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Abstract

The aim of the Thesis is to find membrane equations dual to the dy-

namical black holes in large space-time dimensions D, in a theory of

Einstein’s gravity modified with the most general 4 derivative terms,

both with or without a Cosmological constant. We treat the higher

derivative term perturbatively and work to linear order in the param-

eter specifying the 4-derivative terms in the action. Finally we want

to compute the stress tensor corresponding to this membrane.
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Chapter 1

Introduction

The Einstein’s Equations are a set of non-linear Partial Differential Equations

with not many known exact solutions, other than the very symmetric cases of

Schwarzschild black-hole, Reissner-Nordstrom black hole etc. Also it is notori-

ously difficult to construct dynamical solutions with horizon for general theory

of relativity. And without matter there is no free parameter in Einstein equation

which can be tuned to be small.

But recently, following the ideas proposed by Emparan, Suzuki and Tanabe(
2013

)
a lot of work has been done by Shiraz Minwalla, Sayantani Bhattacharya,

Arunabha Saha and others, where Einsteins Equation are solved perturbatively

in large D dimensions , where the number of dimensions D acts as the perturba-

tive parameter in the equation, and then solving for the metric in a power series

in 1
D

. Since, the large D procedure was so useful in understanding many aspects

of two derivative Einstein-Hilbert gravity, it becomes natural to generalise the

procedure to higher-derivative gravity.

Recent progress has been made for exact Gauss-Bonnet gravity in flat background,

by Arunabha Saha, where a very specific combination of the Gauss-Bonnet coef-

ficients have been used.
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As a part of the project, we would like to apply the procedure developed in

the aforementioned works,for a generic combination of Gauss-Bonnet coefficients,

with the expectation to get some non-triviality due to the generic contribution of

each term in the action.

We will work out the membrane equations and the metric of the black hole to

first non-trivial order in 1
D

and linear order in the parameter specifying the 4

derivative term in the action. To be more precise we work with the action:

S =

∫
dDx

√
−g(R + κ(a1R

2 + a2RµνR
µν + a3RµνρσR

µνρσ)) ...(1)

where, the specific choice a1 = 1,a2 = −4,a3 = 1 correspond to the exact Gauss-

Bonnet action.‘
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Chapter 2

Motivation

If we look at the expression of the Schwarzschild metric, which is an exact solu-

tion to the Einstein’s Equation:

Gµν = Rµν −
1

2
R gµν

then we will see that there are two different length scales in Schwarzschild solution

in general dimension D. Where, the Schwarzschild solution in D dimensions:

ds2 = −f(r)dt̃2 +
dr2

f(r)
+ r2dΩ2

D−2 where f(r) = 1−
(
r0

r

)D−3

Taking D →∞ naively :

• for the region r > ro,where ro is the horizon radius,the metric exponentially

decays to flat Minkowski metric. over length scales of order O( 1
D

).

• when r = ro
(
1 + R

D

)
we have f(R) = 1 − e−R as D → ∞ i.e. we have an

exponential fall-off of the metric to flat space metric in this region.

Non-trivial physics is confined in the region of order O( 1
D

) about r0 which is

defined as the Membrane Region and this feature of Schwarzschild Metric is a

3



key point for the construction of the Starting Ansatz.

The aim of the project will be to find a more generalised version of such exact

solutions, like Schwarzschild solution, which has the presence of a region of order

O( 1
D

), wherein lies all the nontrivial physics. However, the solutions will be

approximate solution to whichever order, one is willing to perform in powers of

1
D

.

We will also find a set of equations, known as the Membrane equations, which

are the constraint equations of General Relativity for our case. Solutions to the

membrane equations are in one-one correspondence to solutions to the equations

of motion.
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Chapter 3

Methodology

3.1 Starting Ansatz

3.1.1 Solution to the Einstein Gauss-Bonnet Equations

In this case, we have to look at solutiuons to the equations of motion following

from the action ... (1):

Rµν −
1

2
gµνR + κ

(
− gµν

2
(a1R

2 + a2RγδR
γδ + a3RγδαβR

γδαβ) + 2a1RRµν

−(2a1 + a2 + 2a3)∇µ∇νR + (2a1 +
1

2
a2)�Rgµν + (2a2 + 4a3)RµγνδR

γδ

+(a2 + 4a3)�Rµν + 2a3RµγδαR
γδα
ν − 4a3RµγR

γ
ν

)
= 0

=⇒ Eµν = 0

where Eµν is the short-hand for the equations of motion.

Usually such theories are sick in the sense that they have ghost modes in their

spectrum about any spacetime. These are modes which can travel at speeds

faster than light in that spacetime. But we treat the higher derivative terms

perturbatively in the parameter κ. Thus,the terms with explicit 4 derivatives

5



3.1 Starting Ansatz

acting on the metric will act as source terms and they do not change the order of

the differential equation that needs to be solved to and the solution perturbatively

in and hence we avert this issue.

Now, to construct our Starting Ansatz we need to generalise a Schwarzschild-like

i.e spherically symmetric, static , stationary solution of Eµν ,but perturbatively

in κ.

Such a Schwarzschild-like solution in our case for generic Einstein-Gauss-Bonnet

equations of motion, turns out to be of the form

ds2 = −f(r)dt̃2 +
dr2

f(r)
+ r2dΩ2

D−2

f(r) = 1−
(
rh
r

)D−3(
1 +

κ̃a3

r2
h

)
+ κ̃a3

r
2(D−3)
h

r2(D−2)
+O

(
κ̃2
)
...(2)

here, κ̃ = (D − 3)(D − 4)κ

and, rh is the horizon radius.

3.1.2 The Ansatz

Since we would like to find dynamical solutions to the gravity equation of motion

perturbatively in 1
D

, we need to find an ansatz solution which solves for the

equations of motion (eom) to leading order in 1
D

. Like in other previous works

on the large D membrane black hole duality [1],[2] we will be using the key

observation made [1],[2], [3] that the non-trivial dynamics associated with the

black hole is contained within a thin ”Membrane Region” of width O( 1
D

)

about the horizon. Everywhere outside this thin region (outside the horizon) the

spacetime exponentially goes to its asymptotic background. The algorithm solves

for the gravity eom locally in a small region (of size O( 1
D

)) about the horizon and

then the global solution is obtained by ‘smoothly’ patching together all the local

6



3.1 Starting Ansatz

solutions. The key ingredient of the algorithm is a starting ansatz solution with

horizon on which we implement this procedure.

We choose our starting ansatz for our metric solution motivated by the form of

the blackening factor in the metric...(2) as:

f(r) = 1− 1

ψD−3

(
1 + κ̃a3

K2

(D − 2)2

)
+ κ̃a3

K2

(D − 2)2

1

ψ2(D−2)

here, the horizon is at ψ = 1, which in the Schwarzschild case was ψ = r
rh

and K

is the trace of the Extrinsic Curvature Tensor of ψ = constant surfaces.

3.1.3 Metric Ansatz in Kerr-Schild co-ordinates

To come up with the form of the starting ansatz we have to see the full metric as

a perturbation, added to a background metric.Hence, to do so we shall follow the

strategy outlined in the references [1],[2], [3] and write the metric in Kerr-Schild

co-ordinates.

The metric written in Kerr-Schild coordinates comes out to be:

ds2 = ds2
flat+

(
1

ψD−3

(
1+ κ̃a3

K2

(D − 2)2

)
− κ̃a3

K2

(D − 2)2

1

ψ2(D−2)

)
(Oµdx

µ)2 ...(3)

where we have defined the unique one-form O = n−u where n is the unit normal

to ψ = 1 hypersurface embedded in flat background and u is a velocity vector

field on the ψ = 1 hypersurface, such that,

u.u = −1, n.n = 1 and n.u = 0.

Where ”.” is with respect to the Minkowski metric.

Note: The functions ψ, K and the one-forms n,u corrresponds to ψ = r
rh

,

K = D−2
rh

, n = dr and u = −dt for the Schwarzschild case.

7



3.2 Starting Point of Perturbation Theory

3.2 Starting Point of Perturbation Theory

If we take the limit D →∞ naively , then the number of equations to be solved,

which is D(D+1)
2

, will also go to infinity.To circumvent this problem,we will impose

a SO(D− p− 3) symmetry on the solution, so that only the metric is effectively

dynamical only along the p+3 directions.Then, to take D →∞ we will keep the

finite part,p+ 3 dimensional part of the D dimensions fixed and take the rest of

the dimension to infinity,thus we have:

D = p+ d+ 3, where d→∞ =⇒ D →∞.

Now we promote the function ψ and the one form u in the metric ..(3) to be

arbitrary functions of space-time preserving a SO(D − p − 3) symmetry having

no D dependence in it.

The key-point is that the metric has a so-called fast direction along dψ along

which the metric exponentially decays to flat space in the large D limit.Thus for

ψ >> 1 equations of motion are trivially solved as flat space is a trivial solution

to EGB equations.

The region ψ << 1 is causally disconnected from rest of the space-time and so

we will not bother solving for the equations of motion in this region.

All of the non-trivial physics happens in the membrane region (the region of

thickness 1
D

about the horizon) and hence our aim will be to make our ansatz

metric solve the equations of motion in this membrane region.

8



Chapter 4

Auxillary and Regularity

conditions on the membrane

4.1 Auxilliary Condition

Even though the shape of the membrane and velocity vector on the membrane

compeletely determines the mteric, but to arrive at a local expression of the metric

and go for solving the Einstein equations we will need to define the function ψ

and u away from the membrane hypersurface.One way to do so is to impose the

conditions:

n.∇n = 0 and n.∇u = 0.

Note, that this choice is not at all unique.

A different choice of the membrane data i.e ψ and u, such that ψ → ψ + 1
D
δψ

and u → u + 1
D
δu leaves the leading order ansatz invariant, but will only affect

the explicit form of the sub-leading corrections. This ambiguity is fixed by

requiring that ψ = 1 remains the membrane surface and u is the generator of the

hypersurface.
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4.2 Regularity condition

Hence to make the ansatz meaningful, we need to consider a particular choice of

ψ and u and define them on the membrane.

4.2 Regularity condition

We assume the following regularity conditions in our procedure for computing

the metric.

• Solution is regular everywhere in the membrane region

• Solution is also analytic in D.

• Solution vanishes everywhere outside the membrane region, matching smoothly

with flat background.

10



Chapter 5

Metric Correction and Gauge

choice

5.1 Metric Correction

The starting ansatz mentioned in the previous section fails to solve the equations

of motion beyond zeroth order in 1
D

and hence to make it a solution, we have to

add corrections in series in 1
D

.

Thus, considering the following most general decomposition of the full metric

obeying SO(D − p− 3) symmetry, we have:

ds2 = gµνdx
µdxν + eφ(x)dΩ2

d µ, ν = 0, 1, ..., p+ 2

d = D − p− 3

where we have:

gµν = ηµν + h(0)
µν +

∞∑
k=1

(
1

D − 3

)k(
h̃(k)
µν + κ̃a3h̃

(k)
µν,κ̃

)

11



5.2 Gauge Fixing

with

h(0)
µν =

(
1

ψD−3

(
1 + κ̃a3

K2

(D − 2)2

)
− κ̃a3

K2

(D − 2)2

1

ψ2(D−2)

)
OµOν

and,

φ = 2 ln(S0) +
∞∑
k=1

(
1

D − 3

)k(
φ(k) + κ̃a3φ

(k)
κ̃

)
Here, we are looking at the ansatz metric corrected to all orders in 1

D
. But we

will be interested only in the correction to the first order i.e till h
(1)
µν .

Note that h
(0)
µν is the leading ansatz that we had started with, and we have sys-

tematically added corrections as a power series in 1
D

to make h
(0)
µν a solution of

the equation of motion. That is why, to make h
(0)
µν a solution at first non-trivial

order in 1
D

, we need to add the h
(1)
µν piece to the metric.

Also, since h
(0)
µν is an exact solution to the equations of motion itself on the ψ = 1

surface, we conclude that the corrections h
(k)
µν must vanish when rrestricted to the

ψ = 1 membrane hypersurface.

5.2 Gauge Fixing

We know that we have gauge freedom in our metric, which we have not used

yet.Thus, to remove the gauge redundancy in our metric, we make the following

convenient gauge choice as:

h(n)
µν O

µ = 0

where,

h(n)
µν = h̃(n)

µν + κ̃a3h̃
(n)
µν,κ̃

12



Chapter 6

Coordinate Rescaling

Since, the solution is non-trivial only in a region of thickness 1
D

around the hori-

zon, we can write the coordinate by expanding around an arbitrary point x0 on

the horizon by a thickness of 1
D

. Metric can also be written as expanding around

the point x0 .

6.1 Patch Coordinates

With the motivation that we had, that all the non-trivial physics is contained

inside a region of order 1
D

about the horizon, we define the so-called patch coor-

dinates which are specialised to probe inside this membrane region, by changing

the coordinates as follows:

xµ = xµ0 +
1

D − 3
αµay

a

Or,

ya = (D − 3)(xµ − xµ0)αaµ

We also define some rescaled quantities, to avoid spurious factors of D in our

13



6.2 Choice of Patch Co-ordinates

calculation while working with the patch co-ordinates.

The rescaled metric

Gab = (D − 3)2gab = αµaα
ν
bgµν

Gab =
1

(D − 3)2
gab = αaµα

b
νg

µν

and,

χa = (D − 3)∂aφ = αµa∂µφ

6.2 Choice of Patch Co-ordinates

Note that there are three special directions in our system , namely : 1)the unit

timelike velocity vector uµ, 2)the unit spacelike normal nµ and 3)the radial di-

rection of the d sphere. We will use a linear combination of these directions

along with any arbitrary p directions as our coordinate for the p+ 3 dimensional

coordinate system, which are namely, n,O = n − u and Z = dS − (n.dS)n for

the 3 directions and Y i for remaining p dimensions.Thus, the following scaled

coordinates used are :

R = (D − 3)(ψ − 1)

V = (D − 3)(xµ − xµ0)Oµ

z = (D − 3)(xµ − xµ0)Zµ

yi = (D − 3)(xµ − xµ0)Y i
µ

14



6.3 Leading Order Correction

Written in these rescaled coordinates the leading ansatz metric turns out to be

of the form:

ds2=2
S0

ns
dV dR− (1− e−R)

(
1− κ̃a3

n2
s

S2
0

e−R
)
dV 2 +

dz2

1− n2
s

+ dyidy
i +O(

1

D
)

eφ=S2
0 +O(

1

D
)

6.3 Leading Order Correction

We find that the Leading Order Correction to our starting ansatz satisfying the

proper gauge conditions, written out in our rescaled patch coordinates turn out

to be of the form.

h̃
(1)
ab + κ̃a3h̃

(1)
ab,κ = (SV V (R) + κ̃a3SV V,κ̃(R))dV 2 + 2(SV z(R) + κ̃a3SV z,κ̃(R))dV dz

+(Szz(R) + κ̃a3Szz,κ̃(R))dz2 + (Str(R) + κ̃a3Str,κ̃(R))dyidyi

+2(VV i(R) + κ̃a3VV i,κ̃(R))dV dyi + 2(Vzi(R) + κ̃a3Vzi,κ̃(R))dzdyi

+(Tij(R) + κ̃a3Tij,κ̃(R))dyidyj

here, Tij are trace-less in the sense that Tii = 0.

All the terms are written according to their nature of transformation under the

group SO(D − p − 3), as Scalars, Vectors, Tensors. Note further, that all these

corrections should go to zero on the membrane, since on the membrane , our lead-

ing starting ansatz is already a solution, as any patch of the membrane resembles

a patch of boosted Schwarzschild metric.
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Chapter 7

Membrane Equation in

Minkowski background

7.1 Membrane Equations

We know that not all of the equations of motion Eµν are dynamical in nature.

When a hypersurface is specified, the equations of motion can be naturally divided

into two classes, the dynamical and the constraint equations of motion.We can

solve the constraint equation in any one slice and then those constraint equations

will be satisfied in all other slices after solving the dynamical equations of motion.

The constraint equations of motion are defined as:

Cµ = Eµνn
ν .

In our case, the constraint equations are thus,

Cµ = Eµν∂
νψ.

16



7.2 Inference

Solving the constraint equations: Cµ = 0 at R = 0 will give us the so-called

Membrane Equations of Motion:

∇.u = O

(
1

D

)

Pµα

(
∇2uµ
K

+uβKβµ−u.∇uµ
(

1+κ̃a3
K2

(D − 3)2

)
−∇µK

K

(
1−κ̃a3

K2

(D − 3)2

))
= O

(
1

D

)
Where,

Pµα = δµα − nµnα + uµuα.

The rest of the equations of motion, i.e the dynamical equations of motion are

solved to find out the metric correction terms.

7.2 Inference

We expected a more nontrivial mixing of the co-efficients a1,a2 and a3 in the

membrane equations , but as is evident from the result, only the coefficient a3

takes part in the membrane dynamics.This can be traced back to the fact that

the α0 solution satisfies Rµν = 0 and R = 0 , which are the vacuum Einstein’s

Equation in Minkowski space-time.

Hence in the GB term of the action i.e LGB = κ(a1R
2+a2RµνR

µν+a3RµνρσR
µνρσ)

the R2 and RµνR
µν piece fails to contribute to the membrane equation, and only

the RµνρσR
µνρσ piece contributes, owing to the fact that Rµνρσ 6= 0 for solutions

other than trivial flat space solution to Einstein Equation.

But we expect a more nontrivial mixing of coefficients to occur in AdS background

since RAB = −(D − 1)LgAB and R = −D(D − 1)L. Thus, with this motivation

we proceed to repeat the same procedure with AdS black brane for starters to

find more non-trivial membrane equations.
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Chapter 8

Ansatz in Ads space

8.1 Action in Presence of Cosmological Con-

stant

The action now has a cosmological constant :

S =

∫
dDx
√
−g (R+(D−1)(D−2)l+κ(a1R

2+a2RµνR
µν+a3RµνρσR

µνρσ)) .... (2)

Where,

l =
Λ

(D − 1)(D − 2)
, is the cosmological constant

8.2 Leading Ansatz from black Brane Solutions

The algorithm solves for the gravity eom locally in a small region (of size O(1/D))

about the horizon and then the global solution is obtained by ‘smoothly’ patching

together all the local solutions. The key ingredient of the algorithm is a starting

ansatz solution with horizon on which we implement this procedure.In this case,

we use the black brane solution for convenience.

18



8.3 Metric in Kerr-Schild Coordinates

The static black brane solution to the Equations of Motion corresponding to

the action (2) is:

ds2 = −f(r)dt̃2 +
dr2

f(r)
+ lr2dΩ2

D−2

where

f(r) = lr2

(
1−

(rh
r

)D−1
(1 + κl(A + B) + κlA + κlB

(rh
r

)2(D−)
)

)

and

A =
(D − 4)

(D − 2)

(
(D − 1)(Da1 + a2) + 2a3

)
B = (D − 4)(D − 3)a3

Here, r = rh defines the horizon of our black brane solution.

8.3 Metric in Kerr-Schild Coordinates

The Black Brane Solution, written in Kerr-Schild coordinates take the following

form:

ds2 = −lr2(1 + κ̃lÃ)dt2 +
dr2

lr2(1 + κ̃lÃ)
+ lr2dx2

D−2 +

(
Ψ−(D−3)

(
1 + κ̃a3

K2

(D − 2)2

)
−κ̃a3

K2

(D − 2)
Ψ−2(D−1)

))
(Oµdx

µ)2

Here, the parameter κ̃ = (D − 4)(D − 3)κ is of order O(1) and K is the trace of

extrinsic curvature tensor of r = rh surface.

We also have the one formOµdefined asOµ = nµ−uµ , where nµdx
µ =

√
1−lr2n2

s√
lr2(1+κ̃a1l)

dr+

lr2nsdS is the unit normal to the surface r = rh. Here, the normalisation is car-

ried out with respect to the asymptotic AdS spacetime.
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8.4 Leading Ansatz in Rescaled Coordinates

Also, the velocity vector field uµ is defined as uµdx
µ = −

√
lr2(1 + κ̃a1l)dt such

that,

n.n = 1 n.u = 0 u.u = −1,

here, all dot products are with respect to the asymptotic AdS spacetime given

by:

ds2 = −lr2(1 + κ̃lÃ)dt2 +
dr2

lr2(1 + κ̃lÃ)
+ lr2dx2

D−2 .

Key point to note, is that the AdS length scale is modified by the presence of the

4-derivative terms, which warrants for greater care to be taken while arriving at

the covariant form of the membrane equation.

8.4 Leading Ansatz in Rescaled Coordinates

Now our data, namely, 1) Shape of the membrane Ψ and 2) Velocity Vector field

uM can be taken to be arbitrary function and one-form respectively,respecting

the SO(D− p− 3) symmetry that we had discussed in the previous case also.We

can further uplift the data to the rest of the space-time following the auxilliary

conditions, according the same Auxilliary Condition of minkowski background ,

only this time, all contractions are performed with respect to the AdS metric.

Finally we will get the following form of the Leading Ansatz:

ds2 = 2
D − 3

K
dV dR− (1− e−R)

(
1− κa3

K2

(D − 3)2
e−R

)
dV 2

+
lr2

0

1− lr2
0n

2
s

dz2 + lr2
0dyidy

i +O(1/D)

and

eφ0 = lr2
0S

2
0 +O(1/D)
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8.5 Metric Correction

where, ns = n.dS , dot product being w.r.t. higher derivative corrected AdS

background.

8.5 Metric Correction

The Leading Ansatz does’nt solve the Einstein’s Equations directly, as we had

even in the previous section.So,to make our metric a solution to the Einstein’s

Equation, we add correction terms to our Leading Ansatz as a power seies in

1
D−3

.We again consider decomposition of the full SO(D − p − 3) metric in the

following form, without loss of generality:

ds2 = gµνdx
µdxν + eφ(x)dΩ2

d µ, ν = 0, 1, ..., p+ 2

d = D − p− 3

where we have:

gµν = gAdSµν +
(
h̃(0)
µν + κ̃a3h̃

(0)
µν,κ̃

)
+
∞∑
k=1

(
1

D − 3

)k(
h̃(k)
µν + κ̃a3h̃

(k)
µν,κ̃

)
and,

φ = φ(0) +
∞∑
k=1

(
1

D − 3

)k(
φ̃(k) + κ̃a3φ̃

(k)
κ̃

)
Here, we are only interested in solving for the coefficient h

(1)
µν and deriving the

membrane equation to leading order.

8.6 Leading Order Correction

The first correction that we can add to our leading ansatz to make it a solution

to the generic Einstein-Gauss Bonnet equations of motion,namely,
˜
h

(1)
µν takes the
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8.6 Leading Order Correction

same form as was assumed in the flat background section, with the same gauge

conditions.

h̃
(1)
ab + κ̃a3h̃

(1)
ab,κ = (SV V (R) + κ̃a3SV V,κ̃(R))dV 2 + 2(SV z(R) + κ̃a3SV z,κ̃(R))dV dz

+(Szz(R) + κ̃a3Szz,κ̃(R))dz2 + (Str(R) + κ̃a3Str,κ̃(R))dyidyi

+2(VV i(R) + κ̃a3VV i,κ̃(R))dV dyi + 2(Vzi(R) + κ̃a3Vzi,κ̃(R))dzdyi

+(Tij(R) + κ̃a3Tij,κ̃(R))dyidyj

Here Tij are trace-less in the sense that Tii = 0.
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Chapter 9

Membrane Equation in Ads space

9.1 Membrane Equation

Finally, solving the constraint equation:

Cµ = EµνG
νδnδ

where, Eµν are the equations of motion, Gµν is the complete metric upto required

order in 1
D

and nµ is the unit normal to the membrane hypersurface. We get

similarly, th Membrane Equation for our Ads case as:

∇.u = O(
1

D
)

(
∇2uµ
K

+ uνKµν −
∇µK

K

(
1− κ̃a3

K2

(D − 3)2

)
− (u.∇)uM

(
1− κ̃a3

K2

(D − 3)2

))
Pµγ

= O(
1

D
)

..... (4)
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9.1 Membrane Equation

where, the notation is such that greek alphabetical indices correspond to the ef-

fective p+ 3 coordinates and the projection operator Pµν = g
(AdS)
µν + uµuν − nµnν

is orthogonal to the direction uµ and nµ. Thus, we have the desired result for

the Ads space membrane equation. Note, than even though only a3 coefficient

appears manifestly in our Ads Membrane Equation, all dot products are taken

with respect to the Ads metric, whose length is modified by the presence of the

4-derivative terms, which ushers a nontrivial dependence on the other coefficients

also,i.e, a1 and a2, which is otherwise hidden in the above geometrised form of

the membrane equations.

Also, we have the dynamical equations of motion other than the constraint equa-

tions, which we will use to solve the metric correction terms in the R.H.S of the

expression for h
(1)
µν , but the explicit expression of them are too complicated to be

mentioned, so I will avoid writing them explicitly here.

The membrane equations pose a well-defined initial value problem for our metric

and determines the shape function: ψ and the velocity vector: uµ, which are

p + 2 many functions to be determined ( one function ψ and p + 1 independent

components of the unit velocity vector field uµ ).On the other hand we have p+2

many equations (4).

The membrane equations can be interpreted as being equations of motion for

some fictitious particles constrained on the dynamical membrane having energy

density u0 = γ, and velocity ui

u0
.The first of the two equations (4) tells us a con-

servation law for these fictitious particles i.e they are allowed to move from one

place to another on the membrane but cannot be created or destroyed.While the

second equation is actually a Newton’s equation for these particles where the

R.H.S contains different type of force terms on the fictitious particles like shear

viscosity, pressure force etc.
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9.2 Quasi-Normal Modes

9.2 Quasi-Normal Modes

Now that we have the membrane equations at leading order, in presence of four

derivative terms, we can compute the spectrum of linearised fluctutations about

a static spherical membrane by solving the membrane equations.

We consider a coordinate system in which the background Ads metric takes the

form:

ds2 = −dt2(1 + lr2 + κAl2r2) +
dr2

(1 + lr2 + κAl2r2)
+ r2dΩ2

D−2

Also for later convenience, let

l̃ = l(1 + κAl)

We will be studying linearised perturbation about the static spherical surface:

r = 1

which is parametrised as:

r = 1 + εδr(t, θa)

Using the above expression we can find out all the extrinsic curvature tensor

components required for solving the membrane equation.

Similarly, we can perturb the velocity vector about a static configuration as,

u = −
√

1 + l̃dt+ εδut(t, θ
a)dt+ εδua(t, θ

a)dθa

Note, that we will be working in linear order in ε.

Normalising the perturbed velocity vector w.r.t the induced metric till linear
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9.2 Quasi-Normal Modes

order in ε we will get:

δut(t, θ
a) = − l̃δr√

1 + l̃

The velocity perturbation δua can be parametrised as follows:

δua = δva +∇aΦ

where δva is the divergence-less part of the perturbation, i.e ∇aδva = 0.

Finally using the scalar membrane equation till leading order in 1
D

, i.e:

∇.u = 0

one can show that:

∇aδu
a = ∇2Φ = −(D − 2)∂tδr√

1 + l̃

Now that we have reduced all perturbations to the two key perturbations: δr and

δva, we can mode-decompose the two linearised fluctuations as:

δr(t, θ) =
∞∑
j=0

δrjYj(θ)e
−iωs

j t

and

δva(t, θ) =
∞∑
j=0

δvjVa,j(θ)e
−iωv

j t .
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9.2 Quasi-Normal Modes

Then putting these perturbations in the membrane equation and solving for

the frequency we find that the scalar and vector QNM angular frequency turns

out to be:

ωsj = ±
(

1√
j(1 + l̃)− 1

(
(1− a3κ̃(1 + l̃))(j − 1)

)
+

a1κ̃jl
2

2
√
j(1 + l̃)− 1

)
+i(1− a3κ̃(1 + l̃))(1− j)

and similarly for the vector mode we have:

ωvj = i(1− a3κ̃(1 + l̃))(1− j)

Thus, we find that the Quasi-Normal Modes are decaying in large time scales and

are thus stable solutions. Notice that the solutions are stable, with or without

the higher derivative corrections. Thus, we have a well-behaved solution having

no instability as such.
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Chapter 10

Hypersurface

Summary

We have so far computed the membrane equations in both flat and Ads back-

ground. Now, we can take it further and ask whether there exists a Stress-Tensor

corresponding to this membrane, whose conservation law leads to the membrane

equation. Calculating the explicit form of this stress tensor for our Ads Mem-

brane Equations will be the aim of the remaining of my project.

In this section I will outline the necessary concepts and procedure for comput-

ing this Stress-Tensor. Most of the contents can be found in more details in the

references12

10.1 Hypersurfaces Basics

There are two equivalent, but distinct ways of representing hypersurfaces(co-

dimension one sub-manifolds):

1”A Relativist’s Toolkit”, by Eric Poisson
2”Lecture Notes on General Relativity”, by Matthias Blau
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10.2 Pullback and Pushforward

1. Embeddings:

If there is any explicit mapping from the hypersurface to the manifold.

φ(x) : Σ→M

If the manifold M itself is of dimension n, then the image φ(Σ) is necessarily of

dimension n− 1.

The function φ has to satisfy two conditions:

a. Injectivity(one-one)

b. The n x (n− 1) Jacobian of the map φ should be of maximum rank i.e n− 1.

For example, S1 can be defined as a hypersurface of R2 through the explicit

mapping:

Σ(S1) : x = a cos t, y = a sin t

2. Embedded Hypersurface:

We can use a function S(x) as constraint, to define a hypersurface through a

suitable condition like:

Σ = [ x|S(x) = 0 ]

For example,

Σ(S1) : x2 + y2 = a2

10.2 Pullback and Pushforward

If we have an explicit mapping xµ = xµ(ya), from hypersurface to the manifold,

then we can pushforward(or pullback) the tangent(or cotangent) space to(or from)

the bigger manifold, through the linear map:

V µ = eµav
a
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10.3 Projection Operator

where,

eµa =
∂xµ

∂ya

and similarly for the cotangent space,

va = Vµe
µ
a .

Note that, the linear map eµa is not a square matrix, and hence has no inverse.So

we can only pushforward vectors and pullback covectors.Moreover,the above def-

inition of pushforward implies that the basis vectors in the hypersurface tangent

vector space, ∂ya gets pushed forward to eµa for each a = 1, 2, ..., (n− 1).

Furthermore, if we have a well-defined metric all over the bigger manifold,then

we can also define a unique normal to the hypersurface, satisfying the condition:

gµνn
µeνa = 0 ,

gµνn
µnν = ε = ±(spacelike or timelike) .

The n equations uniquely solves for the unit normal to the hypersurface.

10.3 Projection Operator

If instead of knowing a parametric relation, we have the function S(x) as defined in

the definition of embedded hypersurface, then we immediately have an expression

for the un-normalised normal to the hypersurface as,

lµ = −∂µS
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10.4 Induced Metric

Then the unit normal will be:

nµ = ε
∂µS√
∂νS∂νS

further, we can define a projection operator on the hypersurface, which will

project out the tangential components of any vector of the bigger manifold:

hµν = gµν − εnµnν

10.4 Induced Metric

We can define an induced metric on the hypersurface by performing a pullback

on the metric defined in the full manifold as:

hab = gµνe
µ
ae
ν
b = hµνe

µ
ae
ν
b

This induced metric appears in line elements restricted only along the hypersur-

face:

ds2
Σ = hab dy

adyb

In literature, the induced metric is also known as The First Fundamental

Form.

10.5 Extrinsic Curvature

The Second Fundamental Form, or the Extrinsic Curvature tensor measures

how the normal changes as one moves along the hypersurface. It describes how the

hypersurface is embedded in the bigger space. The Extrinsic Curvature Tensor
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10.6 Gauss-Codazzi Equations

Kab takes the form:

Kab = ∇αnβ e
α
ae

β
b

Or, equivalently,

Kαβ = hγαh
δ
β ∇γnδ =

1

2
Lngαβ

Together, the first and the second fundamentral form are the initial value to be

prescribed for solving the Einstein’s Equations.

Also note that the trace of the extrinsic curvature tensor:K = hαβKαβ = ∇αnα

describes whether the normal appears to converge or diverge from the hypersur-

face, locally, depending on whether K > 0 or K < 0.

10.6 Gauss-Codazzi Equations

The Gauss-Codazzi Equations express the n-dimensional Riemann Tensor, RIcci

Tensor, Ricci Scalar to the (n−1)- dimensional, hypersurface Intrinsic Curvature

Tensor and Extrinsic Curvature Tensor.

The Gauss-Codazzi Equations leads to an expression of the Constraint Equation

of General Relativity, in terms of the intrinsic and extrinsic curvature tensors.The

equations are:

Rαβγδe
α
ae

β
b e

γ
c e
δ
d = Rabcd + ε(KadKbc −KacKbd)

and

Rµαβγn
µeαae

β
b e

γ
c = Kab|c −Kac|b

where,

Va|b = ∂bVa − ΓeabVe

Γeab =
1

2
hed(∂ahdb + ∂bhda − ∂dhab)
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10.7 Junction Condition

Here Kac|b is the covariant derivative of the extrinsic curvature with respect to the

induced metric. Using the formula above, we can also find similar expressions for

the Ricci Scalar and Ricci Tensor.Finally, we write down the constraint equation

for the case of Einstein-Hilbert Gravity as:

−2εGαβn
αnβ = R(3) + ε

(
KabKab −K2

)
and

Gαβe
α
an

β = Kb
a|b −K,a

while the remaining components Gαβe
α
ae

β
b cannot be expressed solely in terms of

hab,Kab and other related quantities.These two equations are important for initial

value formulation of General Relativity. The membrane equations are basically

the Gauss-Codazzi Equations rewritten in terms of ψ and uµ.

10.7 Junction Condition

The Junction Conditions will play a key role in arriving at an expression for the

Membrane Stress Tensor.

This section deals with the case where a manifold M is divided into two regions

Σ+and Σ− which have a common boundary Σ. In Σ+ , we have the mertic g+
αβ,

with coordinates x+
α and in the region Σ−, we have the metric g−αβ in coordinates

x−α .The coordinates x±α need not be continuous across the hypersurface Σ,while,

the intrinsic coordinates ya, installed on the hypersurface are continuous across

Σ.

If we define:

[A] = A(Σ+)|Σ − A(Σ−)|Σ
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10.7 Junction Condition

i.e the jump of A across the hypersurface.

Then we have the following identities holding true:

[eαa ] = 0 = [nα]

Now, to make sure that, we have defined a metric such that it solves the equations

of motion everywhere in spacetime,when g±αβ solves the equations in each half,one

can prove that the first junction condition should hold:

First Junction Condition : [hij] = 0

This has to hold if we wish to smoothly join the two solutions across the hyper-

surface, such that the Einstein’s Equations are satisfied everywhere.

Now the second junction condition holds as:

Second Junction Condition : [Kij] = 0

A hypersurface is called regular hypersurface, when it also satisfies the second

junction condition [Kab] = 0.

Otherwise, when [Kαβ] 6= 0, the hypersurface is defined as singular hypersurface.

The presence of singular hypersurface corresponds to the presence of a Stress-

Tensor localised completely on the hypersurface,which in analogy to electrostatics

is the case of a charge distribution on a thin shell.
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10.7 Junction Condition

10.7.1 Surface Stress-Energy Tensor

After some more analysis, it can be figured out that for singular hypersurfaces,i.e

[Kab] 6= 0, we can define the Surface Stress-Energy Tensor to be as:

T
αβ
Σ = δ(l)T abeαae

β
b

= δ(l)Tαβ

where,

Tab = − ε

8π

(
[Kab]− [K]hab

)
and l is the geodesic proper time or distance away from the hypersurface, l is > 0

in the Σ+ and < 0 in the Σ− region. Thus, we see that if the second junction

condition, [Kab] = 0 is not satisfied, then the space-time is singular at Σ and

the interpretation is that there is a surface stress-tensor T
αβ
Σ present at Σ.This

is exactly, the stress-tensor that we are looking for.In the later sections we will

see how to use this result to arrive at an explicit expression for the Membrane

Stress-Tensor.
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Chapter 11

Membrane Stress-Tensor

In this section we will discuss how to construct the Membrane Stress Tensor by

matching interior (ψ < 1) and exterior (ψ > 1) solution, using the knowledge

of the previous section and applying it for our case.Even though we do not have

any interior solution of the metric, we can analytically continue the metric on the

membrane to a solution for the interior such that it neither blows up or decays

in length scales of order 1
D

.

11.1 Interior and Exterior Solution

In our case we have two regions, ψ > 1 and ψ < 1,that we will refer to as (out)

and (in) respectively.

The Exterior Solution has an exponential falloff to the exterior of the membrane

over length scales of order O( 1
D

), while it blows up in the interior region.

On the otherhand, the interior solution neither blows up nor decays in length

scales of order O( 1
D

) away from the membrane.
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11.1 Interior and Exterior Solution

Here we are looking at solutions linearised around a background metric as:

gµν = gbµν +Hµν

Where,

Hµν = F (out)
µν [hab], to the exterior

F (in)
µν [hab], to the interior

is the full corrected metric perturbation

And, hab is the induced metric on the hypersurface.The first junction condition

requires the induced metric to be the same when approached from both the

exterior and the interior.

Written more explicitly the two solutions are:

1. ψ > 1

Hµν =

[
ψ−(D−3)

∞∑
m=0

(ψ − 1)mH(m)
µν

]
2. ψ < 1

Hµν =

[ ∞∑
m=0

(ψ − 1)mH̃(m)
µν

]

Where, H
(0)
µν = H̃

(0)
µν is considered as the basic data for the solution, and the rest

of the coefficients are expressed in terms of this basic data by solving for the

linearised dynamical equations of motion.
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11.2 Stress Tensor

11.2 Stress Tensor

After we have solved for the dynamical equations, and determined all the appro-

priate coefficients till some order in 1
D

, solving the constraint equation in any one

slice of some foliation of space-time, automatically solves it for all other slices.

Thus we get the membrane equation by demanding that it is satisified on ψ = 1

hypersurface.

But instead of doing so, we will compute a Stress-Tensor, and then the mem-

brane equations will follow from the conservation of this stress tensor. As we

had seen in the previous section,an expression for the Stress-Tensor for a singular

hypersurface is :

T
αβ
Σ = | ∂ψ | δ(ψ − 1)T abeαae

β
b

= | ∂ψ | δ(ψ − 1)Tαβ

Tµν = − ε

8π

[
T (out)
µν − T (in)

µν

]
Where we have defined:

T (out)
µν = K(out)

µν −K(out)h(out)
µν

T (in)
µν = K(in)

µν −K(in)h(out)
µν

K
(out)
µν = Extrinsic Curvature Tensor with respect to the exterior solution,

h
(out)
µν =Projection operator on ψ = 1 hypersurface, with respect to the exterior

solution and,

K(out) = hµν(out)K
(out)
µν

Similar definition apply for the terms with superscript (in) terms,only with re-

spect to the interior solution.
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11.2 Stress Tensor

At the leading non-trivial order, the stress tensor takes the form of :

T (out)
µν =

(
K̃µν − K̃Πµν

)
+
N

2

(
H(1)
µν −H(1)Pµν

)
− N

2
(D − 3)(H(0)

µν −H(0))Pµν

T (in)
µν =

(
K̃µν − K̃Πµν

)
+
N

2

(
H̃(1)
µν −H(1)Pµν

)
Here,K̃µν and Πµν is the projection operator on the membrane with respect to

the metric
[
g

(b)
µν +H

(0)
µν

]
.

H(n) = gµν(b)H
(n)
µν

Πµν = gµν(b) − n
µnν +Hµν

(0)

K̃µν = Kµν − 1

2
[Kµ

γH
γν
(0) +Kν

γH
γµ
(0)]

And, Kµν and Pµν are the extrinsic curvature tensor and projection operator on

the membrane with respect to only the background metric g
(b)
µν .

We can express H
(1)
µν in terms of H

(0)
µν by solving the linearised dynamical equations

of motion.Finally putting everything together we can show that the full Membrane

Stress-Tensor turns out to be of the form:

T µν = − ε

8π

(
T µν(out) − T

µν
(in)

)
=
N

2
(D − 3)(Hµν

(0) −H(0)P
µν)− N

2

[
Hµν

(1) − H̃
µν
(1) − (H(1) − H̃(1))P µν

]

Thus solving for H
(1)
µν and H̃

(1)
µν for our case, we can find an expression of the

Stress-Tensor, whose conservation gives the membrane equations.

The rest of my project will be aimed at arriving at this Stress-Tensor for the case

of our Higher Derivative corrected AdS Background Membrane.
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Chapter 12

Conclusions

In this thesis, we have computed the membrane equations dual to a black brane

solution in an asymptotically AdS background with a generic four-derivative cor-

rection to the Einstein-Hilbert Action, in large spacetime dimensions. Here, we

have worked perturbatively up to first order corrections both in the expansion of

1
D

and κ, the higher derivative parameter.

We have thus found that, in asymptotically AdS space,the presence of genric

higher derivative terms modifies the background geometry on which the dual

membrane is embedded.This causes the membrane equations to involve all the

three coefficients of R2,RµνR
µν and RµνρσR

µνρσ.

For the rest of my project I would be working out the explicit form of the stress

tensor for our Ads Membrane Solution, whose conservation implies the membrane

equations.

Another possible direction in the future can be to study large D membrane

paradigm in this four derivative corrected theory till the second sub-leading order

in an expansion in 1
D

Also,it would be interesting to pursue this program in the

presence of more higher derivative terms.
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