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Abstract

Physical models have been studied with twists being applied to the electric and magnetic

fields at the boundary. It is curious to understand what happens if the twist is applied to

the lattice, instead of the fields on the lattice[12]. The properties of many models depend

on the lattice on which they are studied. We take finite lattices and apply a twist in one

direction, and study the behaviour of the models on this lattice. To understand the effect

concretely, we perform numerical simulations of two simple systems, the 2D Ising model and

2D dimer model defined on square lattices with twists. We look at the effect of the parity

of the twist and the temperature of the model.
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Introduction

Statistical Mechanics studies the emergent properties of the interaction of a large number of

entities, typically atoms and molecules. Although we understand the behaviour of isolated

atoms to a very good degree and can write down their wavefunctions from the Schrödinger’s

equation, it is difficult to do so when a large number of particles is involved. The complexity

of the problem scales with the number of particles and it is impossible to even write down

all the equations for many particles. However, the systems show simpler laws for bulk

properties. Statistical mechanics establishes the connection between the microscopic laws

and the macroscopic phenomena.

The transport properties of certain topological systems can be related to Chern numbers,

which can be implemented by applying a twisted boundary condition on the fields present in

the system on a periodic lattice[12]. It is curious to understand what happens when instead

of the twisted boundary conditions being present on the fields, they are actually present on

the lattice. Of equal interest is to understand the effect of dislocations on the lattice, and

the twist on a lattice acts like a column of dislocated atoms. To understand the general

effect of twist for various models on the lattice, we can first consider the simplest systems

on such twisted lattices.

In equilibrium statistical mechanics, one of the most well studied models is the Ising

model, with the exact solution of the 2D Ising Model, provided by Onsager in 1944 and

by Kaufman in 1949. In this project, we set out to study some properties of the Ising

model when a twist is applied to the boundary condition. For the Ising model, the degrees

of freedom live on each site, because of which we expect that the effect of the twist will

be minimal. We can look at a slightly more complex model that is closely related to the

Ising model, called the dimer model, where the degrees of freedom lie between two adjacent

sites, and we expect that the twist must play a more prominent role. The dimer model has
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interesting phase transitions and phases depending on the Hamiltonian on the model. This

is also a simple model which has been solved exactly for the non-interacting case, and it

would be curious to see what happens when a twist is applied.

In Chapter 1, a brief introduction of the two simple models is presented. The work that

has been done in these models over the past several decades is also mentioned. The details of

the numerical studies for these models using Monte Carlo has been explained in Chapter 2.

Once the numerical simulations have been implemented, we can compute various quantities

for the models that allows us to study their properties. In Chapter 3, these quantities are

described and the implementation of the twist on the lattice has been presented. The results

obtained from the numerical simulations is shown in Chapter 4. For the 2D Ising model, an

attempt was made to understand the effect of the twist analytically using the solution given

by Lieb et.al, which has been presented in Chapter 5. The final chapter contains a brief

summary of the work that was done in this project.
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Chapter 1

Models in Statistical Physics

In this project, we have worked with the Ising model in 2D and the dimer model in 2D. These

models have a long history and have been studied extensively over the past few decades. Our

aim is to understand what happens when we apply a twist in the lattice. Before we define

what we mean by a twist, a brief introduction to the models is helpful. In the next two

sections, I give a brief description of the two models and the motivation behind studying

them.

1.1 Ising model

This model was proposed by Wilhelm Lenz in 1920 to his student Ernst Ising, who solved

the one dimensional version in his PhD thesis. It is a very simple model for ferromagnetism.

The one-dimensional Ising model does not show any phase transition, but the 2D Ising model

shows a phase transition from ferromagnetic to a paramegnetic phase when the temperature

is increased from 0. The zero-field 2D Ising model is one of the very few many-body problems

that has been solved exactly till date.

The model consists of a set of points in an n-dimensional lattice, with each lattice site

being assigned a spin σ = ±1. If the number of lattice sites in N, the number of differ-

ent configurations of the system is 2N . The spins at each site interact with their nearest
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neighbours on the lattice, and the Hamiltonian for the system is defined as

H = −J
∑
<n.n.>

σiσj (1.1)

where J is the interaction energy which sets the energy scale. This is the isotropic Ising

model where the interaction between spins is the same in all directions. The Ising model has

been studied for various kinds of lattices, but for the purpose of this thesis, we will stick to

the 2-D square lattice of size N x N, where we can write the Hamiltonian as

H = −J
∑

i=1,...,N
j=1,...,N

[σi,jσi,j+1 + σi,jσi+1,j]

For a given configuration of spins on the lattice, this expression calculates the energy of

the system. In order to study the behaviour of this system, we can first write the partition

function and then calculate various quantities from there. We know that the partition

function can be written as

Z(β) =
∑
{σ}

e−βH = Tr
{σ}

(e−βH) (1.2)

For the two dimensional square lattice with zero external magnetic field, the critical temper-

ature at which the phase transition takes place was found to be Tc = 2J
kB ln(1+

√
2)

by Kramers

and Wannier by finding a relation between the low temperature and high temperature ex-

pansions. This model has also been solved exactly by Lars Onsager in 1944 using a very

sophisticated technique. A lot of work ensued after this to solve the model in a simpler

way, with simplifications offered by Kaufman in 1949 and Montroll and Newell in 1953 using

spinors and Lie algebras. The history of the model is very nicely summarised by Stephen

Brush[3].

1.2 Dimer model

The dimer model has been extensively studied for nearly a century, with the problem being

first formulated in the context of adsorption of diatomic molecules on the surface of a metal[7].

The problem of the number of perfect matchings on a planar graph was solved exactly by

Kasteleyn in 1961 and Temperley and Fisher in 1961, using Pfaffian techniques.
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We study the model of fully-filled dimers on the 2D square lattice with interactions. The

square lattice must be of the form 2N x 2N for this model to be fully filled. The dimers lie

on the edges between adjacent vertices of the lattice. Each vertex is connected to exactly

one other vertex by a dimer. For a 2N x 2N lattice with 4N2 sites, the number of dimers

would be 2N2. For such a system we define the Hamiltonian as:

H = v[N c(‖) +N c(=)] (1.3)

Here v sets the interaction energy and we will set it equal to -1. This means that for a given

configuration/ matching c, we can calculate the energy of the configuration by counting the

number of parallel dimers in the vertical and horizontal directions. Dimers are considered

to be parallel to each other if they lie on parallel sides of a plaquette. A typical dimer

configuration is shown in Fig 1.1 for a 16 x 16 lattice.
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Figure 1.1: A typical configuration of dimers on a square lattice
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For every such configuration, the energy can be calculated. We notice immediately that

there are four states of the lattice for which the energy is minimum. These correspond

to all states pointing along x-direction, or all states pointing along y-direction. The four

degenerate ground states are shown in the figure below.
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Figure 1.2: The four ground states

This model shows a phase transition from a low-temperature columnar order phase to a

high-temperature liquid like phase. The critical temperature of this model has been identified

as Tc = 0.65 for this model[7]. The four degenerate ground states can only be possible if there
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are even number of sites in the x-direction and the y-direction. Square lattices of dimensions

2N x 2N are lattices are bipartite, that is, it is possible to identify two sublattices A and

B such that the lattice only contains edges which have one vertex in A and one vertex in

B. There are no edges which connect two vertices in the same sublattice. This is only true

for the untwisted lattice, and lattices with an even twist, where twist is defined in Chapter

3. For such lattices, it is clearly evident that any dimer must be connecting two sites in

opposite sublattices.

The dimer model is one model in which a Coulomb phase is realized. Coulomb phases

are those in which the spin-spin correlations, depend on the distance R like dipole-dipole

interactions, and proportional to 1/R2 for two dimensions. This behaviour is similar to

electrostatics. One can also define a mapping for the 2D dimer model from a configuration

of dimers to that of a configuration of arrows on the lattice such that there is no net flux at

any site in the lattice. These arrows can be thought of as lattice fluxes and they satisfy the

same condition of divergence-less flux condition that is satisfied by the electric and magnetic

fields in space. For the fully-filled dimer model on a bipartite lattice, we can specify a

convention of flux on each dimer as a value +3 in the direction from odd to even sublattice,

and +1 in every other empty bond going from even to odd sublattice. This kind of mapping

clearly leads to a divergence-less field at every lattice site. This is a quantity that has

generated a lot of interest in recent years[5].
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Chapter 2

Numerical Simulations

In order to study these models, we employ numerical simulations which allow us to sample

many configurations and perform experiments like in real systems. In principle, if we can

write down the partition function of a system exactly we can calculate all the properties of

the system. However, in practice this is nearly impossible because of the large number of

states for each system. Take the Ising model, for instance, where we study what happens

when spins at every site of a lattice takes the values ±1, and they consist of nearest neighbour

interactions. This simple model is used to understand the ferromagnetic to paramagnetic

phase transitions in metals. But when we look at the number of possible configurations

of the system, it scales with the number of sites that are present, and so the number of

configurations for a system with N sites is 2N . As an example, if we consider a 2D lattice

of dimensions 4x4, the number of sites is 16 and the number of possible configurations is

216 = 65536. But if the lattice has dimensions 5x5, the number of sites is 25 and the number

of configurations is 225 = 33554432, which is 512 times the number of configurations for

4x4 lattice. So it becomes nearly impossible to enumerate all the possible configurations

and to calculate the partition function exactly. Numerical simulations are used to study

these systems in equilibrium, by evolving the systems to such that they sample most of the

configurations that the system can be present in when it is in equilibrium.

Monte Carlo simulations are a set of powerful tools that have been developed to study

systems in equilibrium. The basic idea is to take the system at an initial state and evolve

it to a new state by making local changes that satisfy the principle of detailed balance, so
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that the system tends towards equilibrium. The principle of detailed balance gives a set of

equations that any system must satisfy at equilibrium, and it gives us the freedom to choose

the probabilities of various transitions.

2.1 Principle of detailed balance

The system at equilibrium is characterized by the fact that the rates of transition from

one state to another is balanced by the reverse transition. We know that all systems that

are described by a Hamiltonian tend to a Boltzmann distribution of the configurations at

equilibrium. So, at equilibrium we have:

PaP (a −→ b) = PbP (b −→ a) (2.1)

where Pa and Pb are the Boltzmann probabilities of the states a and b at equilibrium, and

P (a −→ b) and P (b −→ a) are the transition probabilities that need to be chosen for each

model. So, if Ea and Eb are the energies of two states of the system, then at equilibrium the

contribution to the partition function for each of these states is

Pa = e−βEa

Pb = e−βEb

So, the probabilities of transition can be written in terms of these as:

P (a −→ b)

P (b −→ a)
= e−β(Eb−Ea) (2.2)

This equation is satisfied for every pair of states a and b. Since the initial state a must

transition to one of the states, we also have:∑
{b}

P (a −→ b) = 1 (2.3)

where {b} is the set of all states that are accessible from a. These are the fundamental

constraints that any system in equilibrium must satisfy. Given these constraints, a suitable

set of transition probabilities are chosen, which are time-independent, and the system evolves
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through these transitions.

2.2 Ising model

While the principle of detailed balance gives us the general idea of how the system needs

to evolve to reach equilibrium, one needs to suitably choose the rates of transition for each

model. For the Ising model, we start with an initial configuration of one of the ground states,

with all spins either pointing up or down (±1). For a 2D lattice with N x N spins, we initialize

a variable states that contains the values of the spins at each site. We then generate new

states from this configuration using the Metropolis Algorithm with single-spin-flip dynamics.

The steps that are to be followed can be written as follows[1]:

• Pick a random site and flip the spin on that site.

• Calculate the change in energy of the system ∆E due to the flip.

• If ∆E < 0, then the flip is accepted, otherwise the flip is accepted with a probability

e−β∆E (Metropolis Algorithm). If the initial state is µ with energy given by Eµ, and

the new state is ν with energy given by Eν , then this can be written as

P (µ −→ ν) =

e−β(Eν−Eµ) if(Eν − Eµ) ≥ 0

1 otherwise
(2.4)

• The above steps are repeated N2 times before the quantities are measured.

Once these steps are complete, a new configuration is obtained which is likely to be different

from the initial configuration, but which has been obtained using the probabilities which

satisfy detailed balance. The above algorithm is typically repeated around 107 times to

sample configurations. The system starting at an initial ground state, which corresponds

to T=0, first needs to be “heated up” to a particular temperature that we are interested

in. Once the system reaches equilibrium at our desired temperature, we start sampling

configurations at regular intervals by calculating various quantities, which are defined in the

next chapter.
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2.3 Dimer model

As we saw earlier, the fully filled dimer model in 2D is a model of perfect matchings on a

graph. The Hamiltonian for the system gives rise to four ground states which are degenerate

and which breaks both the translational and π/2 rotational symmetry. To simulate this

model at a particular temperature, we can use the Monte Carlo methods of picking a random

site of the lattice and changing the dimer present on that site. However, in contrast to the

Ising model, where it is simple to just flip the spin at a particular site, and accept the flip

with some probability, it is not possible to randomly change the dimers at any site. By

changing the dimer at one site, the dimer already connected to the site needs to be changed.

In effect, the algorithm must keep changing the dimers along a path until many dimers have

changed and the path completes a loop by ending at the starting site. An algorithm which

achieves this is called the Directed Loop Algorithm and it was first proposed by Sandvik

and Syljůasen [8]. They proposed a method of choosing the transition probabilities for the

dimer flips which results in the completion of the loop, while flipping the dimers at different

sites and generating a new configuration.

For the dimer model, we implemented the directed loop algorithm as discussed in the

appendix of [9], since it is more convenient. The algorithm proceeds as follows:

1. Pick a random site on the lattice, say x. This site would be one end of a dimer

connected to y, which is one of the four neighbours of x in the 2D square-lattice.

2. For the site x, calculate the number of dimers that are parallel to it in each direction.

This is to calculate the probability of acceptance for the first site.

3. Calculate the probability of accepting the flip along the direction of the current dimer

(x −→ y) at x as e−βN‖/2, where N‖ is the number of dimers parallel to xy.

4. If the dimer flip is accepted, two monomers are created at x and y, which is like a worm

with the head at y and the tail at x. For convenience, we represent this as though half

a dimer is present at the adjacent location (y), with the dimer being destroyed at that

site.

5. In the next step, one of the four directions is chosen at y, according to the acceptance

probability e−βN‖/2, where N‖ is calculated for dimers parallel to each direction at the

head of the worm.
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6. After a direction is chosen, if the site that is adjacent to y in that direction is z, then

the worm is moved in between y and z with the head pointing towards z and the tail

at y. Now a new dimer is being created between y and z.

7. If the site along the chosen direction z is a monomer, then the dimer is completed and

the loop update is complete. Otherwise, a dimer is created between y and z, and the

dimer between z and its neighbour, say w, is destroyed. The head of the worm moves

to the site w and it is present as half a dimer between z and w. The algorithm has

reached the same state as it was in the beginning of step 5, and the above steps are

repeated until the two monomers are destroyed.

At the end of the loop update, many dimers in the lattice would have been modified.

This loop update is performed many times, and once the number of accepted flips is greater

that the number of sites present, we consider the current state to be a new configuration

and we calculate the various quantities for this state. Once again, the system starts with

one of the four generate ground states, which correspond to T=0, and the system is heated

to our desired temperature. When the system reaches equilibrium, the various quantities of

our interest are measured as detailed in the next chapter.
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Chapter 3

Macroscopic observables

For any system that is described by a Hamiltonian, we are interested in understanding

the behaviour of some parameters that can be measured experimentally. We know from

statistical physics that the partition function Z is related to the free energy of the system by

F = −kBT ln(Z). (3.1)

We also know from thermodynamics that various quantities can be calculated from the free

energy, like the specific heat, susceptibility and correlation functions. These quantities can

be measured experimentally and used to infer the properties of the system. We define below

some of the quantities that are measured in our study of Ising model and dimer model.

3.1 Ising model order parameters

For the Ising model in 2D, we know very well of the existence of a low temperature ferro-

magnetic phase and a high temperature paramagnetic phase. In order to identify the phase

of the system we need to calculate certain order parameters, of which the most commonly

calculated ones are as follows (for a 2D square lattice of size N x N)[1]:

• Energy: The expectation value of the energy is the simplest quantity to calculate

directly from the Hamiltonian. The energy is calculated after every Monte Carlo sweep,

13



and the average energy can be estimated from these samples. The average energy is

calculated as

〈E〉 = −J〈
∑

i=1,...,N
j=1,...,N

[σi,jσi,j+1 + σi,jσi+1,j]〉 (3.2)

• Magnetisation: This can be calculated as the sum of spins in every site. For a given

configuration, M =
∑
i j

σi,j. The average magnetisation per site is calculated as

〈m〉 =
1

N2
〈
∑
i j

σi,j〉 (3.3)

• Specific Heat: Once the energy is calculated, we can calculate the specific heat

capacity per site as

cv =
kB
N2

β2(〈E2〉 − 〈E〉2) (3.4)

This expression can be derived easily from the relation between the internal energy

and the partition function. It is interesting to note that the microscopic fluctuations

of the energy is directly related to a macroscopic quantity like specific heat, which is

an experimentally measureable quantity.

• Magnetic Susceptibility: We can calculate the fluctuations of various quantities

from second derivatives of the appropriate fields. The strength of the response of some

variable X to changes in the value of a field Y is called the susceptibility of X to Y,

and is calculated as

χ =
∂〈X〉
∂Y

For the magnetic susceptibility, which measures the response of the magnetization to

changes in the magnetic field, we have the expression per site as

χ =
1

N2

∂〈M〉
∂B

=
β

N2
(〈M2〉 − 〈M〉2) (3.5)

The second expression is again simple to derive from the relation of the magnetization

to the partition function.

• Binder’s Cumulant: For the Ising model at the critical temperature, the specific

heat and magnetic susceptibility must have singularities, which is the indication of the

second order phase transition, since they are related to the second derivatives of the
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free energy. However, for any finite lattice, we will not observe this singularity, since

the partition function is the sum of a finite number of analytic functions. Only in

the thermodynamic limit of N −→ ∞ do we observe the singularity. However, from

finite lattice sizes, we can still identify the critical temperature by varying the lattice

sizes and calculating the fourth order cumulant for each size, also called as Binder’s

cumulant as

B = 1− 〈M4〉
3〈M2〉2 (3.6)

This quantity, when plotted as a function of temperature for different lattice sizes

shows a crossing point, which is at the critical temperature. This expression is derived

using finite size scaling analysis[4].

3.2 Dimer model order parameters

For the dimer model, there is a low temperature ordered phase, also called the Columnar

ordered phase, and a high temperature disordered phase, which can be identified using the

following quantities[7]:

• Complex Columnar Order Parameter: This quantity is defined as:

ψcol(r) = (−1)rx [n̂(r + x/2)− n̂(r− x/2)] + i(−1)ry [n̂(r + y/2)− n̂(r− y/2)] (3.7)

where x and y are unit vectors and n̂(r− x/2) is the bond occupation number, which

takes the value 1 if there is a dimer between the site r - x and site r. This quantity can

be calculated for each lattice site and it takes the values +1,−1,+i or −i, depending

on the direction of the dimer at the lattice site and the parity of that site. In a pure

columnar phase, which is one of the four degenerate ground states of the system, all

the sites take the same value of this parameter. The average value can be calculated

as:

〈|ψcol|〉 =
2

N2
〈|
∑
r∈A

ψcol(r)|〉 (3.8)

where A is the even sublattice in the 2D bipartite lattice. We can also calculate the
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columnar susceptibility as

χcol =
4

N2

〈∣∣∣∣∣∑
r∈A

ψcol(r)

∣∣∣∣∣
2〉
−
〈∣∣∣∣∣∑

r∈A

ψcol(r)

∣∣∣∣∣
〉2
 (3.9)

and the Binder’s cumulant as

Bcol = 1− 〈|ψ|4〉
2〈|ψ|2〉2 (3.10)

This quantity saturates to 1/2 in long range ordered phase and scales to 0 in the

thermodynamics limit when there is no long range order. This quantity detects the

translational symmetry breaking.

• Dimer Rotational Symmetry Breaking Parameter: Another quantity of interest

is the order parameter that breaks the π/2 rotational symmetry, which is present at

high temperatures, when there are an equal number of dimers in x and y direction on

an average. This can be calculated as

D =
2

N2
|N c(|)−N c(_)| (3.11)

which is the difference between the number of vertical and horizontal dimers in the

lattice for the configuration c. It has a value of 1 in the columnar state and 0 in the

disorder state. We can similarly calculate the susceptibility as

χD = N2(〈D2〉 − 〈D〉2)

and the Binder’s cumulant as

BD = 1− 〈D4〉
3〈D2〉2

• Plaquette Order Parameter: Along with the columnar ordered phase and the

disordered phase, there can exist an intermediate plaquette phase, where there are

parallel dimers in plaquettes. To identify if there is a distinct plaquette phase, we

can calculate it such that the order parameter vanishes for a columnar phase. So the
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plaquette order parameter can be defined as

P =
2

N2

∣∣∣∣∣∑
p

(−1)px+pyvp

∣∣∣∣∣ (3.12)

where vp = 1 if there exists a pair of parallel dimers in the plaquette identified by

the site p. The sum is over all the plaquettes in the lattice, with the plaquette being

identified with the top left corner of each square. The factor (−1)px+py ensures that

the expectation value of the plaquettes is zero for the columnar state and non-zero in

the plaquette phase. We can also calculate the associated susceptibility as

χP = N2(〈P 2〉 − 〈P 〉2)

and the Binder’s cumulant as

BP = 1− 〈P 4〉
3〈P 2〉2

• Energy: From the Hamiltonian, we can also calculate the energy of the system for

each configuration, and calculate the specific heat at each temperature to see if it

indicates a phase transition. The energy is calculated as

Ec = v[N c(‖) +N c(=)]

and we can calculate the fluctuation of energy which is related to the specific heat as

cv =
kB
N2

β2(〈E2〉 − 〈E〉2)

The quantities mentioned above were used to study the model in the paper by F.Alet

et.al[7]. They identified the critical temperature for this model to by Tc = 0.65 from the

Binder’s cumulant of the Dimer Rotational Symmetry Breaking parameter. We observe a

similar behaviour for the untwisted lattice, and so we can be fairly certain that our imple-

mentation of the algorithm is also correct.

In addition to the quantities listed above, we can also study the distribution of the dimers

in the x-direction and y-direction, for the twisted and untwisted lattices. We can also define

a quantity called the flux for the bipartite lattice, like mentioned in Chapter 1, and calculate

its fluctuations.
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3.3 Implementing a twist

Now, when we apply a twist to the system, we mean that the usual periodic boundary

conditions are applied along one direction and along the other direction, the lattice is slightly

shifted by a fixed amount and then connected. As an example, Fig 3.1 shows the lattice

when a twist of +1 is implemented along the x-direction, as shown.
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16x16 square lattice with twist=+1 in the x-direction

Figure 3.1: Lattice with a twist of +1 in the x-direction

The twist is applied by changing the adjacency matrix of the square lattice. The degree

of each vertex, that is, the number of neighbours for each site of the lattice is unchanged

when the twist is applied. By applying a twist, the square lattice is no longer bipartite. The

twist on the lattice has many interesting properties.

1. The twists are cyclic. So, if the lattice has a twist of k, we can write k ≡ k%Ny.

2. The partition function does not depend on the position of the twist. This can be easily

verified using the cyclic property of the trace.

3. It is possible to place various twists at different positions in the lattice. However, the

partition function depends only on the total twist of the lattice, which is calculated by
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summing over all the individual twists.

4. The partition function of a lattice with twist k and twist Ny − k are identical because

of symmetry.

We are interested in understanding the effect of this on different quantities of the system,

and consequently on its behaviour in different regimes. The twist can be applied to the

lattice, and any model can be implemented on such a lattice to study its behaviour.
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Chapter 4

Results of numerical simulations

We have calculated various quantities from the simulation of Ising model and dimer model

with twists. The number of Monte Carlo steps was around 107 for each such calculation. For

the Ising model, the twist has been applied along the y-direction. The values of twist range

from 0 to Nx−1. While for the dimer model the twist has been applied along the x-direction,

and the values of the twist range from 0 to Ny − 1.

4.1 Ising model simulations

For the Ising model, we applied a twist to the lattice along the x-direction and simulated

such systems. We noticed that the twist has a minimal role to play in the values of statistical

quantities in the thermodynamic limit. The effect of twist was only relevant close to the

critical temperatures for very slender systems that was elongated in the direction perpen-

dicular to the direction of the twist. We took various approaches to understand whether the

twist has any role to play.

4.1.1 Brute Force calculations

The first step to check if the twist has any role to play in the determination of any quantity

is to calculate by brute force the various configurations that are present in the system for
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various lattice sizes. Since the number of configurations in a system of size N x N goes as

2N
2
, it quickly becomes cumbersome to calculate the number of states in the microcanonical

ensemble. It is only possible for very small lattice sizes, like 2x2, 3x3 and 4x4. This has

been done by numerically exhausting every possible configuration for each of these systems,

for the case with the twist and without the twist.

Configurations in 2x2 Lattice

Energy levels Twist-0 lattice Twist-1 lattice

-8J 2 2

0J 12 10

4J 0 4

8J 2 0

Table 4.1: List of all configurations for 2x2 lattice with and without twist

Configurations in 3x3 lattice

Energy levels Twist-0 lattice Twist-1 lattice

-18 2 2

-10 18 18

-6 48 42

-2 198 198

2 144 180

6 102 54

10 0 18

Table 4.2: List of all configurations for 3x3 lattice with and without twist

Configurations in 4x4 Lattice

Energy levels Twist-0 lattice Twist-1 lattice Twist-2 lattice

-32 2 2 2

-24 32 32 32

-20 64 64 64

-16 424 412 412

-12 1728 1680 1568

-8 6688 6640 6864

-4 13568 14288 14496

0 20524 19298 18660

4 13568 14480 14496

8 6688 6232 6864

12 1728 1904 1568

16 424 400 412

20 64 96 64

24 32 8 32

32 2 0 2

Table 4.3: List of all configurations for 4x4 lattice with and without twist
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It is immediately obvious that there are some changes to the energy of various configu-

rations. For the twisted lattice, some new energy levels are present, and some energy levels

of the untwisted lattice have fewer number of configurations. We infer that there is no one-

to-one mapping between the configurations in the twisted and untwisted lattices. It is to be

noted that the lattice with twist τ and Nx − τ are identical, since it does not matter if the

twist is applied in the positive or negative direction. Once it became clear that the twisted

and untwisted systems have different energies in the microcanonical ensemble, since we have

calculated all the weights of the partition function for these small systems, we can simply

plug in those values to calculate

Z(β, τ) =
∑
{σ}

e(−βEσ)

From this, we can also calculate the free energy as

F (β, τ) = − 1

β
ln(Z)

We can calculate the difference in free energy between the twisted and untwisted lattices as

a function of temperature, and is plotted below.
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Figure 4.1: Difference in Free Energy between twisted and untwisted lattices vs Temperature
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We notice that there is a small difference in the free energy when we twist the lattice.

However, that difference rapidly decreases and tends towards 0 for larger lattice sizes. This

cannot be calculated by brute force for larger lattices, but one can use Monte Carlo methods

to simulate these systems. For slightly larger systems, one can also calculate the partition

function using transfer matrices.

4.1.2 Using Transfer Matrices

We know that the partition function can also be written as Z(β) = Tr(TNy), where T is the

transfer matrix. From this expression, it is clear that calculating the free energy involves

diagonalization of this large matrix of size 2Nx x 2Nx , for a lattice of size Nx x Ny. Once again,

it is only possible to calculate using this method only for small values of Nx. In the plots

below, we see that the difference in free energy is very small for systems that have a larger

value of Ny. The following plots are for systems with a twist of +1 along the y-direction.
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Figure 4.2: Plots of ln |Fτ − F0| versus Nx for different Ny and temperatures.
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Figure 4.3: Plots of ln |Fτ − F0| versus Ny for different Nx and temperatures.

We see that the difference in free energy is very small for larger lattice sizes and it scales

with Nx as shown. For very small values of Ny and very large values of Nx, the effect of

twist is observed on the free energy. These are very slender systems. Also, the effect of the

twist changes with temperature, as is seen in these plots with the difference in free energy

for any given lattice dimension Nx x Ny being smaller by orders of magnitude away from the

critical point kBTc = 2J
ln(1+

√
2)

= 2.26918J in both directions. This suggests that the effect

of twist is more pronounced near the critical temperature. The difference in free energy as

the lattice size is increased along Ny decreases rapidly. This suggests that the effect of twist

dies out as we increase the lattice size in the direction along which the twist is applied (Ny),

and increases as we increase the lattice size in the direction perpendicular to the twist (Nx)

increases. From here we can infer that in order to observe any effect of twist in our Monte

Carlo systems, we must look at quasi one-dimensional systems, which have a small value

of Ny and a large value of Nx. It must be noted that since there is no phase transition

exhibited in the Ising model in one-dimension, the quasi one-dimensional version would also
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tend towards such a behaviour. Now, since our aim is to understand the effect of these twists

on the statistical quantities, we focus on simulating exactly these kinds of systems. From

the above plots, we consider looking at systems with Ny = 4 and vary Nx to be large, since

the decay due to the dependence on Ny is much steeper compared to the increase in Nx.

We now look at Monte Carlo simulations to study these systems, since their lattice sizes are

larger than what can be used to study using brute force or transfer matrices.

4.1.3 Using Monte Carlo simulations
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Figure 4.4: Energy vs Temperature for different twists

We have simulated systems with different values of Nx and Ny. When we calculate the

average energy of the systems for different twists, we notice that there is a very feeble
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dependence on the twist. Such behaviour is only observed for lattices which are elongated in

size, and the twist is along this direction. We observe that twists of τ and −τ have the same

value of energy, which is expected. Also, below a temperature T=2.5, we observe that the

system with larger twist has a lower energy, while for T > 2.5, the system with no twist has

the lowest energy. Such behaviour is only observed for elongated systems, the dependence

on the twist falls rapidly as a function of lattice size. When the system is extended along

the direction perpendicular to the twist (y-direction), the differences become negligible. The

interesting behaviour is that larger twists have a lower energy for low-temperatures, and

smaller twists have a lower energy for high-temperature. This effect is almost absent for

systems that have a larger value of Ny and smaller value of Nx.
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Figure 4.5: Cv vs Temperature for different twists

We notice that the specific heat also has a dependence with twists for different temper-

atures. At any given temperature the value of specific heat for larger twist is smaller when
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T < Tc and is larger for T > Tc. This effect is only valid for temperatures that are rela-

tively close to the critical temperature. For temperatures far from the critical temperature,

the twist does not play any role. We observe that for the system of size 5 x 10, there is

no observable effect of the twist anywhere. For the other three systems, where the size is

y-direction is smaller, we see the effect of the twist. Below a temperature of around 2.1, the

untwisted lattice has the highest value of specific heat while the lattice with the largest twist

(Nx/2) has the smallest value of specific heat. Beyond T=2.2, the lattice with the largest

twist has the largest value of specific heat. This suggests some sort of transition taking place

around that temperature for the model.
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Figure 4.6: χ vs Temperature for different twists

We have not plotted the average magnetisation versus temperature because of the data being

very noisy. But the value of susceptibility versus temperature seems to be well behaved and

shows some interesting behaviour. Once again, the effect is only around a certain temperature
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range around the critical temperature. We don’t see a crossing behaviour for this quantity

as opposed to the other two quantities previously discussed. Again, the effect of the twists

is minimal when the system is larger along the y-direction and smaller along the x-direction.

The system with larger twist has a higher magnetic susceptibility compared to that of a

system with smaller twist (or no twist) in the region where the twist plays a role.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

B

Lattice size 5x10

Twist
0.0

1.0

2.0

3.0

4.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T

0.40

0.45

0.50

0.55

0.60

0.65

B

Lattice size 7x4

Twist
0.0

1.0

2.0

3.0

4.0

5.0

6.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

B

Lattice size 12x4

Twist
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

T

0.2

0.3

0.4

0.5

0.6

B

Lattice size 15x4

Twist
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

Figure 4.7: Binder’s cumulant vs Temperature for different twists

The Binder’s cumulant also shows a similar behaviour to that of susceptibility. In the

region where the twist plays a role, the system with larger twist has a higher value of Binder’s

cumulant. For much larger systems, the effect of twist decreases. In the thermodynamic limit

of Nx −→ ∞ and Ny −→ ∞, we do not expect the twist to play any effect. To just confirm if

the effect of twist is present for larger systems or not, we performed the same calculations

for a 15x15 lattice system.
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Figure 4.8: All Statistical quantities for a 15x15 lattice

We clearly see that there is no effect of twist on the system. The quantities calculated

for a system with Nx = 15 and Ny = 4 has been plotted earlier, and that system clearly

shows the effect of twist. This confirms our belief that if the twist is applied along the

y-direction, the effect of twist is observed when the size of Nx is large and the size of Ny is

small. The quantities plotted above as a function of temperature for different twists shows

this behaviour for elongated systems. The expression for energy was also calculated from the

partition function for small lattices by brute force, and the same behaviour was observed.

For larger systems also a similar behaviour is observed.
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Figure 4.9: All Statistical quantities for a 40x4 lattice

We notice that for lattice of dimensions 40x4 also there is a clear change in the quantities

for different twists. The behaviour is same as the cases detailed above.

4.2 Dimer model simulations

After understanding a bit about the effect of twist for the Ising model, we wanted to un-

derstand the role of twist in the dimer model. In the dimer model, we have dimers present

between adjacent sites on the lattice. For both the Ising model and the dimer model, the

implementation of the twist changes the lattice on the level of the system, but locally, the

system does not know that a twist has been applied to the lattice. Each lattice site is still

connected to four other lattice sites, and locally the interactions remain unchanged. So,
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one can define the initial configuration of dimers as one of the four ground states as before.

When the algorithm is implemented, only the local interactions are taken into account, and

the updates happen without any problem. The system is unaware of a twist being present

and all the updates are legal moves. Only when certain global properties are measured do

we start noticing the effects of the twist. For all the simulations we considered temperatures

that were close to critical temperature. We simulated systems of sizes 16x16, since larger

system sizes was not computationally easy. For instance, even a system of lattice size 32x32

required around 16 times longer runs (since number of samples to be taken is 4 times more

and the number of updates to be performed to sample configurations is also 4 times more).

Some improvements can be done to the current implementation of the algorithm to make it

work for larger system sizes more efficiently, which could not be done within the duration

of this project[10]. There are also readily available open-source packages to implement this

algorithm efficiently[11], but we wrote it from scratch.
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Figure 4.10: Average energy and specific heat as a function of twist for different temperatures
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We notice that the energy of the system shows an odd-even effect in the system. All

systems with an even twist have identical energy and similarly for odd twists. Apart from

that, there does not seem to be any other change. The values of specific heat also show a

similar effect. We know that the critical temperature for the dimer model in thermodynamic

limit is at Tc = 0.65. We observe that the energy shows more difference between odd and

even twists close to this temperature. As temperature is increased, the energy of the system

is also higher, as expected. The system has a higher energy for lattice with odd twists than

for those with even twists.
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Figure 4.11: Dimer Rotational Symmetry Breaking Order Parameter as a function of twist

Once again we see the effect of odd and even twist on the lattice for this parameter.

The average value of the dimer rotational symmetry breaking parameter is supposed to

decrease with temperature, as is observed in the plots above. For lattices with odd twists,

we see that this value is smaller than for the lattice with even twist. The susceptibility
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shows similar odd even effect, but we notice that for T=0.55 and T=0.65, the lattice with

odd twist has higher susceptibility. We also notice that T=0.65 has the highest values of

susceptibility amongst all the temperatures, indicating a peak in the susceptibility close

to this temperature. For temperatures higher than T=0.65, we notice that the trend of

odd and even values of susceptibility has reversed, with the lattice with odd twist having a

lower susceptibility than for the lattice with even twist. For the dimer rotational symmetry

breaking parameter, the system with odd twist seems to have a lower expectation value.

This means that on an average, the rotational symmetry is unbroken, or rather restored

when there is an odd twist. We observe that at low temperatures, the system has a high

expectation value, which means the symmetry is broken. This is more clearly illustrated

with the next quantity.
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different temperatures
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We observe that there is a higher probability of dimers pointing along the x-direction

than in the y-direction in the cases when there is an odd twist in the lattice. For even

twists, the system behaves like the case with no twists for this parameter. And as the

temperature is increased, the system passes through the critical temperature and the π/2

rotational symmetry is restored. So, there is an equal probability of dimers to point in either

the x-direction or the y-direction. This is the clear evidence of the the effect of twist on the

lattice. The dimers align along the direction in which the twist is applied. The twist along

a particular direction breaks the symmetry of the lattice and the system accordingly has a

larger number of dimers along the x-direction.
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Figure 4.13: Columnar Order Parameter as a function of twist

This quantity also shows different behaviour for odd and even twists. The expectation

value of the Columnar order parameter is high for low temperatures and it tends to 0

for high temperatures, indicating the transition to disordered state. For odd twists the
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columnar order parameter has a lower value than for even twists. Susceptibility shows some

interesting behaviour. For temperatures close to the critical temperature, there is a large

difference between the odd and the even twist. For lattices with odd twist, susceptibility

has the highest value close to the critical temperature. But for lattices with even twist, the

value of susceptibility does not peak at the critical temperature. Due to the algorithm not

being optimised enough and the large times taken for sampling, we could not sample these

for more temperatures to identify the behaviour of the susceptibility with temperature and

twist.
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Figure 4.14: Plaquette Order Parameter as a function of twist

We notice that the plaquette order parameter has a very small value (< 0.1) for all

these temperatures. This indicates that there isn’t a very distinct plaquette phase. Close

to the critical temperature we observe the highest value of this plaquette order parameter.

Odd twists clearly have a lower expectation value of this quantity, although the difference
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is very small, and the behaviour of the susceptibility is similar. For T=1, the effect of odd

and even twists is even more negligible. We have plotted all the quantities that we have

described in the previous chapter. Now, we can also see what happens when we plot the

flux across a particular column as a function of twist and temperature. We have already

defined fluxes by noting that for any dimer, there is a flux of +3 in the direction from odd

to even sublattice, and +1 for all unoccupied bonds from the even to odd sublattice. This

quantity is divergenceless, that is, the net flux at each site of the lattice is 0. However, we

can compute the net flux through a surface (a line in 2D) that cuts through all the rows

at a particular column. This can be done for the x and y direction. The expectation value

of the flux 〈Fx〉 and 〈Fy〉 must be zero, since there is no charge present in the lattice and

the net flux along one direction must on an average be equal to the net flux in the opposite

direction. But we can calculate the fluctuations of the flux by simply computing 〈F 2
x 〉 and

〈F 2
y 〉.
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Figure 4.15: Flux fluctuations as a function of twist
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This quantity shows some interesting behaviour that is different for the case with the

twisted and untwisted lattice. For low temperatures the fluctuations are very small along

the x-direction and the y-direction. However, as we increase the temperature, the fluctu-

ations take a higher value. We note that 〈F 2
y 〉 has a much higher value than 〈F 2

x 〉 for all

temperatures. In the Columnar phase, the value of flux along any column will be small, since

the dimers are aligned parallel to each other and every pair of parallel dimers will cancel the

fluxes of each other. We note that the values of 〈F 2
x 〉 is small compared to 〈F 2

y 〉. For even

twists, the value of 〈F 2
x 〉 is higher for higher temperatures, which indicates that there are

fewer dimers which are aligned along the x-direction alone, but since the quantity itself is

small, it indicates that overall the system still has an alignment along the x-direction. For

odd twists, we see that even 〈F 2
x 〉 is nearly 0, which indicates that most dimers are aligned

along x-direction. This is not a consequence of starting the simulations with an initial align-

ment along the x-direction, since the simulations were performed starting from each of the

four degenerate ground states and equilibriating it well beyond the critical temperature in

order to lose the memory of the initial state.

The quantity 〈F 2
y 〉 has a larger value for lattices with odd twist, which indicates that

fewer dimers are aligned along the y-direction. For lattices with even twists, it is smaller.

But, we notice for both 〈F 2
x 〉 and 〈F 2

y 〉, the value of flux for the system with different twists

is clearly different from the untwisted lattice. Strictly speaking, the definition of flux is not

possible for a lattice with odd twists, since it is not bipartite. But we can still compute the

quantity of flux by enforcing that each site remains as a part of the same sublattice as it

was in the untwisted lattice. If we think of sites in the odd sublattice as negative charges,

and the sites in the even sublattice as positive charges, then we maintain the charge of each

lattice site even in the twisted lattice. In the untwisted lattice (and lattice with even twists),

each positive charge is adjacent to only negative charges, and vice versa. But in lattices with

odd twist, there are two columns of the lattice along the direction of the twist such that

they are connected to the same charge along one direction. In the rest of the lattice, the

adjacency remains unchanged.

Now, when we perform the loop update, a dimer is broken and two monomers (opposite

charges) are created. One charge is kept fixed and the other moves through the lattice by

flipping dimers. In this process, the moving monomer only moves on the sublattice that

it is part of. When it completes the loop, a positive and negative charged monomer are

adjacent to each other and a dimer is formed between them. This is true for lattices with no
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twist or even twists. For odd twists, whenever the monomer destroys a bond that lies along

the column at which the twist is implemented, it moves from one sublattice to the other

sublattice. So, the charge of the moving monomer changes. When this comes close to the

fixed monomer, it would face a “repulsion”, since they have the same charge and a dimer

cannot be formed there. We can also explain from the implementation of the algorithm that

since they belong to the same sublattice after passing through this column once in lattices

with odd twists, they cannot come close enough to form a dimer. This is true only along

the direction in which the twist is implemented. So, for lattices with odd twists such that

one loop around the system is performed, another loop also needs to be completed in order

to complete the loop. If we plot the distribution of the distance along y with the distance

along the x-direction (winding number), we see that for odd twists, there are two spots at

the positions −Nx and +Nx for which the distance along y cannot be 0.

Figure 4.16: Probability distribution of distance along y with the winding along x-direction
with 0 twist

Figure 4.17: Probability distribution of distance along y with the winding along x-direction
with 1 twist

The above two plots are the probability distribution of the distance in y-direction with
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the the winding number, or more simply the number of steps in the x-direction. This is

calculated when the loop is being constructed. For each loop update, we check where the

moving monomer is, compared to the stationary monomer, and a distribution is obtained.

The colour coding is in the log scale. We notice that for no twist, or even twists, the

monomers tend to visit every site on the sublattice, but the probability of winding more

than once along x-direction is very small. However, for the odd twists, we notice that the

dimers always avoid completing the loop after just one winding of the system.

We can also calculate the monomer monomer correlation function, by looking at the

distribution of distances of monomers when the loop is being constructed as discussed in

[6] [13]. We expect the pair of monomers to have an attractive entropic potential that

increases logarithmically with separation in the disordered regime. This corresponds to

their distribution having the behaviour such that P (r) ∼ e−
ln(r)

2 ∼ r−
1
2 . We plot this for a

relatively larger lattice system 64x64 at a high temperature of T=10.0, on the log-log scale

along the directions (x,0) and (0,y). We observe that for even twists, there is no change in

the monomer-monomer correlation function, and it is identical to the case with no twists.

For the lattice with odd twists (bottom plots in Fig 4.18), we see that the monomer also

moves on the opposite sublattice, as seen in the lower values in the plot. We note that

for monomers moving on the same sublattice as the original sublattice, the behaviour is

identical to that of the behaviour of monomers in the lattice with even twists. For the

monomers that move in the opposite sublattice from the original, the two monomers would

reside on the same sublattice and hence have the same charge. So, they have a repulsive

entropic potential that goes as V ∼ − ln(r)
2

, which corresponds to the probability distribution

having P (r) ∼ e
ln(r)

2 ∼ r
1
2 , which is what we observe.

After plotting the various quantities of interest, we note that the behaviour of the dimer

model on the twisted lattice is different from the behaviour of the Ising model on the twisted

lattice. While the dimer model only shows a response to whether an odd twist or even twist

is present on the lattice, the Ising model in 2D seems to show a response to the amount of

twist present, without any differentiation between odd and even twists in particular.
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Figure 4.18: Probability distribution of monomer monomer distance at high temperatures

We notice that for odd twists, the scaling is different along the (x,0) direction and along

the (0,y) direction. Along the x-direction, in which the twist is applied, the scaling be-

haviour is different from the monomer-monomer correlation function, since P (r) ≈ r−0.64 for

monomers on opposite sublattices and P (r) ≈ r0.64 for monomers on the same sublattice

(as shown in Fig.4.19). Along the y-direction, we observe a scaling behaviour similar to

that of the untwisted lattice with P (r) ≈ r−0.52 for monomers on opposite sublattices and

P (r) ≈ r0.51 for monomers on the same sublattice (as shown in Fig.4.19). There is clearly

an anisotropy due to the presence of odd twists. This needs to be analysed more carefully

to understand the behaviour.
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Figure 4.19: Linear fit of ln(P ) vs ln(r)
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Chapter 5

Analytical discussion of the Ising

model

For the 2D Ising model, we can try to find analytically the effect of the twist on the free

energy. This can be done by following Lieb et.al.[2]. First, we map the 2D Ising model to a

one-dimensional Transverse Field Ising model.

Let us consider the two-dimensional Ising model on a lattice of size NxxNy, which is

described by the Hamiltonian:

H = −
∑

i=1,2,...Nx
j=1,2,...Ny

[J1σi,jσi+1,j + J2σi,jσi,j+1]

where σi,j = ±1 and we impose periodic boundary conditions, which means σi,Ny+1 = σi,1

and σNx+1,j = σ1,j. This allows us to calculate the energy of the system given a particular

configuration of spins. Here the couplings are assumed to be different in the horizontal

and vertical directions (Anisotropic Ising Model), since it is more general. We can later set

J1 = J2 = J to get the usual expression for isotropic Ising model.

Now we can calculate the partition function for this system as

Z = Tr
{σ}
e−βH
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where β = 1
kBT

is the inverse temperature and kB = 1.381x10−23JK−1 is the Boltzmann

constant. Here the trace is the sum over all the possible spin configurations.

One way to obtain the solution for this system is by using the Transfer Matrix method,

which involves building the partition function step by step in a systematic manner so that it

connects the configurations of spins in one row with that in the adjacent row. This allows us

to write the exact form of the partition function. Since the matrix contains the interaction

of all the possible configurations of one row with the configurations of the adjacent row, in

a 2D lattice, we get a 2Nxx2Nx matrix.

The partition function can be written as

Z =
∑
{σ}

e(K1
∑
σi,jσi+1,j)e(K2

∑
σi,jσi,j+1) (5.1)

where K1 = βJ1 and K2 = βJ2.

This can be suitably written as a product of matrices using standard algebra to get an

expression in terms of transfer matrices T1 and T2, such that

Z = Tr((T1T2)Ny) (5.2)

where

T1 = (2 sinh(2K1))Nx/2e(K∗1
∑
τxi ) (5.3)

and

T2 = eK2
∑
τzi τ

z
i+1 (5.4)

In the process we also use the Kramers-Wannier duality relation e−2K1 = tanh(K∗1). Here

τx and τ z are the familiar Pauli matrices. This expression appears like a Hamiltonian of the

form,

H = −K∗1
∑

τxi −K2

∑
τ zi τ

z
i+1 (5.5)

This Hamiltonian is called the 1D Transverse Field Ising model. It contains Pauli opera-

tors that act on the spins in the ith site. This is a 1D quantum spin chain with a magnetic field

in the transverse direction. This can now be solved using the Jordan-Wigner transformation,

which maps this system to a system of non-interacting fermions.
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But first we shall do a suitable rotation of the coordinates around the y-axis by π/2 to

simplify our calculations later: τx −→ −τ z and τ z −→ τx

T1 = (2 sinh(2K1))Nx/2e−(K∗1
∑
τzi ) (5.6)

and

T2 = eK2
∑
τxi τ

x
i+1 (5.7)

The creation and annihilation operators defined by τ+ = τx + iτ y and τ− = τx− iτ y can

be used to express T1 as

T1 = (2 sinh(2K1))Nx/2e−2K∗1
∑

(τ+i τ
−
i −

1
2

) (5.8)

If these creation and annihilation operators must act like fermions, then the fermion

anti-commutation relations must be satisfied, but instead these operators anti-commute on

the same site while commuting on different sites. To ensure that we can solve this equation,

we need them to satisfy the fermion anti-commutation relations, which can be done using

the Jordan Wigner transformation of the operators:

Cm = e(iπ
∑
j<m τ+j τ

−
j )τ−m (5.9)

C†m = e(iπ
∑
j<m τ+j τ

−
j )τ+

m (5.10)

This transformation preserves the quadratic forms of the products of operators in the

transfer matrices. Further simplifications using standard algebra allows us to write the

expressions as:

T = (2 sinh(2K1))Nx/2eK2
∑
m(C†m−Cm)(C†m+1+Cm+1)e−2K∗1

∑
m(C†mCm− 1

2
) (5.11)

Once we obtain this expression, we need to diagonalize it to get the eigenvalues. Our

motive has been to understand what happens when a twist is applied to the lattice. We

can write down a twist operator Tτ which performs the twist on the lattice. We can then
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calculate the partition function for the system with the twist as

Z = Tr(TτT
Ny) (5.12)

Now, if we have a configuration of spins (σ1, σ2, ..., σNx), the twist matrix acts on it such

that we get the new state as (σNx , σ1, σ2, ..., σNx−1). So the matrix elements of Tτ are such

that

〈(σNx , σ1, σ2, ..., σNx−1)|Tτ |(σ1, σ2, ..., σNx)〉 = 1, (5.13)

and 0 for all other elements. This matrix is also of dimension 2Nx x 2Nx , and it acts on the

transfer matrix. We can see from the definition of the twist matrix that the states (1, 1, ..., 1)

and (−1,−1, ...,−1) do not get affected by the twist. So the ground states of the system do

not get affected by the twist. Further calculation has not been done exactly, but we can say

how this affects the system in a general way. The expression inside the trace can be written

in a more symmetric way as

Z = Tr((T
1
2

2 TτT
−1
2

2 )(T
1
2

2 T1T
1
2

2 )...(T
1
2

2 T1T
1
2

2 )) (5.14)

using the cyclic property of trace. If we now define T̃τ = (T
1
2
2 TτT

−1
2

2 ) and T = (T
1
2
2 T1T

1
2
2 ),

then the expression becomes

Z = Tr(T̃τT
Ny) (5.15)

We can now calculate the spectral decomposition of the transfer matrix TNy as

TNy =
∑
i

λ
Ny
i |λi〉〈λi| (5.16)

The partition function can be calculated as

Z = Tr(T̃τ
∑
i

λ
Ny
i |λi〉〈λi|)

=
∑
i

λ
Ny
i Tr(T̃τ |λi〉〈λi|)

= λ
Ny
0 Tr(T̃τ |λ0〉〈λ0|) + λN1 Tr(T̃τ |λ1〉〈λ1|) + ...
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where λ0 is the largest eigenvalue of the matrix. If N is large enough, the other eigenvalues

do not contribute to the partition function.

Z = λN0

(
Tr(T̃τ |λ0〉〈λ0|) +

(
λ1

λ0

)N
Tr(T̃τ |λ1〉〈λ1|) + ...

)

Now the eigenvalues of the transfer matrix can be calculated by writing it in the momen-

tum space. In the momentum space, the transfer matrix takes the form

T = (2 sinh(2K1))N/2
∏

0≤q≤π

Tq (5.17)

where we have

Tq = e(2K2 cos(q))

(
Aq Cq

Cq Bq

)
and the values Aq, Bq and Cq are

Aq = e−2K∗1 (cosh(K2) + sinh(K2) cos(q))2 + e2K∗1 (sinh(K2) sin(q))2

Bq = e−2K∗1 (sinh(K2) sin(q))2 + e2K∗1 (cosh(K2)− sinh(K2) cos(q))2

Cq = (2 sinh(K2) sin(q))(cos(2K∗1) cosh(K2)− sinh(2K∗1) sinh(K2) cos(q))

When we calculate the eigenvalues from here, we get a relation between the eigenvalues

and the momentum, and we can plot the dispersion relation. The eigenvalue corresponding

that is observed in the partition function is a product of the eigenvalues of the individual

transfer matrices in the momentum space. So, the leading eigenvalue is calculated from this

as the product of all the largest eigenvalues for each q, which is written as λ0.
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Figure 5.1: Dispersion relation for different temperatures

We see that the product of the largest eigenvalues of Tq is λ0. The next highest eigenvalue,

λ1 must be the highest value of the lower band. For temperatures other than the critical

temperature, we see that λ1
λ0
< 1. So the corrections to the partition function will not be

present when N −→∞ since the ratio will go to 0, and the partition function is unaffected by

the twist. For temperatures close to the critical temperature, λ1 ≈ λ0. Then the corrections

to the partition function cannot be ignored and the effect of the twist becomes more relevant.

It is also relevant when we don’t take the thermodynamic limit along the y-direction, since

the partition function is calculated as Z = Tr(TNy ). If Ny is not very large, it is not accurate

to assume
(
λ1
λ0

)Ny −→ 0. This corresponds to our observations from the simulations where

systems with small values of Ny and large value of Nx seem to be most affected by the twist.
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Chapter 6

Conclusions

The project was motivated to understand what happens when a twist is applied to a lattice.

In order to do this, we took two simple systems, the Ising model and the dimer model, in

which it is relatively simple to simulate the effect of twist and to calculate it analytically.

After defining what the twist operator is, and its action on the lattice, we performed some

numerical simulations of the systems to see how the system is affected by the twist.
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16x16 square lattice with twist=+1 in the y-direction

Figure 6.1: Lattice with a twist of +1 in the y-direction; Twist values range from 0 to Nx−1

For the Ising model, the twist was applied along the y-direction, so that the values of

twist range from 0 to Nx − 1. We observed from the Monte Carlo simulations that:
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• The free energy and other statistical quantities show some change with twists for

systems with small values of Ny and large value of Nx, but in the thermodynamic

limit, the effect of the twist vanishes.

• The expectation value of the energy of the system shows some kind of crossing be-

haviour around T=2.5, below which system prefers larger twists and above which the

system prefers smaller twists.

• Through the semi-analytical arguments, we could explain why the twist plays a role

close to the critical temperature. More careful calculation could enable us to calculate

the exact dependence of the free energy on the twist, and also the dependence of twist

for all the other quantities.
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Figure 6.2: Lattice with a twist of +1 in the x-direction; Twist values range from 0 to Ny−1

From the Monte Carlo simulations of the dimer model on the square lattice of size NxN,

we applied the twist along the x-direction and the values of the twist range from 0 to Ny−1.

We observed from simulations that:

• We looked at various quantities that were described in Chapter 3, and they did not

show any strong effect of twist. However, we did see a difference between the lattices

with odd twists and even twists, which is likely due to the system being non-bipartite

for odd twists and bipartite for even twists.
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• For low temperatures, the difference between odd and even twists is more pronounced,

even away from the critical temperature. But for high temperatures, the effect of the

twist vanishes, which is different from the behaviour of the Ising model.

Some interesting questions that one could ask in the case of the Ising model is about the

effect of twist on the transport properties of the system. It will be curious to study if twists

can transport energy from one region to another. It is also interesting to understand if twists

play a role in the 3D Ising model. These lattice twists can be made mobile, and they can

keep fluctuating in the system. It would be interesting to understand if the model on the

lattice provides a glue-like effect for these lattice twists and freeze the twists in the lattice.

We have studied the effect of twist on the classical Ising model and classical dimer model,

and it would be interesting to see what happens when the model is a quantum Ising model

or quantum dimer model.

For the dimer model, one could ask if the effect of twists persists even for larger systems.

While it is not simple to introduce mobile twists (twists on the lattice that are not fixed,

and can fluctuate with time) on the dimer model, the implementation of these twists would

give rise to monomers at different sites of the lattice, and one can study the behaviour of the

system with these monomers present. However, it can be quite challenging to introduce such

mobile twists for the dimer model, because in doing so one would introduce many monomers

in the lattice and will result in the model not being fully filled. It is trivial to implement

such mobile twists for the Ising model, and it would be interesting to develop an algorithm

that performs a similar role for the dimer model.
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