotic systems are sensitive to initial conditions,

such that, two identical systems starting from very near initial conditions

separate or diverge as they evolve in time. This phenomena, called the but-

terfly effect by Lorenz, can be characterized using an index called Lyapunov

exponent. If ∆x(0) represent the difference in initial conditions, ∆x(t) the

separation of their trajectories at time t, then, in general

∆x(t) = ∆x(0)eλt, (1.6)

where λ representing the average separation, is called the Lyapunov expo-

nent. Lyapunov exponents are computed numerically by integrating the dy-

namical equations and their variations and computing ∆x(t). The details

of these are given by Wolf algorithm [17] which is often used for computing

the Lyapunov exponents of a system. An m-dimensional system will have

m such exponents and if all of them are negative, the system asymptotically

will go to a steady state behavior. If one of them is zero, and all others

are negative, the system’s dynamics will be periodic motion. If more than

one Lyapunov exponents are zero, and all others are negative, the motion is

quasiperiodic. If one of the Lyapunov exponents are positive, the motion is

chaotic and if more than one Lyapunov exponents are positive, the motion

is said to be hyperchaotic [14]. These different dynamical states of nonlinear

systems are illustrated in Fig. 1.1. Transitions from one dynamical behavior

to another, or bifurcations, as the control parameter is changed can therefore

be traced by calculating the Lyapunov exponent of the system. Especially

in the context of chaotic attractors, Lyapunov exponent gives a dynamical

characterization of a chaotic attractor, while a geometric characterization is

possible by using the concept of fractal dimensions [13,14]. Now, we discuss

in detail the concepts introduced above by taking specific examples.

4
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Figure 1.1: Different dynamical states of nonlinear systems. (a) Fixed point,
(b) limit cycle, (c) quasiperiodic orbit and (d) chaotic attractor.

1.1.1 Chaotic dynamical systems

Rössler system

Rössler system was introduced by O. Rössler in 1976 [18]. The dynamics of

this system is given by the following equations

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b+ x3(x1 − c). (1.7)

The fixed points of this system are given by

x∗
1 =

c±
√
c2 − 4ab

2

x∗
2 = −

(

c±
√
c2 − 4ab

2a

)

x∗
3 =

c±
√
c2 − 4ab

2a
(1.8)
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(b)

c

L
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20100
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Figure 1.2: (a) Bifurcation diagram for Rössler system given in Eq. (1.7) for

increasing c. The maxima of the x1 variable, xm, is plotted for sufficiently long

interval of time. (b) Lyapunov exponents for Rössler system for increasing c. Other

parameters are fixed at a = b = 0.1.

We analyse the system by fixing the parameters a = b = 0.1 and increas-

ing c. For c < 0.2, the fixed points are not real. At c = 0.3, we see that

the trajectory is a periodic limit cycle. As c is increased, the system un-

dergoes a series of period-doubling bifurcations to chaos. The bifurcation

diagram for this is shown in Fig. 1.2(a). Transitions between periodic and

chaotic states can also be identified from the Lyapunov exponents, as shown

in Fig. 1.2(b). When the system is in chaotic state, the largest Lyapunov

exponent is positive. The phase-space plot of representative states are shown

in Fig. 1.3(a)-(d).
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Figure 1.3: Phase space plots of different dynamical states of Rössler system for

a = b = 0.1. (a) 1-cycle at c = 4, (b) 2-cycle at c = 6, (c) 4-cycle at c = 8.5, (d)

chaos at c = 9, (e) 3-cycle at c = 12, (f) chaos at c = 18.

Lorenz system

Lorenz system wad introduced by E.Lorenz in 1963 as a simplified mathe-

matical model for atmospheric convection [16]. The dynamics of this system

is given by the following equations

ẋ1 = σ(x2 − x1)

ẋ2 = x1(r − x3) − x2

ẋ3 = x1x2 − bx3 (1.9)

Later, these equations were shown to describe dynamics of a single mode

laser [19] and a segmented disc dynamo in the presence of friction [20].

The fixed points of Eq. (1.9) are given by

x∗
1 = ±

√

(b(r − 1)),

x∗
2 = ±

√

(b(r − 1)),

x∗
3 = r − 1. (1.10)
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Figure 1.4: The chaotic attractor of the Lorenz system at σ = 10, b = 8/3 and

r = 28.

For σ = 10, b = 8/3 and 0 < r < 1, the only real fixed point is (0, 0, 0) and

is stable. At r = 1, this fixed point becomes unstable, and the fixed points

(±
√

(b(r−1)),±
√

(b(r−1)), r−1) becomes real and stable. At r ∼ 24.73 these

fixed points becomes unstable and the system settles to a chaotic attractor.

The chaotic attractor at r = 28 is well-studied and a phase space plot of the

same is shown in Fig. 1.4

Some of the other dynamical systems of interest that are often encoun-

tered are discussed below.

van der Pol oscillator

The van der Pol oscillator is a damped nonlinear oscillator [14], whose dy-

namics is described by

ẍ− a(1 − x2)ẋ+ x = b sin(ωt), (1.11)

where, a is the strength of damping, b and ω are the strength and frequency

of forcing respectively. This is a system with nonlinear damping term and

hence capable of limit cycle motion in the absence of forcing. In the absence

of forcing (b = 0), the origin is the fixed point of the system. This fixed point
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Figure 1.5: The time series of the x1 variable of the van der Pol oscillator (

Eq. (1.11)) showing different dynamical states. (a) Periodic at a = 8.53, b = ω = 0,

(b) quasiperiodic at a = 5, b = ω = 1 and (c) chaotic at a = 8.53, b = 1.2 and

ω = 0.63.

is unstable for 0 < b < ∞, and the system exhibits a periodic limit cycle. In

the presence of forcing, the system can exhibit quasiperiodicity and chaos,

depending on the values of b and ω. In Fig. 1.5(a)–(c), we show the time

series of periodic, quasiperiodic and chaotic states in van der Pol oscillators

for specific values of the parameters.
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Figure 1.6: Phase space plots of different dynamical states of Duffing oscillator

for a = 0.5, ω2
0 = 1. (a) 1-cycle at b = 0.34, (b) 2-cycle at b = 0.35, (c) chaos at

b = 0.36.

Duffing oscillator

The Duffing oscillator is another example of a damped and driven nonlinear

oscillator [14]. The dynamics is given by

ẍ+ aẋ− ω2
0x+ x3 = b cos(ωt) (1.12)

This represents an oscillator with a double-well potential and hence appears

in many situations including doubly clamped nano-mechanical oscillators.

The fixed points of this system in the absence of forcing (b = 0) are given by

x∗ = 0, (1.13)

and

x∗ = ±ω0. (1.14)

The fixed point x∗ = 0 is unstable for all a > 0. The other two fixed points,

x∗ = ±ω0 are stable, and the system settles to any one of them depending

on the initial conditions. In the presence of forcing, the system undergoes

period doubling sequence to chaos [21]. This is illustrated in the phase space

plots in Fig. 1.6.
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Figure 1.7: (a) Lyapunov exponents of the hyperchaotic Rössler system for a =

0.25, c = 0.5 and d = 0.05 and increasing b. (b) Phase space plot of hyperchaotic

Rössler sytem for a = 0.25, b = 3, c = 0.5 and d = 0.05

1.1.2 Hyperchaotic systems

The hyperchaotic Rössler equations were introduced by Rössler in 1979 [22].

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2 + x4

ẋ3 = b+ x3x1

ẋ4 = −cx3 + σx4 (1.15)

The system has hyperchaotic trajectory for the following parameters a =

0.25, b = 3, c = 0.5 and d = 0.05 with two positive Lyapunov exponents

as shown in Fig. 1.7(a). The phase space plot for this state is shown in

Fig. 1.7(b).

1.1.3 Time-delay systems

Time-delay systems are a special class of nonlinear dynamical systems, which

are capable of exhibiting rich variety of dynamics such as periodic, chaotic

and hyperchaotic motion, depending on the value of delay. The Mackey-

Glass system is one of the frequently studied time-delay system. It was first

introduced by Mackey and Glass in 1977 as a model for blood generation
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Figure 1.8: Different dynamical states in Mackey-Glass system for fixed a = 0.1,

b = 0.2, m = 10 and varying τ . (a) Periodic state for τ = 14, (b) chaotic state for

τ = 17, (c) hyperchaotic state for τ = 32.

in patients with leukemia [23]. The equation representing the Mackey-Glass

system is given by

ẋ = −ax+
bxτ

1 + xm
τ

, (1.16)

where, xτ is the value of the variable x at a delayed time x(t− τ). The pres-

ence of large time-delays in the equation makes the system effectively high

dimensional. Depending on the values of the parameters a,b and delay τ , the

system can exhibit fixed point,periodic, chaotic and hyperchaotic behavior.

In Fig. 1.8, we show the different dynamical states of Mackey-Glass systems

for different τ values.

1.1.4 Excitable systems

Excitable systems form an interesting class of nonlinear dynamical systems

that exhibit spikes of oscillatory behavior and finds applications in switching

and control phenomena. These systems normally remain in a steady state

and can be excited to spiking behavior by large enough external perturba-

tion. Such systems can be modeled by discrete or continuous dynamical

equations which often include slow and fast dynamics. A typical example of

an excitable system is the dynamics of a neuron. There are different mod-

els like Hodgkin-Huxley [24], FitzHugh-Nagumo [25], Hindmarsh-Rose [26]

12



etc. that can describe the spikes and burst characteristics of neuronal dy-

namics. Among these, Hindmarsh-Rose model is special, in the sense, it is

computationally simple, while able to reproduce many different dynamical

states exhibited by biological neurons, such as quiescent states, regular and

irregular spiking and bursting states etc. [27]. We describe this model below.

Hindmarsh-Rose neuron model

ẋ1 = x2 + ax2
1 − x3

1 − x3 + I,

ẋ2 = 1 − bx2
1 − x2,

ẋ3 = −ρ(x3 + s(x1 + χ)). (1.17)

Here, x1 represents the membrane potential, x2 and x3 corresponds to fast

and slow ion channel currents respectively, and a, b, s, ρ, χ and I are the

parameters of the model. The parameter I represents the membrane in-

put current and is usually taken as the control parameter while keeping the

other parameters fixed. The parameter ρ is usually chosen to be very small,

to make the timescales of the variable x3 to be slow. As mentioned ear-

lier, different states such as fixed points, periodic spiking, periodic bursting,

chaotic spiking, chaotic bursting and multistable states are possible, depend-

ing on the parameter values. Different dynamical regimes and bifurcations

in Hindmarsh-Rose neuron models are studied in detail in [27–30]. We show

the time series of the representative states in Fig. 1.9. Fig. 1.9(a) illustrates

periodic or tonic spiking. Time series of chaotic spiking behavior is shown

in Fig. 1.9(b). It is interesting to note that, here the chaos is in the inter-

spike interval while the amplitude of the spikes remains almost the same.

The periodic bursting state has same number of spikes per burst with the

inter-burst interval a constant (Fig. 1.9(c)). In the chaotic bursting state,

both the number of spikes per burst, and the inter-burst interval may vary (

Fig. 1.9(d))
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Figure 1.9: The time series of the x1 variable of the Hindmarsh-Rose neuron

model given in Eq. (1.17). (a) Periodic spikes at I = 3.50, (b) chaotic spikes at

I = 3.33, (c) periodic burst at I = 3.20 and (d) chaotic burst at I = 3.05. The

other parameters are taken to be a = 3, b = 5, s = 4, ρ = 0.005 and χ = 1.6.
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1.2 Summary

In this chapter, we have discussed some of the typical nonlinear dynamical

systems capable of exhibiting different dynamical states such as periodic,

chaotic and hyperchaotic. In any real-world system, there are many such

units that act together to produce collective behavior. We will discuss the

interactions among these systems and some of the interesting consequences

of these interactions in the next chapter.
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Chapter 2

Emergent phenomena in

coupled systems

The complex dynamical behavior of many real world systems can be under-

stood as a collective behavior of a number of subsystems or units which are

in interaction with each other. The subsystems, in general, can have a dy-

namics modeled by any of the systems discussed in the preceding chapter.

Due to interactions among themselves, coordinated actions of such systems

are possible, leading to collective dynamical behavior know as emergent phe-

nomena. Emergence of such collective behavior is hence a relevant problem

in the theory of complex systems. Different types of emergent phenomena

are known, two important ones being synchronization and amplitude death.

We discuss below the salient features of these phenomena.

2.1 Coupled systems

The dynamics of two coupled systems can be written as

ẋ1 = f1(x1) + g(x1, x2),

ẋ2 = f2(x2) + g(x2, x1). (2.1)

17



� �

� �� �

��� ���

Figure 2.1: Schematic representation of coupling schemes. (a) Bidirectional
coupling and (b) unidirectional coupling.

Here the coupling is bidirectional or mutual, as illustrated in Fig. 2.1(a).

The coupling can be unidirectional as shown in Fig. 2.1(b). In that case, the

dynamics of the coupled systems is given by the following equations

ẋ1 = f1(x1),

ẋ2 = f2(x2) + g(x2, x1). (2.2)

Here, x1 is called the drive and and x2 is called the response system. The

intrinsic dynamics of the systems are given by the functions, f1 and f2, and

can either be identical or mismatched. The coupling between the systems

is given by the coupling function g. A commonly used form of the coupling

function, called diffusive coupling [31,32] is given by

g(x1, x2) = ǫβ(x2 − x1), (2.3)

where, ǫ is the coupling strength and β is an m×m matrix, whose elements

decide the components of x1 and x2 which takes part in the coupling. How-

ever, the coupling function g, can take many forms such as replacement [33],

subsystem decomposition [34, 35], active-passive decomposition [36, 37] etc.

In addition to this, nonlinear coupling schemes such as synaptic coupling are

also studied [38,39]. The diffusive type of coupling in the context of Rössler

and Lorenz systems is used in our study given in chapter 4, and the synaptic

coupling in the case of Hindmarsh-Rose neurons is used in chapter 7.
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Figure 2.2: (a) Illustration of a network with 5 nodes and (b) the correspond-
ing adjacency matrix.

2.1.1 Networks

In real world systems, a large number of subsystems are connected to form

complex networks. The dynamics of such a network can be written as

ẋi = fi(xi) + ǫ
N
∑

j=1

AijH(xj), (2.4)

where H is an m × m matrix whose elements determine the coupling func-

tion and A is an N ×N matrix called adjacency matrix. If A is symmetric,

the coupling is bidirectional. The elements of A are decided by the network

topology. If Aij = 1 for all i 6= j, the network is said to be all-to-all cou-

pled. This configuration is also known as the global coupling [40–42]. The

configuration where Aij = 1 if |i − j| = 1 is known as the linear array or

chain with nearest neighbour interactions. A chain network with periodic

boundary conditions is called a ring. There are other regular network config-

urations such as tree, lattice etc. The elements of A can be chosen randomly,

to form a random network. In Fig. 2.2, we show an illustration of a random

network and the corresponding adjacency matrix. Details of the dynamics

on such networks in the context of our study are given in chapter 6.

The real world networks are found to exhibit characteristics that are

between those of regular and random networks. The small world model
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proposed by Watts and Strogatz in 1998 was one of the first models that could

explain the co-existence of high clustering and small path lengths exhibited

by real world networks. [43]. However, the small-world model of network does

not explain the power-law degree distribution exhibited by many real world

networks. To explain this, the scale-free network was introduced in 1999

by Barabási and Albert [44]. The study of complex networks is important

in many contexts, including biological networks [45–53], epidemics [54–58],

traffic networks [59,60] internet [61,62], power-grids [63–65]etc.

Due to interactions among the systems in the network, coordinated ac-

tions of such systems are possible, leading to collective dynamical behavior

known as emergent phenomena. In such cases, the global dynamics depends

on the interplay between the network structure and nodal dynamics. Emer-

gence of such collective behavior is hence a relevant problem in the theory of

complex systems. In the context of complex networks, synchronization and

amplitude death are the most well-studied emergent phenomena [48,66–69].

2.2 Synchronization in coupled systems

Synchronization refers to the coordinated dynamical activity of two or more

systems. This is a form of self organization leading to dynamical order.

Synchronization of periodic systems was first observed by Christian Huygens

[48]. Synchronization is especially relevant in the context of chaotic systems,

since even a single chaotic system with slightly different initial conditions

evolve very differently. Since the first paper by Pecora and Carol in 1990 [34],

the field of chaotic synchronization has grown considerably and is still an area

of intense research activity due to its basic role in many real world phenomena

and useful technological applications. Synchronous flashing of fireflies [48],

cardio-respiratory system [70, 71], collective rhythmic firing of neurons [72]

etc. are some of the widely cited examples of synchronization.

Synchronization can be of different types such as complete or identical
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synchronization [34, 73], generalized synchronization [74,75], phase synchro-

nization [76,77], lag synchronization [78,79] etc. These states can be achieved

by proper choice of the coupling terms and system parameters.

Complete synchronization

The diffusive type of coupling in identical systems can lead to a solution

given by

x1(t) = x2(t) = x(t). (2.5)

This is called complete synchronization. This occurs above a critical value

of the coupling strength, ǫ > ǫc. In the synchronized state, |x2 − x1| → 0 as

t → ∞. The different types of synchronized states in the case of two coupled

systems is illustrated in the time series in Fig. 2.3. Fig. 2.3(a) shows two

systems getting stabilized to complete synchronization. Antisynchronization

is a special type of synchronization which occurs in the case of two coupled

systems. This is the state where the state vectors of both systems have

the same absolute values but are of opposite signs, x1 = −x2 as shown in

Fig. 2.3(b). This has also been demonstrated in both numerical simulations

and experimental systems [80–90].

Generalized synchronization is the type of synchronization which occurs

in unidirectionally coupled non-identical systems [74, 75, 91]. Here, the dy-

namics of two systems share a functional relationship of the following form

x2 = F (x1). (2.6)

If F is identity, this corresponds to complete synchronization given by 2.5.

Phase synchronization

Phase synchronization is a weaker form of synchronization, where the am-

plitude of the coupled systems remain uncorrelated, but the phases of both
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Figure 2.3: Time series showing different synchronization phenomena. (a)
Complete synchronization, (b) antisynchronization, (c) in-phase synchroniza-
tion and (d) antiphase synchronization.
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the systems evolve together [76, 92–95]. It could either be in-phase syn-

chronization where the phase difference between the systems is nearly zero

(Fig. 2.3(c)), or antiphase synchronization where the phase difference be-

tween the systems in nearly π [96–100] (Fig. 2.3(d)).

Phase synchronization usually happens in non-identical systems under

weak coupling [76, 77, 101]. This is very relevant in biological systems, since

complete synchronization is difficult to achieve in the noisy background.

Phase synchronization has been studied in the context of Parkinson’s disease

using magnetoencephalographic and electromyographic techniques [102]. So

also, phase synchronization is demonstrated in cardio-respiratory system in

rats [71], Lobster stomatogastric ganglion [103] and electrosensitive cells in

paddle fish [104].The transition to phase synchronization is usually an inter-

mittency transition [78,105].

If the coupling involves a time-delay, corresponding to finite transmission

time in communication channels,

g(x1, x2) = ǫβ(x2τ − x1) (2.7)

where x2τ is the state vector of the system x2, at time t − τ . Then, the

synchronized state corresponds to delay or lag synchronization .

x1(t) = x2(t− τ). (2.8)

This also occurs in coupled non-identical systems with moderate strength

of coupling [78, 79, 106]. Lag-synchronization has also been demonstrated

in coupled lasers [107] and electroencephalogram of epilepsy patients during

seizure [108]. The time-delayed coupling given in Eq. (2.7) can also lead to

a state where the response system anticipates the future state of the drive

system. This is called anticipatory synchronization [85,109–111].
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Stability of the synchronized state

When two coupled systems settle to a synchronized state the dynamics re-

mains on the hyperplane defined by x1 = x2. This hyperplane is called the

synchronization manifold and the stability of the synchronized state is stud-

ied by considering the variations from the synchronized manifold. Let ξ‖ and

ξ⊥ represent the variations in the synchronization manifold and the trans-

verse manifold respectively. Then, the dynamics of these variations are given

by

ξ̇‖ =
∂f(x)

∂x

∣

∣

∣

∣

∣

x(t)

· ξ‖, (2.9a)

˙ξ⊥ =





∂f(x)

∂x

∣

∣

∣

∣

∣

x(t)

− 2ǫβ



 · ξ⊥. (2.9b)

The synchronization manifold is stable, if the transverse Lyapunov expo-

nent, corresponding to Eq. (2.9b) is negative [112,113].

Characterization of synchronized state

The state of complete synchronization or antisynchronization can be identi-

fied using the asymptotic correlation coefficient as the index. The correlation

coefficient is calculated using the equation

C =
< (x11(t)− < x11(t) >)(x21(t)− < x21(t) >) >

√

< (x11(t)− < x11(t) >)2 >< (x21(t)− < x21(t) >)2 >
. (2.10)

The state where C ∼ 1 corresponds to complete synchronization, while the

state where C ∼ −1 corresponds to antisynchronization.

In phase synchronization, the amplitudes remain uncorrelated. Therefore,

|C| < 1 in this state. Hence, we need to calculate the phase difference of the

coupled oscillators to identify any phase synchrony between them. This is

applied in our study of Rössler and Lorenz systems in chapter 3 and in the
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curve represents lag synchronization (S(τL) ∼ 0), where τL is the time-lag,
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case of Hindmarsh-Rose systems in chapter 7.

Another useful index to identify the different types of synchronizations

between two time series x1 and x2 is the similarity function S(τ) given by [78],

S2(τ) =
< [x2(t+ τ) − x1(t)]

2 >

[< x2
1(t) >< x2

2(t) >]1/2
(2.11)

where τ a suitable time-delay. When S(τ) ∼ 1 for all values of τ , the sys-

tems are unsynchronized. The state with S(0) ∼ 0 is the state of complete

synchronization, and the state S(τ) ∼ 0 corresponds to lag synchronization

with time-lag, τ . In the in-phase synchronized state, 0 < S(0) < 1. This

is illustrated in Fig. 2.4. To identify states of antisynchronization and an-

tiphase synchronization, we use a modified similarity function S1, which is

defined as [114]

S2
1(τ) =

< [x2(t+ τ) + x1(t)]
2 >

[< x2
1(t) >< x2

2(t) >]1/2
(2.12)

The state with S1(0) ∼ 0 corresponds to antisynchronization and the state
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with 0 < S1(0) < 1 corresponds to antiphase synchronization. We use

these similarity functions to identify in-phase, antiphase, complete and anti-

synchronized states of coupled Lorenz systems in chapter 3.

In the preceding chapter, we have mentioned that, using the Lyapunov

exponents the different dynamical states of individual systems can be iden-

tified. The Lyapunov exponent is also used as an index to identify synchro-

nized states [76, 78, 115] in coupled systems. In the absence of coupling, the

systems evolve independently and each system have at least one zero Lya-

punov exponent which correspond to the eigenvector along the direction of

the trajectory. When the systems get phase (or antiphase) synchronized, all

the zero Lyapunov exponents, except one becomes negative. Similarly, when

the systems becomes synchronized, all positive Lyapunov exponents except

one becomes negative. Thus, the strength of coupling at which the first

zero-crossing of the Lyapunov exponents occurs, is the critical strength for

phase synchronization and the strength of coupling at which the all positive

Lyapunov exponents except one, become negative, is the critical coupling

strength for complete, anti, lag or anticipatory synchronization [115]. In this

thesis, the Lyapunov exponents are calculated using Wolf algorithm [17] and

are used to identify the transitions to different types of synchronizations in

Chapter 3.

2.2.1 Synchronization in networks

Collective and synchronized dynamics in complex networks of coupled units

have been studied under different topologies such as small-world networks,

scale-free networks , weighted complex networks and different coupling con-

figurations [116, 117, 117–130]. This is also demonstrated in a variety of

systems like array of lasers [131, 132], chemical oscillators [133], ensemble of

living cells [134], cardio-respiratory system [71, 135], ecology [136, 137], cli-

matology [138] etc. Many studies on synchronization of a large ensemble of

systems were done by considering a model of phase oscillators coupled to

each other via the sine of their phase differences. Transitions to synchro-
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nization can be defined using an order parameter and variations of the order

parameter with increase in coupling strength. This simple mathematical

model, called Kuramoto model displays a large variety of synchronization

patterns [139,140].

The stability of the synchronized dynamics in coupled systems are devel-

oped for arbitrary topologies and coupling functions using the master stabil-

ity function [141,142]. The coupled system given in Eq. (2.4), in the case of

identical oscillators, admits a solution given by

x1(t) = x2(t) = . . . = xN(t) = s. (2.13)

This state is called the synchronization manifold. Linearization of Eq. (2.4)

about the synchronized state will give

ξ̇ =
N
∑

j=1

[δijDf(s) + ǫAijDH(s)]ξj, (2.14)

where, D is the differential operator and ξj is the variation about the syn-

chronized state, s. This can be simplified to get the variational equations in

eigenmode form as

ζ̇k = [Df + ǫµkDH]ζk, (2.15)

where, µk is the kth eigenvalue of A. Eq. (2.15) for ζ0 corresponds to the

variations along the synchronization manifold and all other ζk corresponds

to transverse eigenvectors. The stability of the synchronized state depends

on the largest Lyapunov exponent of Eq. (2.15) for k > 1, which in turn,

depends on both the intrinsic dynamics f and the network topology A. Par-

tial synchronization is an interesting phenomenon which occurs in complex

networks during the transition to complete synchronization [143–145].

Apart from the many forms of synchronization discussed above, other

forms of synchronizations are studied recently. Synchronization has been

achieved by a common stochastic drive in uncoupled chaotic systems [146–

148]. Projective synchronization where the ratio of the corresponding vari-
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ables becomes a constant is studied in the case of chaotic systems, with

applications to secure communication [149–151]. So also, adaptive synchro-

nization, where the strength of coupling varies with time has got applica-

tions in secure communication [152–154]. Another interesting synchroniza-

tion studied recently is the remote synchronization, where two or more nodes

in a network which are coupled indirectly through other nodes are phase

synchronized, while the nodes along the path are not synchronized [155].

Design of coupling to achieve different forms of synchronization, enhancing

the synchrony using an indirect dynamic relaying are some of the recent de-

velopments in the area of synchronization. Synchronization with variable

delay with reset has been studied recently, which has application in secure

communication [156–158].

2.3 Amplitude death

Quenching or suppression of dynamics, called the amplitude death is an-

other emergent phenomenon observed in coupled systems. This occurs due

to the stabilization of a steady state. The equilibrium states or fixed points

can be either that of the uncoupled system or those evolved by coupling.

The occurrence of amplitude death has been reported in many cases such as

chemical reactions [159–162], biological oscillators [163–166], coupled laser

systems [167, 168] and relativistic magnetrons [169]. This is often a useful

control mechanism for stabilizing systems such as coupled lasers [170,171].

The mechanisms so far reported to induce amplitude death in coupled

systems are de-tuning of oscillators under strong coupling [172–174], coupling

through conjugate variables [175, 176], dynamic coupling [177] and delay in

the coupling due to finite propagation or information processing speeds [178–

183]. Distributed delays rather than discrete or constant delays have been

proposed as more realistic models in ecology and neurobiology, where the

variance of the delay plays a relevant role [184]. So also, amplitude death

has been studied in the context of attractive and repulsive couplings in two
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chaotic Lorenz systems [185]. In addition to the study of amplitude death in

regularly coupled systems, there has been a few recent studies on amplitude

death in complex networks. In the specific context of networks, amplitude

death has been studied for parameter mismatch or detuning of frequencies

in an ensemble of limit cycle oscillators with mean field coupling [186], array

of limit cycle oscillators [187–189],small-world networks [190] and scale-free

networks [191]. So also, time-delay in coupling is found to induce amplitude

death in networks of limit-cycle oscillators [182,192–194] and chaotic systems

[195, 196]. Recently, it was shown that, it is possible to target amplitude

death in a network of nonlinear oscillators by a proper choice of nonlinear

coupling [197].

Since the amplitude death state corresponds to a stable fixed point of

the coupled system, the transition to amplitude death can be identified by

evaluating the eigenvalues of the Jacobian of the coupled system. At the

transition, the real part of the largest eigenvalue becomes negative. This

can also be studied using the Lyapunov exponents of the coupled system

[175,179]. We use the eigenvalues of the Jacobian of the coupled system and

the Lyapunov exponents to identify the transition to amplitude death in the

case of Rössler and Lorenz systems in Chapter 4.

The nature of the transition to the amplitude death state can be either

sudden or continuous depending on the nature of the intrinsic dynamics of the

coupled systems [179]. The transition to amplitude death is also associated

with a phase-flip bifurcation in delay-coupled and conjugate coupled systems,

where the phase difference between the oscillators change abruptly by π [198–

200]. In the case of amplitude death in networks, the transition via a state

of partial amplitude death is observed in both numerical studies [189, 201]

and experimental systems [202].
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2.4 Summary

We have discussed the occurrence of emergent phenomena like synchroniza-

tion and amplitude death in coupled systems as well as networks and different

ways of characterizing these states. In the following chapters, we will discuss

our study on a new scheme for synchronization and amplitude death.
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Chapter 3

Synchronization in chaotic

systems coupled indirectly via

environment

In the preceding chapter, we have discussed a few emergent phenomena such

as synchronization and amplitude death, caused by the coupling between the

systems. Most studies on synchronization and amplitude death consider two

or more coupled units. However, in many real world cases, the sub-systems

can synchronize even in the absence of any direct coupling between them.

Two pendulum clocks getting antiphase synchronized with each other via the

vibrations of the common wooden beam is a classic example of this [203]. This

type of interactions via a common medium are relevant in biological systems.

For example, in bacterial quorum sensing, the organisms interact via releas-

ing chemicals to the surrounding medium, and sensing the concentration of

the chemicals in the surrounding medium [204–206]. Synchronization due to

chemical interactions via the intracellular medium is also found in circadian

oscillators [207] as well as genetic oscillators [208, 209]. So also, synchro-

nization is reported in chemical oscillations of catalyst-loaded reactants in

a medium of catalyst free solution, where coupling is through exchange of

chemicals with the surrounding medium [210]. This phenomenon has also
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been studied in the context of laser systems [211, 212]. In all these cases,

collective dynamics arises from an indirect coupling via an external agency,

rather than a direct coupling among the units.

In the work presented in this thesis, we model this indirect interaction

mediated by a common agent by considering an external system, which has

an intrinsic dynamics different from that of the systems. Such an indirect

coupling, leading to synchronization, has been reported in the context of

periodic oscillators by Katriel [213]. Here, we consider two chaotic systems

coupled indirectly through a common dynamic environment, with no direct

coupling between them. We show that this type of coupling can lead to a

rich variety of synchronous behavior such as antiphase, in-phase, identical

and antisynchronization. This mechanism has the interesting feature that

the common environment while capable of synchronizing the systems, does

not cause major changes in their dynamics. In the synchronized state, the

systems retain more or less the same phase space structure of the uncoupled

system. We also develop an approximate stability analysis for the stability

of the different synchronized states. We report detailed numerical studies

for two standard chaotic systems, Rössler and Lorenz, and demonstrate the

richness of the synchronization behavior. The transition to different stages

of synchronization is studied by computing average phase differences, corre-

lations, and Lyapunov exponents. From the numerical analysis, we verify the

relation between the critical parameters for the transition to different syn-

chronization states obtained from the stability analysis. The work presented

in this chapter has been published in Phys. Rev. E 81, 046216 (2010) [214].
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3.1 Synchronization by indirect coupling via

environment

We consider two chaotic systems coupled to a common environment through

a linear coupling given by the following equations

ẋ1 = f(x1) + ǫ1γβ1w, (3.1a)

ẋ2 = f(x2) + ǫ1γβ2w, (3.1b)

ẇ = −κw − ǫ2

2
γT (β1x1 + β2x2). (3.1c)

Here, x1 and x2 represents two m-dimensional nonlinear systems whose in-

trinsic dynamics are given by f(x1) and f(x2) respectively. The variable w

represents the environment, whose dynamics is assumed to be decaying with

κ as the damping parameter. Therefore, without feedback from the systems,

it is incapable of sustaining itself for extended periods of time. For simplic-

ity, we take w to be 1-dimensional environment. Here, ǫ1 is the strength of

feedback to the system and ǫ2 is that to the environment. γ is a column

matrix (m× 1), with elements zero or one, and it decides the components of

xi that take part in the coupling. The nature of feedback from and to the

environment is adjusted by prescribing values for β1 and β2. When both β1

and β2 are of the same sign, i.e. (β1, β2) = (1, 1), the coupling is repulsive

and can drive the systems to anti-phase synchronization. When β1 and β2

are of different signs, i.e. (β1, β2) = (1,−1), the coupling is of difference type

leading to in-phase synchronization. We illustrate this behavior for the case

of two chaotic Rössler systems coupled through environment as given by the

equations (i = 1, 2)

ẋi1 = −xi2 − xi3 + ǫ1βiw,

ẋi2 = xi1 + axi2,

ẋi3 = b+ xi3(xi1 − c),

ẇ = −κw − ǫ2

2

∑

i=1,2

βixi1. (3.2)
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Figure 3.1: Time series of the first variable xi1 of two environmentally coupled

chaotic Rössler systems (a) In-phase synchronization at (ǫ1 = ǫ2 = 0.2, β1 =

−β2 = 1) (b) antiphase synchronization at (ǫ1 = ǫ2 = 0.2, β1 = β2 = 1). Rössler

parameters are a = b = 0.1, c = 18, i.e. we have chaotic attractor. The damping

parameter of the environment is taken to be κ = 1.

We find that, when β1 = −β2 = 1, the systems get phase-synchronized

for suitable strengths of ǫ1 and ǫ2. When β1 = β2 = 1, the systems get

antiphase synchronized for suitable strengths of couplings. The time series

of the coupled Rössler systems for the in-phase synchronized and antiphase

synchronized cases is shown in Fig. 3.1a and 3.1b.

We repeat the same analysis with two Lorenz systems coupled through

environment as given by the following equations (i = 1, 2)

ẋi1 = σ(xi2 − xi1) + ǫ1βiw,

ẋi2 = (r − xi3)xi1 − xi2,

ẋi3 = xi1xi2 − bxi3,

ẇ = −κw − ǫ2

2

∑

i=1,2

βixi1. (3.3)

We find that in-phase synchronization is possible for β1 = −β2 = 1 and

antiphase synchronization is possible for β1 = β2 = 1. The in-phase syn-

chronized state where the average phase difference between the systems is
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Figure 3.2: Time series of the first variable xi1 of two environmentally coupled

chaotic Lorenz systems (a) In-phase synchronization at (ǫ1 = ǫ2 = 9.0, β1 =

−β2 = 1) (b) antiphase synchronization at (ǫ1 = ǫ2 = 8.0, β1 = β2 = 1). Here,

Lorenz parameters are (σ = 10, r = 28, b = 8/3). The damping parameter of the

environment is chosen to be κ = 1.

∼ 0, and antiphase synchronized states where the average phase difference

between the systems is ∼ π, of the coupled Lorenz systems are shown in Figs.

3.2(a) and 3.2(b) respectively.

3.2 Linear stability analysis

We analyze the stability of the synchronized state of two systems coupled

via the scheme in Eq. (3.1). If ξ1, ξ2, and z represent the deviations from the

synchronized state, their dynamics is governed by the linearized equations
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obtained from Eqs. (3.1). They are

ξ̇1 = f ′(x1)ξ1 + ǫ1γβ1z, (3.4a)

ξ̇2 = f ′(x2)ξ2 + ǫ1γβ2z, (3.4b)

ż = −κz − ǫ2

2
γT (β1ξ1 + β2ξ2). (3.4c)

In general, it is difficult to analyze the stability of the synchronized state

from Eqs. (3.4). For the special case of the perfectly synchronized state, i.e.

x1 = x2, Eqs. (3.4) can be simplified by defining

ξ0 = β1ξ1 + β2ξ2. (3.5)

Then Eqs. (3.4) can be written as

ξ̇0 = f ′(x1)ξ0 + ǫ1(β
2
1 + β2

2)γz (3.6a)

ż = −κz − ǫ2

2
γT ξ0 (3.6b)

The synchronized state corresponding to the fixed point (0, 0) of Eqs. (3.6)

will be stable if all the Lyapunov exponents obtained from Eqs. (3.6) are

negative.

To proceed further, we assume that the time average values of f ′(x1)

and f ′(x2) are approximately the same and can be replaced by an effective

constant value α. In this approximation we treat ξ1 and ξ2 as scalars. This

approximation simplifies the problem such that only the relevant features

remain and is expected to give features near the transition. This type of

approximation was used in Ref. [156] and it was noted that it describes the

overall features of the phase diagram reasonably well. Thus, using ξ0 defined

by Eq. (3.5), Eqs. (3.4) can be written as

ξ̇0 = αξ0 + 2ǫ1z (3.7a)

ż = −κz − ǫ2

2
ξ0 (3.7b)

where we choose β2
1 + β2

2 = 2. Eliminating z from Eqs. (3.7a) and (3.7b), we
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get an equation for ξ0 as

ξ̈0 = (α− κ)ξ̇0 + (κα− ǫ1ǫ2)ξ0 (3.8)

Assuming a solution of the form

ξ0 = Aemt

we get

m =
(α− κ) ±

√

(α− κ)2 − 4(ǫ1ǫ2 − ακ)

2
(3.9)

The synchronized state, defined by ξ0 = β1ξ1 + β2ξ2 = 0, is stable if Re[m]

is negative for both the solutions. This gives the following criteria for the

stability of the synchronized state.

1. If (α − κ)2 < 4(ǫ1ǫ2 − ακ), m is complex and the condition of stability is

κ > α.

2. If (α − κ)2 > 4(ǫ1ǫ2 − ακ), m is real and the stability condition becomes

ǫ1ǫ2 > ακ and κ > α.

In the first case above, the synchronized state is possible if we have an

environment which has a sufficiently fast decay to compensate for the di-

vergence of the system due to α. In the second case, both conditions must

be satisfied. Here, the transition to stable synchronization is given by the

threshold values of parameters satisfying the condition

ǫ2c =
ακ

ǫ1c

(3.10)

We now consider the properties of the synchronized state defined by ξ0 =

β1ξ1 + β2ξ2 = 0, i.e. β1x1 + β2x2 = const.. Numerical simulations show

that the constant is zero. Thus, for β1 = β2 = 1 we get x1 = −x2, i.e.

antisynchronization while for β1 = −β2 = 1 we get x1 = x2, i.e. complete

synchronization.
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3.3 Numerical analysis

In this section, we apply the scheme of coupling through the environment

given in Eqs. (3.1) to the standard Rössler and Lorenz systems in the chaotic

regime. We study the two cases, β1 = +1 and β2 = −1 where in-phase syn-

chronization is possible and β1 = β2 = +1 where antiphase synchronization

is possible.

3.3.1 Indirectly coupled Rössler systems

Now, we apply the scheme of coupling introduced in Eqs. (3.1) to two Rössler

systems in the chaotic regime (Eq. 3.2). When β1 = +1 and β2 = −1, we

observe in-phase synchronization as shown earlier in Figs. 3.1(a). As the cou-

pling strength is increased, systems go to a state of complete synchronization.

When β1 = β2 = +1 we observe antiphase synchronization (Figs. 3.1(b)). As

the strength of feedback is increased, control of chaos is observed and the sys-

tems become periodic, while the two coupled systems remaining in antiphase

synchronization.

The transitions to in-phase ( or antiphase ) synchronization can be studied

numerically using the average phase difference between the two systems. For

this, we need to define phases of individual systems. In the case of Rössler

systems, as the trajectory has a rotation around a fixed point in the x1–x2

plane, the phase φ(t) of the Rössler system can be defined [115] as the angle

φ(t) = tan−1(x2(t)/x1(t)) (3.11)

The phase φ(t) of the two Rössler systems coupled through environment are

calculated using Eq. (3.11). Then the phase difference ψ(t) between them,

and its average over time <ψ(t)> are calculated for increasing strengths

of feedback for identical feedback strengths ǫ1 = ǫ2 = ǫ. The state with

< ψ(t) >∼ 0 corresponds to in-phase synchronized state and the state with

< ψ(t) >∼ π is identified as the antiphase synchronized state.
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Figure 3.3: Transition from unsynchronized regions (I) to antiphase synchronized

regions (II) in the parameter plane ǫ1 – ǫ2 for the coupled Rössler systems. The

points are obtained numerically when the average phase difference becomes ap-

proximately π. Solid curve corresponds to the stability condition Eq. (3.10), i.e.

ǫ2c ∝ 1/ǫ1c.
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Figure 3.4: Transition from unsynchronized regions (I) to antiphase synchronized

regions (II) in the parameter plane κ–ǫ1for coupled Rössler systems. Points are

obtained from numerical simulation with ǫ2 = 0.6 and the solid curve is a linear

fit corresponding to the stability condition Eq. (3.10) with the effective α = 0.009.

For the coupled Rössler systems the average phase difference is calculated

for the full parameter plane ǫ1–ǫ2 and the points where the average phase

difference, < ψ(t) >, becomes approximately π are plotted in Fig. 3.3. These

therefore correspond to the threshold values for onset of stability of antiphase

synchronizaton. The solid line corresponds to the curve plotted using the

threshold condition from our stability theory in Eq. (3.10). We observe that

the agreement is quite good with α = 0.009 and the relation ǫ2c ∝ 1/ǫ1c is

clearly seen.

As seen in Eq. (3.10), we also have the relations ǫ2c ∝ κ and ǫ1c ∝
κ. Fig. 3.4 shows the phase plot for the transition from unsynchronized to

antiphase synchronized states in the ǫ1 – κ plane. A linear relation is clearly

seen and the solid line is drawn with the effective α = 0.009, thus validating

the transition criterion of Eq. (3.10) obtained from the stability theory.

The transitions to all the different types of synchronization described
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Figure 3.5: Four largest Lyapunov exponents for the coupled Rössler systems as a

function of the coupling strength. Here we take ǫ1 = ǫ2 = ǫ. (a) β1 = +1, β2 = −1;

the first crossing of 0 at ǫ ∼ 0.12 (fourth largest LE) indicates the transition to in-

phase synchronization, while the second zero crossing at ǫ ∼ 0.59 (second largest

LE) indicates the transition to complete synchronization (b) β1 = β2 = +1; the

first crossing of 0 at ǫ ∼ 0.12 indicates antiphase synchronization and the region

where all Lyapunov exponents are less than or equal to zero indicates the antiphase

synchronized periodic states.

above can be tracked by calculating the Lyapunov exponents. Since the

coupling here is indirect and through an environment, instead of calculating

transverse Lyapunov exponents about the synchronized state, we calculate

all the Lyapunov exponents of the coupled system. The two chaotic sys-

tems and the environment together form a seven-dimensional system and

the Lyapunov exponents are calculated by considering variational equations

using Wolf algorithm [17]. The four largest Lyapunov exponents for cou-

pled Rössler systems are shown in Fig. 3.5 for various strengths of feedback.

For the case β1 = +1 and β2 = −1, the zero crossing of the fourth largest

Lyapunov exponent in Fig. 3.5(a) corresponds to the onset of in-phase syn-

chronization, and the zero crossing of the second largest Lyapunov exponent

corresponds to the onset of complete synchronization. Here, the narrow

window where all Lyapunov exponents are less than or equal to zero corre-

sponds to synchronized periodic states in Rössler systems as verified from

the time series. In the case of antiphase synchronization similar results are

seen (Fig. 3.5(b)). The region where all Lyapunov exponents are less than
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or equal to zero in Fig. 3.5(b) corresponds to the antiphase synchronization

in the periodic state.

The phase diagram showing regions of different dynamical regimes in

the ǫ1 – ǫ2 plane for coupled Rössler systems is given in Fig. 3.6(a) for

β1 = 1, β2 = −1. As the coupling strengths increase ( along the diago-

nal ) we see a transition from the unsynchronized state (dark gray) to the

in-phase synchronized state (light gray) and then to the completely syn-

chronized state (white). For large coupling constants, the system becomes

unstable (black). It is seen that the critical coupling constants correspond-

ing to the transitions between the different types of synchronization obey the

relation Eq. (3.10) as obtained from the stability analysis. Fig. 3.6(b) shows

a similar phase diagram for β1 = β2 = 1. Here dark gray region corresponds

to unsynchronized states, region marked I corresponds to antiphase synchro-

nization in chaotic state, regions II – IV corresponds to different regimes of

synchronization in periodic states and black region corresponds to unstable

states. We find that here, depending on the coupling strength, the coupled

systems settle to two different periodic states A and B. The x1–x2 plane

corresponding to the states A and B are shown in Fig. 3.7. In regions II

and IV, both the Rössler systems are in state A, shown in Fig. 3.7(a). While

in region III, one of the systems is in periodic state A and the other is in

periodic state B(Fig. 3.7(b)).In regions II and IV, the synchronized states

are such that x1(t + τ) ≃ x2(t), corresponding to lag synchronization, and

in region III, the systems are in antiphase synchronization in the periodic

state. The average error function calculated after shifting x1(t) by half the

time period for the regions I, III and IV is shown in Fig. 3.7(c).

3.3.2 Indirectly coupled Lorenz systems

We repeat the same analysis for two chaotic Lorenz systems. From numerical

simulations of Eq. 3.3, we find that when β1 = −β2 = 1, the systems are in

in-phase synchronization (Fig. 3.2(b)). As the coupling strength is increased,

the systems are in complete synchronization. When β1 = β2 = 1, the systems
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Figure 3.6: Regions of different states of synchronization marked out in the pa-

rameter plane ǫ1 – ǫ2 for the coupled Rössler systems. The different phase space

regions are obtained by using the asymptotic correlation values C, average phase

differences < ψ(t) >, and Lyapunov exponents. (a) β1 = +1, β2 = −1. White

region corresponds to |C| ∼ 0.99 indicating synchronized regions; light gray region

corresponds to in-phase synchronized region. (b) β1 = β2 = +1 region I corre-

sponds to antiphase synchronized chaotic states, regions II – IV correspond to

different states of antiphase synchronized periodic states (see text). In both cases,

the dark gray region corresponds to the unsynchronized states and the black re-

gions in the upper right corner are the unstable states.
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Figure 3.7: The x1–x2 phase plane of antiphase synchronized periodic states in

regions II and III of Fig. 3.6(b). (a) ǫ1 = ǫ2 = 1.5 both systems are in state

A (b) ǫ1 = ǫ2 = 2.5 systems are in different states A and B. (c) Average error

function computed after shifting one of the time series by half the period in the

synchronized periodic regions II – IV of Fig. 3.6(b). The average error ∼ 0 for

ǫ < 2 and ǫ > 2.95 indicating lag synchronization. The region 2 < ǫ < 2.95

corresponds to antiphase synchronization in the periodic state.
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are in antiphase synchronization (Fig. 3.2(b)). When the coupling strength

is increased from this state, the systems are found to be in antisynchronized

state corresponding to x11 = −x21, x12 = −x22 and x13 = x23.

Since the Lorenz system does not have such a proper rotation around any

fixed point, the phase cannot be defined by Eq. (3.11). The phase of Lorenz

system is calculated using the modified variables [92] as

φ(t) = tan−1(z̄/ū) (3.12)

where ū = u − up, z̄ = z − zp and up =
√

2β(ρ− 1), zp = ρ − 1 and u =
√

x2
1 + x2

2. The dynamics in (u, z) looks like a rotation around some center

point (up, zp). The phase φ(t) of the individual Lorenz systems are calculated

using Eq. (3.12). The phases show confinement due to coupling indicating

in-phase ( or antiphase ) synchronization. It is evident that since we neglect

the sign of x1 and x2 in the calculation of u, phase defined as in Eq. (3.12)

can not distinguish between in-phase and antiphase cases. In this context,

the similarity function S and a modified similarity function S ′ introduced

in chapter 2 serve as useful indices for identifying the in-phase or antiphase

synchronization. For β1 = 1, β2 = −1, at τ = 0, S = 0 corresponds to the

complete synchronization and S is finite for the in-phase synchronization.

Similarly, for β1 = β2 = 1, at τ = 0, S ′ is 0 indicating the antisynchronization

and S ′ is finite for the antiphase synchronization.

We also calculate the Lyapunov exponents of the coupled Lorenz systems

given in Eq. (3.3). The four largest lyapunov exponents are shown in Fig. 3.8.

In Fig. 3.8(a), the case β1 = +1 and β2 = −1 is shown where the zero crossing

of the fourth largest Lyapunov exponent corresponds to the onset of in-phase

synchronization, and the zero crossing of the second largest Lyapunov expo-

nent corresponds to the onset of complete synchronization. In Fig. 3.8(b),

the case β1 = β2 = 1 is shown where the zero crossing of the fourth largest

Lyapunov exponent corresponds to the onset of antiphase synchronization

and the zero crossing of the second largest Lyapunov exponent corresponds

to the onset of antisynchronization.
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Figure 3.8: Four largest Lyapunov exponents of the two coupled Lorenz systems

as a function of the feedback strength. We take ǫ1 = ǫ2 = ǫ. (a) β1 = +1, β2 = −1;

the first zero crossing of Lyapunov exponent at ǫ ∼ 4.2 indicates in-phase synchro-

nization, the second zero crossing at ǫ ∼ 9.8 indicates complete synchronization

(b) β1 = β2 = +1; the first zero crossing at ǫ ∼ 4.4 indicates antiphase synchro-

nization, the second zero crossing at ǫ ∼ 9.8 indicates antisynchronization.

The parameter planes showing different synchronization regimes for cou-

pled Lorenz systems are given in Figs. 3.9(a) and 3.9(b). As ǫ is increased

along the diagonal, we observe transitions in the following sequence: unsyn-

chronized state (dark gray) to in-phase/antiphase synchronized states (light

gray) to complete/anti synchronized states (white) to unstable states (black).

Here also, the critical coupling constants, corresponding to the transitions

between the different types of synchronization, obey the theoretical relation,

ǫ2c ∝ 1/ǫ1c, obtained from the stability theory.

3.4 Summary

We report the synchronization of two nonlinear chaotic systems by coupling

them indirectly through a common environment. The different types of syn-

chronous behavior and the transitions among them are analyzed in the case

of two standard chaotic systems, Rössler and Lorenz using the numerically

computed Lyapunov exponents, average phase difference, correlation from
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Figure 3.9: Regions of different states of synchronization marked out in parameter

plane of coupling strengths ǫ1– ǫ2 by computing asymptotic correlation values C,

average phase difference < ψ(t) > and similarity functions for Lorenz systems. (a)

β1 = +1, β2 = −1 (b) β1 = β2 = +1. In both cases, white region corresponds to

|C| ∼ 0.99 indicating synchronized/anti-synchronized regions. Light gray region is

in-phase ( or antiphase ) syncrhonized state and dark gray region is unsynchronized

state. Black region in the upper right corner corresponds to unstable states.

time series and similarity function. The salient features of the work reported

in this chapter are

1. We show that, indirect coupling via a dynamic environment can lead

to different types of synchronization in nonlinear systems.

2. The synchronized state has almost the same phase space structure as

that of the uncoupled dynamics.

3. The coupling mechanism proposed here is general, and can be adjusted

for in-phase and anti-phase or complete and anti- types of synchroniza-

tion.

4. Using an approximate linear stability analysis, the threshold values of

coupling strengths for onset of synchronization of the in-phase or anti-

phase type are derived.

5. The transition curves obtained from numerical calculations agree with

the curves from stability analysis.
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Chapter 4

Amplitude death in chaotic

systems coupled via both direct

and indirect coupling

In chapter 3, we have shown that indirect feedback coupling through environ-

ment can induce anti-phase (or anti) synchronization in two systems which

are not directly connected [214]. Here, we show that if in addition to the indi-

rect feedback coupling through a dynamic environment, systems are coupled

directly, then they can be driven to a state of amplitude death. We consider

two systems coupled directly such that with adequate strength of coupling,

they can exhibit synchronous behavior. Then we introduce an additional in-

direct feedback coupling through the environment or another external system

such that it induces a tendency for antisynchronization. We find that, with

sufficient strength of coupling, these two competing tendencies can lead to

amplitude death. In the state of amplitude death, the subsystems stabilize

to a fixed point of the coupled system. We find that, while it essentially ex-

plains quenching of activity or suppression induced by an external medium

or agent, this novel method can also serve as a general mechanism to induce

death in coupled synchronizable systems.

47



We develop an approximate stability analysis which provides the thresh-

old or critical values of coupling strengths for amplitude death in the general

context. Direct numerical simulations giving the regions of amplitude death

in the space of coupling strengths agree well with the transition curves ob-

tained from the stability analysis. We also analyse in detail the nature of

transition to the amplitude death state. All the specific cases that we study

basically exhibit two types of transitions, viz, continuous or discontinuous

transitions to death. In the continuous case, as illustrated by two coupled

Rössler systems, during the transition the full reverse period doubling sce-

nario is observed reaching a one-cycle state before amplitude death occurs.

The transition to death then occurs due to a super critical Hopf bifurcation.

In the discontinuous case, the transition is sudden due to the disappearance of

a distant attractor and stabilization of a fixed point. For two coupled Lorenz

systems, we find the transition to death is probably via a sub-critical Hopf

bifurcation with long transients and prior to this, the systems go through

a state of frustration between synchronized and antisynchronized behavior.

The work presented in this chapter and chapter 5 has been published in Phys.

Rev. E 84, 046212 (2011) [215].

4.1 Amplitude death via direct and indirect

coupling

We start with two systems coupled mutually with two types of couplings,

namely a direct diffusive coupling and an indirect coupling through an envi-

ronment. The dynamics can be written as

ẋ1 = f(x1) + ǫdβ(x2 − x1) + ǫeγw (4.1a)

ẋ2 = f(x2) + ǫdβ(x1 − x2) + ǫeγw (4.1b)

ẇ = −κw − ǫe

2
γT (x1 + x2) (4.1c)
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Here, x1 and x2 represent two m-dimensional oscillators whose intrinsic dy-

namics is given by f(x1) and f(x2) respectively. The systems are mutually

coupled using diffusive coupling (second term in Eq. (4.1a) and (4.1b)). The

environment is modelled by a one dimensional over damped oscillator w with

a damping parameter κ. The environment is kept active by feedback from

both the systems as given by the last term in Eq. (4.1c). Both the systems

also get feedback from w ( last term in Eq. (4.1a and 4.1b)). β is a matrix

(m × m) with elements 0 and 1 and defines the components of x1 and x2

which take part in the diffusive coupling. For simplicity, we take β to be

diagonal, β = diag(β1, β2, ..., βm) and in our numerical simulations only one

component β1 is assumed to be nonzero. γ is a column matrix (m × 1),

with elements zero or one, and it decides the components of x1 and x2 that

gets feedback from the environment. γT is the transpose of γ and it decides

the components of x1 and x2 which gives feedback to the environment. We

take ǫd to be the strength of direct diffusive coupling between the systems,

and ǫe be the strength of feedback coupling between the systems and the

environment.

The direct coupling ǫd, gives a synchronizing tendency between the two

systems while the coupling through the environment ǫe, gives an antisyn-

chronizing tendency. Thus, when both the couplings are above their critical

values, there is a competition between the two tendencies, and the net effect

is to drive the coupled systems to a fixed point, resulting in amplitude death.

We illustrate the above scheme for two coupled chaotic Rössler systems

represented by the following equations (i, j = 1, 2, i 6= j).

ẋi1 = −xi2 − xi3 + ǫd(xj1 − xi1) + ǫew

ẋi2 = xi1 + axi2

ẋi3 = b+ xi3(xi1 − c)

ẇ = −κw − ǫe

2

∑

i

xi1 (4.2)

The resulting time series for synchronized state with only direct coupling,
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Figure 4.1: Time series of the first variables xi1, i = 1, 2 of two coupled Rössler sys-

tems. (a) Synchronization for (ǫd, ǫe) = (0.2, 0.0).(b) Anti-phase synchronization

(ǫd, ǫe) = (0.0, 1.0).(c) Amplitude death for (ǫd, ǫe) = (0.2, 1.0). Here, the Rössler

parameters are a = b = 0.1, c = 18. The damping parameter of the environment

is taken to be κ = 1.

anti-phase synchronized state with only indirect coupling and amplitude

death state with both direct and indirect couplings are shown in Fig. 4.1.

When ǫe = 0, and ǫd is sufficiently large, we observe synchronization (Fig. 4.1(a)).

When ǫe is increased for ǫd = 0, the systems are in anti-phase synchronized

state (Fig. 4.1(b)). When both ǫe and ǫd are sufficiently large, the systems

stabilize to a state of amplitude death (Fig. 4.1(c)).

We apply the same scheme to two coupled chaotic Lorenz systems as

given by the following equations (i, j = 1, 2, i 6= j)

ẋi1 = σ(xi2 − xi1) + ǫd(xj1 − xi1) + ǫew

ẋi2 = (r − xi3)xi1 − xi2

ẋi3 = xi1xi2 − bxi3

ẇ = −κy − ǫe

2

∑

i

xi1 (4.3)

We find that amplitude death occurs in this case also. This is shown in

Fig. 4.2, where time series for a synchronized state (Fig. 4.2(a)), antisyn-
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Figure 4.2: Time series of the first variables xi1 of the coupled Lorenz systems

for the parameters (σ = 10, r = 28, b = 8/3) and κ = 1. (a) Synchronization for

(ǫd, ǫe) = (5, 0). (b) antisynchronization for (ǫd, ǫe) = (0, 12). (c) Amplitude death

for (ǫd, ǫe) = (5, 12).

chronized state (Fig. 4.2(b)) and an amplitude death state (Fig. 4.2(c)) are

shown.

So far we have presented the method for identical systems. However,

the method also works for nonidentical systems. In general, for nonidentical

systems the direct coupling will give a generalized synchronization between

the coupled systems. Similarly, the antisynchronization due to the indirect

coupling will also become of a generalized type. The combination of direct

and indirect coupling still leads to the amplitude death. As an example, we

consider two coupled Rössler systems as in Eq. (4.2). We keep the parame-

ters of one system fixed and vary the parameter c of the other system. We

find that for sufficient strength of coupling the systems go to the amplitude

death state even for large deviation in c. Also, the amplitude death state

occurs when the individual non-interacting systems are in different dynam-

ical regimes. This is shown in Fig. 4.3, where time series for a generalized

synchronized state (Fig. 4.3(a)), anti-phase synchronized state (Fig. 4.3(b))

and an amplitude death state (Fig. 4.3(c)) are shown for two non-identical
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Figure 4.3: Time series of the first variables xi1, i = 1, 2 of two coupled non-

identical Rössler systems. Here, the parameters a and b of the two Rössler systems

are chosen to be same (a = b = 0.1), while the parameter c of the systems are

chosen such that one of the systems is in chaotic state (c = 18) and the other in

periodic state (c = 4). The damping parameter of the environment is chosen to

be κ = 1 (a) Generalized synchronization for (ǫd, ǫe) = (1.0, 0.0).(b) Anti-phase

synchronization (ǫd, ǫe) = (0.0, 1.0).(c) Amplitude death for (ǫd, ǫe) = (1.0, 1.0).

Rössler systems.

4.2 Linear stability analysis

We develop the stability analysis of the steady state of two systems coupled

via the scheme given in Eq. (4.1). For this, we write the variational equations

formed by linearizing Eq. (4.1) as

ξ̇1 = f ′(x1)ξ1 + ǫdβ(ξ2 − ξ1) + ǫeγz

ξ̇2 = f ′(x2)ξ2 + ǫdβ(ξ1 − ξ2) + ǫeγz

ż = −κz − ǫe

2
γT (ξ1 + ξ2) (4.4)

where ξ1, ξ2 and z are small deviations from the respective values. We denote

synchronizing and antisynchronizing tendencies through the variables ξs and
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ξa respectively as given by

ξs = ξ1 − ξ2

ξa = ξ1 + ξ2 (4.5)

Then Eq. (4.4) can be written as

ξ̇s =
f ′(x1) + f ′(x2)

2
ξs +

f ′(x1) − f ′(x2)

2
ξa − 2ǫdβξs

ξ̇a =
f ′(x1) − f ′(x2)

2
ξs +

f ′(x1) + f ′(x2)

2
ξa + 2ǫeγz

ż = −κz − ǫe

2
γT ξa (4.6)

For stability, all the Lyapunov exponents obtained from Eq. (4.6) should be

negative.

In general, it is not easy to analyse the stability of the synchronized

state from Eqs. (4.6). However, considerable progress can be made if we

assume that the time average values of f ′(x1) and f ′(x2) are approximately

the same and can be replaced by an effective constant value α. This type

of approximation was used earlier in Ref. [156] and in chapter 3 and it was

noted that it describes the overall features of the phase diagram reasonably

well. Thus, Eq. (4.4) becomes

ξ̇s = αξs − 2ǫdξs (4.7a)

ξ̇a = αξa + 2ǫez (4.7b)

ż = −κz − ǫe

2
ξa (4.7c)

We note that Eqs. (4.7b) and (4.7c) are coupled while Eq. (4.7a) is indepen-

dent of the other two. The synchronizing tendency is given by Eq. (4.7a) and

the corresponding Lyapunov exponent is

λ1 = α− 2ǫd (4.8)

The antisynchronizing tendency is given by Eqs. (4.7b) and (4.7c). The
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corresponding Jacobian is

J =





α 2ǫe

−ǫe/2 −κ





and the eigenvalues are

λ2,3 =
(α− κ) ±

√

(α− κ)2 − 4(ǫ2
e − ακ)

2
(4.9)

As noted in the previous section, the amplitude death is obtained when both

the synchronizing and antisynchronizing tendencies are present and the cor-

responding coupling constants are greater than the critical values required

for the respective phenomena. The synchronizing and antisynchronizing ten-

dencies become effective when the corresponding Lyapunov exponents i.e.

the real parts of the eigenvalues are negative. From Eq. (4.8) we obtain the

condition

ǫd > α/2 (4.10)

while from Eq. (4.9) we get the following conditions.

1. If (α−κ)2 < 4(ǫ2
e −ακ), λ2,3 are complex. Then the condition of stability

is

κ > α (4.11)

2. If (α − κ)2 > 4(ǫ2
e − ακ), λ2,3 are real. Then, the stability condition

becomes

κ > α and ǫ2
e > ακ (4.12)

If Eqs. (4.10) and (4.11) or (4.12) are simultaneously satisfied, then the oscil-

lations can not occur and the systems stabilize to a steady state of amplitude

death. For a given κ and α, the transition to amplitude death occurs at crit-

ical coupling strengths ǫdc and ǫec independent of each other. That is

ǫdc = const (4.13)
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and

ǫec = const (4.14)

These general stability criteria are numerically verified for different systems

in the following section.

We can also analyse the stability of amplitude death by noting that the

amplitude death corresponds to a fixed point of the coupled system (Eq. 4.1)

given by ẋ1 = ẋ2 = ẇ = 0. Then, the condition for the stability of amplitude

death is that the real parts of the eigenvalue of the Jacobian evaluated at the

fixed point are negative. This can be done for different systems numerically

and is discussed in the next section.

4.3 Numerical Analysis

In this section, we apply our scheme to two standard chaotic systems Rössler

and Lorenz and analyze the onset of amplitude death using numerical simu-

lations.

4.3.1 Coupled Rössler systems

Now, we apply the scheme of coupling introduced in Eq. (4.1) to the case

of two chaotic Rössler systems. The occurrence of amplitude death in this

case is illustrated in Fig. 4.1(c). This is further confirmed by calculating the

Lyapunov exponents [17]. When the systems are in amplitude death state,

all the Lyapunov exponents of the coupled system are found to be negative.

Fig. 4.9(b) shows the largest Lyapunov exponent of the coupled system as a

function of coupling strength ǫe.

We study the transition to death by identifying regions of amplitude death

in the parameter plane of coupling strengths ǫe − ǫd for a chosen value of κ.

To characterize the state of amplitude death, we use an index A, defined as
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Figure 4.4: Transition from region of oscillations (I) to region of amplitude death

(II) is shown in the parameter plane ǫe-ǫd for the coupled Rössler systems. Nu-

merical simulations are done with κ = 1. The points mark the parameter values

(ǫec,ǫdc) at which the transition to amplitude death occurs. Solid triangles show the

transition to amplitude death as ǫd is increased for a constant ǫe. The horizontal

line formed by these triangles confirms the stability condition Eq. (4.13). Simi-

larly, circles correspond to transition to amplitude death state as ǫe is increased

for a constant ǫd and confirm the stability condition of Eq. (4.14).

the difference between the global maximum and global minimum values of

the time series of the system over sufficiently long interval. That is,

A = sup{x1(t)} − inf{x1(t)}. (4.15)

For each system the value of A is calculated and their average < A > is

taken to be the index. The case where < A >= 0 represents the state

of amplitude death, while < A >6= 0 indicates oscillatory dynamics. The

parameter value at which < A > becomes ∼ 0 is thus identified as the

threshold for onset of stability of amplitude death states. Using this, the

transition curves in the parameter plane ǫe − ǫd are plotted in Fig. 4.4. We

note that the points obtained from numerical simulations agree with the

stability criteria Eq. (4.13) and Eq. (4.14) obtained in the previous section.

We also verify numerically the criteria for transition to the amplitude

death state given in Eq. (4.12). For this, the numerically obtained values of

ǫ2
ec are plotted against κ in Fig. 4.5. The line corresponds to the stability
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Figure 4.5: Transition from region of oscillations (I) to region of amplitude death

(II) is shown in the parameter plane κ − ǫ2e for the coupled Rössler system. The

points of amplitude death are obtained numerically when the index < A > becomes

zero. Solid curve is a linear fit corresponding to the stability condition Eq. (4.12),

with the effective α = 0.1. The deviation from straight line behavior for small

values of κ is discussed in the text.

condition Eq. (4.12) and the points correspond to the threshold values ob-

tained from numerical simulations. It is seen that the agreement is good for

larger values of κ. However, for small values of κ, the points deviate from

straight line behavior. The reason can be seen from Eq. (4.11) which gives

the lower limit on κ. As κ decreases, the damping of the environment vari-

able w, reduces. However, this damping is essential for the antisynchronizing

tendency arising from the coupling to the environment. This leads to the

deviations for small values of κ.

For two coupled Rössler systems as given in Eq. (4.2), we study the com-

plete phase diagram in the parameter plane of coupling strengths for identify-

ing the regions of different dynamic states such as amplitude death, complete

synchronization and antisynchronization. Amplitude death states are identi-

fied using the index < A > as mentioned above. To identify synchronized or

antisynchronized states we use the asymptotic correlation values as the index,

calculated using the equation 2.10. The phase diagram thus obtained for the

coupled Rössler system is shown in Fig. 4.6. When the coupling strengths

ǫd and ǫe are small, the systems are not synchronized (white region). For
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Figure 4.6: Regions of different dynamical states in the parameter plane of cou-

pling strengths ǫe–ǫd in the case of two coupled Rössler systems. The indices used

to identify the different regions are average correlation, C ( Eq. (2.10) ) and the in-

dex < A >. The black region corresponds to the state of amplitude death (A ∼ 0),

the light-grey region corresponds to the synchronized state (C ∼ 1), the dark-grey

region correspond to the antisynchronized state (C ∼ −1) and the white region

correspond to the state where |C| < 1. Here, the parameters are the same as in

Fig. 4.1.

small values of ǫe, when ǫd is increased, the systems synchronize (light-grey

region). When ǫe is increased, the systems become antisynchronized (dark-

grey region). When both the coupling strengths are above a certain threshold

as given by the stability conditions Eq. (4.13) and Eq. (4.14), the systems

stabilize to the state of amplitude death (black region). We also note that

the transition from complete synchronization to antisynchronization via a re-

gion of amplitude death corresponds to a phase transition where the average

phase difference between the oscillators changes from 0 to nearly π. This

is similar to the phase-flip bifurcation reported in the context of time-delay

coupled systems [198,200].

The nature of the transitions to the state of amplitude death is further

characterized by fixing one of the parameters ǫe or ǫd and increasing the other.
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Figure 4.7: The index < A > is plotted as a function of ǫe for a fixed value

of ǫd = 0.2 for two coupled Rössler systems. As ǫe is increased, we observe a

continuous transition to the state of amplitude death (ǫec ∼ 0.45).

This is shown in Fig. 4.7, where the index < A > is plotted for increasing

ǫe for a chosen value of ǫd. Here, the transition from oscillatory state to

amplitude death state is continuous such that as the coupling strength is in-

creased, the amplitude of the oscillations gradually decreases to zero. Similar

transition is observed for the case where ǫe is kept fixed and ǫd is increased.

We also notice from the time series and phase space plots that as the

coupling strength increases (ǫd or ǫe), the Rössler systems undergo the full

reverse period doubling sequence to one-cycle before going to the amplitude

death state. Then, the transition to the state of amplitude death occurs via a

super-critical Hopf bifurcation. The bifurcation diagram for this transition is

shown in Fig. 4.8. This is further confirmed by computing the fixed points of

the coupled system and their stability near the transition region. Numerical

simulations show that the coupled Rössler systems in Eq. (4.2) stabilize to the

steady state corresponding to synchronized states of the subsystems. This
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Figure 4.8: Bifurcation diagram obtained by plotting the maxima of x11, (x′)

for sufficiently long period by increasing the coupling strength, ǫe for ǫd = 0.2

and κ = 1. Here, the systems go through a reverse period doubling scenario as

ǫe increases leading to a one-cycle (at ǫe ∼ 0.35) before amplitude death occurs

(ǫec ∼ 0.45).

synchronized steady states are obtained from Eq. (4.2) as

x∗
i1 = (c±

√

c2 − 4abκ/(κ− ǫ2
ea))/2

x∗
i2 = −x∗

i1/a

x∗
i3 = −b/(x∗

i1 − c)

w∗ = −ǫex
∗
i1/κ (4.16)

We note that the fixed point in the amplitude death state is different

from the steady states of the intrinsic dynamics. It is one of the fixed points

generated due to coupling with the environment. As the exact values of the

fixed point depends on the environmental parameters like κ and ǫe, amplitude

death state can be adjusted to a desired value within the stability region. Of

the two fixed points, the one with plus sign in the second term of x∗
i1 equation

is unstable and the one with minus sign in the second term of x∗
i1 equation

becomes stable in the amplitude death state. The nature of the transition to

the stable fixed point is determined by the eigenvalues of the corresponding
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Figure 4.9: (a) Real part of the largest eigenvalues of the Jacobian obtained from

Eq. (4.2), evaluated at the fixed point given in Eq. (4.16), for increasing ǫe and

fixed values of ǫd = 0.2 and κ = 1. At the transition (ǫec ∼ 0.435), real parts of one

pair of complex conjugate eigenvalues cross zero. (b) Largest Lyapunov exponent

of the coupled Rössler system given in Eq. (4.2) as increasing ǫe for fixed values of

ǫd = 0.2 and κ = 1. The zero crossing of largest Lyapunov exponent (ǫec ∼ 0.435)

indicates transition to amplitude death state. In both figures, zero is shown as a

dotted line.

Jacobian and we find that at the transition, real parts of complex conjugate

pairs of eigenvalues become negative( Fig. 4.9(a) ) , indicating super-critical

Hopf bifurcation as described in Ref. [15]. In the amplitude death region,

all the Lyapunov exponents of the coupled system ( given in Eq. 4.2) are

found to be negative. The largest Lyapunov exponent of the coupled system

crosses zero at the transition and this is shown in Fig. 4.9(b). The nature

of the transition is found to be the same when ǫe is kept fixed and ǫd is

increased.

The above numerical results are presented for one set of parameters of

Rössler system. We have varied the parameters and verified that the method

works for other values of the parameters.

4.3.2 Coupled Lorenz systems

We repeat the same study in the case of two coupled Lorenz systems. It

is interesting to note that in this case, the coupled systems stabilize to

a fixed point that corresponds to antisynchronized states for the subsys-
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Figure 4.10: Regions of different dynamical states in the parameter plane of cou-

pling strengths ǫe–ǫd in the case of Lorenz systems. The black region corresponds

to the state of amplitude death (A ∼ 0), the light-grey region corresponds to the

synchronized state (C ∼ 1), the dark-grey region correspond to the antisynchro-

nized state (C ∼ −1) and the white region correspond to the state where |C| < 1.

tems (x11 = −x21, x12 = −x22, x13 = x23) as shown earlier in Fig. 4.2(c).

The regions of different dynamical states in the parameter plane of coupling

strengths in this case are shown in Fig. 4.10. When both ǫd and ǫe are small,

the systems are not synchronized (white region). For very small values of

ǫd and large values of ǫe, the systems are antisynchronized (dark-grey), and

when ǫd is increased from this state, the systems go to the amplitude death

state (black region). For small values of ǫe and large ǫd, the systems are syn-

chronized (light-grey). As ǫe increases, the systems first lose synchronization

and for larger values of ǫe, they stabilize to the state of amplitude death

(black). In the de-synchronized state before the amplitude death state, the

attractor in the phase space is highly distorted and the system goes through

a state of frustration, trying to stabilize to antisynchronized state from the

synchronized state before death occurs. This is shown in Fig. 4.11, where

time series of the synchronization error between the two Lorenz systems

is shown. Near this transition region, some initial conditions remain in a

chaotic transient state for long time before getting stabilized to the fixed
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Figure 4.11: Synchronization error (x11 − x21) as a function of time in the case

of Lorenz systems for ǫd = 5 and ǫe = 4.665.
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Figure 4.12: The index < A > is plotted as a function of ǫe for a fixed value of

ǫd = 5.0 for two coupled Lorenz systems. Note that the transition to amplitude

death is sudden (ǫec ∼ 7.88) as opposed the case of coupled Rössler systems where

the transition is continuous.

point. The phenomena of multi-stability and hysteresis are also observed in

this region. The nature of transition to amplitude death in this case is shown

in Fig. 4.12. Unlike the case of coupled Rössler systems, we see that the am-

plitude of oscillations drops suddenly at the critical strength of coupling.

Thus, the transition is directly from chaotic state to amplitude death state.

A similar type of transition from chaotic state to amplitude death state in

case of delay coupled Lorenz systems has been reported in Ref. [179]. We fur-

ther characterize this transition by computing the fixed points of the coupled

system given in Eq. (4.3) and evaluating their stability near the transition

region.
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Numerical simulations show that the coupled Lorenz systems in Eq. (4.3)

stabilize to the steady state corresponding to the antisynchronized state of

the subsystems. These steady states are obtained from Eq. (4.3) as

x∗
11 = ±

√

((r − 1)σ − 2ǫd)b

σ + 2ǫd

x∗
12 =

(σ + 2ǫd)

σ
x∗

11

x∗
13 =

(σ + 2ǫd)

σb
x∗2

11

x∗
21 = −x∗

11

x∗
22 = −x∗

12

x∗
23 = x∗

13

y∗ = 0 (4.17)

It is interesting to note that, unlike the case of two coupled Rössler systems,

here the amplitude death state does not depend on the parameters of the

environment. For both the solutions, we find that at the transition, real

parts of complex conjugate pairs of eigenvalues of the corresponding Jacobian

become negative (Fig. 4.13(a)). For ǫd > ǫdc, numerically an unstable limit

cycle is found to coexist with the stable state of amplitude death for certain

initial values. As there is no stable limit cycle before amplitude death, and

an unstable fixed point becomes stable, it seems that this is a sub-critical

Hopf bifurcation. All the Lyapunov exponents of the system (Eq. 4.3) are

found to be negative at the amplitude death state. At the transition, the

largest Lyapunov exponent of the coupled system becomes negative as shown

in Fig. 4.13(b).

4.4 Summary

The notable features of the work presented in this chapter are

1. We have shown that indirect coupling through a dynamic environment
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Figure 4.13: (a) Real part of the largest eigenvalue of the Jacobian obtained from

Eq. (4.3), evaluated at the fixed point given in Eq. (4.17), for increasing ǫe and

fixed values of ǫd = 5 and κ = 1. At the transition (ǫec ∼ 7.31), real parts of one

pair of complex conjugate eigenvalues cross zero. (b) Largest Lyapunov exponent

of the coupled Lorenz system given in Eq. (4.3) as increasing ǫe for fixed values of

ǫd = 5 and κ = 1. The zero crossing of largest Lyapunov exponent (ǫec ∼ 7.43)

indicates transition to amplitude death state. In both figures, zero is shown as a

dotted line.

in addition to direct coupling can lead to amplitude death.

2. The approximate stability analysis developed for general cases predicts

the transition region in parameter space.

3. Results from direct numerical simulations agrees well with the threshold

condition obtained from our theory.

4. The transitions to the state of amplitude death are found to be of two

types - continuous and discontinuous.

We have shown this in the context of two chaotic systems, namely coupled

Rössler and coupled Lorenz systems. We also present the fixed point analysis

for both cases studied here. In the next chapter, we further develop this

mechanism and apply it to a variety of different dynamical systems to induce

amplitude death.
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Chapter 5

General mechanism for

Amplitude Death

In chapter 4, we have presented a mechanism for inducing amplitude death in

coupled systems due to competing effects of synchronizing and anti-synchronizing

tendencies. We have shown this in the context of two chaotic systems, namely

coupled Rössler and coupled Lorenz systems. In this chapter, we study the

generality of the method. For this, we apply it to a variety of systems and

find that for all cases which are synchronizable, the method works.

We also give an intuitive physical argument to support our claim of gener-

ality of the method. Our mechanism consists of having two types of couplings.

The first is direct coupling which leads to synchronization. We know that,

if the coupling constant is sufficiently large, the synchronization condition

ensures that the largest Lyapunov exponent transverse to the synchroniza-

tion manifold, is negative. Considering the space of coupled oscillators as a

product of the individual systems and a network of two nodes, the synchro-

nization manifold corresponds to the direction es = (1, 1)T in the network

coordinates. Similarly the coupling through environment which ensures anti-

synchronization, leads to the condition that the largest Lyapunov exponent

transverse to the direction ea = (1,−1)T is negative. Since we have coupled
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only two systems, ensuring that the largest exponents transverse to both

synchronizing and anti-synchronizing directions, i.e. es and ea, are negative,

implies that all the Lyapunov exponents are negative. Thus the system must

converge to a fixed point.

In this chapter, we present the results of applying this method to peri-

odic, hyperchaotic and driven systems and with different schemes of direct

coupling, and different damped dynamics for the environment. The work

presented in this chapter and chapter 4 has been published in Phys. Rev. E

84, 046212 (2011) [215].

5.1 Amplitude death with alternative dynam-

ics

Here, we present the results of our study on amplitude death in the case of

periodic systems, time-delay systems, systems with different types of direct

coupling and with different damped dynamics of the environment.

5.1.1 Amplitude death in periodic systems

We first study two standard limit cycle oscillators, namely Landau-Stuart

oscillators and van der Pol oscillators, coupled using the scheme given in

Eq. (4.1).

Landau-Stuart system is a nonlinear limit cycle oscillator, which has been

previously used as a model system for studying the phenomenon of amplitude

death [175, 178]. In our case, the dynamics of two coupled Landau-Stuart
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systems is given by the following set of equations:

ẋi1 = (1 − x2
i1 − x2

i2)xi1 − ωxi2 + ǫd(xj1 − xi1) + ǫew,

ẋi2 = (1 − x2
i1 − x2

i2)xi2 + ωxi1,

ẇ = −κw − ǫe

2

∑

i

xi1. (5.1)

From numerical analysis of the above equations, we see that, when ǫe = 0,

and for suitable value of ǫd, the coupled systems synchronize. By increasing

ǫe, the systems can be taken to a state of amplitude death. In Fig. 5.1,

we show the regions of different dynamical states such as amplitude death,

synchronized and anti-synchronized oscillations in the parameter plane of

coupling strengths, ǫd–ǫe. For small values of ǫe and ǫd, the systems are

synchronized ( light-grey ). For small values of ǫd and high values of ǫe, the

systems are in anti-synchronized state (dark-grey). When the strengths of

both ǫd and ǫe are sufficiently large, we observe amplitude death (black).

We note that, here the transition to the state of amplitude death is sudden,

similar to the case of Lorenz systems discussed in the preceding chapter. The

case where ǫd is kept constant while increasing ǫe is shown in Fig. 5.2. Similar

transition is observed in the case of increasing ǫd for a fixed value of ǫe.

However, in this case, for a given strength of coupling, the stability of

amplitude death state depends on the initial conditions indicating multi-

stability, that is, some initial conditions go to amplitude death state, while

some other initial conditions remain in the oscillatory state. Such a multi-

stability has also been reported for amplitude death phenomena in the case

of Landau-Stuart oscillators using conjugate coupling [175]. In Fig. 5.1, for

any pair of (ǫe,ǫd) values, we use the same initial conditions to obtain states

of different phase space regions. The transition to amplitude death, as ǫd

increases for fixed ǫe, does not appear to satisfy Eq. (4.14). This may be

because of the multi-stability observed in the system. If we change the initial

condition, then the curve representing transition to amplitude death as ǫd

increases is found to change. In Fig. 5.3, basin of amplitude death is shown

for a fixed value of ǫe and for increasing ǫd. Black regions represent the basin
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Figure 5.1: Regions of different dynamical states in the parameter plane of cou-

pling strengths ǫe–ǫd in the case of Landau-Stuart systems. The black region

corresponds to the state of amplitude deathidentified using index A ( see Eq. 4.15

in Chapter 4 for the definition of A). The light-grey region corresponds to the syn-

chronized state (C ∼ 1), the dark-grey region correspond to the anti-synchronized

state (C ∼ −1) and the white region represents to the de-synchronized state.

Numerical simulations are done with ω = 2 and κ = 1.

ǫe

<
A

>

3.43.12.8

2

1

0

Figure 5.2: Here, we plot the index < A >, defined in Eq. 4.15 in Chapter 4 as

a function of ǫe for constant ǫd = 0.5 for two coupled Landau-Stuart oscillators.

The transition to the state of amplitude death is sudden (ǫec ∼ 3.11).
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Figure 5.3: The basin for amplitude death in the plane of initial conditions x1–y1

of one of the two coupled Landau-Stuart systems. The initial condition of the other

system is chosen to be x2 = x1 + 0.1, y2 = y1. The black regions indicate basin of

attraction for the amplitude death state, where < A >= 0, and the white regions

indicate the basin for oscillatory state (< A >> 0). The strength of indirect

coupling is chosen to be ǫe = 3.8, and the strength of direct coupling is varied as

(a) ǫd = 0 (b) ǫd = 0.2 (c) ǫd = 0.4. We see that the basin of amplitude death

increases as ǫd increased.

for amplitude death and white regions represent the basin for oscillatory

states. Fig. 5.3(a), shows the basin of amplitude death when ǫd = 0. For

some initial values, amplitude death occurs even in the absence of direct

coupling. A possible explanation is that the α of the individual system is

negative or zero such that, the stability condition κ > α given in Eq. (4.11)

is always satisfied. It is seen that the area of the basin of amplitude death

increases as ǫd is increased [Fig. 5.3(b) and (c)].

We repeat the same study for the case of two coupled periodic van der

Pol systems given by the following equations:

ẋi1 = xi2 + ǫd(xj1 − xi1) + ǫew,

ẋi2 = a(1 − x2
i1)xi2 − xi1,

ẇ = −κw − ǫe

2

∑

i

xi1. (5.2)

We choose the parameter a = 1 such that the system has a stable limit
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Figure 5.4: (a) The index < A >, defined in Eq. 4.15 in chapter 4 as a function

of ǫe for a fixed ǫd = 1.5 for two coupled van der Pol oscillators. Here, the

transition to amplitude death is continuous. For ǫe < 1.05, the coupled systems

show synchronized limit cycles. At ǫe ∼ 1.05, we have a pitchfork bifurcation of

the limit cycle and the two systems now have two different limit cycles. These

limit cycles subsequently undergo super-critical Hopf bifurcation to the amplitude

death state (ǫec ∼ 1.47). (b) The index < A > as a function of ǫd for a fixed

ǫe = 2.0 for two coupled van der Pol oscillators. Here, the transition to amplitude

death is sudden (ǫdc ∼ 0.18 ) and is of sub-critical Hopf bifurcation. We note that

the nature of the transition to the amplitude death state in the case of van der

Pol oscillators is different from the other systems that we have studied. For the

numerical simulations, the parameters are a = 1 and κ = 1.

cycle when both the couplings are absent (i.e., ǫe = ǫd = 0). For suitable

strength of direct coupling ǫd, the systems synchronize and amplitude death

is observed when both direct and indirect couplings are above their respective

thresholds. As far as the nature of the transition to the state of amplitude

death is concerned, the van der Pol oscillator shows a different behavior than

other systems. We find that the nature of the transitions to amplitude death

depends on the type of coupling parameter. Fixing ǫd and increasing ǫe, we

see a smooth transition similar to the case of Rössler systems (Fig. 5.4 (a))

and by fixing ǫe and increasing ǫd, we get a sudden transition, similar to the

case of Lorenz systems (Fig. 5.4(b)).
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5.1.2 Amplitude death in time delay systems

The Mackey-Glass time-delay system is well studied as a model exhibiting

hyperchaos. Stabilization to fixed point, or amplitude death in such systems

has been reported using stabilization methods such as conventional feedback,

tracking filter and delayed feedback [216]. Here we consider two Mackey-

Glass systems coupled via both direct and indirect couplings as given by

ẋi = −axi +
bxτi

1 + xm
iτ

+ ǫd(xj − xi) + ǫew

ẇ = −κw − ǫe

2

∑

j=1,2

xj (5.3)

where xi represents the Mackey-Glass system [23] and xiτ is the value of the

variable xi at a delayed time xi(t− τ). The parameters of the Mackey-Glass

systems are chosen such that, the individual systems are in hyperchaotic

regime. When ǫe = 0, for sufficiently large coupling strength ǫd, the systems

synchronize. By increasing ǫe we get amplitude death.

We show the different types of dynamical behavior of coupled Mackey-

Glass systems in the parameter plane of coupling strengths in Fig. 5.5. For

very small values of ǫd and ǫe, the two systems are not synchronized (white).

The systems synchronize as ǫd is increased (light-grey). For large values of

ǫd, if ǫe is increased, the systems go to a state of amplitude death (black).

When ǫd is small and ǫe is large, the systems are in anti-synchronized state

(dark-grey). As we increase ǫd, the systems go to the amplitude death state.

However, for large values of ǫd and ǫe, the Mackey-Glass systems appear to

show a different behavior than Rössler or Lorenz. We observe a re-entrant

behavior to rhythmogenesis, both as ǫe increases, or as ǫd increases. This

transition also satisfies our stability conditions Eq. (4.13) and Eq. (4.14).

We find that the transition to the state of amplitude death in the case of

two coupled Mackey-Glass systems is continuous and that the systems go

through a reverse period doubling sequence reaching a limit cycle before

the amplitude death occurs. This is similar to the case of Rössler systems

discussed in the preceding chapter. Fig.5.6 shows the transition to amplitude
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Figure 5.5: Regions of amplitude death (black), synchronized (light-grey) and

anti-synchronized oscillations (dark-grey) in the parameter plane of coupling

strengths ǫe–ǫd in the case of two coupled Mackey-Glass time-delay systems. For

numerical analysis, we have chosen the following parameter values a = 1, b = 2,

τ = 2.5, m = 10 and κ = 1.

death from synchronized oscillatory state as ǫe is increased for a chosen value

of ǫd.

5.1.3 Lorenz systems with replacement coupling

So far, we have studied direct coupling of the diffusive type. Synchronization

is also possible by choosing the direct coupling of different types. Here we

consider Lorenz systems coupled using a different scheme of coupling, namely

replacement coupling, as given by the following equations:

ẋi1 = σ(xj2 − xi1) + ǫew,

ẋi2 = (r − xi3)xi1 − xi2,

ẋi3 = xi1xi2 − bxi3,

ẇ = −κw − ǫe

2

∑

i

xi1. (5.4)
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Figure 5.6: The index < A > (defined in Eq. 4.15 in Chapter 4 ), as a function

of ǫe for a fixed ǫd = 1.5 for two coupled Mackey-Glass systems. The transition to

amplitude death is continuous (ǫec ∼ 0.79) .

Here, the direct coupling is of the replacement type, such that the x2 variable

in the first function of the first system is that of the second system and vice

versa. This type of coupling leads to synchronization as reported in Ref. [33].

We introduce indirect coupling through variable w. We find that for suitable

value of coupling strength ǫe, the systems stabilize to a state of amplitude

death. This is shown in Fig. 5.7.

Time

x
1
1
,
x
2
1

52.50

10

-10

Figure 5.7: Time series of the variable xi1 of the coupled Lorenz systems where

the direct coupling is of replacement type (see text) showing amplitude death for

ǫe = 16.0. The other parameters are σ = 10, r = 28, b = 8/3 and κ = 1.
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5.1.4 Amplitude death with alternative dynamics for

the environment

In previous sections, we have taken the intrinsic dynamics of the environment

to be that of an overdamped harmonic oscillator. Here, we show that, am-

plitude death is possible with other intrinsic dynamics for the environment

also.

For this, we consider the case of two Rössler systems coupled with a

dynamic environment, where the intrinsic dynamics of the environment is

that of a damped harmonic oscillator. The dynamics of the coupled system

in this case is given by

ẋi1 = −xi2 − xi3 + ǫd(xj1 − xi1) + ǫew1

ẋi2 = xi1 + axi2

ẋi3 = b+ xi3(xi1 − c)

ẇ1 = w2 − ǫe

2

∑

i

xi1

ẇ2 = −w2 − κw1 (5.5)

Here, the variables w1 and w2 represent a 2-dimensional environment together

forming an underdamped harmonic oscillator. For very weak coupling (ǫd ∼
0,ǫe ∼ 0), the two Rössler systems are not synchronized. When the coupling

strength, ǫd, increased while ǫe is kept fixed at zero, the systems become

synchronized. This is shown in the time series in Fig. 5.8(a). On the other

hand, when ǫe, increased while ǫd is kept fixed at zero, the systems become

anti-phase synchronized (Fig. 5.8(b)). When both ǫe and ǫd are above their

respective thresholds, amplitude death is observed (Fig. 5.8(c)).

We repeat the same study by taking the intrinsic dynamics of the envi-

ronment as that of an overdamped Duffing oscillator. The equations in this
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Figure 5.8: Time series of the first variables xi1, i = 1, 2 of two coupled Rössler

systems given in Eq. 5.5. (a) Synchronization for (ǫd, ǫe) = (2.0, 0.0).(b) Anti-phase

synchronization (ǫd, ǫe) = (0.0, 0.5).(c) Amplitude death for (ǫd, ǫe) = (2.0, 0.5).

case are

ẋi1 = −xi2 − xi3 + ǫd(xj1 − xi1) + ǫew

ẋi2 = xi1 + axi2

ẋi3 = b+ xi3(xi1 − c)

ẇ = w − κw3 − ǫe

2

∑

i

xi1 (5.6)

For small values of ǫe and ǫd, we see that the systems are not synchronized.

They become synchronized as ǫd is increased from this state. For small

values of ǫd and large values of ǫe, the systems are in anti-phase synchronized

state. When the strengths of both ǫd and ǫe are sufficiently large, we observe

amplitude death (Fig. 5.9). The phase diagram in this case is qualitatively

similar to that given in Fig. 4.6.
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Figure 5.9: Time series of the first variables xi1, i = 1, 2 of two coupled Rössler

systems given in Eq. 5.6 showing amplitude death for (ǫd, ǫe) = (2.0, 0.5).

5.2 Amplitude death in hyperchaotic Rössler

systems

We also consider the case of two hyperchaotic Rössler systems as given by

the following equations

ẋi1 = −xi2 − xi3 + ǫew1

−ǫd cos θ(sin θ(xi1 − xj1) + cos θ(xi3 − xj3))

ẋi2 = xi1 + axi2 + xi4 + ǫew2

ẋi3 = b+ xi3xi1

−ǫd sin θ(sin θ(xi1 − xj1) + cos θ(xi3 − xj3))

ẋi4 = −cxi3 + σxi4 + ǫew3

ẇ1 = −κw1 − ǫe

2

∑

i

xi1

ẇ2 = −κw2 − ǫe

2

∑

i

xi2

ẇ3 = −κw3 − ǫe

2

∑

i

xi4 (5.7)

where i, j = 1, 2 and j 6= i.

We choose parameters of the system such that, the intrinsic dynamics

of the systems is hyperchaotic. For this system, the method of time-delay

coupling is found ineffective for producing amplitude death [183]. In the

absence of coupling via environment, the direct coupling via a scalar signal
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Figure 5.10: Time series of the first variables xi1, i = 1, 2 of the two coupled

hyperchaotic Rössler systems given in Eq. 5.7 in amplitude death state. Parameters

of the systems are chosen to be a = 0.25, b = 3, c = 0.5, σ = 0.05. Parameters

used in the direct coupling term are ǫd = 2.5, θ = π/3 and in the indirect coupling

terms are κ = 10 and ǫe = 4.

results in synchronization of the two hyperchaotic systems for suitable values

of parameters ǫd and θ as reported in Ref. [217]. We take the environment

to be three-dimensional in this case. We find that amplitude death occurs in

the coupled system for suitable value of coupling strengths ǫe and κ. This is

shown in Fig. 5.10.

5.3 Small oscillations in driven systems

We also apply the scheme described in the preceding chapter to driven sys-

tems such as driven van der Pol and Duffing systems. In such driven systems,

the fixed point is not a solution for the individual or coupled systems. There-

fore, we interpret the equivalent of amplitude death state as the state having

very small amplitude oscillations.

The driven van der Pol systems with direct diffusive coupling and indirect

coupling through environment can be written as

ẋi1 = xi2 + ǫd(xj1 − xi1) + ǫew

ẋi2 = α(1 − x2
i1)xi2 − xi1 + β cos(ωt)

ẇ = −κw − ǫe

2

∑

j

xj1 (5.8)
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Figure 5.11: Time series of the first variable xi1 of the coupled driven systems

showing small oscillations. Here, we interpret the small oscillations as the state of

amplitude death (see text). (a) driven van der Pol system for (ǫd, ǫe) = (1.0, 3.5).

The parameters of individual systems are taken to be α = 8.53, ω = 0.63 and

β = 1.2 (b) driven Duffing system for (ǫd, ǫe) = (1.0, 4.0). The parameters of

individual systems are taken to be α = 0.25, ω = 1 and β = 0.3

We find that, when ǫe = 0, and ǫd increases, the two systems become

synchronized. In this state, if we start increasing ǫe, we get a state of small

oscillations. Fig. 5.11(a) shows the time series for such a state.

Fig. 5.12(a) plots the index < A > as a function of ǫe. We first see a

transition from a limit cycle to two different limit cycles for the two sys-

tems. This state then subsequently goes to the state of small oscillations

continuously as ǫe increases further. On the other hand, if we keep ǫe fixed

and increase ǫd, the transition is sudden. As ǫd increases further, we find a
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Figure 5.12: Transition to state of small oscillations in two coupled driven van der

Pol oscillators. Here the death state corresponds to a state of small oscillations

since fixed point is not a stable state. In this state, the index < A > ( see

Eq. 4.15 in Chapter 4 for the definition ) remains finite though very small. (a)

The index < A > as a function of ǫe for fixed ǫd = 1.0. The transition is continuous

(ǫec ∼ 3.08). There is a sudden transition due to pitchfork bifurcation of the limit

cycle observed at ǫe ∼ 2.55. (b) The index < A > as a function of ǫd for fixed

ǫe = 3.5. The transition to the state of small oscillations is sudden (ǫdc ∼ 0.72).

We also observe a re-entrant continuous transition to periodic oscillations with

increasing amplitude at ǫd ∼ 1.14.

continuous transition to a state of increasing amplitude of oscillations. This

is shown in Fig. 5.12(b).

The same study is repeated for the case of two coupled Duffing systems

given by the following equations

ẋi1 = xi2 + ǫd(xj1 − xi1) + ǫew

ẋi2 = −αxi2 + xi1 − x3
i1 + β cos(ωt)

ẇ = −κw − ǫe

2

∑

j

xj1 (5.9)

We find that a regime of small oscillations is possible in this case also. This

is shown in Fig. 5.11(b).

Thus, we have illustrated the method for inducing amplitude death in

coupled systems introduced in this paper works for periodic systems, hyper-

chaotic and driven systems. It is effective in quenching the dynamics even

with different forms of direct coupling such as replacement coupling.
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5.4 Summary

In summary, the method for amplitude death introduced in the preceding

chapter is found to be quite general and works for different types of systems

such as periodic, chaotic and time-delay systems. The regions of different

dynamic states in the parameter plane of coupling strengths and the nature of

transitions to the state of amplitude death are also found to be in agreement

with the theory developed in the preceding chapter.

Thus,

1. In this chapter, we have extended the study to include environment

with different dynamics.

2. The method is found effective in diverse dynamics of systems like pe-

riodic, chaotic, hyperchaotic etc.

3. We have also shown that amplitude death is possible with different

types of direct coupling.

4. An effect similar to amplitude death with suppressed dynamics with

small oscillations is also observed in the case of driven systems.

5. Hence, the method is established as general and effective for controlling

the dynamics and inducing amplitude death in connected systems.

In the next chapter, we further extend our mechanism for suppression of

dynamics in complex network of dynamical systems.
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Chapter 6

Amplitude death in complex

networks induced by

environment

In chapters 4 and 5, we have discussed a mechanism for inducing amplitude

death in coupled synchronizable systems. In this chapter, we extend this

to the case of a complex network of N systems. We develop the stability

analysis following the approach given in Ref. [218]. The stability conditions

are obtained for the general case. We consider different network structures

and show that, the critical strength of coupling needed for amplitude death

has a universal relation with the largest non-zero eigenvalue of the coupling

matrix. This is verified by extensive numerical studies on many networks

like chain, ring, tree, lattice, all-to-all, star and random topologies. The

work presented in this chapter has been published in Phys. Rev. E 85,

046211 (2012) [219].
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6.1 Amplitude death via direct and indirect

coupling

We consider the dynamics of N systems xi, i = 1, 2, . . . , N , in a network,

coupled with two types of couplings, namely a direct diffusive coupling and

an indirect coupling through an environment as an extension of the model

given in chapter 4 which gave a general model for amplitude death in two

coupled systems. The dynamics of such a model is given by

ẋi = f(xi) +
∑

j

βGijǫdxj + ǫeγw

ẇ = −κw − ǫe

N
γT
∑

i

xi (6.1)

where i, j = 1, 2, ...N . Here, xi represents m-dimensional nonlinear oscilla-

tors whose intrinsic dynamics is given by f(xi). G is the coupling matrix

of dimension N × N . We choose the elements of G such that, the row-sum,
∑

j Gij = 0, for every j. This ensures that the largest eigenvalue of the cou-

pling matrix µ1, is zero. β is a matrix (m × m) with elements 0 and 1 and

defines the components of xi which take part in the coupling. For simplicity,

we take β to be diagonal, β = diag(β1, β2, . . . , βm) and in numerical simula-

tions, only one component, β1 is assumed to be non-zero. The environment

is considered to be common to all nodes and modelled by a one-dimensional

over-damped oscillator w, with damping parameter κ. It is clear that with-

out feedback from the systems, the environment can not remain dynamic

and will rapidly settle to a steady state. However, the feedback from all the

systems keeps it active. All the systems, in turn, get feedback from the envi-

ronment. γ is a column matrix (m× 1), with elements 0 or 1, and it decides

the components of xi that get feedback from the environment. γT is the

transpose of γ and decides the components of xi which gives feedback to the

environment. The strength of this feedback coupling between the systems

and the environment is given by ǫe.

We illustrate our scheme using a network of coupled chaotic Rössler sys-
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Figure 6.1: Time series of the first variables xi1 of 10 coupled Rössler systems

in all-to-all coupled network [Eq. (6.2)] showing amplitude death for (ǫd, ǫe) =

(0.05, 0.8). Here, the Rössler parameters are a = b = 0.1, c = 18. The damping

parameter of the environment is taken to be κ = 1.

tems represented by the following equations:

ẋi1 = −xi2 − xi3 + ǫd

∑

j

Gijxj1 + ǫew,

ẋi2 = xi1 + axi2,

ẋi3 = b+ xi3(xi1 − c),

ẇ = −κw − ǫe

N

∑

i

xi1. (6.2)

Here, we choose G to be an all-to-all connected network of 10 nodes, that is,

Gij = 1, if j 6= i and Gii = −9. We find that amplitude death is possible

for suitable values of coupling strengths. The time series for the amplitude

death state is shown in Fig. 6.1.

As noted from Eq. (6.2), our model has two types of coupling. The first

is direct diffusive coupling which tends to synchronize the systems x1 = x2 =

x3 = . . . = xN . We find that, the coupling via environment has a tendency

to decrease the sum,
∑

i xi. When both these tendencies work together the

systems converge to a fixed point. This is explicitly seen in the context of

two systems coupled through the environment discussed in Chapter 4, where

the environmental coupling reduces the sum to a small value, corresponding

to antiphase synchronization.
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6.2 Linear stability analysis

The stability of the steady state of the network of coupled systems given

in Eq. (6.1) can be analysed by writing the variational equations formed by

linearising Eq. (6.1) as

ξ̇i = f ′(xi)ξi +
∑

j

βGijǫdξj + ǫeγz,

ż = −κz − ǫe

N
γT
∑

i

ξi, (6.3)

where ξi and z are small deviations from the respective values of xiand y, f ′

is the m×m Jacobian matrix.

Let us introduce the m×N state function [218]

Ξ = (ξ1, ξ2, . . . , ξN). (6.4)

Then, Eq. (6.3) for the synchronized state [x1 = x2 = . . . = xN ] can be

written as

Ξ̇ = f ′Ξ + βǫdΞGT + ǫezΓ, (6.5)

ż = −κz − ǫe

N
γT
∑

i

ξi, (6.6)

where GT is the transpose of the coupling matrix, Γ is a m × N matrix,

Γ = (γ, γ, . . . , γ) .

Let ek be an eigenvector of GT such that

GT ek = µkek, (6.7)

where µk is an eigenvalue of GT . Right-multiplying both sides of Eq. (6.5)

with ek, we get

Ξ̇ek = f ′Ξek + µkβǫdΞek + ǫezΓek. (6.8)
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Let

Φk = Ξek. (6.9)

Then, Eq. (6.8) can be written as

Φ̇k = f ′Φk + µkβǫdΦk + ǫezΓek. (6.10)

We note that e1 = (1, 1, . . . , 1)T is the synchronization manifold and Φ1 =

Ξe1 =
∑

i ξi. Since one could write Γ as the product Γ = γeT
1 , Eq. (6.10) and

(6.5) can be written as

Φ̇k = f ′Φk + µkβǫdΦk + ǫezγe
T
1 ek, (6.11)

ż = −κz − ǫe

N
γT Φ1. (6.12)

First, we consider the case where G is taken to be a symmetric matrix.

In this case, the remaining eigenvectors span a (N−1)-dimensional subspace

orthogonal to the eigenvector e1 . Consequently, this subspace is orthogonal

to the synchronization manifold. For k = 1, Eq. (6.11) and becomes

Φ̇1 = f ′Φ1 + ǫezNγ. (6.13)

Since ei are orthogonal, Γek = γeT
1 ek = 0 for k 6= 1. Therefore, For k 6= 1,

Eq. (6.11) reduces to

Φ̇k = f ′Φk + µkβǫdΦk. (6.14)

We note that Eqs. (6.13) and (6.12) are coupled while Eq. (6.14) is inde-

pendent of the other two. Moreover, Eq. (6.14) is equivalent to the Master

Stability Equation introduced by Pecora and Carrol in Ref. [141]. Therefore,

the stability function for any given system will be obtained as a function of

ǫdµk in the same way. This therefore ensures the stability of the synchro-

nized state x1 = x2 = x3 = . . . = xN . As noted in the previous section, for

the amplitude death state to be stable, we need one more condition to be

satisfied. That is, the synchronized state should be a fixed point. For this,

the eigenvalues of the Jacobian corresponding to the coupled system given
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in Eqs. (6.13) and (6.12) should be negative.

So far, we have discussed the case where the coupling matrix, G is sym-

metric. The same analysis can be extended to the asymmetric case as well.

In this case, the eigenvectors of G are, in general, not orthogonal to the

synchronization manifold.

Let ek, for k 6= 1 be split to two components, one parallel and the other

perpendicular to e1. That is,

ek = e⊥
k + q‖e1, (6.15)

where, e⊥
k is orthogonal to e1. Substituting ek from Eq. (6.15) in Eq. (6.10),

we find that the dynamics of Φ1 and z will again be the same as given in

Eqs. (6.13) and (6.12) . The dynamics of Φk, k > 1 are given by

Φ̇k = f ′Φk + µkβǫdΦk + ǫezNγq‖ (6.16)

since, Γe⊥
k = γeT

1 e
⊥
k = 0. In principle, the coupled equations, Eqs. (6.13),

(6.16) and (6.12) can be considered as Master Stability Equation in this

case also. However, in this case it is not practically useful since the Master

Stability function will be a function of four parameters ǫd, a, b and ǫe, with

µk = a+ ib.

To continue the analysis of the stability of the amplitude death states

from Eqs. (6.13), (6.12) and (6.14), we assume that the time average values

of f ′ are approximately the same and can be replaced by an effective constant

value α. Thus, Eq. (6.14) becomes

Φ̇k = αΦk + µkǫdΦk, (6.17)

and the corresponding Lyapunov exponent is given by

λ1 = α+ µ2ǫd, (6.18)

88



where µ2 is the largest µk for k 6= 1.

The Jacobian corresponding to the coupled Eqs. (6.13) and (6.12) is

J =





α ǫeN

−ǫe/N −κ



 ,

and the eigenvalues are

λ2,3 =
(α− κ) ±

√

(κ+ α)2 − 4ǫ2
e

2
. (6.19)

For the stability of the amplitude death state, the real parts of the eigen-

values should be negative. Thus Eq. (6.18) gives the condition

α+ µ2ǫd < 0, (6.20)

while from Eq. (6.19) we get the following conditions.

(1) If (κ − α)2 < 4(ǫ2
e − ακ), λ2,3 are complex and the condition of stability

is

κ > α. (6.21)

(2) If (κ−α)2 > 4(ǫ2
e −ακ), λ2,3 are real and the stability condition becomes

κ > (α) and ǫ2
e > (ακ). (6.22)

Thus, if Eqs. (6.20) and (6.21) or (6.22) are simultaneously satisfied, the oscil-

lations can not occur and the systems stabilize to a steady state of amplitude

death.

For a given κ, α and µ2, the transition to amplitude death occurs at

critical coupling strengths ǫdc and ǫec independent of each other. That is

ǫdc = const (6.23)
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and

ǫec = const (6.24)

For different network configurations µ2 is different and the transition occurs

at the critical coupling strength

ǫdc =
−α
µ2

. (6.25)

In the case where G is asymmetric, using the approximation f ′ ∼ α as

explained above, we can write the Jacobian corresponding to Eqs. (6.13),

(6.16) and (6.12) as

J =











α+ µ2βǫd ǫezNγq‖ ǫeNγq‖

0 α+ µ2ǫd ǫeN

0 −ǫe/N −κ











,

and the eigenvalues are the same as given in Eq.( 6.19). Thus, we get the

same stability relations as in Eqs. (6.20), (6.21) and (6.22).

6.3 Numerical analysis

In this section, we apply our scheme to different network topologies, taking

the Rössler system as a standard nodal dynamics.

6.3.1 Network of Rössler systems

First, we apply the scheme of coupling introduced in Eq. (6.1) to the case

of regular networks of coupled chaotic Rössler systems. Here, we take the

coupling to be of diffusive type [Eq. 6.2]. The occurrence of amplitude death

in the case of regular all-to-all coupled network is illustrated in Fig. 6.1.

To characterize the state of amplitude death, we use an index A intro-
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duced in Chapter 4. It is defined as the difference between the global max-

imum and global minimum values of the time series of the system over a

sufficiently long interval. The value of A is found out for each system, and

their average < A > is calculated. The case where < A >= 0 represents the

state of amplitude death, while < A >6= 0 indicates oscillatory dynamics.

The parameter value at which < A > becomes ∼ 0 is thus identified as the

threshold for onset of stability of amplitude death states.

For a given network topology, the threshold value of coupling strengths

for the onset of amplitude death is given by Eqs. (6.23) and (6.24). This is

verified for the case of all-to-all coupled network of Rössler systems by direct

numerical simulations. Using the index < A > the regions of amplitude death

states are identified in the parameter plane of coupling strengths, ǫe–ǫd, and

is shown in Fig. 6.2. The transition curves from the stability analysis given

in Eq. (6.23) and (6.24) are also plotted. We see that the agreement is good.

We also verify numerically the criteria for transition to amplitude death

given in Eq. (6.22). For this, the numerically obtained values of ǫ2
ec are

plotted against κ in Fig. 6.3. The line correspond to the stability condition

Eq. (6.22) and the points are obtained from numerical simulations. As we

can see from Fig. 6.3, the agreement is good for larger values of κ. However,

for small values of κ, the points deviate from straight line behaviour. The

reason is clear from Eq. (6.21) which gives the lower limit on κ.

The nature of the transitions to the state of amplitude death is further

characterized by fixing one of the parameters ǫe or ǫd and increasing the other.

In Fig. 6.4 < A > of the coupled system given in Eq. 6.2 for increasing ǫe for

a chosen value of ǫd. Here, the transition from oscillatory state to amplitude

death state is continuous such that, as the coupling strength is increased, the

amplitude of oscillations gradually decreases to zero. Numerically, we also

observe that, at each node the sub-systems undergo a reverse period-doubling

sequence to limit cycle before undergoing a transition to the amplitude death

state, similar to the case of two coupled Rössler systems reported earlier in
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Figure 6.2: Transition from region of oscillations (I) to region of amplitude

death (II) is shown in the parameter plane ǫe–ǫd for the coupled Rössler systems.

Numerical simulations are done on a symmetric, all-to-all coupled network of 10

nodes. The points mark the parameter values (ǫec,ǫdc) at which the transition to

amplitude death occurs. Solid triangles show the transition to amplitude death

as ǫd is increased for a constant ǫe. The horizontal line formed by these triangles

confirms the stability condition Eq. (6.23). Similarly, circles correspond to transi-

tion to amplitude death state as ǫe is increased for a constant ǫd and confirm the

stability condition of Eq. (6.24).

II

I

κ

ǫ
2 e

3210

0.6

0.3

0

Figure 6.3: Transition from region of oscillations (I) to region of amplitude death

(II) is shown in the parameter plane κ− ǫ2e for the coupled Rössler systems given

in Eq. (6.2). Here, an all-to-all coupled network of 10 nodes is used. The points of

amplitude death are obtained numerically when the index < A > becomes zero.

Solid curve is a linear fit corresponding to the stability condition Eq. (6.22). The

deviation from straight line behaviour for small values of κ is discussed in the text.
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Figure 6.4: The index < A > as a function of ǫe for a fixed value of ǫd = 0.4 for

an all-to-all coupled network of 10 Rössler systems. As ǫe is increased, we observe

a continuous transition to the state of amplitude death (ǫec ∼ 0.45).

chapter 4. Similar transition is observed for the case where ǫe is kept fixed

and ǫd is increased.

So far, we have presented the results from numerical simulations of Eq. (6.2)

in an all-to-all coupled network. We have repeated the study in other network

configurations such as chain, ring, tree, lattice, star and random topologies.

These different types of networks are illustrated in Fig. 6.5. In Fig. 6.6, we

show the regions of amplitude death states in the parameter plane of cou-

pling strengths, ǫe–ǫd for three networks of different topologies. We see that,

the critical strength of coupling via environment ǫec is independent of the

network topology. On the other hand, the critical strength of direct coupling

for amplitude death, ǫdc varies with the largest non-zero eigenvalue of the

coupling matrix G, as given in Eq. (6.25).

To verify this, we consider symmetric and asymmetric matrices of differ-

ent topologies and sizes. With each network considered, the largest non-zero

eigenvalue, µ2 of the corresponding coupling matrix G is calculated. The crit-

ical value of coupling, ǫdc is obtained from numerical simulations of Eq. (6.2)

and is plotted against the corresponding µ2 in Fig. 6.7. A universal relation

between the critical coupling strength and largest non-zero eigenvalue of the

coupling matrix, as given by Eq. (6.25) is clearly seen. A similar insensitivity

of the transition to amplitude death, to the network structure is reported in
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Figure 6.5: Schematic illustrations for some networks used in the study (a) a chain

network (N = 6), (b) a ring network with nearest neighbour coupling (N = 10),(c)

an all-to-all coupled network (N = 6), (d) a tree network (N = 15), (e) a lattice

(N = 16), (f) a star network (N = 10), and (g) a random network (N = 10).
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Figure 6.6: Transition from region of oscillations (I) to region of amplitude death

(II) is shown in the parameter plane ǫe–ǫd for coupled Rössler systems in three dif-

ferent networks. (a) all-to-all coupled network of 6 nodes (Fig. 6.5(c)), (b) Star net-

work of 10 nodes (Fig. 6.5(f)), and (c) Random network of 10 nodes (Fig. 6.5(g)).

We note that, ǫec is independent of the network topology while ǫdc varies from

network to network.

the case of time-delay coupled Rössler systems in Ref. [196] where, the small-

est eigenvalue of the adjacency matrix of the network is found to determine

the size of the death island.

The study reported above have been carried out using networks of size up

to 16 nodes. However we have repeated the study for random networks up to

size N = 100 and amplitude death is found to occur in such large networks

also.

6.3.2 Network of Landau-Stuart oscillators

We repeat the study with a network of Landau-Stuart oscillators, given by

the following equations,

ẋi1 = (1 − x2
i1 − x2

i2)xi1 − 2xi2 + ǫd

∑

j

Gijxj1 + ǫew,

ẋi2 = (1 − x2
i1 − x2

i2)xi2 + 2xi1,

ẇ = −κw − εe

N

∑

i

xi1. (6.26)
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N asymmetric, all cases

⊙ symmetric, all cases

µ2

ǫ
d
c

0-5-10

1.6

0.8

0

Figure 6.7: Critical strength of direct coupling ǫdc for amplitude death as a func-

tion of the largest non-zero eigenvalue of the coupling matrix, µ2. Here points

correspond to values obtained from numerical simulations, while the line corre-

spond to the stability condition in Eq. (6.25). Open circles represent symmetric

networks of different topologies such as chain, ring, all-to-all-coupled, tree, lattice,

star and random. Similarly, filled triangles represent asymmetric networks of dif-

ferent topologies such as chain, ring, tree, star and random. For the asymmetric

networks, µ2 is, in general, complex. Hence, the real part of µ2 is plotted here.

The parameters of the Rössler system are the same as that used in Fig. 6.1. The

parameters in the coupling terms are ǫe = 0.8 and κ = 1.
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Figure 6.8: Time series of the variable xi1 of the 10 Landau-Stuart network in an

all-to-all coupled network in amplitude death state (ǫd, ǫe, κ) = (0.2, 3.5, 1).

For numerical simulations, we take an all-to-all coupled network of 10 nodes.

We find that amplitude death is possible in this case also. This is illustrated

in the time series shown in Fig. 6.8. The region of amplitude death in the

parameter plane of coupling strengths, ǫe–ǫd, is identified using the index

< A > and is shown in Fig. 6.9.

We repeat the study with many networks of different topologies and sizes.

We find that, the stability condition given by Eq. (6.25) is satisfied in this

case as well. This is shown in Fig. 6.10.

6.4 Discussion

In this chapter, we have discussed the occurrence and characterization of

amplitude death in complex network of nonlinear oscillators, caused by inter-

actions with a common environment. We have developed a stability analysis

to obtain the criteria for the onset of amplitude death. The transition curves

obtained from the stability analysis matches well with those obtained from

direct numerical simulations.

However, we note that exact agreement with stability theory as shown

in Fig. 6.2 is seen only for Rössler type nodal dynamics. For a network of
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Figure 6.9: Transition from region of oscillations (I) to region of amplitude death

(II) is shown in the parameter plane ǫe–ǫd for 10 coupled Landau systems on a

symmetric, all-to-all coupled network [Eq. (6.26)]. The points mark the parame-

ter values (ǫec,ǫdc) at which the transition to amplitude death occurs. Here, the

intrinsic parameter of the systems and the damping parameter of the environment

are chosen to be ω = 2 and κ = 1 respectively. We use the same set of initial

conditions for any pair of (ǫe,ǫd) values.

coupled Landau-Stuart oscillators, we observe some deviations between the-

oretical and numerical transition curves (Fig. 6.9). This can be explained as

follows. Towards the end of the stability analysis, we have used an approx-

imation of constant Jacobian f ′, which masks the system-specific details of

the transition, but gives the overall features of the phase diagram. Hence the

conditions Eqs. (6.23) and (6.24) are approximate and one must investigate

in a specific case to see any departures from them.

For both Rössler and Landau-Stuart in the amplitude death state, the

Jacobian f ′ depends on ǫe, but not on ǫd. Hence, the condition (6.24), i.e.

ǫec = const, obtained from Eq. (6.22) which is derived from Eqs. (6.12) and

(6.13), is independent of ǫd for both Rössler and Landau-Stuart as can be

seen from Figs. 6.2 and 6.9.

The other condition Eq. (6.23), i.e. ǫdc = const, is obtained from Eq. (6.20)

which is derived from Eq. (6.14). Since Eq. (6.14) depends both on ǫd and
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Figure 6.10: Critical strength of direct coupling ǫdc for amplitude death as a func-

tion of the largest non-zero eigenvalue of the coupling matrix, µ2 for Landau-Stuart

oscillators. Here points correspond to values obtained from numerical simulations,

while the line correspond to the stability condition in Eq. (6.25). Open circles

represent symmetric all-to-all coupled networks of different sizes and filled squares

represent symmetric networks of chain topology of different sizes. The parameters

in the coupling terms are ǫe = 4.0 and κ = 1.
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indirectly on ǫe through the Jacobian f ′, ǫdc will now depend on ǫe for both

Rössler and Landau-Stuart. In the case of Rössler network, as explained

earlier, the Jacobian has a simple structure and the dependence of ǫdc on ǫe

is weak giving almost a straight line as in Fig. 6.2.

In the case of coupled Rössler systems, we note from numerical simula-

tions that the amplitude death state correspond to the stable fixed point of

Eq. (6.2), given by

x∗
i1 = (c−

√

c2 − 4abκ/(κ− ǫ2
ea))/2,

x∗
i2 = −x∗

i1/a,

x∗
i3 = −b/(x∗

i1 − c),

w∗ = −ǫex
∗
i1/κ. (6.27)

The Jacobian corresponding to Eq. (6.2) is given by

J =













µǫd −1 −1

1 a 0

2b

c+
√

c2−4abκ/(κ−ǫ2
e
a)

0 − c+
√

c2−4abκ/(κ−ǫ2
e
a)

2













.

and the corresponding characteristic equation is

0 = −λ3 + (µǫd + a+ x∗
1 − c)λ2

+(−µǫd(a+ x∗
1 − c) − a(x∗

1 − c) + x∗
3 − 1)λ

+(µǫda(x∗
1 − c) + (x∗

1 − c) − ax∗
3) (6.28)

In the amplitude death state, the real parts of all the eigenvalues of this

Jacobian are negative. Therefore, at the transition to amplitude death state

(ǫe = ǫec and ǫd = ǫdc ), the largest eigenvalue is pure imaginary, given by

λ = iβ. (6.29)

Substituting Eq. (6.29) in Eq. (6.28) and equating both the real and imagi-
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nary parts to separately we get

−β3 = β(−µǫd(a+ x∗
1 − c) − a(x∗

1 − c) + x∗
3 − 1) (6.30)

and

0 = (µǫd + a+ x∗
1 − c)(−µǫd(a+ x∗

1 − c) − a(x∗
1 − c) + x∗

3 − 1)

+(µǫda(x∗
1 − c) + (x∗

1 − c) − ax∗
3). (6.31)

Substituting the value of the fixed point from Eq. (6.27) and solving for ǫdc

numerically, we see that the dependence of ǫdc on ǫe is weak, giving almost a

straight line as in Fig. 6.2.

In the case of Landau-Stuart network, the amplitude death state corre-

sponds to the fixed point of the coupled system Eq. (6.26), given by

x∗
i1 = ±

√

1 + 8
ǫ2

e

− ǫ2
e +

√

−16 + ǫ4
e −

√
−16+ǫ4

e

ǫ2
e√

2

x∗
i2 =

1

−2 + 2ǫ2
e

(±2
√

2

√

√

√

√

√1 +
8

ǫ2
e

− ǫ2
e +

√

−16 + ǫ4
e −

√

−16 + ǫ4
e

ǫ2
e

±
ǫ2

e

√

1 + 8
ǫ2

e

− ǫ2
e +

√

−16 + ǫ4
e −

√
−16+ǫ4

e

ǫ2
e√

2

∓
ǫ4

e

√

1 + 8
ǫ2

e

− ǫ2
e +

√

−16 + ǫ4
e −

√
−16+ǫ4

e

ǫ2
e√

2

∓
ǫ2

e(1 + 8
ǫ2

e

− ǫ2
e +

√

−16 + ǫ4
e −

√
−16+ǫ4

e

ǫ2
e

)3/2

2
√

2
) (6.32)

and the Jacobian corresponding to Eq. 6.13 is given by

J =





1 − 3x∗2
i1 − x∗2

i2 + µǫd −2x∗
i1x

∗
i2 − 2

−2x∗
i1x

∗
i2 + 2 1 − x∗2

i1 − 3x∗2
i2



 .

Here also, we proceed to find the eigenvalues of this Jacobian and substitute
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the value to be λ = iβ, as in the case of coupled Rössler systems. We find

that, the dependence of ǫdc on ǫe is a polynomial relation explaining the curve

obtained for numerical simulations (Fig. 6.9).

In the context of Landau-Stuart oscillators, there is an additional com-

plexity due to bistability, with oscillations and amplitude death co-existing

with different basins. This bistability has been reported earlier in the case

of amplitude death in Landau-Stuart oscillators [175,215]. Such a bistability

does not exist for Rössler systems. In Fig. 6.9, we have used the same set of

initial conditions for any pair of (ǫe,ǫd) values. For a different set of initial

conditions, the critical coupling curve in Fig. 6.9 can shift slightly though

the general features will remain the same.

Thus,

1. We show that coupling via a dynamic environment induces amplitude

death in a complex network of coupled nonlinear systems.

2. Our method involves a single damped dynamical system coupled to all

nodes equally

3. The method introduced here works in complex networks of different

topologies.

4. Using the master stability formalism, the threshold values of the cou-

pling strengths for amplitude death are obtained for the general case.

5. A universal relation between the largest eigenvalue of the coupling ma-

trix and the critical value of coupling is shown to exist, independent of

the coupling topology.
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Chapter 7

Effect of the environment on

the dynamics of coupled

neurons

7.1 Introduction

In chapter 3, we have described a simple coupling scheme to realize in-phase

or antiphase synchronization in two chaotic systems. We have introduced a

mechanism for inducing amplitude death in coupled synchronizable systems

in chapter 4. Later, we have extended this mechanism for amplitude death

to the case of a complex network of coupled oscillators. In all these cases, the

emergent dynamics was brought about by the interactions with a common

medium which had its dynamics modulated by the feedback from the systems.

This type of coupling is very relevant in the case of biological systems where

they interact through chemicals in the surrounding medium. In this chapter,

we present the effects of indirect coupling via a dynamic environment on the

dynamics of coupled neurons. In the context of neurons, the environment can

be extracellular fields or charges or chemicals that can alter the synapses. The

dynamics of a single neuron can be modeled by an excitable system of the
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type introduced in chapter 1.

7.2 Coupled neurons

Here we consider the case where two uncoupled neurons are interacting with

a common medium. We show that, both in-phase and antiphase synchro-

nization are possible for suitable choice of parameters. In this context, we

mention that most studies on synchronization of neurons include direct inter-

action between them [220–224]. There are studies where neurons are driven

to synchronization by a common noisy background [148]. Here, we report

how synchronization is possible by indirect interaction through a common

shared environment or medium.

7.2.1 In-phase and antiphase synchronization due to

indirect coupling via environment

We consider two neurons whose dynamics is represented by the Hindmarsh-

Rose model [26]. They are coupled through a common medium as given by

the following equations

ẋi1 = xi2 + ax2
i1 − x3

i1 − xi3 + I + ǫ1βiw,

ẋi2 = 1 − bx2
i1 − xi2,

ẋi3 = −rxi3 + sr(xi1 + c),

ẇ = −κw − ǫ2

2

∑

i=1,2

βixi1. (7.1)

Here, xi1, xi2 and xi3 represents the variables of the Hindmarsh-Rose neuron

model, w represent the environment, with κ as its damping parameter. We

choose the intrinsic parameters a, I, b, ρ, s and χ of the neuron model such

that the system is in chaotic bursting state. We find that, both in-phase

and antiphase synchronization are possible for suitable values of ǫ1, ǫ2, β1
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Figure 7.1: Time series of the first variable xi1 of two environmentally cou-

pled Hindmarsh Rose neurons showing synchronization of bursts (a) In-phase

synchronization (ǫ1 = ǫ2 = 0.4, β1 = −β2 = 1)(b) antiphase synchronization

(ǫ1 = ǫ2 = 0.4, β1 = β2 = 1). Here, the parameters of the individual neuron are

a = 3,b = 5,r = 0.005,s = 4,c = 1.6,I = 3.05 such that their intrinsic dynamics is

chaotic. The synchronized state obtained is periodic in this case.

and β2. When β1 = +1 and β2 = −1, we observe in-phase synchronization of

bursts, as shown in the time series in Fig. 7.1(a). When the coupling strength

is increased, we see that the spikes becomes synchronized, corresponding

to complete synchronization. When β1 = β2 = +1, we observe antiphase

synchronization of bursts, as shown in the time series in Fig. 7.1(b).

To identify states of in-phase and antiphase synchronization precisely, we

need to define the phase of the systems. Since the synchronization is with

respect to the bursts, the instantaneous phase is defined [225] as

φ(t) = 2π
t− τk

τk+1 − τk

, (7.2)

where, τk is the time of the kth burst. To find τk from the time series of the

variable xi1 is not easy. However, we find that, oscillations in the slow variable

xi3 corresponds to the bursts in xi1, as shown in Fig. 7.2. Therefore, we take

τk to be the time the kth oscillation in xi3 begins, defined in simulations as

the time the variable xi3 crosses a chosen Poincaré plane. ( Fig. 7.2 ). The

phase φ(t) and the phase difference ψ(t) between the two Hindmarsh-Rose

systems coupled through environment are calculated using Eq. (7.2). The
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Figure 7.2: (a) Time series of the xi1 variable of the Hindmarsh-Rose system show-

ing bursting behavior. (b) Time series of the slow variable, xi3, of the Hindmarsh-

Rose system showing oscillations corresponding to the bursts in xi1. The dashed

line represents a suitable Poincaré section.

mean phase difference over many cycles < ψ(t) > is then calculated, for the

the full parameter plane ǫ1–ǫ2 . The states with < ψ(t) >∼ 0 are identified

as states of in-phase synchronization. Similarly, the states with < ψ(t) >∼ π

corresponds to antiphase synchronization of bursts. This is shown in Fig. 7.3.

We see that, there are bands of synchronized and unsynchronized regions in

the parameter plane of coupling strengths. Transitions between these bands

follow the stability criterion given in Eq. 3.10, i.e. ǫ2c ∝ 1/ǫ1c. The qualitative

features of the burst changes as coupling strength (ǫ1 = ǫ2 = ǫ) increases.

Time series of the representative states from each band is shown in Fig. 7.4.
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Figure 7.3: (a) Regions of in-phase synchronization in the parameter plane of

coupling strengths ǫ1–ǫ2 in the case of two Hindmarsh-Rose neuron systems coupled

via environment (β1 = −β2 = 1). Points mark the parameter values at which

< ψ(t) >∼ 0. (b)Regions of antiphase synchronization in the parameter plane

of coupling strengths ǫ1–ǫ2 in the case of two Hindmarsh-Rose neuron systems

coupled via environment (β1 = β2 = 1). Points mark the parameter values at

which < ψ(t) >∼ π.

7.2.2 Amplitude death via direct and indirect coupling

in two neurons

Neurons make functional contact with other neurons or other cells of the mus-

cles and glands through what are called synapses. Synapses can be electrical

or chemical. The coupling due to electrical interactions is linear and depends

on the difference between the membrane potentials. In the synaptic case,

the coupling is pulsative and is modeled as a static sigmoid input-output

function with a threshold and saturation [226].

Here, we consider how an environment can affect the dynamics of the

neurons which are also coupled directly by electrical or chemical connections.
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Figure 7.4: Time series of the xi1 variable of the two coupled Hindmarsh-Rose

systems showing in-phase (a–c) and antiphase (d–f) synchronization. (a) In-phase

synchronization of bursts for ǫ1 = ǫ2 = 0.5 and β1 = −β2 = 1, (b) in-phase

synchronization of bursts for ǫ1 = ǫ2 = 1.0 and β1 = −β2 = 1, (c) in-phase

synchronization of bursts for ǫ1 = ǫ2 = 1.5 and β1 = −β2 = 1, (d) antiphase

synchronization of bursts for ǫ1 = ǫ2 = 0.4 and β1 = β2 = 1, (e) antiphase

synchronization of bursts for ǫ1 = ǫ2 = 0.8 and β1 = β2 = 1, and (f) antiphase

synchronization of bursts for ǫ1 = ǫ2 = 1.2 and β1 = β2 = 1.
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Gap-junction or electrical coupling

Neurons in many parts of the nervous system as well as in certain cells of the

heart and pancreas interact by gap junctions. Electrical synapses via gap-

junctions are bidirectional and is suitable for high speed transfer of signals.

They are thus used mostly for defensive reflexes [227,228].

We now consider the dynamics of two Hindmarsh-Rose systems coupled

mutually with two types of couplings, namely a direct diffusive coupling

and an indirect coupling through an environment, given by the following

equations.

ẋi1 = xi2 − x3
i1 + ax2

i1 − xi3 + I + ǫew + ǫg(xj1 − xi1)

ẋi2 = 1 − bx2
i1 − xi2

ẋi3 = ρ(s(xi1 + χ) − xi3)

ẇ = −κw − ǫe

2

∑

i

xi1 (7.3)

Here, ǫg is the strength of the gap-junction coupling. This type of coupling

via gap-junction is reported to synchronize the neurons [223, 229]. We take

the strength of the coupling via environment to be ǫ1 = ǫ2 = ǫe. We see that,

when both ǫe and ǫg are sufficiently large, the systems stabilize to a state of

amplitude death. This is illustrated in the time series given in Fig. 7.5.

To identify states of amplitude death, we use the index < A > defined

earlier in chapter 4. The case where < A >∼ 0 indicates states of ampli-

tude death, while < A >6= 0 indicates oscillatory dynamics. The regions

of amplitude death in the parameter plane of coupling strengths, ǫe – ǫg is

shown in Fig. 7.6. Further, we study the nature of the transition to ampli-

tude death state. In Fig. 7.7, the average value of the index < A > is plotted

as one of the coupling strengths is increased, while keeping the other fixed.

In Fig. 7.7(a) we see that, as the coupling strength, ǫe, is increased keeping

ǫg fixed, the index < A > gradually decreases and becomes zero at the am-

plitude death state. Thus, the transition is continuous. Similar transition is
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Figure 7.5: Time series of the first variable xi1 of the two coupled Hindmarsh-

Rose systems showing amplitude death for (ǫg, ǫe, κ) = (1.0, 1.5, 1.0). Here, the

parameters of the individual neuron are taken to be a = 3, b = 5, r = 0.006, s = 4,

c = 1.6, I = 3.2.
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Figure 7.6: Regions of amplitude death in the parameter plane of coupling

strengths ǫe–ǫg for the coupled Hindmarsh-Rose neurons (Eq. 7.3).
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Figure 7.7: (a) The index < A > plotted as a function of ǫe for a fixed value of

ǫg = 1.0 for two coupled Hindmarsh-Rose systems (Eq. 7.4). (b) The index < A >

plotted as a function of ǫg for a fixed value of ǫe = 1.5. As ǫe or ǫg is increased,

we observe a continuous transition to the state of amplitude death.

seen in Fig. 7.7(b), where ǫe is kept fixed and ǫg is increased.

Synaptic coupling

Chemical synapses are the primary means of signal transmission between

neurons. It is known that activity driven modification in synaptic connections

accounts for development and learning [230, 231]. So also, disruptions to

the synaptic connections can lead to neuronal dysfunctions and neuronal

disorders [232,233].

Here, we consider two neurons with excitatory synaptic coupling between

them and introduce an indirect coupling as given by the following equations

ẋi1 = xi2 − x3
i1 + ax2

i1 − xi3 + I +

ǫew + ǫs
Vr − xi1

1 + exp(−λ(xj1 − θ))
,

ẋi2 = 1 − bx2
i1 − xi2,

ẋi3 = ρ(s(xi1 + χ) − xi3),

ẇ = −κw − ǫe

2

∑

i

xi1. (7.4)
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Figure 7.8: Time series of the variable xi1 of two Hindmarsh-Rose systems given

in Eq. 7.4 showing amplitude death for the coupling strengths (ǫs, ǫe) = (0.2, 3.5).

Here, the parameters of the intrinsic system are the same as that in Fig. 7.5. The

parameters in the coupling terms are chosen to be Vr = 3, θ = −0.25, λ = 10 and

κ = 1.

Here, the direct coupling is of synaptic type, given by the sigmoidal term in

the first equation. The parameters of the synaptic coupling term are chosen

such that, the synapse is excitatory [224]. The strength of synaptic coupling

is given by ǫs. When ǫe = 0, and ǫs is sufficiently large, the bursts of both

neurons become synchronized. For larger values of ǫs and ǫe, we observe

amplitude death. This is illustrated in the time series in Fig. 7.8. The region

of amplitude death in the parameter plane of coupling strengths is shown

in Fig. 7.9. As we keep one of the coupling parameters fixed (ǫe or ǫs), and

increase the other, we observe transition to amplitude death state and again

re-entrant behavior to spikes.

7.3 Neuronal networks

Gap-junction coupling

We consider the dynamics of N Hindmarsh-Rose neuron models xi, i =

1, 2, . . . , N , in a network, coupled with two types of couplings, namely a

coupling via gap junction and an indirect coupling via an environment. The
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Figure 7.9: Region of amplitude death (black) in the parameter plane of coupling

strengths ǫe–ǫs for two coupled Hindmarsh-Rose neurons.

dynamics of such a model is given by

ẋi1 = xi2 − x3
i1 + ax2

i1 − xi3 + I

+
∑

j

Gijǫgxj1 + ǫew

ẋi2 = 1 − bx2
i1 − xi2

ẋi3 = ρ(s(xi1 + χ) − xi3)

ẇ = −κw − ǫe

N

∑

i

xi1. (7.5)

The neurons are coupled among themselves via gap junction coupling, with

coupling constant ǫg. The N × N coupling matrix G decides the coupling

among the neurons. The elements of G are chosen in a way so that the row-

sum,
∑

j Gij = 0, for every j, and thus the largest eigenvalue of the coupling

matrix µ1, is zero. The variable w represents the environment, whose intrinsic

dynamics is that of a one-dimensional over-damped oscillator with damping

parameter κ.The strength of this feedback coupling between the systems and

the environment is given by ǫe.

First, we choose G to be an all-to-all connected network of 10 nodes, that

is, Gij = 1, if j 6= i and Gii = −9. The occurrence of amplitude death in

this case is illustrated the time series in Fig. 7.10. The average of index A
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Figure 7.10: The time series of the x variable of all the 10 HR neurons in an

all-to-all network given in Eq. 7.5 showing amplitude death at coupling strength

(ǫg,ǫe) = (1.0,1.5). Other parameters are the same as in Fig. 7.5.

is calculated for the full parameter plane ǫe – ǫg and the points where the

index < A > becomes nearly zero are shown in black in Fig. 7.11.

We observe that the nature of the transition to the state of amplitude

death in continuous, similar to the case of 2-coupled Hindmarsh-Rose systems

discussed earlier. We also notice from the time series and phase space plot

that as the coupling strength (ǫd or ǫe) increases, the coupled Hindmarsh-

Rose systems undergo many transitions from bursting state to oscillatory

dynamics before going to the AD state. From the time series, we observe that,

when ǫe ∼ 0, the systems are in chaotic bursting state. As ǫe is increased, the

systems go to a periodic bursting state and then to a limit cycle state. As ǫe

is increased from this state, amplitude of this limit cycle decreases gradually.

When ǫe is increased above a threshold value, the systems reach the state of

amplitude death. Similarly, for a fixed value of ǫe, when ǫg is increased from

zero, the systems go from chaotic bursting state to periodic bursting state to

limit cycle state before reaching amplitude death when ǫg > ǫgc.

So far, we have presented the results from numerical simulations of Eq. (7.5).

Now, we consider many networks of various topologies and sizes. From nu-

merical simulations with networks of different topology, we see that the crit-

ical strength of coupling via environment,ǫec, remains constant while the

critical strength of coupling via gap-junction,ǫgc, varies. For each network

topology considered, we calculate the eigenvalues of the corresponding cou-
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Figure 7.11: Regions of amplitude death in the parameter plane of coupling

strengths, ǫe–ǫg, for the coupled Hindmarsh-Rose systems. Numerical simulations

are done on a symmetric, random network of 10 nodes. If we change the network

topology, then the curve representing transition to amplitude death as ǫg increases,

is found to change.

pling matrix G. From numerical simulations of Eq. 7.5 on these networks, we

obtain ǫgc. In Fig. 7.12, this is plotted against the largest non-zero eigenvalue

µ2 of the corresponding coupling matrix.

Synaptic coupling

We now extend the work to a network of synaptically coupled neurons given

by the following equations.

ẋi1 = xi2 − x3
i1 + ax2

i1 − xi3 + I +

ǫew + ǫs

∑

j

Gij
Vr − xi1

1 + exp(−λ(xj1 − θ))
,

ẋi2 = 1 − bx2
i1 − xi2,

ẋi3 = ρ(s(xi1 + χ) − xi3),

ẇ = −κw − ǫe

2

∑

i

xi1. (7.6)
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Figure 7.12: Critical strength of coupling via gap junction for amplitude death as a

function of the largest non-zero eigenvalue of the coupling matrix, µ2. Here, points

are obtained from numerical simulations and the line correspond to a numerical fit

to Eq. 6.25 with α ∼ 1.2. Open circles correspond all-to-all networks of different

sizes (N = 2–10), filled circles correspond to chain of different sizes (N = 3–10)

and open triangles correspond to random networks of 10 nodes. The parameters

of the individual systems are the same as given in Fig. 7.5. The parameters in the

coupling terms are κ = 1 and ǫe = ǫec = 1.105.
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Figure 7.13: The time series of the x1 variable of all the 10 Hindmarsh-Rose

neurons given in Eq. 7.6 showing amplitude death (ǫs, ǫe, κ) = (1.0, 2.0, 1.0).

From numerical analysis of the above equations, we see that, the systems

can be taken to a state of amplitude death for suitable values of coupling

strengths. The amplitude death state in this case is illustrated in Fig. 7.13.

In Fig. 7.14, we show the regions of amplitude death in the parameter plane of

coupling strengths, ǫd–ǫe. Black patches in Fig. 7.14 corresponds to regions of

amplitude death. White region includes synchronized bursts, desynchronized

states and sub-threshold oscillations.

The range of values of the three parameters ǫe, ǫs and κ for which am-

plitude death can occur is analysed by studying the bifurcation diagram in

which around fifty maxima in the voltage of the ith neuron, obtained by

keeping two of these parameters fixed and varying the third, are plotted in

Fig. 7.15. We note that, by tuning the decay parameter of the environment

or the coupling strengths, the suppression of neuronal activity or amplitude

death can be prevented.

7.3.1 Neuronal network with alternative models

So far, we have presented the results of numerical simulations of Hindmarsh-

Rose model neurons. We find that this method of inducing amplitude death

works in other models of neurons as well. In this section, we apply our

model to two other neuron models, namely, Hodgkin-Huxley [24] model and
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Figure 7.14: Regions of amplitude death in the parameter plane ǫe–ǫs for a net-

work of synaptically coupled Hindmarsh-Rose systems.

FitzHugh-Nagumo [25] model.

We now consider a network of 10 Hodgkin-Huxley neurons interacting

with a dynamic environment as given by the following equations

v̇i =
gKn

4(VK − vi) + gNam
3h(VNa − vi) + gL(VL − vi) + I

Cm

+ǫew +
ǫs

ni

∑

j

Aij
Vr − vi

1 + exp(−λ(vj − θ))

ṅi = αn(vi)(1 − ni) − βn(vi)ni

ṁi = αm(vi)(1 −mi) − βm(vi)mi

ṅi = αh(vi)(1 − hi) − βh(vi)hi

ẇ = −κw − ǫe

n

∑

j

vj

(7.7)
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Figure 7.15: Bifurcation diagram obtained by plotting the maxima of xi for suf-

ficiently long time. Here two of the three coupling parameters ( κ, ǫe, ǫs) are

kept constant at a chosen value, and the other parameter is increased in steps of

0.02. (a) increasing ǫs for (ǫe, κ) = (2, 1) (b) increasing ǫe for (ǫs, κ) = (1, 1) (c)

increasing κ for (ǫe, ǫs) = (2, 1). We see that quiescent states ( amplitude death )

occurs only for suitable combinations of the parameters.
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Figure 7.16: Time series of the voltage of 10 Hodgkin-Huxley neurons in a
network showing amplitude death for (κ,ǫe,ǫS) = (1,2,1).

where,

αn(v) =
0.01(v + 55)

1 − exp(−(v+55)
10

)

βn(v) = 0.125 exp(
−(v + 65)

80
)

αm(v) =
0.1(v + 40)

1 − exp(−(v+40)
10

)

βm(v) = 4 exp(
−(v + 65)

18
)

αh(v) = 0.07 exp(
−(v + 65)

20
)

βh(v) =
1

1 + exp(−(v+35)
10

)

(7.8)

We choose the intrinsic parameters of the systems to be I = 10, Cm = 1,

VNa = 50, VK = −77, VL = −54.4, gNa = 120,gK = 36 and gL = 0.3 such

that the neurons are in spiking state. The parameters in synaptic coupling

term are chosen to be Vr = 40, λ = 10 and θ = −40. Amplitude death is

observed for suitable values of the coupling constants. This state is shown in

Fig. 7.16.
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Figure 7.17: Time series of the xi variable of 10 coupled FitzHugh-Nagumo
neurons in a network showing amplitude death for (κ,ǫe,ǫs) = (1,4,0.5).

Network of FitzHugh-Nagumo neurons

We repeat the study with a network of FitzHugh-Nagumo neurons as given

by the following equations

ẋi = xi − x3
i

3
− yi

+ǫew +
ǫs

ni

∑

j

Aij
Vr − xi

1 + exp(−λ(xj − θ))

ẏi = µ(xi + a)

ẇ = −κw − ǫe

n

∑

j

xj

(7.9)

We simulate the above equations choosing the intrinsic parameters of the

systems to be a = 0.95, µ = 0.08. We find that amplitude death is possible

in this case as well. This is shown in the time series in Fig. 7.17.

7.4 Summary

In this chapter, we have reported the application of the method introduced in

the earlier chapters to the specific context of coupled neurons and neuronal

networks.
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1. We have shown that, the indirect interactions via a common medium

can take two uncoupled neurons to in-phase or antiphase synchronized

states.

2. This indirect interaction, when present with a direct interaction be-

tween the neurons is effective in inducing amplitude death in the sys-

tems.

3. By considering networks of neurons with different models, we show

that, the dynamics of the network will be suppressed due to its inter-

action with a common environment or medium.

4. Also, this suppression of activity can be controlled by tuning the pa-

rameters of the environment.

The interaction with a dynamic environment is particularly relevant in

the context of neurons since extracellular fields, charges or chemicals can alter

the synapses. As shown here, the disruption of collective activity can lead to

pathological cases like Alzheimer’s disease where, the dynamic environment

mimics interactions of neurons through proteins such as amyloid beta in the

surrounding medium.
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Chapter 8

Conclusions

This thesis is a study on the effects of a dynamic environment in controlling,

monitoring and influencing the dynamics of systems. We study this in the

context of two uncoupled chaotic systems interacting only through a dynamic

environment and suppression of dynamics in coupled systems when they are

influenced by a common environment. We extend this to complex networks

and show how the environment can drive the network to a state of amplitude

death. This is applied to a network of neurons with gap-junction and synaptic

coupling.

The novel features of the research reported in this thesis are

1. The decisive role played by the environment in the dynamics of con-

nected systems is brought out and the resultant emergent phenomena

studied for a variety of dynamics and interactions.

2. General stability analysis is developed in all cases, whose results are

supported by detailed and direct numerical simulations.

3. In the context of complex networks, the stability analysis developed

leads to a universal relation independent of network topology, connect-

ing the eigenvalue of the coupling matrix and the critical value of direct

coupling. This is verified by direct numerical simulations also.
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4. We propose that the method of inducing amplitude death introduced

here is a very general mechanism that is easy to implement to obtain

desirable steady states in many contexts.

5. We find that the role of the environment is especially relevant in the

context of neuronal networks where disruption of collective activity

can lead to pathological cases. Therefore, studies in this direction can

contribute to a comprehensive understanding of such cases and possible

prevention of undesirable effects.

We note that the work presented in this thesis has opened scope for

further research in various directions. Some of them are

1. In the work presented here, the environment is modeled by a single

shared variable. It will be more realistic to consider non-local effects

and heterogeneity in the environment.

2. Different types of dynamics like discrete systems and the corresponding

environmental effects will be interesting for further study for under-

standing diverse phenomena.

3. The investigations if further extended can help in understanding clinical

problems related to Alzheimer’s disease or other neurological disorders.

In this context, possibility of experimental measurements to establish

the interaction of neuron with amyloid beta is being investigated.

4. The ideas presented in this thesis can find applications in engineering,

one such case being the possibility of synchronizing large number of

electronic systems or power systems through electromagnetic interfer-

ence mediated interactions.
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fixed points, 7
synchronization, 35
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amplitude death, 49
environmental coupling, 33
equation, 5
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Synchronization, 20, 31, 38
anti, 21
anticipatory, 23
antiphase, 23
complete, 21
environmental coupling, 42
generalized, 21
Hindmarsh-Rose system, 104
in network, 26
lag, 23
Lorenz system, 42
manifold, 24, 27
phase, 21
Rössler system, 34
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stability, 24, 27
transition, 38

Time-delay system, 73
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