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Abstract 
Eukaryotic chromosomes are organized inside the nucleus in a three-dimensional 

assembly involving topological attachments of chromatin loops to a nuclear matrix or scaffold. 

The bases of loops which mediate attachment to the nuclear matrix for the formation of 

chromatin loops are known as matrix attachment regions (MARs). Formation of these matrix-

bound chromatin loops are facilitated by matrix-binding proteins which tether chromatin loops to 

the nuclear matrix. Matrix/Scaffold attachment regions (MARs/SARs) have been identified as 

AT-rich sequences which exhibit high affinity to nuclear matrix. These AT-rich regions are 

represented by a specialized DNA context that contains a cluster of sequences where one strand 

consists exclusively of well-mixed As, Ts, and Cs, excluding Gs (ATC sequences). Within 

MARs there are 100-150 bp sequences which have an intrinsic property of unwinding under 

negative super helical strain and are called as base unpairing regions (BURs). Since MARs often 

colocalize or exist in close proximity to the regulatory sequences including enhancers, the MAR-

binding proteins are very important for regulating cell type specific gene expression. Proteins 

which preferentially bind to MARs include SATB1 (Special AT-rich Sequence Binding Protein 

1), PARP-1 (Poly (ADP-Ribose) Polymerase-1), SAF-A (Scaffold Attachment Factor-A), Ku 

70/86 (Auto antigen Ku), HMG-I(Y) (High Mobility Group Proteins) and nucleolin and a novel 

cell type-specific MAR-binding protein, SATB2 (Special AT-rich Sequence Binding Protein 2). 

Special AT-rich Sequence Binding (SATB) family of MAR-binding proteins includes 

SATB1 and SATB2. SATB1 (Special AT-rich Sequence Binding Protein 1) is a nuclear protein 

that was originally cloned by virtue of its ability to bind to a core unwinding element (BUR) 

within the matrix attachment regions (MARs) located 3' of the immunoglobin heavy chain (IgH) 

gene enhancer. SATB1 selectively binds to double stranded DNA sequences possessing high 

unwinding capability believed to consist of specialized AT-rich sequence context where one 

strand consists of mixed A's, T's, and C's, excluding G's (ATC sequences) along the minor 

groove with very little contact with the bases. SATB1 knockout mice revealed drastic effect on 

the lymphoid organs, particularly thymus and spleen which are reduced in size and the lymph 

nodes contain reduced number of lymphocytes. At the molecular level, derepression of multiple 

genes including cytokine receptor genes, chemokine genes, and apoptosis related genes was 

observed in thymocytes along with impaired T-cell development and function. Gene expression 



Abstract 

 

Sunita Singh, Ph.D. Thesis, 2013 Page 2 
 

profiling of cells overexpressing wild type, acetylation and phosphorylation defective mutants of 

SATB1 indicated that approximately 10% of total genes are regulated by SATB1, suggesting that 

SATB1 may act as a global gene regulator. SATB1 binds to the IL-2R locus in thymocytes and 

regulates its expression by acting as a landing platform for several chromatin remodeling 

complexes such as the histone deacetylase (HDAC1) of NURD chromatin remodeling complex, 

ACF1 and ISWI, subunits of the CHRAC and ACF nucleosome mobilizing complexes. In mouse 

thymocyte nuclei SATB1 forms a three dimensional ‘cage-like’ network structure presumably by 

tethering specific MAR sequences to the nuclear matrix, thereby giving rise to tissue-specific 

chromatin architecture. In case of HIV infection one of the early synthesized transactivator of 

transcription protein (Tat) displaces HDAC1 from the IL-2 locus and its receptor bound SATB1-

HDAC1 complex to derepress transcription of these genes. SATB1 mediated loop organization 

leads to coordinated expression of the TH2 locus- and MHC class I locus-linked genes. A close 

relative of SATB1 was later discovered which expresses predominantly in pre B cells, brain and 

osteoblast; with significant similarity to SATB1 at amino acid level and referred to as SATB2. 

SATB2 plays an important role in mouse palate development and osteoblast formation. Similar 

to SATB1, SATB2 possesses all the three important functional domains viz. PDZ, CD, and HD. 

It was shown to be involved in regulation of the immunoglobulin μ heavy chain gene expression 

in pre-B cells. The transcriptional activity of SATB2 is dependent on its sumoylation status. 

Very recently SATB2 was shown to activate γ-globin genes in erythroid cells by binding to 

MARs in their promoters and recruiting histone acetylase PCAF. SATB2 has been 

alsodemonstrated playing active role in neuronal differentiationin brain. Therefore it is very 

evident that SATB family of proteins not only organize chromatin into a distinct loop structure 

but also play a very important role in transcriptionalregulationof genes at the global level to 

execute important developmental processes. Both act as active gene regulators directly (acting at 

the level of target genes’ promoters) as well as indirectly by interacting with other co-repressors 

or co-activators. 

At the protein level, SATB1 and SATB2 share 61% sequence homology. Both proteins 

share common conserved domains which include: N-terminal PDZ-like domain, middle CUT 

repeat containing domain (CD) and C-terminal homeo domain (HD). PDZ-like domain is 

mediates the dimerization of SATB1 and may therefore have a similar function in case of 

SATB2. SATB1 differs from SATB2 in possessing a caspase-6 cleavage site, which is 
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responsible for cleavage of SATB1 during T-cell apoptosis. Additionally, SATB1 contains a 

glutamine rich region, which is absent in SATB2. In addition, both proteins also differ in having 

different kinds of post-translational modifications. In case of SATB1 acetylation and 

phosphorylation are the major post-translational modifications whereas sumoylation is the only 

reported post-translational modification of SATB2, even though the possibility of other kinds of 

modifications in either protein cannot be ignored. SATB1 has also been shown to be sumoylated 

at lysine 744 residue. Sumo conjugation to SATB1 is important for targeting it to the PML 

bodies where it undergoes caspase-mediated cleavage during apoptotic induction.  

Since both these proteins performcommon role of gene regulation, we were interested in 

studyingthe comparative functions of SATB1 and SATB2 and their role in gene regulation. 

Thus, this study was undertaken with the following objectives: 

 

1. To study the various functional and biochemical features of SATB1 and SATB2. 

SATB1 and SATB2 are members of Special AT-rich binding proteins characterized by 

their ability to bind AT-rich sequence in vivo. Both possess a C-terminal DNA-binding region 

consisting of a cut domain and homeo domain which provides sequence-specific binding and an 

N-terminal dimerization domain consisting of PDZ-like domain which provides dimerization and 

interaction interface to SATB1 and SATB2. A number of post-translational modifications are 

known for SATB1 and SATB2 which regulate their transcription regulatory activity. Under this 

objective, we set out to study the comparative roles of SATB1 and SATB2 in vivo and the effect 

of various co-repressors and co-activators on the transcription regulatory activity of SATB1 and 

SATB2. The functional and biochemical features of SATB1 have been extensively studied. 

SATB1 has been shown to undergo variety of post-translational modifications which in turn 

regulate its transcription regulatory activity. SATB1 has been shown to interact with several co-

repressors and co-activators depending upon its modification status. SATB1 is also known to 

form higher- order structures via its PDZ domain mediated dimerization. We compared these 

features to that of SATB2 and asked if SATB2 functions in similar manner. We show here that 

SATB2 also regulates MAR-linked reporter activity in a mannersimilar to that of SATB1. Both 

proteins show the effect of various co-repressors such as HDAC1 and co-activators such as P300 

and PCAF. However, we found that unlike SATB1, SATB2 does not interact with CtBP1. 
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We have shown earlier that SATB1 forms homodimer via its PDZ-like domain and also 

interacts with other PDZ containing proteins. Since SATB2 also harbors a PDZ-like domain, we 

asked whether SATB1 and SATB2 interact in vivo. We show by co-immunoprecipitation 

experiments that SATB1 and SATB2 interact in vivo. 

SATB1 is known to play an important role during tumor progression and development. It 

has been also shown that level of SATB1 increases while that of SATB2 decreaseswith 

progression of metastasis. Using a colorectal cancer cell line SW480 we have shown that the 

knockdown of SATB1 results in upregulation of SATB2 and vice versa. Next, we asked if 

SATB1 and SATB2 regulated each other’s expression in vivo. Using chromatin 

immunoprecipitation assay we show that SATB1 and SATB2 occupy each other’s promoter 

thereby regulate respective expression. 

 

2. To study the roles of SATB1 and SATB2 in cellular context. 

SATB1 and SATB2 are cell type specific MAR-binding proteins. Until now, multiple 

groups have studied roles of SATB1 and SATB2 usingdiverse types of cells and tissues. SATB1 

has been mainly in studied in T-cells where it has been shown to regulate the development and 

differentiation of various T-cell subpopulations. Oncontrary, SATB2 has been mainly implicated 

in the development of neurons in the mouse brain cortex and in osteogenesis. Recently, SATB 

family proteins have been shown to play important roles in the progression of metastatic tumors. 

They also have been implicated in the differentiation of mouse embryonic stem cells. Under this 

objective we have performed a tissue wide expression profiling and show that various tissues 

show differential expression of SATB1 and SATB2. Next, we performed immunoblot analysis to 

detect the expression of these proteins in cell lines of different lineages. We found that while 

SATB1 expression was higher in T-cells, SATB2 expressed predominantly in B-cells. However, 

various neuronal cell lines were found to express comparable levels of SATB1 and SATB2. 

To address the cell type-specific roles of SATB1 and SATB2, we used a human 

embryonic carcinoma cell line; NT2D1 which is widely used as a model for human embryonic 

stem cells. We show that levels of SATB1 and SATB2 increase upon retinoic acid (RA) 

mediated differentiation of NT2D1 cells while level of various pluripotency markers go down. 
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siRNA mediated knockdown of SATB1 and SATB2 resulted in the upregulation of various 

pluripotency associated genes and downregulation of various differentiation associated genes. 

We further show that Wnt signaling is activated upon RA mediated differentiation in NT2D1 

cells. Interestingly, RA mediated differentiation could be mimicked by Wnt3a mediated Wnt 

activation in NT2D1 cells. siRNA mediated knockdown of SATB1 and SATB2 resulted in the 

downregulation of various Wnt responsive genes indicating that SATB1 and SATB2 may target 

Wnt responsive genes during differentiation in NT2D1 cells. 

 

3. To study the roles of SATB1 and SATB2 in context of human embryonic stem cells. 

 We extended our studies of roles of SATB family proteins in human embryonic stem 

cells (hESCs). We preformed RA induced differentiation studies in two hESCs namely H9 and 

HS360. Unlike NT2D1 cells, we found that upon RA mediated differentiation SATB1 is 

upregulatedthroughout 7-day time-course of differentiation and SATB2 is transiently 

upregulated during first two days after RA treatment. However, SATB2 is then immediately 

downregulated during later days of differentiation in these human embryonic stem cells. We 

observed that activation of Wnt signaling using various Wnt signaling activators such as Wnt3A 

and BIO resulted in induction of differentiation of hESCs. On the other hand, inhibition of Wnt 

signaling using inhibitors like Dkk1 and XAV939 resulted in more stem cell like phenotype and 

prevented differentiation. Next, we performed gene expression profiling of H9 hES cells at 

various stages of differentiation. Gene expression profiling at 0 day, 3 day and 6 day of RA 

treatments revealed a number of genes that gets dysregulated upon differentiation. To correlate 

the expression profiling with that of SATB1 and SATB2 expression we performed the ChIP 

using SATB1 and SATB2 specific antibodies at similar stages of RA induced differentiation and 

performed genome-wide ChIP analysis using SOLiD 4 platform. ChIP-Seq analysis revealed 

novel categories of SATB1- and SATB2-bound targets involved in various biological pathways 

such as notch signaling, synaptic transmission, olfactory reception, sexual reproduction, 

development of primary male sexual characteristics and gonad development in addition to their 

previously reported roles in development of immunity and neuronal activities. We also derived 

consensus binding sequencesfor SATB1 and SATB2using ChIP-Seq data.  
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Chapter I 

To study the functional and biochemical 
features of SATB family proteins 
 

 

1.1 Introduction 

Eukaryotic chromosomes are organized inside the nucleus in a three-dimensional 

assembly that involves topological attachments of chromatin loops to the nuclear matrix or 

scaffold; a proteinaceous structure first discovered by Berezney and Coffey as a nuclear 

component that resists salt extraction and digestion with DNase (Berezney and Coffey, 1974). 

Organization of the chromatin in form of such organized loops has significant implications in 

tissue specific regulation of gene expression (Schubeler D et al., 2000; Spector DL, 2003). 

Specific AT-rich DNA regions that exhibit high affinity to the nuclear matrix in vitro have been 

identified from various species and are called matrix attachment regions (MARs) or scaffold 

attachment regions (SARs). These AT-rich regions are represented by a specialized DNA context 

that contains a cluster of sequences where one strand consists exclusively of wellmixed As, Ts, 

and Cs, excluding Gs (ATC sequences). MARs harbor 100-150 bp ‘core’ sequences thatexhibit 

an intrinsic property to unwind under negative superhelical strain and are called base unpairing 

regions (BURs). MARs often exist in close proximity to transcriptionally active DNA or 

regulatory sequences including enhancers and therefore the MAR-binding proteins play a very 

important role in dictating cell type-specific gene expression (Fig. 1.1.1). Proteins which 

preferentially bind the MARs include SATB1 (Special AT-rich Sequence Binding Protein 1), 

PARP-1 (Poly (ADP-Ribose) Polymerase-1), SAF-A (Scaffold Attachment Factor-A), Ku 70/86 

(Auto antigen Ku), HMG-I(Y) (High Mobility Group Proteins) and nucleolin (Galande, 2002) 

and a novel cell type-specific MAR-binding protein, SATB2 (Special AT-rich Sequence Binding 

Protein 2) (Dobreva et al., 2003). 
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development (Cai et al., 2003; Yasui et al., 2002). Gene knockout studies by Kohwi-Shigematsu 

group demonstrated that SATB1 acts as a global regulator of thymocyte differentiation and for 

the first timedemonstated that in SATB1-null mice thymocyte development is blocked at the 

CD4+CD8+ double-positive stage, many genes including IL-2Rα are upregulated (Alvarez et al., 

2000). SATB1-bound targets remain active and are enriched for H3K9/K14ac as well as 

H3K4me, whereas in SATB1-null thymocytes these sites are heterochromatinized and are 

enriched for H3K9me (Cai et al., 2003). At least 2% of the genes including a proto-oncogene, 

cytokine receptor genes, and apoptosis-related genes were derepressed at inappropriate stages of 

T-cell development in SATB1-null mice. SATB1 is also known to bind the promoters of human 

IL-2 and IL-2Rα genes and recruits HDAC1 in vivo resulting in their downregulation (Kumar et 

al., 2005). SATB1 regulates distant genes by selectively tethering BURs forming a distinguished 

‘cage-like’ network in thymocytes (Cai et al., 2003). SATB1 also plays a role in positive 

regulation of genes as the c-myc locus, which contains a MAR region upstream of the 

transcription start site, is not properly upregulated in PMA-stimulated thymocytes from SATB1-

deficient mice (Cai et al., 2003). SATB1 causes upregulation of ε-globin gene by selective 

binding in β-globin cluster as a complex with CREB-binding protein (CBP), thereby playing  an  

important  role  in  globin  gene  expression  during  early  erythroid differentiation (Wen et al., 

2005). However, the molecular mechanism responsible for the contrasting transcriptional activity 

of SATB1 has remained unclear. Previous work from our lab has shown that phosphorylation of 

SATB1 acts as a molecular switch regulating its transcriptional activity in vivo (Kumar et al., 

2006). Furthermore, phosphorylation and dephosphorylation of SATB1 exerted opposing effects 

on the MAR-linked reporter activity. Phosphorylation of SATB1 at serine 185 by protein kinase 

C results in high affinity binding of SATB1 to DNA and recruitment of HDAC1 resulting into 

repression of downstream genes. Dephosphorylated SATB1 associates with PCAF and is 

acetylated by it at lysine 136 residue resulting in loss of its MAR binding ability resulting in 

derepression of its target genes. SATB1 network and the PML nuclear bodies intersect at the 

MHC class-I locus to regulate the coordinated expression of a subset of MHC-I genes (Kumar et 

al., 2007). Recent work from our lab shows that SATB1 coordinates Th2 lineage commitment by 

reprogramming gene expression through Wnt/beta-catenin signaling (Notani et al., 2010). Here 

we showed that during Th2 lineage commitment, Wnt signaling is upregulated, which results in 

deacetylation of SATB1 and thereby leading to increased DNA binding ability of SATB1. 

During this process SATB1 recruits -catenin and p300 to its target sites, which results in 
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upregulation of Th2-specific transcription factors such as GATA3. SATB1 and GATA3 regulate 

IL-5 transcription during human Th2 cell differentiation (Ahlfors et al., 2010). Recently, FOXP3 

mediated downregulation of SATB1 is shown to be important for maintaining regulatory T cell 

(Treg) function (Beyer et al., 2011). SATB1 has shown to play important role in Xist-mediated 

gene silencing during X inactivation in mammals (Agrelo et al., 2009). SATB1 also plays 

important roles in various kinds of tumor progression and metastasis (Han et al., 2008; Meng et 

al., 2012). SATB1 is expressed at higher levels in breast cancer cell lines and RNAi mediated 

silencing of SATB1 in these cells leads to dysregulation of multiple genes. SATB1 leads to 

alteration in levels of specific epigenetic modifications at various target genes resulting into 

upregulation of metastatic genes and down regulation of tumor suppressor genes (Han et al., 

2008). SATB1 promotes tumor growth by reprogramming chromatin organization in tumor cells. 

Based on these findings and similar findings in other cancers it was suggested that levels of 

SATB1 within cancer cells could have prognostic significance (Han et al., 2008; Mir et al., 

2012). Interestingly, treatment with statins leads to downregulation of SATB1 in colon cancer 

cells and may presumably mediate the anti-cancer activity of Statins. Intriguingly, this regulation 

happens at the post-translational level since treatment with proteasome inhibitors reversed the 

statin-mediated down regulation of SATB1 (Lakshminarayana Reddy et al., 2010). A recent 

studyinvolving decoy DNA against SATB1 has highlighted importance of SATB1 as a drug 

target for the treatment of breast cancer where the invasive nature and metastatic capacity of a 

“triple negative” cancer cell line, which lacks expression of estrogen receptor, progesterone 

receptor and human epidermal growth factor receptor, was significantly decreased when it was 

treated with decoy DNA against SATB1 (Yamayoshi et al., 2011).  A recent  study  has  shown  

that  SATB1 expression is lost in early stages of lung cancer and loss of SATB1 has been 

associated with  poor  prognosis  in  squamous  cell  carcinoma (Selinger et al., 2011). SATB1 

was also found to be associated with decreased histone H3K9ac, a mark of active chromatin and 

increased histone H3K27me3, a mark of repressive chromatin (Selinger et al., 2011). SATB1 

also has been associated with the development and progression of human glioma (Chu et al., 

2012). FOXP3 and FOXP3 regulated microRNAs also have been implicated in regulating 

SATB1 expression and therefore tumor progression and metastasis (McInnes et al., 2012). All 

these reports have collectively established SATB1 as an important factor responsible for 

development and progression of various kinds of metastatic tumors suggesting that it is a 

potential target for cancer therapy (Mir et al., 2012). 
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SATB2 is second member of the SATB family of MAR-binding proteins. It was 

identified as a gene mutated in human patients with cleft palate (FitzPatrick et al., 2003). SATB2 

was shown to bind MAR sequences flanking the enhancer of the endogenous immunoglobulin µ 

heavy chain (IgH) gene in vivo, and this binding correlated with an increase in the expression of 

a transfected rearranged µ wild-type gene, but not with a µ ΔMAR gene lacking the MAR 

sequences (Dobreva et al., 2003). Dobreva et al. demonstrated the role of SATB2 in craniofacial 

patterning and osteoblast differentiation (Dobreva et al., 2006). Specific roles of SATB2 in 

osteocyte differentiation and bone development have been discussed in section 2.1.2 of chapter 

II. RT-PCR analysis revealed high level of SATB2 expression in adult brain, moderate 

expression in fetal brain, and weak expression in adult liver, kidney, and spinal cord and in select 

brain regions, including amygdala, corpus callosum, caudate nucleus, and hippocampus. In all 

regions of the CNS, SATB2 expression peaked in differentiating neurons and decreased in 

mature cells suggesting its role in the control of neuronal differentiation. SATB2 has been shown 

to be involved in the differentiation and specification of callosal neurons in the neocortex and 

cerebral cortex in the brain by downregulating Ctip2 expression (Britanova et al., 2008; Alcamo 

et al., 2008) which have been discussion in greator details in section 2.1.3 of chapter II. SATB2 

has been shown to interact with chromatin remodeling molecules in differentiating cortical brain 

neurons (Gyorgy et al., 2008).  Like SATB1, SATB2 has also been shown to play important role 

in tumor progression and has been studied as a prognostic marker for various cancers (Patani et 

al., 2009; Wang et al., 2009b; Agrelo et al., 2009). Very recently it has been shown that SATB2 

is expressed in erythroid cells and activates γ-globin genes by binding to MARs present in their 

promoters and recruiting histone acetylase PCAF (Zhou et al., 2012). Various microRNAs are 

known to play important role in tumor progression by regulating SATB2 expression (Aprelikova 

et al., 2010). Like SATB1, SATB2 is also known to undergo post-translational modifications. 

However, unlike SATB1, SATB2 is not acetylated at lysine 136 nor phosphorylated at serine 185 

though it may possess some other acetylation or phosphorylation site(s). SATB2 has been shown 

to be sumoylated at lysines 233 and 350 (Dobreva et al., 2003). Mutation in sumoylation sites of 

SATB2 is shown to augment its activation potential and binding to MAR sequences in vivo.  

SATB1 is expressed predominantly in thymocytes (Dickinson et al., 1992; Adams et al., 

1993) but is also detected in the fetal brain (Adams et al., 1993). SATB1 is expressed in several 

regions of the CNS during development. SATB2 is also expressed in the developing CNS; 
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however, the expression patterns of SATB2 and SATB1 do not overlap. In the developing 

cerebral cortex, for example, SATB1 is expressed in the medial zone and piriform cortex 

whereas SATB2 is not expressed in these cells (Britanova et al., 2005). SATB2, in turn, is 

largely expressed in the superficial layers of the neocortex and subiculum. It has been reported 

that SATB1 knock-out mice have a neurological phenotype such as incomplete eye opening and 

the clasping reflex (Alvarez et al., 2000). Furthermore, both SATB1 and SATB2 can act as 

global regulators of cell differentiation in specific cell lineages within the developing CNS 

(Britanova et al., 2005). This mutually exclusive expression of SATB2 and SATB1 suggest that 

they control the expression of distinct subsets of genes at the level of chromatin in the 

developing CNS. Within the CNS some cells do not express either SATB1 or SATB2; however, 

there are reports where SATB1 and SATB2 have been shown to be expressed in the same tissues 

like at various stages of breast cancer development. Downregulation of SATB2 is associated 

with cancer progression whereas increase in SATB1 expression results in increased metastasis 

and cancer progression (Han et al., 2008; Wang et al., 2009b). It remains to be elucidated 

whether SATB1 and SATB2 can be substituted for one another or whether each acts on a unique 

set of targets. It also can be speculated that they might function in a coordinated manner or as a 

complex to regulate various genes. In the view of above discussion under this objective we set to 

study the comparative roles of SATB1 and SATB2 in vivo and the effect of various co-repressors 

and co-activators on the transcription regulatory activity of SATB1 and SATB2. 

 

1.2 Materials and Methods 

 

1.2.1 DNA constructs 

Expression constructs for Flag-SATB1 and 6 X His-SATB1 has been described 

previously (Kumar et al., 2005, 2006). Full length SATB2 was cloned in p3XFlag-CMV10 

(Sigma-Aldrich, St. Louis, MO, USA) and pTriEx 3 Neo vector (from Novagen/EMD 

Biosciences, CA, USA). N-terminal domains of SATB1 (1-254 aa) and SATB2 (1-240 aa), 

which harbor the PDZ domain of SATB1 and SATB2 respectively, as well as full-length proteins 

were subcloned in pACT and pBIND vectors (Promega Corp. WI, USA). 
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1.2.2 Cell culture and RNAi-mediated knockdowns 

HEK-293T and SW480 cells were grown in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum and 

penicillin/streptomycin, at 37oC under 5% CO2 atmosphere. Knockdown experiments were 

performed using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, 

USA) according to manufacturer protocol. Briefly, SW480 cells were grown up to 60% 

confluency in 60 mm culture dishes at 37oC in DMEM (Invitrogen) supplemented with 10% FBS 

(Fetal Bovine Serum, Invitrogen) and penicillin/streptomycin, under 5% CO2 atmosphere. 

Twenty l of 10M siRNAs were transfected using Lipofectamine RNAiMAX as per 

manufacturer’s instructions, in serum-free medium.  The medium was supplemented with 10% 

fetal bovine serum 6 h post-transfection. The cells were allowed to grow for 48 h and harvested 

by scraping and used for RNA preparation and quantitative RT-PCR. 

 

 

1.2.3 Antibodies and reagents 

Anti-SATB1 (Cat. no. ab92307) and Anti-SATB2 (Cat. no. ab34735) antibodies used for 

coimmunoprecipitation and ChIP were purchased from Abcam (Cambridge, UK). Normal rabbit 

IgG (Cat. no. 12-370) and normal mouse IgG (Cat. no. 12-371) were purchased from 

Millipore/Upstate (Billerica, MA, USA). Anti-FLAG antibody was obtained from Sigma-Aldrich 

(St. Louis, MO, USA). Lipofectamine 2000 and Lipofectamine RNAiMAX transfection reagent 

were purchased from Invitrogen (Carlsbad, CA, USA). siRNAs for GFP (Cat. no. sc-45924), 

SATB1 (Cat. no. sc-36460) and SATB2 (Cat. no. sc-76456) were procured from SantaCruz 

Biotechnology (Santa Cruz, CA, USA).  Steadylite plus reagent (Cat. no. 6016751) for reporter 

assays was procured from Perkin Elmer (Massachusetts, USA). Signal for immunoblot was 

detected using VisualizerTM Western Blot Detection Kit (Millipore/Upstate, Billerica, MA, USA, 

Cat. no. 64-202). Isopropyl-β-D-thiogalactopyranoside (IPTG) was procured from Sigma-

Aldrich (St. Louis, MO, USA). Protein A/G Plus Ultralink resin (Cat. No. 53135) was obtained 

from Thermo Scientific (Rockford, IL, USA). 
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1.2.4 Protein expression and purification 

Full length SATB1(1-763 aa) and full-length SATB2 (1-733 aa) cloned in pTriEx 3 Neo 

were expressed in BL21(DE3) strain of E. coli host (Novagen/Merck Biosciences, Philadelphia, 

USA) and were purified using Ni-NTA columns (Qiagen, Maryland, USA) as described in the 

instruction manual. The GST-1.6 (DNA binding C-terminal half of SATB1) and GST-1.5 

(DNAbinding C-terminal half of SATB2), for EMSA, was expressed in XL-1 Blue strain of E. 

coli (Invitrogen, Carlsbad, CA, USA). Single colonies were inoculated in 5 ml of LB media 

supplemented with 50 µg/ml of ampicillin. Next day 1ml of culture was transferred to 500 ml of 

LB media supplemented with 100 µg/ml of ampicillin. Protein synthesis was induced at A600 by 

the addition of isopropyl-β-D-thiogalactopyranoside (Sigma-Aldrich, St. Louis, MO, USA) to a 

final concentration of 0.5 mM. Induction of protein expression was carried at A600for 5 h with 

0.5 mM IPTG. Cells were pelleted down by centrifugation (4000 X g, 5 min at 4oC) at the end of 

induction. Pellet was washed with PBS and resuspended in 50 ml of buffer A (50 mM Tris pH 

8.0, 150 mM NaCl, 0.2% Triton-X 100) supplemented with 1X EDTA free complete protease 

inhibitor cocktail (Roche, Indianapolis, IN, USA) and 10 µg/ml of lysozyme. Cells were 

incubated on ice for 30 min and viscosity was reduced by sonication. The lysed samples were 

then centrifuged at 14000 X g at 4oC for 30 min and the supernatant was incubated with 

Glutathione Sepharose beads (GE Healthcare, Piscataway, NJ, USA) for 3h at 4oC. The beads 

were washed thrice (1000 X g, 5 min) with lysis buffer and the bound protein was eluted using 

10 mM reduced glutathione (Sigma-Aldrich, St. Louis, MO, USA) in Buffer A (without Triton-X 

100) and dialyzed twice against phosphate buffered saline (10 mM Tris, 138 mM NaCl). The 

protein quality in the eluentwas monitored by 12.5 % SDS-polyacrylamide gel electrophoresis 

(PAGE). 

 

1.2.5 Electrophoretic mobility shift (EMSA) assay 

Electrophoretic   mobility   shift   assay   (EMSA) was   performed   as   described 

previously (Purbey et al., 2008). Full-length SATB1 and SATB2 were expressed and purified as 

6XHis-tagged fusion proteins. Binding reactions were performed in a 10 µl total volume 

containing 2 µl of 5X C buffer (50 mM HEPES, pH7.9, 5 mM DTT, 250 mM KCl, 12.5 mM 

MgCl2, 50% glycerol), 0.5 µg of double- stranded poly dI-dC (1 mg/ml), 1 µg of BSA and 
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appropriate dilutions of recombinant protein. Samples were pre-incubated at room temperature, 

for 10 min prior to the addition of 32P-labeled IgH-MAR probe (Purbey et al., 2008). After 15 

min of addition of probes, the products of the binding reactions were resolved on 6% native 

PAGE gels at 150 volts for 1 h.  The gels were dried under vacuum using gel-dryer (Bio-Rad, 

Hercules, CA), kept for exposure with X-ray film (Konica) and developed after 48h incubation at 

-80ºC. 

 

1.2.6 Luciferase reporter assay 

Luciferase assays were performed using LucLite reagent (Perkin Elmer, Massachusetts, 

USA) and luciferase activity was measured using TopCount NXT™ Microplate Scintillation and 

Luminescence Counter (Perkin Elmer, Massachusetts, USA). The IgH-MAR-Luc reporter 

constructs (Kumar et al., 2005; 2006) were used to score the effect of SATB1 and SATB2 along 

with HDAC1, CtBP1, PCAF and p300. All transfections were carried out using various 

combinations of constructs and the final amount of DNA was normalized by including 

pCDNA3.1 DNA. HEK-293T cells were seeded at 0.5 x 106 cells per well and transfected using 

Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) according to manufacturer 

protocol. Six h post-transfection cells were supplemented with complete media containing 10% 

FCS and were harvested after 48 h. Luciferase assay was performed using Steadylite plus reagent 

(Perkin Elmer, Massachusetts, USA) as per manufacturer’s instructions and readings were 

obtained usingTopCount NXT™ Microplate Scintillation and Luminescence Counter (Perkin 

Elmer, Massachusetts, USA). The   values   were normalized with control (vector transfection) as 

reference andplotted using Sigmaplot 11 software. 

 

1.2.7 Co-immunoprecipitation with SATB1 and SATB2 with CtBP1 

Co-immunoprecipitation was performed to check in vivo interaction of SATB1 and 

SATB2 with the co-repressor protein CtBP1. For this HEK-293T cells were grown to 90% 

confluency in 90 mm culture dishes at 37oC in DMEM medium (Invitrogen, Carlsbad, CA, USA) 

supplemented with 10 % FBS Medium (Invitrogen, Carlsbad, CA, USA) and 

penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA), under 5% CO2 atmosphere and 
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harvested by scraping to prepare whole cell lysate. The cell lysate was made in extraction buffer 

(0.42M NaCl, 1.5mM MgCl2, 0.2 mM EDTA, 25mM HEPES, pH7.9, 25% glycerol, 1x EDTA 

free complete protease inhibitor cocktail) without dithiothreitol (DTT) (Dignam et al., 1983). All 

downstream processes were carried out under non-reducing conditions (i.e. in absence of 

dithiothreitol or β–mercaptoethanol in the lysis buffer and sample buffer). The lysate was diluted 

to a final   concentration of 1 μg/μl with 1X chilled PBS containing 1X EDTA-free complete 

protease inhibitor cocktail (Roche, Indianapolis, IN, USA). For each immunoprecipitation 

reaction, 500 μg of the lysate was precleared for 1 h at 4oC on test tube rocker with 10 μl protein 

A/G Plus Ultralink resin (Thermo Scientific, Rockford, IL, USA). After preclearing, the beads 

were pelleted by centrifugation at 1000 X g, 5 min at 4oC and the supernatant was transferred to 

a fresh tube. Precleared extract was then incubated with 1 μg each of IgG, SATB1, SATB2 and 

CtBP1 antibodies for 2-4h at 4oC on test tube rocker. To this, 10 μl of protein A/G beads were 

added and incubation was further continued for 4 h. The protein-antibody complexes, bound to 

Protein A/G resin were recovered by centrifugation at 1000 X g for 5 min and washed five times 

with TSA buffer (2 mM Tris, pH 8.0, 140 mM NaCl, 0.025% sodium azide) containing 0.1 % 

Triton X-100. The complexes were eluted by incubating the beads in 30 μl Laemmli sample 

buffer (without DTT) at 37oC for 5 min with intermittent mixing and eluate was resolved on a 10 

% SDS-PAGE gel and transferred to PVDF membrane. Immunoblotting was performed 

usinganti-CtBP1 antibody. Immunoprecipitation with anti-CtBP1 and immunoblot with anti-

CtBP1 served as control for co-immunoprecipitation. 

 

1.2.8 Co-immunoprecipitation of SATB1 for monitoring its homodimerization 

To demonstrate that SATB1 interacts with other SATB1 molecules to form homodimer in 

vivo we performed co-immunoprecipitation assay using exogenously expressed recombinant 

GFP-SATB1 and Flag-SATB1. Towards this end, HEK-293T cells were grown upto 60% 

confluency in 90 mm culture dishes at 37oC in DMEM medium (Invitrogen, Carlsbad, CA, USA) 

supplemented with 10% FBS Medium (Invitrogen, Carlsbad, CA, USA) and 

penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA), under 5% CO2 atmosphere. Ten 

micrograms of Cesium chloride density gradient-purified plasmids were transfectedusing 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) as per manufacturer’s instructions in 
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serum-free medium. The medium was supplemented with 10% fetal bovine serum 6 h post-

transfection. The cells were grown for 48 h and harvested by scraping and used for whole cell 

lysate preparation. The cell lysate was made in a extraction buffer (0.42M NaCl, 1.5 mM MgCl2, 

0.2 mM EDTA, 0.5mM DTT, 25 mM HEPES, pH 7.9, 25% glycerol, 1X EDTA free complete 

protease inhibitor cocktail) without dithiothreitol (DTT) (Dignam et al., 1983). All downstream 

processes were carried out under reducing condition. The lysate was diluted to a final   

concentration of 1 μg/μl with 1X chilled PBS containing 1X EDTA free complete protease 

inhibitor cocktail (Roche, Indianapolis, IN, USA). For each immunoprecipitation reaction, 500 

μg of the lysate was precleared for 1 h at 4oC on test tube rocker with 10 μl protein A/G Plus 

Ultralink resin (Thermo Scientific, Rockford, IL, USA). After preclearing, beads were pelleted 

by centrifugation at 1000 X g, 5 min at 4oC and the supernatant was transferred to a fresh tube. 

Precleared extract was then incubated with 1 μg each of IgG and Flag antibodies for 2-4h at 4ºC 

on test tube rocker. To this, 10 μl of protein A/G beads were added and incubation was continued 

further for 4 h. Protein-antibody complexes, bound to Protein A/G resin were recovered by 

centrifugation at 1000 X g for 5 min and washed five times with TSA buffer (2 mM Tris, pH 8.0, 

140 mM NaCl, 0.025% sodium azide) containing 0.1 % Triton X-100. Complexes were eluted by 

boiling the beads in 30 μl Laemmli sample buffer (with DTT) at 95oC for 5 min with intermittent 

mixing and eluate was resolved on a 10% SDS-PAGE gel and transferred to PVDF membrane. 

Immunoblotting was performed using anti-GFP antibody. 

 

1.2.9 Co-immunoprecipitation of SATB1 and SATB2 

Co-immunoprecipitation assay was performed to check in vivo homodimerization of 

SATB1 as well as to show the interaction of SATB1 and SATB2. For this purpose HEK-293T 

cells were grown to 90% confluency in 90 mm culture dishes at 37oC in DMEM medium 

(Invitrogen, Carlsbad, CA, USA) supplemented with 10 % FBS Medium (Invitrogen, Carlsbad, 

CA, USA) and penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA), under 5% CO2 

atmosphere and harvested by scraping to prepare whole cell lysate. Cell lysate was made in 

extractionbuffer (0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 25 mM HEPES, 

pH 7.9, 25% glycerol, 1x EDTA free complete protease inhibitors) (Dignam et al., 1983). All the 

downstream processes were carried out under reducing condition. The lysate was diluted to a 
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final concentration of 1 μg/μl with 1X chilled PBS containing 1X EDTA free complete protease 

inhibitor cocktail (Roche, Indianapolis, IN, USA). For each immunoprecipitation reaction, 500 

μg of the lysate was precleared for 1 h at 4oC on test tube rocker with 10 μl protein A/G Plus 

Ultralink resin (Thermo Scientific, Rockford, IL, USA). After preclearing the beads were 

collected by centrifugation at 1000 X g, 5 min at 4oC and the supernatant was transferred to a 

fresh tube. Precleared extract was then incubated with 1 μg each of IgG, SATB1 and SATB2 

antibodies for 2-4h at 4oCon test tube rocker. To this, 10 μl of protein A/G beads were added and 

incubation was further continued for 4 h. The protein-antibody complexes, bound to Protein A/G 

resin were recovered by centrifugation at 1000 X g for 5 min and washed five times with TSA 

buffer (2 mM Tris, pH 8.0, 140 mM NaCl, 0.025% sodium azide) containing 0.1% Triton X-100. 

The complexes were eluted by boiling the beads in 30 μl Laemmli sample buffer (with DTT) at 

95oC for 5 min with intermittent mixing and eluate was resolved on a 10% SDS-PAGE gel and 

transferred to PVDF membrane. Immunoblotting was performed using anti-SATB1 antibody. 

 

1.2.10 Mammalian two-hybrid assay 

CheckMate mammalian two hybrid system (Promega Corp., USA) was used to score for 

protein-protein interactions. Cloning gene of interest in pBIND vector expresses it as GAL4 

DNA-binding domain fusion protein and cloning in pACT fusion construct expresses it as VP- 

16 activation domain fusion protein. pBIND and pACT fusion constructs were transfected along 

with a reporter vector, which contains 4X GAL4 responsive element (pG5luc), and luciferase 

activity was compared with the control. Specifically, the N-terminal region of SATB1 (1-254 aa) 

and SATB2 (1-240), which harbors the respective PDZ-like domain and C-terminal region 

harboring CD+HD of SATB1 (255-763 aa) and SATB2 (241-733 aa) were subcloned separately 

in pACT and pBIND vectors (Promega Corp. USA). HEK-293T cells were seeded at 0.5 x 106 

cells per well in a 24-well plate (BD Falcon) 24 h before transfection. Cells were transfected 

with pG5luc reporter vector (Promega Corp. USA) using Lipofectamine 2000 reagent 

(Invitrogen, Carlsbad, CA, USA)  along with either pBIND fusion construct and pACT empty 

vector in control and pBIND fusion construct with pACT fusion construct for the experimental 

set. DNA amount was kept constant up to 1.5μg (0.5μg of each DNA) in every well. Cells were 

supplemented with complete media containing 10% FCS, 6 h post-transfection and were 
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harvested after 48 h.  Luciferase assay was performed using Steadylite plus reagent (Perkin 

Elmer, Massachusetts, USA) as per manufacturer’s instructions and readings were recorded on 

TopCount NXT™ MicroplateScintillation and Luminescence Counter (Perkin Elmer, 

Massachusetts, USA). The values were normalized with respect to control (vector transfection) 

and plotted using Sigmaplot 11 software. 

 

1.2.11 Quantitative RT-PCR 

RNA was prepared from control and siRNA transfected cells using TRI reagent (Sigma-

Aldrich Co., St. Louis, MO, USA). One µg of RNA was used for cDNA preparation per 20 µl of 

reaction. Quantitative RT-PCRs were carried out essentially as described (Kumar et al., 2005). 

The cDNA was used as template for the PCR with specific set of primers. Changes in threshold 

cycle (Ct) values were calculated as follows: ∆Ct = (Cttarget genes-Ct-actin) for transcript analysis. 

These ∆Ct values were used to calculate fold change using equation as relative fold change =2-

(∆(∆Ct)) and plotted graph for the average fold values with standard deviation from three 

independent experimental samples in Sigma Plot. 

 

1.2.12 Chromatin immunoprecipitation (ChIP) assay 

ChIP was essentially performed as described previously (Jayani et al., 2010). HEK-293T 

cells were cross-linked for 10 min at 37oC by adding formaldehyde (to a final concentration of 

1%) directly to the culture medium in the flask. Cross-linking was stopped by the addition of 

glycine to a final concentration of 125 mM. Cells were washed twice with ice-cold PBS and 

harvested using cell scraper and pelleted down. Subsequently, the cell pellet was washed with 

wash buffer I (0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA, 10 mM HEPES pH 7.5, 1 

mM PMSF, 10 mM sodium butyrate, 1X EDTA free complete protease inhibitor cocktail) and 

wash buffer II (0.2 M NaCl, 1 mM EDTA, 0.5 mM EGTA, 10 mM HEPES pH 7.5, 1 mM 

PMSF, 10 mM sodium butyrate, 1XEDTA-free complete protease inhibitor cocktail). Pellet was 

resuspended in lysis buffer (150 mM NaCl, 25 mM Tris-HCl pH 7.5, 5 mM EDTA, 1% Triton 

X-100, 0.1% sodium dodecyl sulfate, 0.5% sodium deoxycholate, 1 mM PMSF, 10 mM sodium 

butyrate, 1XEDTA free complete protease inhibitor cocktail)  and  sonicated  using  Bioruptor  
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sonicator  (Diagenode, Belgium) (8 min, 10 sec “ON”, 10 sec “OFF”). The sonicated sample was 

centrifuged at 13000 X g for 10 min at 4oC and the supernatant was collected as soluble cross-

linked chromatin. The chromatin was quantified and equal amount of chromatin was used for 

each ChIP. The volume of chromatin was normalized to 100l by lysis buffer and then diluted 

five times before immunoprecipitation.  The chromatin solution was then precleared by addition 

of 20 µl of protein A/G Sepharose beads cocktail (50% protein A/G beads slurry, 100 µg of 

salmon sperm DNA/ml, 500 µg of bovine serum albumin/ml) and kept on rocker at 4oCfor 2 h. 

After centrifugation at 1000 X g and 4oC for 5 min, the supernatant was incubated separately 

with anti-SATB1, anti-SATB2 and normal rabbit IgG (as control) at 4oC on an end-to-end rocker 

for 8 h. Twenty μl of protein A/G-plus bead cocktail was added and rocking was continued for 

another 4 h. The beads were then harvested by centrifugation at 1000 X g at 4oC for 5 min and 

washed twice with RIPA buffer (Radio immunoprecipitation assay buffer; 150 mM NaCl, 0.1 % 

sodium dodecyl sulphate, 10 mM sodium phosphate, 1 % sodium deoxycholate, 2 mM EDTA, 

0.2 mM sodium orthovandate and 1 % IGEPAL) and twice with TE (10 mM Tris, 1 mM EDTA). 

Chromatin-antibody complexes were eluted from the A/G Sepharose beads by addition of 2% 

SDS, 0.1 M NaHCO3 (freshly prepared), and 10 mM dithiothreitol to the pellet. Cross-linking 

was reversed by addition of 0.05 volume of 4 M NaCl and incubation of the eluted samples for 4 

h at 65oC. After addition of 0.025 volume of 0.5 M EDTA and 0.05 volume of 1 M Tris-HCl (pH 

6.5), proteinase K digestion was performed for 1 h at 45oC. DNA was recovered by phenol-

chloroform-isoamylalcohol extraction followed by a chloroform-isoamylalcohol extraction and 

precipitated by addition of 0.1 volume of 3 M sodium acetate (pH 5.2), 20 µg of glycogen, and 

2.5 volumes of ethanol. Precipitated DNA was dissolved in water, and was analyzed by PCR. 

 

1.2.13 Sequential ChIP assay 

ChIP was performed as described previously (Jayani et al., 2010) and above using anti-

SATB1 and anti-SATB2 along with rabbit IgG as control. ChIP was performed exactly as above 

and chromatin-antibody complex was eluted by addition of 100l ChIP elution buffer (2% SDS, 

0.1 M NaHCO3 (freshly prepared), and 10 mM dithiothreitol) to the pellet. At this point, 10 μl 

was removed from each sample (except those not used for SeqChIP) for subsequent analysis of 

the first immunoprecipitation. Samples not used for SeqChIP were decrosslinked by addition of 
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0.05 volume of 4 M NaCl and incubation of the eluted samples for 4 h at 65oC. After addition of 

0.025 volume of 0.5 M EDTA and 0.05 volume of 1 M Tris-HCl (pH 6.5), proteinase K 

digestion was performed for 1 h at 45oC. DNA was recovered by phenol-chloroform-

isoamylalcohol extraction followed by a chloroform-isoamylalcohol extraction and precipitated 

by addition of 0.1 volume of 1 M sodium acetate (pH 5.2), 20 µg of glycogen, and 2.5 volumes 

of ethanol. Precipitated DNA was dissolved in water, and was analyzed by PCR. For SeqChIP, 

eluates (90 μl) were diluted five times with PBS and then specific antibody was added to each 

tube and kept for at 4oC on an end-to-end rocker for 8 h. Antibody used for first ChIP was also 

used as positive control for sequential ChIP. IgG was also used as a negative controlin SeqChIP. 

Twenty μl of protein A/G-plus bead cocktail was added and rocking was continued for another 4 

h. Beads were then harvested by centrifugation at 1000 X g at 4oC for 5 min and were processed 

subsequently in same manner as for normal ChIP. 

 

1.2.14 ChIP-Western assay 

ChIP was performed using anti-SATB1 or anti-SATB2 along with rabbit IgG as control. 

Chromatin-antibody complex was washed twice with RIPA buffer and then twice with TE 

buffer. At this point, chromatin-antibody complex was treated with DNase1 (Invitrogen, 

Carlsbad, CA, USA) to remove free DNA if any. The complex was eluted by heating the beads at 

90oC for 5 min in SDS elution buffer and resolved by loading onto 12.5% SDS-PAGE gel. 

Western blot analysis was performed using anti-SATB2 or anti-SATB1. 

 

1.3 Results 

 

1.3.1 Cloning of PDZ-like domains of SATB1 and SATB2 and full-length SATB1 and 

SATB2 in various vectors 

For mammalian two hybrid assays, full length SATB1 and SATB2 as well as their PDZ-

like domains were cloned as VP16 and GAL4 fusion consturcts in pACT and pBIND vectors 

respectively. Full-length SATB2 was cloned into3XFlag-CMV10 vector (Sigma-Aldrich Co., St. 

Louis, MO, USA). 
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mammalian two-hybrid system or M2H (Promega, Madison, WI, USA). M2H is a very well 

established technique for detecting protein-protein interaction(s) in vivo. Towards this, the PDZ-

like domains of SATB1 and SATB2 (now onwards I shall refer to these as PDZ1 and PDZ2 

respectively) were cloned into pBIND and pACT vectors to generate fusion proteins with the 

DNA-binding domain of GAL4 and the activation domain of VP16, respectively. The PDZ1 and 

PDZ2 cloned into pACT and pBIND vectors were transfected in HEK-293T cells along with the 

pG5luc reporter vector. The pG5luc vector contains five GAL4 binding sites upstream of a 

minimal TATA box, which in turn, is upstream of the firefly luciferase gene (luc+). pACT and 

pBIND vector DNAs were used for normalization of DNA amount in each well. Interaction 

between the two test proteins, as GAL4 and VP16 fusion constructs, results in an increase in 

firefly luciferase expression over the negative controls. Values from three independent 

experiments were normalized with vector control as reference and plotted (Fig. 1.3.6). When we 

transfected PDZ1 or PDZ2 alone as pACT or pBIND constructs we detected basal level of 

reporter activity. Upon cotransfection ofpACT-PDZ1 and pBIND-PDZ1 we observed enhanced 

reporter activity, which was detected in case of PDZ2 as well. Surprisingly, when we transfected 

pACT-PDZ1 along with pBIND-PDZ2 or vice versa, we observed significant increase in reporter 

activity as compared to that of PDZ1 or PDZ2 (Fig. 1.3.6, compare lanes 9 and 10 with 7 and 

8)indicating that the two interact in vivo more strongly as heterodimer as compared to 

homodimer. Thus, it is likely that these two proteins can exist as heterodimer in cell types that 

express both of them in vivo. 
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SATB1 and SATB2 bind to these SBS regions in vivo, we performed chromatin 

immunoprecipitation (ChIP) analysis.Cells were crosslinked using. The cells were then lysed and 

chromatinwassheared by sonication to generate chromatin enriched in 300 to 500bp fragments. 

These small chromatin fragments were pulled down using SATB1 and SATB2 specific 

antibodies. The pulldown chromatin fraction was purified and used as a template for PCR using 

specific primers against distal and proximal SBSs for promoters of Satb1 and Satb2. PCR using 

specific primers against distal and proximal SBS in promoters of Satb1 and Satb2revealed 

enrichment of immunoprecipitated DNAs in pulldown samples for both SATB1 and SATB2 over 

IgG, which served as negative control (Fig 1.3.10 B). By ChIP we could show that SATB1 and 

SATB2 both bind to their respective promoters as well as each other’s promoter. However this 

experiment could not answer whether SATB1 and SATB2 bind to the same or different 

chromatin fragment. To address this question we performed ChIP experiment twice on the same 

chromatin one after the other, referred to as sequential ChIP. Sequential ChIP can distinguish 

whether two proteins are occupying the same or differentDNA fragment. Briefly, after doing the 

pulldown with the first antibody, eluted chromatin is subjected to a second round of ChIP (before 

decrosslinking) using the second antibody. Results were analyzed in the same manner as ChIP. 

Detection of signal in the second round of ChIP indicates that the two proteins remain bound to 

same DNA fragment in vivo. We performed sequential ChIP in HEK-293T cells to check if 

SATB1 and SATB2 targeted the same DNA region or different regions (Fig. 1.3.10 C). 

Sequential ChIP analysis revealed that SATB1 distal SBS is occupied primarily by SATB1 and 

SATB2 seems to get recruited to this site by SATB1. However on SATB1 and SATB2 proximal 

SBS sites, both SATB1 and SATB2 seem to co-occupy (Fig. 1.3.10 C; lane 6 and 7). 
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three highly conserved functional domains namely N-terminal PDZ-like domain, central CUT 

repeat containing domain (CD) and C-terminal homeodomain (HD). N-terminal PDZ-like 

domain is required for dimerization of the protein and is indispensable for DNA binding activity. 

C-terminal half contains homeodomain (HD) which recognizes DNA specifically, whereas 

middle CUT domain (CD) enhances the binding affinity of HD. Both the proteins are known to 

interact with various co-activators and co-repressors. The PDZ-like domain of SATB1 has been 

shown to interact with histone modifiers HDAC1, PCAF, CBP, p300 (Kumar et al., 2005; Pavan 

et al., 2006), PML (Kumar et al., 2007), CtBP1 (Purbey et al., 2009) and β-catenin (Notani et al., 

2010). SATB2 also has been shown to interact with various chromatin modifiers like HDAC1 

and MTA2 (Gyorgy et al., 2008). SATB1 and SATB2 both are involved in regulation of 

chromatin architecture and gene expression in cell type specific manner. SATB1 is shown to be 

involved in regulation of T-cell development and differentiation (Alvarez et al., 2000; Kumar et 

al., 2006; Notani et al., 2010) whereas role of SATB2 has been discussed more specifically in 

regulation of the neuronal cell lineage (Britanova et al., 2006; Alcamo et al., 2008) and 

osteoblast differentiation (Dobreva et al., 2006; Hassan et al., 2010). Though SATB1 is also 

present in fetal brain as well as in some parts of adult brain, its role in the CNS has not been well 

studied. Over the past 4 years, many reports have been added to literature discussing the roles of 

SATB family proteins in progression of various kinds of tumors and metastasis (Han et al., 2008; 

Agrelo et al., 2009; Patani et al., 2009; Wang et al., 2009; Endo et al., 2012; McInnes et al., 

2012; Mir et al., 2012; Chu et al., 2013; Shukla et al., 2013; Zhang et al., 2013). 

There are no reports of any comparative study between SATB1 and SATB2 and they have 

not been studied together with respect to their roles in regulating gene expression. Here we 

attempt to study SATB family proteins in a comparative manner. Towards this, we first tested if 

they have similar MAR-binding potential in vitro using EMSA. We could show that equivalent 

amount of SATB2 binds with higher affinity to particular MAR sequence as compared to 

SATB1. Both SATB1 and SATB2 repressed MAR-linked luciferase gene expression in vivo to a 

similar extent. We have shown earlier the effect of various activators and co-repressor on the 

regulatory activity of SATB1 (Kumar et al., 2005; Pavan et al., 2006) however it was not known 

how these factors affect SATB2 mediated gene regulation. To test this, we cotransfected PCAF, 

p300, Sumo1 and HDAC1 along with SATB1 or SATB2. In vivo reporter assays indicated that 

all these activators and co-repressors interact in the same manner with both SATB2 and SATB1. 

SATB1 has been shown to regulate target gene expression as a part of multi-protein complex. 
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Purbey et al. showed that SATB1 interacts with a co-repressor CtBP1 via its PDZ-like domain in 

acetylation-dependent manner and represses target genes (Purbey et al., 2009). Sequence 

homology search revealed that SATB2 also harbors CtBP1 interaction motif in its PDZ-like 

domain at equivalent position. Therefore, we tried to detect the SATB2 and CtBP1 interaction in 

vivo; however we could not detect any such interaction. 

SATB1 and SATB2 both harbor PDZ-like domain which is very important for interaction 

with other PDZ containing proteins. The dimerization property of SATB1 is primarily attributed 

to its PDZ-like domain (Galande et al., 2001; Purbey et al., 2008). However Tan et al. in 2010 

claimed that SATB1 does not dimerize in vivo. Using in vivo coimmunoprecipitation of FLAG-

SATB1 (FL) with EGFP-SATB1 (FL), and vice versa, they failed to detect in vivo SATB1 

homodimerization. To establish homodimerization of SATB1 unequivocally, we performed the 

same experiment using identically tagged full-length SATB1 constructs. Our data argues very 

convincingly that SATB1 homodimerizes in vivo. As it is known that one PDZ containing 

protein interacts with other PDZ containing proteins, we asked whether SATB1 and SATB2 

interact in vivo to form heterodimer. Using various techniques we demonstrated that SATB1 and 

SATB2 interact with each other forming heterodimerin vivo. 

Roles of SATB family proteins have been discussed in progression of various types of cancer 

and their metastasis (Mir et al., 2012). SATB1 has been shown to express in metastatic cell lines 

whereas expression of SATB2 was reported in both malignant and non-malignant cells (Han et 

al., 2008). It was also shown that SATB1 expression increases while SATB2 expression 

decreases with tumor progression (Wang et al., 2009). Using colorectal cancer cell line SW480 

we show that SATB1 and and SATB2 antagonize each other’s expression in vivo. Some cells 

like HEK-293T express comparable level of SATB1 and SATB2 unlike cancer cell lines where 

SATB1/2 expression varies according to cancer progression. We propose transcriptional 

regulation by SATB1 and SATB2 varies in these two cell types. SATB1 and SATB2 

synergistically regulate transcription of their target genes in the cells where they are coexpressed 

unlike in cancer cells where they are not expressed at the same time. Chromatin 

immunoprecipitation analysisrevealed that SATB1 and SATB2 bind and recruit each other to 

respective promoters in vivo and in turn regulate each other’s expression. This reciprocal 

regulation of SATB1 and SATB2 can in turn affect their relative levels inside cells which might 

play important roles in regulating various pathways like cancer progression and cell 

differentiation. We also show that SATB1 and SATB2 bind to target genomic sequences as 
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homodimer as well as heterodimers. There are multiple targets which are regulated differentially 

by SATB1 and SATB2; however exhibit binding of SATB1 and SATB2 at the same time 

(Savarese et al., 2003; Asanoma et al., 2011). We showed that SATB1 and SATB2 interact and 

form homodimer as well as heterodimer (this work and Galande et al., 2001; Purbey et al., 2008). 

Interestingly, SATB1 and SATB2 differ with respect to their post-translational modifications and 

also with respect to their interaction partners including CtBP1. Thus, the composition of SATB 

dimers at various stages of cell development and differentiation may affect gene expression. We 

propose that SATB1 or SATB2 homodimers and SATB1/2 heterodimers mightplay differential 

roles in gene regulation.  This is indeed an exciting possibility that requires further investigation 

and would provide important insights into coordinated gene expression during differentiation of 

embryonic stem cells. 

Based on our results we propose that SATB family of proteins regulate the gene 

expressionby interacting with various kinds of activators and co-repressors. Nonetheless, they 

differ with respect to few interacting partners such as CtBP1, which might explain their 

differential roles in various biological processes. In addition to interaction with other proteins, 

they interact with each other as well to form homo- as well as heterodimers and regulate each 

other’s expression in vivo. Reciprocal regulation of SATB1 and SATB2 is another exciting 

possibility pertaining to the biological activities of SATB family proteins. The possibility of 

dimerization and reciprocal regulation among SATB family proteins are two independent 

mechanisms by which different set of genes can be coordinately regulated in various cellular 

systems. Therefore, we evaluated the expression of SATB family proteins in undifferentiated 

pluripotent stem cells and during various time points upon differentiation. The results of these 

studies are presented in subsequent chapters. 
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Chapter II 

To study the roles of SATB1 and SATB2 in 
cellular context 
 

 

2.1 Introduction 

As discussed in the first chapter, various matrix binding proteins (MBPs) including 

SATB1 and SATB2 bind to these AT-rich MAR sequences and regulate higher-order 

chromatinorganizationin the form of topologically independent loop domains (Galande, 2002). 

Since binding of these MBPs depends primarily on such DNA sequences, the total number of 

their potential genomic sites is larger as compared to classical transcription factors which target 

specific genes and therefore are postulated to play significant role in global gene regulation. Cell 

type-specific gene expression is regulated by a number of different chromatin remodelers and 

transcription factors which bind to various DNA elements such as promoters and enhancers, 

resulting in subsequent activation or repression of gene expression. SATB1 and SATB2 have 

been shown to play important roles in development and differentiation of various cell types by 

regulating cell type-specific gene expression. For example, SATB1 has been shown to play 

important roles in development of various T cell subpopulations and cancer progression whereas 

role of SATB2 has been studied in regulation of differentiation of bone cells and 

neurons.Various aspects of regulation of cell differentiation by SATB family proteins will be 

discussed in detail in the following section. 

 

2.1.1 Role of SATB family proteins in development and differentiation of T and B cells 

SATB1 was initially cloned from a testis cDNA library (Dickinson et al., 1992), however 

its role was studied mainly as a T cell enriched global chromatin organizer presumably because 

of its abundant expression in thymus.Subsequently, SATB1 was shown to play important roles in 
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T cell development and differentiation by virtue of its ability to act as a global gene regulator 

(Alvarez et al., 2000; Yasui et al., 2002; Cai et al., 2003; Notani et al., 2010; Beyer et al., 2011; 

Burute et al., 2012). SATB1 knockout mice exhibit multiple defects in T cell development 

including reduced proliferation and arrest at double positive stage indicating important roles of 

SATB1 in T cell development (Alvarez et al., 2000). SATB1 is shown to play an important role 

in differentiation of Th2 cells by orchestrating expression of the Th2 cytokine locus including IL-

4, IL-5 and IL-13 along with GATA3 (Cai et al., 2006; Ahlfors et al., 2010; Notani et al., 2010). 

SATB1 in association with the PML oncoprotein organizes the MHC class I locus into distinct 

loop domains and facilitates the transcription of multiple genes in response to IFNγ treatment in 

T cells (Kumar et al., 2007). SATB1 also manifests its role in Th2 cell differentiation by 

regulating multiple genes in a Wnt dependent manner. SATB1 interacts and recruits CtBP1 and 

-catenin at promoters of its target genes (Purbey et al., 2009; Notani et al., 2010). Increased 

expression of SATB1 is critical for Th2 cell differentiation (Ahlfors et al., 2010). However, 

SATB1 is downregulated during regulatory T cell (Treg) differentiation. Treg-specific 

transcription factor Foxp3 binds to the 3’ UTR region of SATB1 and inhibits its expression 

specifically in Treg cells (Beyer et al., 2011). The other member of SATB family, SATB2 was 

discovered in 2003 by Dobreva et al. in pre-B cells as a MAR-binding protein where it was 

shown to bind intergenic MARs of the immunoglobulin μ heavy chain and activate transcription 

in sumoylation-dependent manner (Dobreva et al., 2003). After this not many reports were 

published depicting role of SATB2 in differentiation or development of any immune system 

related cell type until a recent report wherein Zhou et al. showed that SATB2 plays important 

role in upregulation of human γ globin gene expression from the β globin gene cluster during 

embryonic development. SATB2 coordinates induction of fetal γ globin expression by direct 

binding and recruitment of PCAF to the upstream MAR sequences on γ globin gene promoters 

during differentiation of human erythroleukemia K562 cells and human umbilical CD34+ cells 

(Zhou et al., 2012). SATB2 level drops significantly in TER119+ erythroid cells of 8.5, 9.0 dpc 

murine yolk sacs and is positively correlated with the decreasing expression of fetal γ globin 

gene expression; however SATB2 activates γ globin gene without activation of erythroid 

differentiation (Zhou et al., 2012). Interestingly, SATB1 also has been shown to express during 

early human adult erythroid progenitor cell differentiation where it binds and regulates the β 

globin gene cluster (Wen et al., 2005; Wang et al., 2009a; Gong et al., 2009). SATB1 induces 

expression of ε globin gene from the β globin gene cluster by binding and then recruiting CBP to 
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the hypersensitive site 2 (HS2) in the locus control region (LCR) on ε globin gene promoter 

(Wen et al., 2005). Erythroid differentiation of K562 cells by hemin simultaneously increases 

SATB2 and γ globin gene expression; and downregulates SATB1 and ε globin (Wen et al., 2005; 

Zhou et al., 2012). In conclusion, these studies indicate that SATB family proteins play 

important roles in differentiation of various T cell subtypes as well as B cell by regulating a 

number of important lineage specific genes via chromatin reorganization. 

 

2.1.2 Role of SATB family proteins in differentiation of osteocytes and bone development 

Role of SATB family proteins, specifically of SATB2 has been studied in detail in 

osteoblast differentiation during bone development. SATB2 expression is first detected in mouse 

in the rhombomere region at E8.5 followed by its expression in first branchial arch at E9.0 and 

then in medial parts of remaining four branchial arches that form future facial structures of the 

adult (Dobreva et al., 2006). As expected from its expression patterns, SATB2 knockout 

embryos exhibited several craniofacial defects in skeletal elements including cleft palate and 

osteoblast differentiation (Dobreva et al., 2006). SATB2 has been shown to regulate bone 

development by inhibiting multiple genes such asLhx7 and several Hox genes including Hoxa2 

and Hoxb2. Hoxa2 plays an important role in patterning and antagonizing bone formation. 

Hoxa2 is upregulated in neural crest cells via activation of an upstream enhancer element, 

whereas binding of SATB2 to a different enhancer element downstream of the gene suppresses 

Hoxa2 expression.SATB2 also binds directly to three osteoblast-specific elements on bone 

sialoprotein (Bsp) promoter and upregulates Bsp expression during differentiation of 

mesenchymal progenitor stem cells into bone forming osteoblast cells. During this process 

SATB2 interacts with Runx2 and ATF4 and stimulates Osteocalcin (Ocn) gene expression 

(Dobreva et al., 2006). Subsequently, SATB2 was shown to stimulate differentiation of adult 

stem cells, induced pluripotent stem cells (iPSCs) and various osteoblast like cells into bone 

forming osteoblast lineage cells by regulating the expression of a group of osteogenic 

transcription factors such as Runx2, ATF4, BSP, OCN and SOX2 (Zhang et al., 2011; Ye et al., 

2011; Kim et al., 2012). Overexpression of SATB2 in dental follicle cells (DFCs) and bone 

marrow stromal cells (BMSCs) resulted in upregulation of various bone matrix proteins, 

osteogenic transcription factors and also VEGF,a major angiogenic factor (Zhang et al., 2011). 
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Enhanced expression of these osteogenic and angiogenic factors resulted in improved 

angiogenesis and healing during bone regeneration which indicate the role of SATB2 in 

promoting osteogenic differentiation and bone tissue regeneration from adult stem cells (Zhang 

et al., 2011). Post-transcriptional regulation of SATB2 by various microRNAs (miRNAs) such as 

miR-34b/c and miR cluster 23a~27a~24-2 has been demonstrated to play important role in the 

bone development and terminal maturation (Hassan et al., 2010; Wei et al., 2012a) (Fig. 2.1.1). 

Oxidative stress is known to exert negative effects on osteoblast differentiation and skeletal 

development. Recently, Wei et al. showed that oxidative stress in human osteoblast results in 

induction of SATB2 expression, which protects them from apoptotic injury (Wei et al., 2012b). 

SATB2 has been shown to be of evolutionary significance for the development vertebrate jaws; 

and differential regulation of SATB2 has important consequences on the development and 

evolution of various jaw modules in gnathostomes (Depew and Compagnucci, 2008; Fish et al., 

2011). The role of SATB2 in jaw development can be attributed towards its specific and major 

role in development and differentiation of osteocytes. 
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overlapping fashion in developing brain and may act as global regulators of cell differentiation in 

specific cell lineages within the developing CNS (Britanova et al., 2005; Baranek et al., 2012). In 

the developing brain SATB2 expression was at maximum level in differentiating neurons and 

decreased upon differentiation in mature neurons (Britanova et al., 2005). Unlike SATB2, 

SATB1 expression was mostly observed in postnatal brain and was found to be expressed 

exclusively in a subset of mature neurons in mouse brain but not in astrocytes and glial cells 

(Huang et al., 2011; Balamotis et al., 2012). Though SATB family proteins are expressed in 

brain during E11.5 to E 13.5, SATB2 null mice do not survive past postnatal day 0 (P0). SATB1 

null mice survive until 2.5 to 3 postnatal weeks, indicating an essential role of SATB2 during 

embryonic development. Postnatal increase in SATB1 expression in cerebral cortex plays a 

major role in regulation of multiple immediate early genes (IEGs). IEGs are important class of 

genes, which include regulatory transcription factors (RTFs) (e.g., Fos, Jun, and Egr) which 

regulate many downstream genes as well as many effector IEGs (e.g., Arc and Bdnf) which 

directly modulate neural morphogenesis and plasticity (Andreasson and Kaufmann, 2002; 

Tzingounis and Nicoll, 2006; Miyashita et al., 2008). SATB1 binds to genomic loci of various 

IEGs and regulates proper timing and temporal expression pattern of these genes (Balamotis et 

al., 2012).  In addition, SATB1 also regulates other neuronal genessuch as genes involved in 

synaptogenesis (Sst, Areg, and Thbs1) and stress, fear/anxiety response or hyperactive behavior 

(Th, Crh, Atf3, Penk1, and Tacr1), and the Ca2+ binding and damage/inflammation response 

(Calb1, Calb2, Calr, NoxA, S100a8, S100a9, Tnf, and Il6) (Balamotis et al., 2012). SATB1 

expression has a major impact on synapse formation in the cerebral cortex and amygdala during 

postnatal brain development, loss of SATB1 results in reduced cortical dendritic spine density in 

neurons (Balamotis et al., 2012). Despite regulating important genes involved in synapse 

formations and various other functions in cerebral cortex, SATB1 null mice do not show any 

morphological abnormality in the cerebral cortex (Fig. 2.1.2).  
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some layers a few neurons exclusively express one of them or sometimes more than two together 

(Alcamo et al., 2008; Britanova et al., 2008; Chen et al., 2008; Baranek et al., 2012). SATB2 

expression is very critical for determining identity of UL callosal projection neurons to form 

corpus callosum and in absence of SATB2 these neurons upregulate Ctip2 expression and failed 

to migrate to the superficial cortical plate (CP) and instead project their axons towards 

subcortical parts of cortex like DL neurons. SATB2 controls the differentiation of UL neurons to 

form corpus callosum by activating UL specific genes (e.g. Sip1 and Tbr1) and downregulating 

DL associated genes (e.g. Ctip2 and Nurr1). Ectopic expression of SATB2 in DL neurons results 

in downregulation of Ctip2 and impairment of formation corticospinal tract (Alcamo et al., 2008; 

Britanova et al., 2008). SATB2 expression is critical for differentiating UL neurons to form 

corpus callosum and is enhanced specifically in axons of projection neurons forming callosal 

callosum by a specific enhancer known as AS021 SINE locus (Tashiro et al., 2011). SATB2 

mediated specification of UL neurons is mainly achieved by virtue of its direct binding to MAR 

regulatory region of Ctip2 locus where it recruits HDAC1 and MTA2, components of the NuRD 

complex,causing efficient repression of Ctip2 expression in UL neurons (Alcamo et al., 2008; 

Britanova et al., 2008; Gyorgy et al., 2008). However, recently a proto-oncogeneSki was shown 

to play an important role in SATB2 mediated knockdown of Ctip2 (Baranek et al., 2012). It was 

shown that in UL neurons SATB2 and Ski are coexpressed and Ski facilitates recruitment of 

HDAC1 to Ctip2 locus and thereby formation of an active NuRD complex consisting of HDAC1 

and MTA2 along with SATB2 resulting in suppression of Ctip2. In contrast, DL neurons do not 

coexpress Ski and SATB2 and therefore an active NuRD complex is not formed at Ctip2 locus 

(Baranek et al., 2012) (Fig. 2.1.3). Thus, SATB2 regulates the differentiation of UL neurons to 

form callosal projections. 
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hESCs (Andrews, 1984; Lee and Andrews, 1986). We used NT2D1 to study the roles of SATB 

family proteinstowards regulation of pluripotency and differentiation. We found that SATB 

family proteins regulate various stem cells as well as pluripotency associated genes. We also 

showed that Wnt signaling effectors areactivated during process of differentiation. At the 

molecular level, we showed that SATB family proteins play important roles in regulating Wnt 

responsive genes during this process. We then extended this study using hESCs which will be 

discussed in detail in chapter III.  

 

2.2 Materials and Methods 

 

2.2.1 Antibodies and reagents 

Anti-SATB1 (Cat. no. 3050S) was purchased from Cell Signaling Technology (Beverly, 

Massachusetts) and anti-SATB2 (Cat. no. ab51502) was purchased from Abcam (Cambridge, 

UK). Anti-OCT4 and anti-SOX2 were purchased from SantaCruz Biotechnologies (Santa Cruz, 

CA, USA).  Anti-Nanog was purchased from R&D Systems (Minneapolis, USA). Anti-tubulin 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). Anti--Catenin and anti-e-cadherin 

were purchased from BD Biosciences (Franklin Lakes, NJ, USA). Wnt3a and Dkk1 were 

obtained from R&D Systems (Minneapolis, USA). All-trans-retinoic acid, BIO and XAV939 

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Lipofectamine RNAiMAX 

transfection reagent was purchased from Invitrogen (Carlsbad, CA, USA). siRNAs against GFP 

(Cat. no. sc-45924), SATB1 (Cat. no. sc-36460), SATB2 (Cat. no. sc-76456) were procured from 

SantaCruz Biotechnologies (Santa Cruz, CA, USA). Immunoblotsignal was detected using 

VisualizerTM Western Blot Detection Kit (Cat.no. 64-202; Millipore/Upstate, Billerica, MA, 

USA).  

 

2.2.2 Cell lines 

HEK-293T, LN18, SKNMC and U373MG cells were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM, Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine 
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serum and penicillin/streptomycin, at 37oC under 5% CO2 atmosphere. These cells were 

passaged using 0.05% trypsin (Gibco, Carlsbad, CA, USA). Jurkat and JM1 cell lines were 

maintained in RPMI (RPMI-1640, Gibco, Carlsbad, CA, USA) medium, supplemented with 10% 

fetal bovine serum and penicillin/streptomycin, at 37oC under 5% CO2 atmosphere. Embryonic 

carcinoma cell line NT2D1 were obtained as a kind gift from Dr. Peter Andrews and were grown 

in Dulbecco’s Modified Eagle’s Medium with no sodium pyruvate, high glucose (DMEM, 

Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum, 2mM L-

glutamine (200 mM stock) and penicillin/streptomycin, at 37oC under 5% CO2 atmosphere. 

NT2D1 cells were passaged by gentle scraping and trypsin was not used for passaging.  

 

2.2.3 Isolation of mouse tissues and RNA extraction 

Various tissues were isolated from BALB/c mice and kept submerged in RNAlater 

solution (Invitrogen, Carlsbad, CA, USA) after dissecting them out.Tissues were then stored 

frozen at -80oC for later processing. RNA was isolated by homogenizing the tissue pieces in TRI 

reagent (Sigma-Aldrich, St. Louis, MO, USA) according to manufacturer’s protocol.  

 

2.2.4 Differentiation experiments in NT2D1  

All-trans-retinoic acid (RA)-induced differentiation series were performed in 6-well 

plates for NT2D1 and hES cell lines. RA was reconstituted at a concentration of 5mg/ml in 

DMSO (Sigma-Aldrich, St. Louis, MO, USA) and stored in dark at -80 oC as 10 l aliquots to 

avoid repeated freeze thaw cycle. For differentiation experiments, NT2D1 cells were harvested 

using 0.05% Trypsin, 0.15 x 106 cells were seeded in each well of 6-well plate and allowed to 

grow for 24 h. Next day, 0 day or control cells were harvested, RA (Sigma-Aldrich, St. Louis, 

MO, USA) was added to a final concentration of 13.7 μM to the remaining wells and cells were 

maintained in RA upto 7 days, with media replacement (containing freshly thawed RA) every 

day. At indicated days, cells were washed once with chilled 1X PBS and harvested for RNA and 

protein extraction.  
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2.2.5 RNAi mediated knockdowns 

Knockdowns were performed using Lipofectamine RNAiMAX transfection reagent 

(Invitrogen, Carlsbad, CA, USA) according to manufacturer protocol. Briefly, NT2D1 cells were 

grown in Dulbecco’s Modified Eagle’s Medium with no sodium pyruvate, high glucose (DMEM, 

Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum, 2mM L-

glutamine (200 mM stock) and penicillin/streptomycin, at 37oC under 5% CO2 atmosphere. 

Twenty l of 10M siRNAs were transfected using Lipofectamine RNAiMAX reagent as per 

manufacturer’s instructions in serum-free medium.  The medium was supplementedwith10% 

fetal bovine serum 6 h post-transfection. The cells were allowed to grow for 48 h and harvested 

by scrapping and used for RNA preparation and real-time RT-PCR. 

 

2.2.6 Real-time quantitative RT-PCR 

RNA was prepared from control and siRNA transfected cells using TRI reagent (Sigma-

Aldrich, St. Louis, MO, USA). One g of RNA was used for cDNA preparation per 20 l of 

reaction. Real- time RT-PCRs were carried out essentially as described (Kumar et al., 2005). The 

cDNA was used as template for the PCR amplification with gene-specific set of primers. The 

changes in threshold cycle (Ct) values were calculated as follows: Ct = (Cttarget genes-Ct-actin) for 

transcript analysis. These Ct values were used to calculate fold change using equation as 

relative fold change =2-(∆(∆Ct)) and plotted graph for the average fold values with standard 

deviation from three independent experimental samples using Sigma Plot version 11. 

 

2.2.7 Western blotting 

Cells were lysed in lysis buffer (50mM Tris-HCl, pH7.5, 150mM  NaCl, 0.5% Triton X-

100, 5% glycerol, 1% SDS, 1mM Na3VO4, 10mM NaF, 1mM PMSF). Protein concentrations 

were determined using Bradford assay kit (Bio-Rad, Hercules, CA). Ten g of protein lysate was 

boiled with 6X SDS sample buffer (0.5M Tris-HCl pH6.8, 28% glycerol, 9% SDS, 5% 2-

mercaptoethanol, 0.01% bromophenol blue) and electrophoresed on a 12.5% SDS-

Polyacrylamide gel and transferred onto a PVDF membrane. Membranes were incubated 
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overnight at 4°C with primary antibodies and then incubated with horseradish peroxidase 

conjugated secondary antibodies. The signals were developed using Immobilon Western 

Chemiluminescent HRP Substrate (Millipore, Billerica, MA, USA) and detected using 

ImageQuant LAS 4000(GE Healthcare, Piscataway, NJ, USA) according to manufacturer’s 

instructions. 

 

2.3 Results 

 

2.3.1 SATB1 and SATB2 are expressed differentially in various mouse tissues 

Expression of any gene varies in different tissues and the level of particular gene’s 

expression can give an indication of tissue specific roles of that gene. For example, SATB1 

expression is very high in thymus and it has been shown to play important roles in development 

and differentiation of various T-cell subpopulations (Alvarez et al., 2000; Pavan et al., 2006; 

Notani et al., 2010). SATB1 expression is also significantly high in various tumors and it has 

been shown to play an important role in cancer progression and metastasis (Han et al., 2008; 

Meng et al., 2012, Chu et al., 2012). Similarly, important roles of SATB2 have been discussed in 

brain and bone development where it is expressed in considerable amount (Britanova et al., 

2006; Alcamo et al., 2008; Britanova et al., 2008, Dobreva et al.; 2006, Hassan et al., 2010). To 

get an idea of relative expression of SATB family proteins across various tissues, we performed 

SATB1 and SATB2 expression profiling across various mouse tissues. As expected, SATB1 

level was maximum in thymus whereas SATB2 was maximally expressed in brain (Fig. 2.3.1). 

SATB1 and SATB2 expressed in equivalent amount in kidney.  
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2.3.5 Genes involved in Wnt signaling are upregulated during RA induced differentiation  

A number of studies have suggested that Wnt signaling is involved in the maintenance of 

pluripotent state of mouse and human embryonic stem cells (mESCs and hESCs) (Sato et al., 

2004; Hao et al., 2006; Takao et al., 2007; ten Berge et al., 2011). Furthermore, activation of 

Wnt signaling promoted self-renewal while inhibition of the Wnt pathway resulted in multi-

lineage differentiation. Marson et al. showed that activation of Wnt signaling promotes 

reprogramming of somatic cells to a pluripotent state (Marson et al., 2008). To test the role of 

Wnt signaling in NT2D1 differentiation we monitored the expression of various Wnt responsive 

genes in a differentiation dependent manner. We differentiated NT2D1 cells for 3 and 6 days 

using RA. Various Wnt responsive genes were analyzed by quantitative RT-PCR (Fig. 2.3.7). 

We detected increased expression of a number of Wnt responsive genes during RA induced 

differentiation. DKK1; which is an antagonistof Wnt signaling, is downregulated during 

differentiation. These results indicate that Wnt signaling is upregulated during RA mediated 

differentiation of NT2D1 cells. 
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coordinate expression of multiple genes in different tissues in cell type specific manner (Cai et 

al., 2003; Dobreva et al., 2006; Kumar et al., 2007; Alcamo et al., 2008; Britanova et al., 2008; 

Balamotis et al., 2012; Zhou et al., 2012). SATB1 and SATB2 have been studied in many 

different cell and tissue types and have been shown to be expressed at varying levels however 

there are no reports mentioning the relative expression in same cell or tissue types except in brain 

where they have been shown to express in distinct and mutually exclusive manner (Britanova et 

al., 2005; Balamotis et al., 2012). To obtain an insight into the relative expression of SATB1 and 

SATB2 in various cell and tissue types, we analyzed the expression levels of SATB1 and SATB2 

in various cell and mice tissue types.  We observed that SATB1 expression is highest in thymus 

while SATB2 expression is the maximum in brain. We also screened few cell lines of diverse 

origins and analyzed SATB1 and SATB2 expression in them.  Jurkat, a T lymphoblastic cell line 

exhibits high expression of SATB1 at protein level whereas SATB2 expression was very low. 

JM1, a B cell line exhibits high SATB2 and low SATB1 expression. 293T, a kidney cell line 

expresses both SATB1 and SATB2 to similar extent. On contrary, most of the neuronal cell lines 

that we screened express comparable level of SATB1 and SATB2, which indicates that 

differential expression of SATB1 and SATB2 could be attributed todifferent subpopulations of 

neuronal lineage and the same has been supported by previous studies as well (Britanova et al., 

2005; Huang et al., 2011; Baranek et al., 2012). 

As it was reported earlier that neurons from various regions of the brain exhibit different 

levels of SATB1 and SATB2 expression, we asked if SATB family proteins play any roles in the 

neuronal differentiation. For this we used a human embryonic carcinoma cell line, NT2D1 which 

is a type of human testicular carcinoma cell line. Human teratocarcinoma cell lines were first 

isolated as xenografts in hamster cheek pouches (Pierce et al., 1957) after which many 

subsequent lines established in vitro notably TERA1, TERA2 (Fogh and Trempe, 1975) and 

SuSa (Hogan et al., 1977). One of the important carcinoma cell lines, TERA2 was established by 

Peter Andrews in 1980 which exhibited pluripotent capabilities and could be differentiated in 

vitro (Andrews et al., 1980), subsequently another clone of TERA2 called as NTERA2 cl. D1 

(NT2D1) was established from a xenograft tumor in a nude mouse (Andrews et al., 1984). 

TERA2 and its sub clone line NTERA2 are pluripotent and unlike stem cells they do not require 

feeder cells to grow which makes them relatively easy system to work with as compared to 

hESCs (Andrews et al., 1984). NTERA2 has been shown to be capable of 
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differentiatingextensively in distinct cell populations including functional neurons in response to 

retinoic acid treatment (Andrews et al., 1984; Lee and Andrews, 1986; Pleasure et al., 1992; 

Pleasure and Lee, 1993; Squires et al., 1996; Przyborski et al., 2000). All these properties of 

NT2D1 make it a highly efficient and easy model for studying basic principles of pluripotency 

and differentiation and can be used as a replacement for human embryonic stem cells (hESCs) 

which are relatively more difficult to maintain and require specific culture conditions such as 

feeder cells, defined media and various growth factors.  

We therefore used NT2D1 cells as a model system to study roles of SATB family 

proteins during RA induced differentiation. We observed that SATB1 and SATB2 are induced 

during differentiation with SATB1 showing more induction as compared to SATB2. We also 

analyzed expression of various pluripotency genes such as OCT4, SOX2 and NANOG, which 

were downregulated upon differentiation. To delineate the role of SATB family proteins during 

differentiation, we knocked down SATB1 and SATB2 in NT2D1 cells and analyzed the 

expression levels of various genes associated with pluripotency or differentiation. Expression of 

pluripotency and stem cell related genes such as OCT4, NANOG, NR6A1, BRIX, COMMD3, 

CRABP2, IL6ST LEFTY1, LIN28, REST and SEMA3A was increased upon SATB1 or SATB2 

knockdown. On other hand, SATB1 and SATB2 knockdown resulted in downregulation of genes 

namely Flt1, FN1, Nestin and Lamins which are involved in differentiation. These findings 

indicate that SATB1 and SATB2 are important in downregulating genes involved in maintaining 

stemness or pluripotency and upregulate genes associated with differentiation. This goes hand in 

hand with the expression profile of SATB1 and SATB2 which get upregulated during 

differentiation. We propose that the SATB family proteins play important role in coordinating 

NT2D1 differentiation by regulating expression of genes associated with differentiation.  

There are many different developmental pathways involved in regulating stemness and 

differentiation of hESCs (Noggle et al., 2005; Liu et al., 2007; Feng et al., 2009). Multiple 

studies have reported and discussedthe role of Wnt signaling in the maintenance of hESCs 

however contradictory views exists on whether Wnt signaling inhibits or promotes 

differentiation of hESCs. Sato et al. showed that Wnt signaling is active in undifferentiated stem 

cells and is downregulated upon differentiation; they also showed that cells could be maintained 

in undifferentiated condition by the addition of BIO in culture medium which inhibits 

GSK3(Sato et al., 2004). Marson et al. showed that somatic cells can be reprogrammed to 
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induced pluripotent cells (iPSCs) by Wnt3A mediated activation of Wnt signaling (Marson et al., 

2008). However contrasting studies show that activation of Wnt signaling by BIO or Wnt3A may 

promote but is not sufficient to maintain the cells in pluripotent state over many passages 

(Dravid et al., 2005; Cai et al., 2007). Activation of Wnt signaling by inhibiting GSK3 in 

hESCs promotes differentiation towards primitive streak, endodermal and mesodermal lineage 

(Nakanishi et al., 2009; Bone et al., 2011). There are also many studies which show that Wnt 

signaling is important and promote neurogenesis from neural stem cell culture (Muroyama et al., 

2004; Hirsch et al., 2007). A very recent report shows that OCT4 represses Wnt signaling in 

undifferentiated hES cells which gets activated upon differentiation due to loss of OCT4 

(Davidson et al., 2012). Taken together, role of Wnt signaling has been a controversial and open 

question.  To monitor the role of Wnt signaling in NT2D1 differentiation we first check the 

status of Wnt signaling in our differentiation series. We observed that various Wnt responsive 

genes are upregulated during RA induced differentiation. Activation of Wnt signaling by soluble 

Wnt3A or BIO resulted in downregulation of various pluripotency markers including OCT4, 

SOX2 and NANOG.  SATB1 has been shown to interact with -catenin and coordinate gene 

expression in a Wnt-dependent manner (Purbey et al., 2009; Notani et al., 2010). Interestingly, 

activation of Wnt signaling also induced SATB1 and SATB2 expression and therefore mimicked 

RA induced differentiation. Knockdown of SATB1 and SATB2 resulted in downregulation of 

Wnt responsive genes indicating that SATB family proteins may target Wnt responsive genes 

during differentiation. In conclusion, Wnt signaling is induced during differentiation and 

activation of Wnt signaling in undifferentiated cells promotes differentiation.  SATB family 

proteins are induced upon Wnt signaling and may regulate Wnt responsive genes during 

differentiation (Fig. 2.4.1).  
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report novel findings implicating role of SATB family proteins in regulation ofdifferentiationvia 

regulation of Wnt signaling.  
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Chapter III 

To study the roles of SATB1 and SATB2 in 
context of human embryonic stem cells 
 

 

3.1 Introduction 

Stem cells are special types of cells characterized by their unique feature of self-renewal 

and potency as they can divide indefinitely to give rise to more stem cells and also can 

differentiate into variety of specific cell types. In mammals, stem cells can be isolated from the 

inner cell mass (ICM) of preimplantation embryos known as embryonic stem cells.Some stem 

cells are also found in certain tissues of adult organisms which are termed as adult stem cells. 

Embryonic stem cells were first established from the inner cell mass (ICM) of mouse blastocysts 

in 1981 (Evans and Kaufman, 1981) and after a long time in 1998 Thomson and colleague 

isolated first human embryonic stem cells (hESCs) (Thomson et al., 1998). Establishment of hES 

cell lines (Thomson et al., 1998; Reubinoff et al., 2000) and development of induced pluripotent 

stem (iPSCs) through the reprogramming of adult human cells (Takahashi, K. & Yamanaka, S., 

2006; Takahashi et al., 2007; Yu et al., 2007) developed new hopes in the field of regenerative 

medicines and treatment of degenerative diseases (Pera and Trounson, 2004; Liew et al., 2005). 

Detailed understanding of the various pathways and molecular mechanisms regulating self-

renewal and pluripotency as well as differentiation of ES and iPS cells into various differentiated 

cell lineages is very important for developing develop stem cell based therapies and regenerative 

medicines. A number of signaling pathways along with multiple stem cell factors have been 

implicated in regulation of pluripotency and induction of differentiation of mESCs as well as 

hESCs which will be discussed in brief in the following section. 

 



Chapter III 

 

Sunita Singh, Ph.D. Thesis, 2013 Page 80 
 

3.1.1 Transcription factors, cofactors and regulatory networks involved in self-renewal and 

pluripotency 

Of the various transcription factors implicated in regulating pluripotency OCT4, SOX2 

and NANOG are the most important factors that regulate pluripotency and form a core regulatory 

network in both mES and hES cells (Boiani and Scholer, 2005; Boyer et al., 2005; Loh et al., 

2006; Chambers et al., 2007; Masui et al., 2007; Niwa, 2009). OCT4 is a POU domain 

containing transcription factor and its precise level of expression is very important for 

maintaining self-renewal conditions for example, decreased expression of OCT4 causes 

differentiation of stem cells into trophoectoderm while overexpression results in induction of 

primitive endoderm and mesoderm (Yeom et al., 1996; Niwa, 2001). SOX2 is a HMG-family 

protein that co-occupies regulatory regions of multiple genes with OCT4 and is required for 

maintenance of pluripotent state of stem cells (Ambrosetti et al., 2000; Avilion et al., 2003; 

Masui et al., 2007). NANOG is also a HMG domain containing protein playing an important role 

in regulating stemness along with OCT4 and SOX2 and disruption of NANOG results in 

differentiation towards endodermal lineage (Nichols et al., 1998; Chambers et al., 2003; Mitsui 

et al., 2003; Chambers and Smith, 2004; Chambers et al., 2007). Heterodimeric OCT4/SOX2 

complex regulates expression of OCT4, SOX2 and NANOG (Kuroda et al., 2005; Rodda et al., 

2005). These core factors co-occupy and repress many lineage-specific genes while activating 

the expression of other genes involved in maintaining pluripotency (Boyer et al., 2005; Loh et 

al., 2006; Rao and Orkin, 2006). OCT4, SOX2 and NANOG form interconnected autoregulatory 

loops among them to regulate various pluripotency and differentiation associated genes. Loss of 

these core factors induces rapid induction of genes in stem cells, which results in differentiation 

towards various cell lineages indicating that these genes are poised for activation. These core 

pluripotency factors facilitate recruitment of various histone modifying enzymes and activator 

complexes such as trithorax group (TrxG) proteins. TrxG proteins catalyze H3K4me4 

modification and attract further histone modifiers such as Tip60-p400 complex and chromatin 

remodelers (esBAF and members of CHD family) to induce open chromatin formation for active 

transcription of pluripotency and self-renewal associated genes (Fazzio et al., 2008; Gaspar-Maia 

et al., 2009; Ho and Crabtree, 2010). OCT4 maintains the differentiation associated genes in a 

poised state by recruiting SetDB1 to the promoters of these genes which marks them with 

H3K9me3 modification and recruit and polycomb group (PcG) proteins which further catalyze 
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ubiquitination of histone H2A lysine 119 (H2AK119ub) and trimethylation of histone H3 lysine 

27 (H3K27me3) keeping these genes ‘‘poised’’ for activation during differentiation (Boyer et al., 

2006; Bilodeau et al., 2009; Yeap et al., 2009). c-Myc is one of the important Yamanaka factors 

in addition to OCT4, SOX2 and NANOG (Takahashi and Yamanaka, 2006) and has been 

recently shown to prevent lineage-specific differentiation through direct repression of GATA6 

expression (Smith et al., 2010; Varlakhanova et al., 2010). c-Myc interacts with and recruits 

histone acetyltransferases (HATs; GCN5, p300), various chromatin remodeling complexes, 

histone deacetylases (HDACs) and histone demethylases (Lin et al., 2009) which induces global 

histone acetylation allowing core pluripotency factors to bind their specific targets. OCT4, SOX2 

and NANOG interact with various cofactors to facilitate recruitment of RNA polymerase II onto 

the promoters of various pluripotency-associated genes (Kagey et al., 2010). c-Myc recruits p-

TEFb (a cyclin dependent kinase) to these sites facilitating active transcription of these genes 

along with core pluripotency factors (Jaenisch and Young, 2008; Rahl et al., 2010). In addition to 

OCT4, SOX2, NANOG, and c-Myc there are many other factors and cofactors which are 

involved in maintaining pluripotency, some of which are transcription factors such as Tcf3, 

Smad1, Stat3, Esrrb, Sall4, Tbx3, Zfx, Ronin, Klf2, Klf4, Klf5, and PRDM14 (Chen et al., 

2008;Kim et al., 2008). Transcription cofactors such as cohesin and mediators facilitate active 

transcription in concert with core pluripotency factors through physical association of enhancers 

with core promoters by loop formation (Kagey et al., 2010). Corepressorssuch as Dax1, Cnot3, 

and Trim28 have also been implicated in regulating pluripotency, loss of their expression results 

in differentiation towards trophotectoderm and primitive ectoderm lineage (Fazzio et al., 2008; 

Hu et al., 2009; Sun et al., 2009) (summarized in Fig. 3.1.1). 
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during embryonic development however they are not required for maintenance of pluripotency 

(Okano et al., 1999). TKO cells lacking all major DNMTs can be maintained in pluripotent state 

in culture. However they show lower differentiation potential as compared to wild type ESCs. In 

addition to this defect in the differentiation potential, after differentiation into EB bodies these 

TKO cells rapidly revert to expression profiles typical of undifferentiated ESCs unlike EB bodies 

derived from wild type ESCs, under pluripotency promoting conditions. Thus, while DNA 

methylation is dispensable for the pluripotency and initial activation of differentiation programs, 

it seems to be crucial for permanently restricting the developmental fate during differentiation. A 

recent study reveals that DNMT3b specifiaclly contributes in initiation of differentiation by 

downregulating stem cell proliferation (Umehara et al., 2013). During stem cell differentiation a 

majority of promoters maintain their methylation levels whereasa few genes exhibit small 

changes in DNA methylation at their promoter regions (Fouse et al., 2008; Meissner et al., 2008). 

Some promoters of stem cell genes get demethylated during reprogramming to enable 

reacquisition of pluripotency (Simonsson and Gurdon, 2004; Takahashi and Yamanaka, 2006).  

 

3.1.3 Signaling pathways involved in regulation of pluripotency 

Though mES and hES cells are characterized by the expression of core pluripotency 

factors they also show differences in expression of some surface markers as well as genes and 

pathways associated with pluripotency and differentiation. In addition to the differences in 

various surface markers and gene expression, mES and hES cells also differ in terms of their 

growth requirements. For example mES cells can be maintained in presence of LIF and serum 

whereashES cells require FGF2 to proliferate in an undifferentiated state.  

 In the following section we will discuss aboutvarious signaling pathways that have been 

implicated in regulation of pluripotency and differentiation of mESCs and hESCs (Figs. 3.1.3 

and 3.1.4). These signaling pathways include LIF and JAK-STAT signaling, MAPK-ERK 

signaling, PI3K signaling, FGF signaling, TGF signaling and Wnt signaling.  

LIF signaling acts via leukemia inhibitory factor (LIF) which is secreted by the feeder 

cells (mitotically inactivated embryonic fibroblast cells) used for maintaining mES cells in 

undifferentiated state (Smith et al., 1988; Williams et al., 1988). LIF is a member of the IL-6 
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cytokine family and signals through LIFR-gp130 heterodimer receptor on the cell surface, which 

dimerizes and gets phosphorylated upon binding of LIF to its receptor LIFR (Gearing et al., 

1991; Davis et al., 1993). LIFR-gp130 activation results in recruitment of Janus-associated 

tyrosine kinase (JAKs; JAK1, JAK2 and Tyk2) and signal transducer and activation of 

transcription (STATs; STAT1 and STAT3) class of transcription factors to LIFR-gp130 

receptors. This results in phosphorylation and subsequent dimerization of STATs by JAKs, 

which are then translocated inside the nucleus and activate many important genes responsible for 

maintaining pluripotency in mES cells (Boeuf et al., 1997; Niwa et al., 1998; Matsuda et al., 

1999). One such important target of LIF-STAT3 signaling is c-myc, which promotes self-

renewal and inhibits differentiation (Cartwright et al., 2005). Interestingly, LIF alone is unable to 

maintain mES cells in undifferentiated state in serum free conditonindicating that some 

component from the serum augments LIF in maintaining self-renewing conditions in culture. 

This factor was later discovered as one of the bone morphogenetic proteins (BMPs) (Ying et al., 

2003). LIF and JAK-STAT signaling pathway is one of the most important signaling pathways 

involved in mES cells self-renewal however these pathways do not operate in undifferentiated 

hES cells (Humphrey et al., 2004; Sato et al., 2004). STATs remain phosphorylated and active in 

undifferentiated mES cells but the same is not observed in undifferentiated hES cells (Sato et al., 

2004). Moreover, even stimulation of LIF and JAK-STAT pathway fail to maintain hESs in 

pluripotent state (Sato et al., 2004). 

Mitogen-activated protein kinase/extracellular receptor kinases (MAPK/ERK) signaling 

pathway is active in both mES as well as hES cells but acts in acontrasting manner in these two 

type of cells. Burdon et al. demonstrated that differentiated mES cells exhibit high ERK activity 

and inhibition of ERK activation enhanced mES cell self-renewal (Burdon et al., 1999). BMP4 

cooperates with LIF signaling to maintain cells in self-renewal state by inhibiting ERK activation 

in undifferentiated mES cells indicating that inhibiting ERK signaling might help to maintain 

cells in pluripotent state over multiple passages (Burdon et al., 1999;Qi et al., 2004;Lodge et al., 

2005). Based on this finding Ying and colleagues modified the traditional way of culturing mES 

cells in “2i” culture medium to a much better and efficient “3i” culture medium which is defined 

by the presence of three inhibitors including the fibroblast growth factor receptor (FGFR) 

inhibitor, PD184352; the Erk cascade inhibitor, SU5402 and the glycogen synthase kinase-3 

(GSK3) inhibitor, CHIR99021 (Ying et al., 2008). In contrast to mES cells, undifferentiated hES 
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Phosphoinositide 3-kinase (PI3K)/AKT signaling has been proposed to promote 

pluripotency and survival of mES cells by inhibiting MAPK pathway (Paling et al., 2004). 

PI3K/Akt signaling is activated in mES by exogenous factors such as insulin and LIF or by 

endogenously expressed ES cell expressed Ras (ERas) (Takahashi et al., 2003; Takahashi et al., 

2005). Specific inhibition of PI3K activity results in differentiation of mES in presence of LIF 

(Paling et al., 2004) whereas expression of myristoylated Akt (active form of Akt) maintains 

mES cells in an undifferentiated state even in the absence of LIF (Watanabe et al., 2006). In hES 

cells PI3K/Akt signaling crosstalk with activin (McLean et al., 2007) and SMADs to promote 

self-renewal by repressing Erk and Wnt signaling (Singh et al., 2012). Absence of PI3K/Akt 

signaling activates Erk and Wnt pathways and reduces GSK3 activity resulting in increased -

catenin and SMAD2/3 activity which induce differentiation (Singh et al., 2012). 

Transforming growth factor-β (TGF-β) pathway is another important signaling pathway, 

which plays important role in regulatingpluripotency in both mES and hES cells. The TGF-β 

superfamily contains more than 40 structurally related signaling proteins including TGF-β 

proteins, activin and nodal, growth differentiation factors (GDFs) and bone morphogenetic 

proteins (BMPs). The TGF-β signaling molecules exert their effect by binding to heteromeric 

complex of serine/threonine kinase receptors known as TGF-β type I (for TGF-β and Actvin A) 

and type II receptors (for BMPs) (Valdimarsdottir and Mummery, 2005). Activin/Nodal branch 

of TGF-β signaling pathway seems to be important for maintaining the pluripotent state of both 

mES and hES cells. In mouse embryos Nodal signaling playsan important role in maintaining 

epiblast stem cell pluripotency and prevents precocious neural differentiation (Camus et al., 

2006; Mesnard et al., 2006). Similarly, inhibition of Nodal pathway in hES cells leads to 

decreased stem cell self-renewal and loss of expression of the pluripotency regulators OCT4 and 

NANOG (James et al., 2005; Vallier et al., 2005). Activin A, secreted by mouse embryonic 

feeders (MEFs), maintains undifferentiated hES culture while Nodal is produced by 

undifferentiated hES cells themselves (Sato et al., 2003; Beattie et al., 2005). Activin/Nodal-

mediated signaling activates transcription factors SMAD2 and/or SMAD3 which further induce 

pluripotency related gene expression (Xu et al., 2008; Vallier et al., 2009). BMP4 signaling, the 

other branch of TGF-βsignaling pathway, behaves differentially in mES and hES cells. BPM4 

signaling acts in combination with LIF-STAT3 signaling and activate JAK/STAT pathway to 

maintain mES cells in undifferentiated state in absence of serum (Ying et al., 2003). BMP4 
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signaling along with LIF induces phosphorylation of SMAD1, SMAD5 and SMAD8 which then 

upregulate expression of inhibitor of differentiation (Id) protein resulting in inhibition of 

differentiation (Ying et al., 2003; Gerrard et al., 2005). BMP4 signaling in combination with LIF 

also blocks MAPK signaling to maintain mES cells in undifferentiated state (Qi et al., 2004). 

However, in absence of LIF activation of BMP4 signaling promotes differentiation (Ying et al., 

2003). In contrast to its role in mES cells, BMP4 signaling induces differentiation in hES 

towards various neuronal and trophoblast or primitive endoderm lineages (Xu et al., 2002; 

Itsykson et al., 2005). Inhibiting BMP4 signaling by inhibitors such as Noggin promotes self-

renewal of hES in culture in presence of FGF (Pera et al., 2004; Xu et al., 2005). GDF3 is 

another member of TGF-β signaling pathway which acts differentially in mES and hES cells. 

GDF3 is expressed at high level in undifferentiated hES cells (and decreases rapidly upon 

differentiation) where it induces Nodal signaling and inhibits BMP4 signaling thereby promoting 

pluripotency (Sato et al., 2003). However in mES cells, reduction in GDF3 levelis associated 

with maintainence of pluripotency and inhibition of differentiation (Chen et al., 2006; Levine 

and Brivanlou, 2006). 
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In undifferentiated mES cells β-catenin physically associates with OCT-3/4 and up-regulates 

NANOG in an OCT-3/4-dependent manner (Takao et al., 2007). Sato et al. showed that Wnt 

signaling is active in undifferentiated mES as well as hES cells and gets downregulated upon 

differentiation. Further, they also showed that cells could be maintained in an undifferentiated 

state by the addition of BIO in culture medium which inhibits GSK3(Sato et al., 2004). Marson 

et al. showed that somatic cells can be reprogramed to induced pluripotent cells (iPSCs) by 

Wnt3A mediated activation of Wnt signaling (Marson et al., 2008). However, other studies 

claimedcontrasting results showing that though activation of Wnt signaling by BIO or Wnt3A 

could promote but is not sufficient to maintain the cells in pluripotent state over multiple 

passages (Dravid et al., 2005; Cai et al., 2007). Activation of Wnt signaling by inhibition of 

GSK3 in hESCs promotes differentiation towards primitive streak, endodermal and 

mesodermal lineage (Nakanishi et al., 2009; Bone et al., 2011). A few studies also show that Wnt 

signaling is important and promotes neurogenesis from mouse neural stem cell culture 

(Muroyama et al., 2004; Hirsch et al., 2007). A recent report from Moon group claimed that Wnt 

signaling is repressed by OCT4 in undifferentiated hES cells and is activated upon differentiation 

when OCT4 level is reduced (Davidson et al., 2012). All of the above studies indicate that the 

role of Wnt signaling in ES cell maintenance and differentiation is not fully clear and requires 

further investigation. 

 

3.1.4 SATB family proteins and pluripotency 

SATB1 and SATB2 are MAR-binding proteins that act as global gene regulators by 

directly binding to chromatin and regulate target gene expression via recruitment of various 

corepressors and activators. Few recent reports highlight the importance of roles of SATB family 

proteins in regulating mouse embryonic stem cell differentiation (Savarese et al., 2009; Agrelo et 

al., 2009; Asanoma et al., 2012; Nechanitzky et al., 2012). Savarese and colleagues reported for 

first time that SATB family proteins are expressed in mouse embryonic stem cells (mESCs) and 

play important and antagonistic roles in regulating pluripotency by targeting various self-renewal 

and differentiated associated genes. They reported that SATB1-deficient mESCs showed 

impaired differentiation along with increased levels of NANOG and reduced expression of 

Nestin and Bcl-2 even after 6 days of retinoic acid (RA) mediated differentiation. SATB2 was 
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upregulated in SATB1 deficient mESCs which exhibited high NANOG expression. It was shown 

that both SATB1 and SATB2 could bind to NANOG promoter. Overexpression of SATB2 

specifically inhibited RA induced silencing of NANOG and none of the other pluripotency 

associated genes indicating that SATB2 specifically upregulates NANOG expression and favors 

self-renewal (Savarese et al., 2009). Contrary to this, another study by Agrelo et al. showed that 

though SATB family proteins are expressed in undifferentiated mESCs, SATB1 expression is 

lost completely after 3 days of RA induced differentiation whereas SATB2 shifts to a lower 

molecular weight; and claim levels of SATB family protein play important roles in regulating 

Xist mediated X inactivation (Agrelo et al., 2009). However, a recent study from Grosschedl’s 

group showed that SATB1 expression increases during differentiation, they also claim that 

SATB family proteins are dispensable for X inactivation (Nechanitzky et al., 2012). SATB 

family proteins have been also shown to regulate stemness of trophoblast stem cells (Asanoma et 

al., 2012). SATB proteins are expressed at high levels in trophoblast stem cells where they 

activate self-renewal associated genes such as Eomes and CDX2, and rapidly decrease upon 

differentiation (Asanoma et al., 2012). 

On the basis of above compilation of literature it is evident that SATB family proteins 

play important regulatory roles in differentiation and development of a wide variety of cells and 

tissues. The roles of SATB family proteins have been well studied in great detail in diverse cells 

such as T cells, neurons and osteocytes; however there are very few reports which have 

investigated role of the SATB family proteins in stem cell differentiation. To gain further insight 

into roles of SATB family proteins we chose hES cell lines over mES cell lines as observations 

from mES cell lines cannot be extrapolated to hES cells due to multiple reasons as discussed 

above. First, we studied role of SATB1 and SATB2 using a well characterized cell line model of 

hES cells called NT2D1, an embryonic testicular teratocarcinoma cell line (presented in chapter 

II) and then extended the same in hESCs with genome-wide gene expression analyses. Next, we 

performed ChIP-seq analysis to monitor genome-wide occupancy of SATB1 and SATB2 in 

undifferentiated and differentiated hES cells. 
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3.2 Materials and Methods 

 

3.2.1 Antibodies and reagents 

Anti-SATB1 (Cat. no. ab92307) and Anti-SATB2 (Cat. no. ab34735) antibodies used for 

and ChIP were purchased from Abcam (Cambridge, UK). For westerns anti-SATB1 (Cat. no. 

3050S) was purchased from Cell Signaling Technology (Beverly, Massachusetts) and anti-

SATB2 (Cat. no. ab51502) were purchased from Abcam (Cambridge, UK). Anti-OCT4 and anti-

SOX2 were purchased from SantaCruz Biotechnologies (Santa Cruz, CA, USA).  Anti-NANOG 

was purchased from R&D Systems (Minneapolis, USA). Anti-tubulin was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Wnt3a and Dkk1 were obtained from R&D Systems 

(Minneapolis, USA). All-trans-retinoic acid, BIO and XAV939 were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Lipofectamine RNAiMAX transfection reagent was purchased 

from Invitrogen (Carlsbad, CA, USA). siRNAs against GFP (Cat. no. sc-45924), SATB1 (Cat. 

no. sc-36460), SATB2 (Cat. no. sc-76456) were procured from SantaCruz Biotechnologies 

(Santa Cruz, CA, USA).  Immunoblotssignalswere detected using VisualizerTM Western Blot 

Detection Kit (Millipore/Upstate, Billerica, MA, USA, Cat. no. 64-202).  

 

3.2.2 Human embryonic stem cell culture 

Human embryonic stem cell lines (hESC) HS360 were obtained from Outi Hovatta 

(Karolinska Institutet, Sweden) and H9 was purchased from WiCell Research Institute (Madison, 

WI, US). Cells were maintained on 0.1% gelatin-coated (Sigma-Aldrich, St. Louis, MO, USA) 

plates on mitomycin C inactivated human foreskin fibroblasts (ATCC). The ES culture media 

consisted of DMEM-F12 (StemCell Technologies Inc, Vancouver, Canada) supplemented with 

20% serum Replacement, 2 mM glutamax, and 1% non-essential amino acids, 50 U/ml 

penicillin-streptomycin, 0.1 mM 2-mercaptoethanol (all from Invitrogen, Carlsbad, CA, USA) 

and 4 ng/ml basic fibroblast growth factor (R&D Systems, Minneapolis, USA). In feeder-free 

culture conditions, the cells were cultured on Matrigel (BD Biosciences, Franklin Lakes, NJ, 

USA) coated plates and maintained in mTeSR1 media (StemCell Technologies Inc, Vancouver, 

Canada). Cells were passaged using type IV collagenase (Invitrogen, Carlsbad, CA, USA). 
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3.2.3 Differentiation experiments in hES cell lines 

For RA induced differentiation in hESCs, cells were harvested using type IV collagenase 

(Invitrogen, Carlsbad, CA, USA) and plated on Matrigel coated 6-well plate containing mTeSR1 

media (StemCell Technologies Inc, Vancouver, Canada) in feeder free conditions. One confluent 

100mm dish was used to seed 1.5 X 6-well plate. Cells were allowed to grow for 1-2 days before 

addition of RA. To start the differentiation series, mTeSR1 media was replaced with ES media 

without FGF and was supplemented with 13.7 μM of all-trans-retinoic acid (Sigma-Aldrich, St. 

Louis, MO, USA). Spent media was daily replacedwith fresh ES media (without FGF) 

containing 13.7M RA. At indicated days, cells were washed once with chilled 1X PBS and 

harvested for RNA and protein extraction. Control cells were harvested on the 0 day itself at the 

beginning of differentiation series. 

 

3.2.4 RNA extraction and real time PCR 

RNA was prepared from hES cells using TRI reagent Sigma-Aldrich (St. Louis, MO, 

USA). One µg of RNA was used for cDNA preparation per 20 µl of reaction after DNaseI 

(Invitrogen, Carlsbad, CA, USA) treatment according to manufacturer protocol. The cDNA was 

used as template for the PCR with specific set of primers and taqman probes. Changes in 

threshold cycle (Ct) values were calculated as follows: ∆Ct = (Cttarget genes-Ctb-actin) for transcript 

analysis. These ∆Ct values were used to calculate fold change using equation as relative fold 

change =2-(∆(∆Ct)) and plotted graph for the average fold values with standard deviation from three 

independent experimental samples in Sigma Plot. 

 

3.2.5 Western blotting 

Cells were lysed in lysis buffer (50mM Tris-HCl pH7.5, 150mM NaCl, 0.5% Triton X-

100, 5% glycerol, 1% SDS, 1mM Na3VO4, 10mM NaF, and 1mM PMSF). Protein 

concentrations were determined with Bradford Assay (Bio-Rad, Hercules, CA). Ten-15gof 

protein in lysate was boiled with 6X SDS sample buffer (0.5M Tris-HCl pH6.8, 28% glycerol, 

9% SDS, 5% 2-mercaptoethanol, 0.01% bromophenol blue) and lysates were electrophoresed on 
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a 12.5% SDS-polyacrylamide gel and transferred onto a PVDF membrane. Membranes were 

incubated overnight at 4°C with primary antibodies. All secondary antibodies were horseradish 

peroxidase-conjugated and for detection SuperSignal West Pico Chemiluminescent Substrate 

from Thermo Scientific (Rockford, IL, USA) or Immobilon Western Chemiluminescent HRP 

Substrate from Millipore (Billerica, MA, USA) were used. 

 

3.2.6 Microarray experiment and data analysis 

Total RNA was isolated from control (0 day), 3 day and 6 day RA treated H9 hES cells 

using TRI reagent (Sigma-Aldrich, St. Louis, MO, USA) and the RNA quality was ascertained 

using Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) prior to 

microarrayhybridization.Microarray hybridization was carried out at Genotypic Technology, 

Bangalore, India. RNA was purified using Qiagen’s RNeasy minikit and T7 promoter based-

linear amplification labeling method was used to generate labeled complementary RNA (One-

Color Microarray-Based Gene Expression Analysis) using Agilent’s Quick-Amp labeling Kit. 

Gene expression human 8 X 60k slides were used for hybridization using Agilent’s in situ 

hybridization kit. Data analysis was performed using GeneSpring GX version 11.5 and Microsoft 

Excel. 

 

3.2.7 Next generation sequencing and data analysis 

ChIP-seq was performed in-house using SOLiD 4 platform and ChIP-seq data were 

mapped using Lifescope 2.5.1 software.Mapped read data were used as an input to establish list 

of loci using MACS version 2.0 (Using default parameters) (Zhang et al., 2008). Input DNA file 

was used as a control in all peak detection analyses. To calculate a single enrichment value for a 

binding site, tag density is defined as the number of tags present or overlapping in user-defined 

window around the reference site. The algorithm for signal enrichment calculation was used as 

per described in Zhang et al., 2008. 

 

 



Chapter III 

 

Sunita Singh, Ph.D. Thesis, 2013 Page 95 
 

3.2.8 Visualization of ChIP regions over the genome 

The distribution of SATB1 and SATB2 target sites over genome was calculated using the 

CEAS software (Shin et al., 2009). Briefly, CEAS estimates the relative enrichment level of 

ChIP regions over each chromosome with respect to the whole genome [Further details available 

at http://liulab.dfci.harvard.edu/CEAS/usermanual.html and (Shin et al., 2009)]. X-axis of the 

plot represents the actual chromosome sizes whereas Y-axis represents the peak height. Line 

graph was plotted to illustrate the distribution of peak heights (or scores). Distribution of gene 

ontology was performed using David Bioinformatics tools 

(http://david.abcc.ncifcrf.gov/home.jsp). 

 

3.3 Results 

 

3.3.1 Expression of SATB1 and SATB2 changes upon RA induced differentiation of human 

embryonic stem cells (hESCs) 

After studying the roles of SATB family proteins we next moved to study their roles in 

human embryonic stem cell lines. hESCs were grown on feeder cells for regular culture and 

passaged on feeder plates by collagenase treatments. For differentiation experiments hESCs 

colonies were harvested with collagenase or accutase and seeded on matrigel coated plates 

avoiding minimum feeder cells contamination (Fig. 3.3.1).   
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activation of Wnt signaling mimics RA induced differentiation in NT2D1 cells. Role of Wnt 

signaling has been controversial in regulating pluripotency of hESCs. To test the importance of 

Wnt signaling in regulating pluripotency of H9 hESCs we activated and inhibited Wnt signaling 

by using pharmacological agents and soluble recombinant proteins(Table 3.3.1).  

 

 

Table 3.3.1: Various pharmacological agents and recombinant proteins were used to activate or inhibit Wnt 
signaling. Table showing detailed information of various small molecules and recombinant proteins used to activate 
or inhibit Wnt signaling. 

 

We activated Wnt signaling by treating H9 hESCs with 100 ng Wnt3A or 6 M BIO for 

24h and 48h respectively. The H9 colonies where the Wnt signaling was induced exhibited 

multiple differentiated colonies marked with appearance of many embryoid bodies and flattened 

cells as compared to untreated cells (Fig. 3.3.3 A). 

 

S. No. Reagent Supplier and Cat. No.
Stock 
Conc. 

Working 
Conc.

Target
Inhibitor/activator 

of the target
Effect on 
signaling

Reference

1 BIO Sigma (BIO_B1686) 10mM 6uM GSK3-β Inhibitor Activates Sato et al., 2004

2 XAV939 Sigma (XAV939_X3004) 10mM 6uM Tankyrase 1/2 Inhibitor Inhibits Huang et al., 2009

3 Wnt3A R&D (5036-WNP_CF_wnt) 50ng/ul 100ng Frizzled and LRP5/6 receptor Activator Activates Mikels and Nusse, 2006

4 DKK1 R&D (5439-DK) 50ng/ul 100ng LRP and Kremen receptor Inhibitor Inhibits Logan and Nusse, 2004
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after 48 h of treatment (Fig. 3.3.3 B). These results suggest that induction of Wnt signaling 

results in differentiation while cells can be maintained in undifferentiated culture by addition of 

Wnt signalinginhibitors to the culture media.  

 

3.3.3 Gene expression profiling upon RA induced differentiation of human embryonic stem 

cells (hESCs) 

RA treatment induces differentiation in hESCs; however it is not known how the global 

gene expression profile changes upon differentiation. To gain insight about the genes affected 

upon differentiation we differentiated H9 hES cells for 3 days and 6 days and then isolated total 

RNA. Differentiation was confirmed by analyzing the expression of pluoripotency markers 

namely OCT4, SOX2 and NANOG, which are downregulated upon differentiation. Total RNA 

from control undifferentiated, 3 days and 6 days differentiated H9 hESCs was hybridized to 

human 60 K array using single color labeling and separate hybridizations were 

performed.Analysis of microarray data revealed large number of dysregulated genes upon 

differentiation. Gene expression profiling revealed a total of 2804 genes upregulated and 2832 

genes downregulated upon differentiation. We then specifically focused on genes associated with 

maintenance of pluripotency and differentiation and found out a number of genes affected; top 

20 genes from which have been depicted in Fig. 3.3.4 (B and C). Expression of multiple genes 

associated with pluripotency such as Eomes, NANOG were downregulated whereas genes 

associated with differentiation such as GATA2, FOXA1, GDF15 were upregulated (Fig. 3.3.4). 
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of genomic sites targeted by SATB1 and SATB2, we performed ChIP-Seq analysis in H9 hESCs 

at various timepoints of differentiation which included 0 day or control cells, 3days and 6 days 

RA treated cells. ChIP-Seq analysis revealed a number of genomic loci as well as promoters 

bound by SATB1 and SATB2 in vivo at various stages of differentiation as well as in control 

cells (Fig 3.3.5 A). A comparison of total SATB1- and SATB2-bound genomic sites revealed 

that SATB1-bound sites were significantly decreased at day 3 of RA treatment (Fig. 3.3.5 B). 

We compared SATB1- and SATB2-bound sites independently at various stages of 

differentiation, which indicated that SATB1 and SATB2 bind to multiple targets in stage-specific 

manner (Fig. 3.3.5 C and D). Gene ontology analysis of SATB1-bound sequences revealed 

enrichment of specific GO terms including neuronal activities, immunity and defense indicating 

important roles of SATB1 in regulating genes involved in these processes. Likewise, SATB2-

bound targets were involved in notch signaling, proteolysis, neuronal activities, synaptic 

transmission and ligand mediated signaling.  
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Summit of the binding site generated using MACS version 2.0 (Using default parameters) 

(Zhang et al., 2008) was considered as center of the peak. As computational restrictions of 

MEME allowed only a limited number of base pairs to be analyzed at a time, 100-200 highest 

(SATB1 and/or SATB2) occupancy peaks were analyzed. Hundredbp DNA sequences around 

the center of the peaks were extracted using Fetch Sequence tool from Galaxy web server 

(https://main.g2.bx.psu.edu/).  De novo motif discovery was performed using motif-based 

sequence analysis tools, MEME (Bailey et al., 2009). The consensus sequence was compared to 

known motif databases such as JASPAR. We first assessed which motifs were enriched with 

SATB1 and SATB2 specific and common target regions. The unbiased de novo motif finder 

MEME identified ATCT repeat as consensus sequence of SATB1 specific target sites with an E 

value of 6.8e-182. GATA3 and PBX1 transcription factors motifs were enriched on SATB1 

consensus sequence. In similar way, unbiased de novo motif finder MEME identified A/T repeat 

sequence in the center of the all the SATB2 specific target sites (203/203). Motif analysis of 

common target sites of SATB1 and SATB2 revealed a consensus sequence which was more 

similar to that of SATB2. We also observed the GO term associated with SATB1 and SATB2. 

SATB1 motif was mainly found associated with pathways such as sequence-specific DNA 

binding, signal transduction, G-protein coupled receptor protein signaling pathway, calcium ion 

binding while SATB2 motif showed novel functions associated with olfaction (Summarized in 

Fig. 3.3.8). 
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cells (Agrelo et al., 2009). All of these results were based on experiments performed in using 

mES cells, which behave very differently from hES cells (see introduction for details). 

Moreover, these results are contradictory and do not provide clear insights into role of SATB 

family proteins in regulating pluripotency and differentiation.  To elucidate the role of SATB 

family proteins in hES cells, we used retinoic acid (RA) induced differentiation series in two hES 

cell lines namely H9 and HS360. RA differentiation series in both H9 and HS360 cells revealed 

changes in expression of SATB family proteins at both transcript and protein level. Both hES 

cell lines exhibited high expression of SATB2 in undifferentiated state, which is lost upon 

differentiation. In contrast, SATB1 is expressed at low level in undifferentiated cells and is 

induced upon differentiation. We could detect simultaneous expression of SATB1 and SATB2 at 

onset of differentiation. We propose that SATB1 and SATB2 might form heterodimer during this 

window, which may play important role in differential regulation of genes involved in onset of 

differentiation. It is worth mentioning here that SATB1/2 expression pattern in hES varies 

significantly from NT2D1 cells (Chapter II). NT2D1 cells exhibit moderate expression of 

SATB1 and SATB2 and both are upregulated upon differentiation. However, undifferentiated 

hES cells exhibit differential expression of SATB1 and SATB2. Unlike NT2D1 cells, hES cells 

show enhanced SATB1 expression and reduced SATB2 level upon differentiation. This 

difference of SATB1/2 expression could be attributed to origin of NT2D1, which is a human 

testicular carcinoma cell line and does not represent a true pluripotent human embryonic stem 

cell. 

Role of Wnt signaling in regulating self-renewal and differentiation has been debatable as 

elaborated in chapter II and published literature (Sato et al., 2004; Dravid et al., 2005; Cai et al., 

2007; Bone et al., 2011). We observed that activation of Wnt signaling in hESCs resulted in 

induced differentiation whereas inhibition of Wnt signaling maintained more undifferentiated 

colonies in culture. These experiments suggest that Wnt signaling is not important for 

maintaining pluripotency and rather it is involved in differentiation. Here, we would also like to 

suggest that inhibition of Wnt signaling could promotemaintenance of ES cells in a self-

renewing pluripotent state. Our observation is supported by a recent report by Davidson et al. 

wherein the authors claim that Wnt signaling is activated during differentiation of hES cells. 

Furthermore, they demonstrated that OCT4 keeps Wnt signaling in repressed state in 

undifferentiated hES cells and this repression is lost upon differentiation when OCT4 level is 
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reduced (Davidson et al., 2012). Interestingly, SATB1 has been shown to interact with -catenin 

and coordinate gene expression in Wnt-dependent manner in T cells (Purbey et al., 2009; Notani 

et al., 2010). Similarly, SATB1 may crosstalk with Wnt signaling pathway during hES cell 

differentiation and play important role to regulate gene expression in Wnt dependent manner.  

Gene expression profiling revealed that a large number of genes were deregulated during 

differentiation. These genes are involved in importantbiologicalprocesses such as cancer, 

metabolic pathways, axon guidance, neuroactive ligand-receptor interaction, cytokine-cytokine 

receptor interaction, focal adhesion, olfactory transduction, retinol metabolism etc. The 

dysregulated genes alsoincluded those involved in many signaling pathways like Wnt signaling, 

TGF- signaling, MAPK signaling, Notch signaling etc.  

Genome-wide occupancy analysis by ChIP-Seq at similar stages of differentiation 

revealed multiple genomic loci bound by SATB1 and SATB2. SATB1 and SATB2 seem to have 

differential binding at various stage of differentiation and might play role in differential gene 

expression during differentiation. Occupancy of SATB1 and SATB2 was observed at promoters 

of multiple genes involved in notch signaling, neuronal activities, synaptic transmission, 

immunity and defense and ligand mediated signaling. Surprisingly, gene ontology (GO) analysis 

of all SATB1- and SATB2-bound sequences (irrespective of promoters) revealed multiple sexual 

reproduction associated pathways. Corroborating this, SATB1 and SATB2 ChIP-Seq revealed 

significantly enriched peaks on X and Y chromosomes as compared to other chromosomes. We 

also analyzed the genomic region bound by SATB1 and SATB2 for presence of consensus motif, 

which revealed specific motifs for SATB1 or SATB2 alone as well as SATB1 and SATB2 

together. Motif analysis identified repeat ATCT as SATB1 consensus binding motif which was 

also enriched for GATA3 and PBX1. Interestingly, GATA factors have been shown to play 

important role in differentiation of mES cells (Fujikura et al., 2002) and have been shown to be 

positively regulated by SATB1 upon Wnt mediated differentiation of Th2 thymocytes (Notani et 

al., 2010). Based on the motif search analysis and these reports we hypothesize that SATB1 and 

GATA3 might coordinate gene expression during hES differentiation by targeting a common 

DNA binding motif. SATB2 motif analysis revealed an A-rich motif which was also found to be 

enriched in case of ZBTB3 and MET31. 
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Collectively, we show that the two members of the SATB family chromatin organizer 

proteins exhibit contrasting expression profiles during differentiation of human ES cells. SATB1 

is upregulated whereas SATB2 is downregulatedduring RA induceddifferentiation of hES cells. 

Furthermore, activation of Wnt signaling induces differentiation whereas inhibition of Wnt 

signaling maintains hES cells in undifferentiated state. Gene expression profiling and ChIP-Seq 

data analysis revealed many novel targets of SATB1 and SATB2 upon differentiation. One 

among such class are genes involved in sexual reproduction and male gonad development which 

is positively correlated with the highest enrichment of SATB1 and SATB2 on X and Y 

chromosomes. These set of findings provide novel insights into the regulation of gene expression 

in hES cells especially during differentiation. Our data provide further insights into the 

differential targets of SATB1 and SATB2 and also throw light on the differential roles of these to 

global regulators towards maintenance of pluripotency and induction of differentiation. Our data 

also suggests that NT2D1 cells do not represent a true model system for studying properties of 

hES cells. Finally, our data also provides further evidence towards the role of Wnt signaling in 

differentiation of hES cells.  
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Appendices 
Appendix 1:  

List of oligonucleotides used for RT-PCR (Sections 1.3.10, 2.3.1, 2.3.3, 2.3.4, 2.3.5 and 3.3.1). 

Description Sequence (5' to 3') 
No. of 
nucleo
tides 

GC% Tm 
Product size 

(bp) 

hSATB1 F ACCAGTGGGTACGCGATGA 19 57.9 65.3 
72 

hSATB1 R TGTTAAAAGCCACACGTGCAA 21 42.9 67 

hSATB2 F CCAGAGCACATTAGCCAAAGA 21 47.6 64.9 
67 

hSATB2 R TGTGCTATTTACAATGGATGAAATC 25 32 66 

hEF1a F CTGAACCATCCAGGCCAAAT 20 50 66.3 
59 

hEF1a R GCCGTGTGGCAATCCAAT 18 55.6 65.6 

hOct4 F AGCAAAACCCGGAGGAGT 18 55.6 63.1 
114 

hOct4 R CCACATCGGCCTGTGTATATC 21 52.4 64.5 

hSox2 F TGCTGCCTCTTTAAGACTAGGAC 23 48 59 
75 

hSox2 R CCTGGGGCTCAAACTTCTCT 20 55 60 

hNanog F CCTGAACCTCAGCTACAAACAG 22 50 63.8 
94 

hNanog R GCTATTCTTCGGCCAGTTGT 20 50 63.8 

hPAX6 F GGCACACACACATTAACACACTT 23 43 59 
71 

hPAX6 R GGTGTGTGAGAGCAATTCTCAG 22 50 59 

hNKD2 F GTGGCTGACAGGAGGTTGTC 20 60 60.72 
93 

hNKD2 R GTTCTCGTCCACGCAGTAGG 20 60 60.83 

hAPC F GTTGCCAGGCAGACATCC 18 60 60 
125 

hAPC R CGGCCAGGAGACTGTATAGG 20 60 60 

hAxin2 F GTCTCCAAGCAGCTGAAGCC 20 60 61.3 
118 

hAxin2 R CCTCCATCACCGACTGGATC 20 60 60.9 

hBDNF1 F AGGGTTGCAGGTCCACAC 18 61.11 59.5 
98 

hBDNF1 R CGTGGAGGTACACAGCACAG 20 60 60.37 

hDvl1 F CGAGCTTGAGTCCAGCAGC 19 63.2 60 
90 bp 

hDvl1 R CTGGATGAGGTGCTCTGCTC 20 60 59 

hCyclin D1 F GCTCCTGTGCTGCGAAGTG 19 63.2 60.9 
129 

hCyclin D1 R CATTTGAAGTAGGACACCGAGG 22 50 60.9 

h CtBP1 F GGGACTGCACAGTGGAGATG 20 60 60 
149 

h CtBP1 R GTCCTCCCTGGTGAGAGTGA 20 60 60 

hDKK1 F GCGGCACTGATGAGTACTGC 20 60 60 
114 

hDKK1 R GGCAGCACATAGCGTGACG 19 63 62 

hGREM2 F GGAGAGATGGCAGCACCAG 19 63.2 59.4 
100 

hGREM2 R GCGCTTGCACCAGTCACTC 19 63.2 60.7 

hCul4A F CAGGTGTCCCTCTTCCAGAC 20 60 59.68 
125 

hCul4A R AGGGACTGCAGCGTTCTG 18 61.11 60.14 
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Appendix 2:  

List of oligonucleotides used for ChIP-PCR (Sections 1.3.11). 

Description Sequence (5' to 3') 
No. of 

nucleotides 
GC% Tm 

Product 
size (bp) 

hSATB1 distal SBS f1 AGGCACGAAAAATCATCCAC 20 45 59.94 
187 

hSATB1 distal SBS r1 TTTTCCTCTGATTGCTGCAC 20 45 59 

hSATB1 proximal SBS f2 TTATGTCCCTGGTTTCTGCTG 21 47.62 60.12 
263 

hSATB1 proximal SBS r2 GCCTGACATCTGCTTCTTCC 20 55 59.96 

hSATB2 distal SBS f1 GAGGGATACAAAACGAAACCAA 22 40.91 60.22 
265 

hSATB2 distal SBS r1 TATGTCCGGTGTGGGTTTTT 20 45 60.09 

hSATB2 proximal SBS f2 GGGTGCAGAATCTGAAAACAA 21 42.86 60.1 
220 

hSATB2 proximal SBS r2 CAACAGCATGATTTGCAGGA 20 45 60.81 
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