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Abstract

Studies of the human microbiome have brought paradigm-shifting implications for trans-

lational research and clinical care, and, is now recognized as significant across a range of

human organ systems. Despite significant progress in the field over the last decade, a holis-

tic analysis of bacteria, fungi and viruses (the “multi-biome”) is rarely performed despite

this most closely representing the true in-vivo state. Integration of these high- dimensional

datasets brings challenges in terms of complexity and their translation into clinically action-

able outputs. To address this “analytical bottleneck”, we sought to build a computational

pipeline for integration of bacterial, fungal and viral datasets from a single well characterised

patient population (a process we coin “integrative microbiomics”) as a proof of principle in

work described below. Having successfully integrated bacterial, fungal and viral datasets,

we characterise the integrated microbial components by identifying a statistically significant

super-consensus network representing possible mathematical microbial interactions (which

we term the “interactome”). Further, we show that cross-talk between microbes is as signif-

icant as the isolated microbes not if higher, in driving specific disease states.
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Chapter 1

Introduction

When we think about who we are and what defines us as species, our thoughts generally drift

towards the human genome. The Human Genome Project was the first attempt to sequence

the whole human genome with the goal of finding the genetic roots of disease and then

developing suitable therapies. However the human genome, which is predetermined at the

birth doesn’t represent the whole genomic diversity present in our human body. Estimates of

the gene content of microbes in our body are at 220 million, exceeding the ∼ 20,000 human

genes by at least a factor of 100 [Knight et al., 2017]. Even, microbial cells outnumber the

human cells that we have in our body. The most detailed report up to date proposes that on

average we are only 47% human by cell count [Sender et al., 2016]. This enormous amount

of microbes living in our body can impact human biology in various ways.

1.1 Microbes and Microbiomes

Microbes or Micro-organisms are microscopic organisms which exist in both single cellu-

lar and multi-cellular fashion. Micro-organisms can be found everywhere in the environment,

and they survive in virtually any condition from the poles, deserts, geysers, deep sea and

even inside our body. The term microbiome is used to refer to the collection of genes within

a community of microbes (including bacteria, fungi, virus, protists and bacteriophages )

[Knight et al., 2017]. With the advent of next-generation sequencing, it is now possible to

sequence the microbiome. Due to the tremendous diversity of microbes, new sequences of mi-
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crobes are found in almost every new data-set and hence classifying the microbes sometimes

exceeds the capacity of the reference database. To address this issue, researchers cluster

sequences into operational taxonomic units (OTUs) often using a 97% sequence identity as

a proxy for the species [Knight et al., 2017]. This adoption of OTU concept has allowed

well-developed ecological theories to be applied in the context of the microbiomes.

In the last few years, microbiome research has helped us gained new insights into how

microbes shape our human biology. Human microbiota are crucial for our body to maintain

its homeostasis and disruption of this can lead to diseases. This is because the microbes pro-

vide a range of services to the host including bio-conversion of nutrients, protection against

pathogenic microbes and production of essential resources. Thus the loss of beneficial micro-

biota and introduction of maladaptive functions by invading microbes can lead to diseases.

Some prominent examples include dental caries and bacterial vaginosis. Obesity, inflamma-

tory bowel disease, malnutrition and even disease such as Parkinsons, Autism, Asthma and

depression are linked to the microbiome [Knight et al., 2017]. Most of the present micro-

biome research focuses on a single profile of the human microbiome, i.e. bacterial, fungal or

viral profiles. All these studies have focused on each of these biological entities in isolation,

even though bacteria, fungi and viruses coexist in the body as a community. Thus, it is

essential to look at these biological components together in an integrated fashion. However,

one of the primary reasons for the lack of multi-biomic research is the lack of methods to

merge microbiome data-sets together. To address this issue, we propose a method in this

thesis to integrate these microbiomes with a particular focus on the lung microbiome in the

setting of bronchiectasis. We illustrate the advantages of combining different micro-biomic

data-sets such as bacteriome, fungome and virome, with bronchiectasis, a chronic respiratory

disease as a case study. However, this method is not limited to bronchiectasis and can be

applied to merge any microbiome data-sets in general.

1.1.1 Ecological interactions versus random processes

A problem associated with microbiome data-sets obtained using sequencing techniques

is that the observed relative abundance of a microbe may be artifactual and not represent

the actual ecological interaction. In a paper published on the distribution of bird species

across the islands near New Guinea [Martin Cody, 1975], Jared Diamond proposed a set of

community assembly rules from the birds presence-absence data. In short, he stated that
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competitive exclusion of bird species is the main force structuring the species composition

of the island. This paper triggered a long discussion among ecologist about the impor-

tance of such rules in community formation or species composition of an area. Connor and

Simberloff in their paper The Assembly of Species Communities: Chance or Competition?

[Connor and Simberloff, 1979] criticized Diamonds rules suggesting that these rules didn’t

withstand significance testing in simulations. Discussion on this, whether observed presence-

absence data/relative abundance data are due to ecological processes or due to random

chance went on until Stephen Hubbell proposed the Unified neutral theory of Biodiversity

[Hubbell, 2011]. The theory suggests that observed species distribution can be well explained

by the random process of birth, death, and migration. Ecologist further used Hubbells model

as a Null model to test for the effect of ecological interactions. The Null has been confirmed

in some studies but contradicted in others[Hubbell, 2011][Faust and Raes, 2012]. This am-

biguity suggests that both random processes and ecological interactions contribute to the

species abundance distributions. Since microbiome data-sets resemble ecological data-sets

where microbes replace species, microbiome data-sets also suffer from the above issue.

1.2 Chronic Respiratory Diseases

According to the World Health Organization(WHO), Chronic respiratory diseases(CRDs)

are diseases of the airway and other structures of the lung [Organization, 2007]. Some of

the most common CRDs include chronic pulmonary obstructive disease(COPD), asthma,

bronchiectasis and pulmonary hypertension. Hundreds of millions of people from all ages

suffer every day from preventable CRDs. According to the latest WHO estimates about

236 million people have asthma, a common lung disease among children, 64 million people

have COPD and over 3 million people die each year from COPD which accounts for about

6% of all deaths worldwide [Organization, 2007]. On the other hand, many CRDs such as

Bronchiectasis have no licensed treatments worldwide, and most treatments presently used

are based on very little evidence[Polverino et al., 2017]. CRDs has significant adverse effects

on the quality of life, morbidity and mortality of the affected individuals. Hence, more study

is required to address these issues.
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1.2.1 Microbiome in Chronic Respiratory Diseases

CRDs have various causative factors and mechanisms associated with disease progres-

sion which are presently not fully understood. One such factor is the lung/pulmonary micro-

biome, traditionally healthy lungs were thought to be sterile [Faner et al., 2017] but with the

emergence of culture-independent sequencing techniques, it has been demonstrated that the

healthy lung in fact contains an associated microbiome. There are a vast number of microbes

including bacteria, fungi and viruses that inhabit the lung. These microbes co-exist and live

as communities in the lung of healthy individuals as well patients. However, the composition

and diversity of lung microbiota vary significantly between individuals, and they are mainly

dictated by both environmental and genetic factors of the host [Rothschild et al., 2018].

On the contrary, in the absence of a major lifestyle change such as diet, disease onset or

environment, the lung microbiome is relatively stable. The study of the pulmonary micro-

biome in the healthy has revealed that Firmicutes, Bacteroidetes Proteobacteria at phylum

level and Prevotella, Veillonella, Streptococcus at the genus level are the most predom-

inant microorganisms, with a minimal contribution from common pathogenic Proteobac-

teria including Haemophilus [Faner et al., 2017]. In patients with COPD Proteobacteria,

Bacteroidetes, Actinobacteria and Firmicutes, with Pseudomonas, Streptococcus, Prevotella

and Haemophilus are common [Faner et al., 2017]. In Cystic Fibrosis(CF) and Bronchiec-

tasis (non-CF), culture-based studies have revealed H. influenzae, P. aeruginosa, Moraxella

catarrhalis, Staphylococcus aureus and Burkholderia cepacia are more prevalent and predom-

inant [Faner et al., 2017]. During exacerbation (the acute episode of progressive worsening

of symptoms including shortness of breath and cough) of the patients with CRDs, the rel-

ative abundance of some genera increases whereas others don’t change significantly. Also,

exacerbation seems to be related not only to isolated microbes but also with the changes in

microbiome composition as a whole [Faner et al., 2017]. Notwithstanding their significant

contribution to the field, none of these studies had dissected relationships between microbes

and studied them in detail. It is essential to study these interactions because clinical out-

comes may not alone depend on individual micro-organisms but also the interactions between

them. In this thesis, we also try to address this issue to a certain extent by using methods

such as co-occurrence analysis.
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1.3 Case study: The Microbiome in Bronchiectasis

Bronchiectasis is a chronic inflammatory respiratory disease associated with progressive,

irreversible dilatation of the airway. This increasingly prevalent disease has the potential to

cause a devastating illness which includes frequent respiratory infections, breathlessness, pro-

ductive cough (a cough that produces mucus or phlegm) and occasional hemoptysis(a cough

that involves blood or blood-stained mucus). Records of bronchiectasis can be traced back to

the early 19th century to the writings of René Théophile Hyacinthe Laėnnec, which includes

descriptions of patients with suppurative phlegm(Sputum)[Barker, 2002]. Phlegm/Sputum

is the liquid secreted by the mucosal membrane of the respiratory system which is expelled

by coughing. It is crucial to study bronchiectasis because most bronchiectasis is reported to

be idiopathic(unknown cause) [Chalmers and Chotirmall, 2018] and it is a significant con-

tributor to lung diseases globally with a substantial four-fold higher predominance in Asian

populations [Seitz et al., 2012].

The definition of Bronchiectasis has remained morphological for over 50 years owing to

the work of Reid. Reid in his paper states that bronchiectasis is a name given to any condi-

tion where dilatation of one or more bronchi is observed. Since this condition may result from

various causes, the term “bronchiectasis” describes an anatomical abnormality rather than a

single disease [REID, 1950]. Presently, the disease is diagnosed based on the pathological or

radiographic appearance of airways. Hence study of this disease is difficult as its often an end

point of many CRDs. Lungs are the primary organ affected in Bronchiectasis patients since it

damages the airways which makes it difficult for the mucus to leave the lungs. This accumula-

tion of mucus attracts various microbes and leads to microbial infection. Hence, lung micro-

biota can act as a good proxy for the severity of disease and there have been many studies that

focus on microorganisms, such as bacteria and fungi, that colonize the lung as the cause of

exacerbation in bronchiectasis [Chandrasekaran et al., 2018][Mac Aogáin et al., 2017]. One

such study “THE CAMEB STUDY”[Mac Aogáin et al., 2018] published by the Translational

Research Laboratory, Singapore suggests that the mycobiome/fungome (fungal microbiome)

is clinically important in Bronchiectasis. It is this study and its characterised clinical cohort

that provides the source of data for the analysis performed on this thesis.
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1.3.1 The CAMEB Study

The CAMEB study is an international multi-center cross-sectional study of the Cohort of

Asian and Matched European Bronchiectasis (CAMEB) patients recruited in Asia (Singapore

& Malaysia) and the United Kingdom (Scotland) (n=238) matched on age, gender and

bronchiectasis severity. Bronchiectasis severity is measured using Bronchiectasis severity

index(BSI) which is a composite measure of severity that takes into account factors such as

Age, Body Mass Index, Lung function, Exacerbation, Pseudomonas colonisation, MMRC

dyspnea score, etc.[Chalmers et al., 2014]. BSI is severity score used to predict patients

with a future risk of mortality, hospitalisation and exacerbation. MMRC dyspnea score

or the Modified Medical Research Council scale (MMRC score) is an assessment score of

dyspnea(shortness of breath) widely used in CRDs. MMRC Score is often filled by the

patient based on the degree of breathlessness. The MMRC and all components of the BSI

were recorded for all CAMEB participants as previously described [Mac Aogáin et al., 2018].

The sputum mycobiome (Fungal Profile from sputum) was determined in these 238 pa-

tients by targeted amplicon shotgun sequencing of the 18S-28S rRNA internally-transcribed

spacer regions ITS1 and ITS2 [Mac Aogáin et al., 2018]. In addition to this, the transla-

tional research laboratory has performed 16s rRNA sequencing to determine the bacterial

composition of patient sputum, using the same samples [Mac Aogáin et al., 2017]. The above

studies of bacteriome and fungome of the CAMEB cohort have revealed that specific fun-

gal genera such as Cryptococcus, Clavispora and Aspergillus characterise the bronchiectasis

mycobiome. Further, Streptococcus, Haemophilus and Pseudomonas species dominated the

Bacterial profile of the Asian patients. To characterise the virome, quantitative Polymerase

Chain Reaction(qPCR) on panel of 17 viruses was ran on 217 patients of the CAMEB cohort.

In summary, 134 bacteria, 405 fungi and 17 viruses were characterised across all the 217

patients of the CAMEB Cohort. Most of the published studies focus on a single profile of the

lung microbiome, i.e. bacterial or fungal profiles while only very few have characterised the

viral profile (the virome). All such studies have focused on each of these biological entities

in isolation, even though bacteria, fungi and viruses coexist in the lung as a community.

One of the primary reasons for this is the lack of methods to merge microbiome data-sets,

and if there exists one, no one has shown if merging microbiome data-sets are useful. In

this thesis, we use the data from CAMEB cohort to demonstrate the principle of Integrative

Micro-Biomics and its advantages.
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1.4 Summary

Microbes play a significant role in maintaining lung homeostasis. Changes in the compo-

sition are increasingly recognised in CRDs. Hence, a better understanding of the interaction

between various microbes is important to predict the disease pathogenesis for future ther-

apeutic intervention. However, most contemporary studies focus on the microbiome in a

singular fashion, even though bacteria, fungi and virus co-exist in the lung. In this thesis,

we propose a new method to integrate these microbiomes and demonstrate its advantages.

There is a vast amount of evidence supporting the concept that abnormal regulation of

cross-talk between microbes in different organs may play a critical role in disease. We also

in this thesis, look into interactions between the microbes and attempt to find evidence for

the above issue in the context of bronchiectasis.
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Chapter 2

Methods

2.1 Introduction

In light of this issue, the lack of methods to merge microbiome data-sets we propose

a method to integrate these microbiomes. Bacterial, Fungal and Viral similarity graphs

with microbes as nodes and Bray- Curtis similarity as edge weights are constructed from

the individual microbiome data-sets. These complete graphs are then fused using Similarity

Network Fusion [Wang et al., 2014]. Cluster analysis was implemented on the fused network

using spectral clustering. Resulting clusters were next assessed for significant differences in

clinical outcomes. Further, an ensemble based approach using multiple similarity measures

and regression techniques were used to create microbial association networks on these clusters

to identify microbes that co-occur.

Definition 2.1.1. A Microbiome data-set D = [di,j] is a m× n matrix defined for a set of

microbes M = {m1, . . . ,mn} on a set of patients P = {p1, . . . , pm} with di,j representing the

relative abundance of microbe mj in patient pi.

Property :

1.
∑n

k=1 di,k = 100, ∀i ∈ (1, . . . ,m), i.e. Sum of all microbes of M for any patient in P is

equal to 100.

Example 2.1.1. Consider the bacteria and fungi that were identified through 16s and ITS
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amplicon sequencing on the CAMEB Cohort then let M1,M2 denote the Bacteria and Fungi

that were identified on patients P of the CAMEB Cohort then D1, D2 represent bacteriome

and fungome of P i.e. the bacterial and fungal microbiome data-sets of patients P .

1. D1 ∈ R217×134

2. D2 ∈ R217×405

Example 2.1.2. Consider the Viruses that were identified through qPCR on the CAMEB

cohort then let M3 denote the viruses that were identified on the patients P of the CAMEB

Cohort then V = [vi,j] ∈ R217×17 where vi,j is the number of genome copies per gram of

sputum. This V represents the virome of P .

The virome V of Example 2.1.2 does not satisfy the property 1 of Microbiome data-set

(definition 2.1.1).

2.2 Network inference using Similarities

Network inference is the processes of creating graphs or networks from data-sets. Bray-

Curtis similarity, a statistic widely used in ecology to characterise compositional similarity

between two sites, is employed for this purpose.

Most ecological data-sets are represented as occurrences or relative abundances. A typical

ecological data-set H = [hi,j] is a m× n matrix defined for a set of species S = {s1, . . . , sn}
on different ecological sites T = {t1, . . . , tm} with hi,j representing the relative abundance

of species sj in site ti or number of occurrences/counts of species sj at site ti. Bray-Curtis

similarity on the above data-set H is defined as:

Definition 2.2.1. Bray-Curtis Similarity between two ecological sites ti ∈ T and tj ∈ T is

defined as

BCT,S(i, j) =
2Cij
Si + Sj

where Cij is sum of lesser values for only those species common between both sites i.e.,

Ci,j =
∑

kmin(hi,k, hj,k) ∀ k ∈ (1, . . . , n) and Si =
∑

k hi,k ∀ k ∈ (1, . . . , n) the total number

of species at site ti.
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Property :

1. BCT,S(i, j) : T × T → [0, 1] where i, j are index of ecological sites and ti, tj ∈ T .

Microbial data-set D is similar to ecological data-set H. This is because microbes M

can be replaced by species S and patients P can be compared to sites T . Therefore, due

to this resemblance of our microbiome data-sets D1, D2 and V to ecological data-sets, bray-

curtis similarity was chosen as a similarity measure for microbiomes. Bray-curtis similarity

BCT,S(i, j) in the context of microbiome datasets will measure how similar a patient pi is to

any other patient pj based on the microbial composition of the patients. If both patients pi

and pj share the same microbes with same counts/abundance then BCP,M(i, j) = 1.

Let D1, D2 and V be as defined in Example 2.1.1 & 2.1.2 we need to construct similarity

graphs G1,G2 and G3 for each of the above datasets. To achieve this, we set P as the vertex set

for all the graphs and compute the edge weights between patients using bray-curtis similarity.

Let W1,W2 and W3 denote the weighted adjacency matrix of G1,G2 and G3 respectively, then

for each Wk ∈ {W1,W2,W3} we define Wk = [wi,j]217×217, where wi,j = BCP,Mk
(i, j) and

(i, j) ∈ [1, 217]× [1, 217].

This results in three complete weighted graphs G1,G2 and G3 representing the similarity

network between the patients P based on their bacterial, fungal and virome composition.

This was implemented using the “vegan package” [Oksanen et al., 2018] in R.

2.3 Similarity Network Fusion

Bo Wang in his paper introduces Similarity Network Fusion(SNF) [Wang et al., 2014] as

a novel method to merge two or more similarity networks. This method is described in detail

below:

Let {Gn}m denote a set of similarity graphs defined on the same vertex set V and {Wn}m
a set of its weighted adjacency matrix as described in section2.2. We describe below how

we merge these similarity graphs into one single fused graph Gf . For each Wn in {Wn}m we

decompose it into Qn and Sn using
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Figure 2.1: Work-flow of integrating biomes: Data matrices of microbiomes are converted into Similarity matrices using
Bray-Cutis similarity as given in definition 2.2.1. Network of patients for each biome is created based on these similarity
matrices. Further, these matrices are merged using SNF and spectral clustering is implemented on this merged network to find
subgroups of patients. Figure adapted from [Wang et al., 2014]

[Qn](i, j) =


[Wn](i,j)

2
∑

k 6=i[Wn](i,k)
, if j 6= i

1
2
, otherwise

(2.1)

Where [Qn](i, j) is the (i, j)th entry of the [Qn] matrix

[Sn](i, j) =


[Wn](i,j)∑

k∈[Nn]i
[Wn](i,k)

, if j ∈ [Nn]i

0, otherwise
(2.2)

Where [Nn]i is the k-nearest neighbours of the vertex vi ∈ V the vertex set of Gn and k

is a hyper-parameter. Nearest neighbours are calculated based on the similarities between

patients. The higher the similarity the closer they are.
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The Qn matrix represents the similarity of a vertex to all other vertices and it satisfies∑
j[Qn](i, j) = 1 ∀ i ∈ [1, p] where p is the cardinality of V . The Si matrix represents the

similarity of a patient to its “k” most similar patients. These matrices are then fused in a

iterative fashion for each n over t iterations using

Q(ν)
n = Sn ×

∑
i 6=nQ

ν−1
i

m− 1
× (Sn)T , n ∈ [1,m] (2.3)

where, m is the cardinality of {Gn}m, ν is the iter and t is a user specified a hyper-parameter.

The overall fused Qc matrix is calculated from each n by taking the average of these {Qn}m
matrices

Qc =

∑
n∈[1,m] Q

ν=t
n

m
(2.4)

This Qc is the weighted adjacency matrix of the fused graph Gf and V is its vertex set.

This graph represents a holistic view of all {Gn}m i.e., higher weight of an edge in the fused

network Gf implies that the edge has higher weights in many of these graphs {Gn}m.

The above described method was implement using the “SNFtool” package [Wang et al., 2018]

in R.

2.4 Weighted Similarity Network Fusion

SNF described in section treats all the similarity networks with equal weights/importance

during merging. Consider {Gn}m, V , {Wn}m as defined in section 2.4 and let Ω = {ω1, . . . , ωm}
be the non-zero weights or importance of each of {Gn}m these similarity graphs. In order to

introduce weights in SNF we modify equation 2.3

Q(ν)
n = Sn ×

∑
i 6=n ωi ×Q

ν−1
i∑

i 6=n ωi
× (Sn)T , n ∈ [1,m] (2.5)

Qc is then computed and treated as weighted adjaceny matrix of the fused graph Gf .
The codes for weighted SNF was written in R and is available at https://github.com/

Jayanth-kumar5566/Integrative-Microbiomics

We use the both SNF and Weighted SNF to merge {G1,G2,G3} where G1,G2,G3 are the
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similarity graphs of bacteriome, fungome and virome of the CAMEB patients respectively,

as described in section 2.2.

2.5 Cluster Analysis

The final merged network Gf is a network of similarities between vertices vi ∈ V . In order

to identify subgroups or subsets of these vertices, we apply clustering methods and find set of

vertices {vi} such that vertices in the same set are more similar to each other than to those

in the other set. Similarity-based clustering is a clustering technique that uses similarity

measure between data points to identify clusters in the data. Spectral-Clustering is similar-

ity based clustering algorithm that can be implemented on any similarity graph G to identify

clusters in the vertex set V of the graph G. It uses eigenvalues of the Laplacian matrix com-

puted using the weighted adjacency matrix(similarity matrix) of G to perform dimensionality

reduction before clustering them in lower dimensions using k-means [Macqueen, 1967]. The

Laplacian matrix L of a similarity matrix W is defined as L := D−W where D is a diagonal

matrix with Di,i =
∑

jWij. Let λ1 ≥ λ2 ≥ . . . λK be the eigen first K eigen values of L

and U = [ui]i∈[1,K] be the corresponding eigen vectors. This U corresponds to W in the

reduced dimension. k-means [Macqueen, 1967], a clustering algorithm is applied on U to

cluster these vertices(given as rows of U) into K clusters. The optimal number of clusters

K was calculated using the Eigen gap method, i.e. K is given by the value that maximises

the eigengap of the laplacian matrix L (difference between consecutive eigenvalues) after

ordering them in an ascending fashion. This method was implemented using the “SNFtool”

package [Wang et al., 2018] in R.

Further, to assess the quality of these clusters we calculate a silhouette width/score

[Rousseeuw, 1987] for each cluster. Silhouette width of a cluster is the average of all silhouette

values of its objects. The silhouette value measures how similar is an object to its own cluster

(cohesion) compared to other clusters (separation). This measure ranges from −1 to +1,

with a high value indicating that the object lie well within their own cluster compared to

other clusters. We define the silhouette value as below:

Definition 2.5.1. The Silhouette value of an object “i” is defined as:

S(i) =
inter Cluster affinity(i)− intra cluster affinity(i)

max{inter cluster affinity(i), intra cluster affinity(i)}
(2.6)
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where,

• inter cluster affinity(i) : is the mean of similarity between i and all other data points

within the same cluster

• intra cluster affinity(i) : is the lowest mean similarity between i and all other data

points of which i is not a member of.

The value of the hyper-parameter k which controls the number of nearest neighbours

as described in section 2.4 was tuned to an optimal value using the average silhouette

width/score of all the resulting clusters i.e., average silhouette width was calculated for

all possible values of k and the k yielding the maximum average silhouette width was

chosen. This is implemented in Python, codes are available at https://github.com/

Jayanth-kumar5566/Integrative-Microbiomics//blob/master/Weighted_SNF/All_biomes/

snf.R

2.6 Cluster Characterisation

The resulting clusters obtained from the similarity graphs of CAMEB patients, on dif-

ferent microbiomes and their combination were mapped back to the clinical outcomes of

the CAMEB patients. For continuous variables such as BMI, BSI, Number of exacerbation,

Age etc. the Kruskal Wallis test, a non-parametric test for assessing whether two or more

independent samples come from the same distribution was implemented to check if the dis-

tribution of continuous clinical variables from the two or more clusters came from the same

population distribution at an α level of 0.05. Further, if the number of clusters is more than

two, dunn’s test, a post-hoc test for multiple comparison was implemented with Benjamini

and Hochberg, False Discovery Rate(FDR) correction [Benjamini and Hochberg, 1997] to

account for multiple testing.

In the case of categorical variables such as Inhaled corticosteroids, positive sputum cul-

ture, gender etc., a contingency table is computed for each variable between the clusters.

Further, Pearsons Chi-Squared test, a test for independence (i.e., H0 : The joint distribution

of the cell counts in a 2-dimensional contingency table is the product of the row and column

marginals. Ha: contrary to null) was implemented on this contingency table. The p-values
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for this test was computed by a Monte Carlo method [Hope, 1968] with 2000 replicates i.e.,

by simulating random sampling from the set of all contingency tables with given marginals.

The above described test was applied to check if there was any significant relationship be-

tween the clusters and categorical variables at an α level of 0.05.

Also, Shannon diversity index H,an ecological diversity measure was calculated for each

patient. This measure reflects the number of different types of microbes present in that

patient and simultaneously accounts for the evenness in distribution among those microbes.

Shannon diversity index H is defined as

Definition 2.6.1. H :=
∑s

1 pi ln(pi)

where, pi is the proportion ( n
N

) of individuals of one particular species found (n) divided

by the total number of individuals found (N). A distribution {H} of H was calculated on

each cluster using the values of individual patients. Further a Mann-Whitney U test with

Dunn’s test as post-hoc was implemented to check for statistical difference of {H} between

the clusters.

The methods described in this section was implemented in R and can be found at https:

//github.com/Jayanth-kumar5566/Integrative-Microbiomics

2.6.1 Linear Discriminant Analysis Effect Size (LEfSe)

We sought to find the microbes that drive this clustering, in order to do this we used

Linear Discriminant Analysis(LDA) Effect Size (LEfSe)[Segata et al., 2011] available as a

web-tool on Galaxy [Afgan et al., 2018]. The web tool developed by the Huttenhower group

attempts to find species that are most influential in differentiating the given clusters. Firstly,

the tool selects microbes by implementing a Kruskal-Wallis(KW) test to check for significant

differences in microbial abundances between the clusters at a p-value of < 0.05. The factorial

KW rank sum test is a non-parametric test that checks whether the samples are drawn from

the same population distribution. Secondly, an Linear Discriminant Analysis(LDA) model

is built with clusters as the dependent variable and the selected microbes from the first part

as independent variables. LDA is a linear classifier that tries to find a linear combination of

features (i.e. Microbes in our case) that best separates two or more classes(i.e. Clusters in

our case). Thirdly, this LDA model is used to estimate the effect sizes of microbes. These
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effect sizes of microbes would represent species that are most influential in differentiating

between the clusters.

2.7 Co-occurrence Analysis

To address this issue of microbes being not independent and to identify these inter-plays.

We need to construct microbial association networks (i.e., graphs with nodes as microbes and

edges representing a measure of interaction between them) which is a classical problem of net-

work inference in computer science, constructing association networks from datasets. There

are two main groups of approaches to address this issue, with one group capturing Pairwise

relationships and the other capturing Complex relationships [Faust and Raes, 2012].

Here we propose an ensemble-based approach encompassing both these approaches with sig-

nificance testing. Karoline Faust in his paper [Faust et al., 2012] introduces “Reboot”, a

novel bootstrap and re-normalisation approach to assess the degree of association present

purely due to ecological interactions alone, addressing the problem stated in section 1.1.1.

This paper also introduces an ensemble approach with multiple similarity measures and gen-

eralised boosted linear models, for network inference. We adopt this framework with some

improvements, which is stated in section 4.3.3.

2.7.1 Similarity-based Network Analysis

Similarity-based Network analysis belongs to the group that captures pairwise relation-

ships. The Network inference technique described in section 2.2 belongs to this method of

similarity based network analysis and this technique can be generalised to any arbitrary

similarity measure S and any microbiome data-set.

Consider an arbitrary similarity measure S and an arbitrary microbiome data-set D as

defined by definition 2.1.1 then, S : M ×M → R+ where R+ denotes the set of all positive

rationals, the codomain of S. For microbe mi and mj that are dissimilar, S(mi,mj) = 0

We construct a complete weighted graph N on D with M as the vertex set and the

edge set E computed using the similarity measure S i.e., ∀ emi,mj
∈ E , emi,mj

= S(mi,mj),

calculated over multiple patients. Since the network/graph is constructed using the similarity
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measure S that considers a pair of microbes (mi,mj) at a time to compute the edge weights

emi,mj
this approach falls under the class that captures pairwise relationships.

The difference between the above described method and the method described in section

2.2 is that one method considers microbes M as vertex set and the other considers patients

P as vertex set to create similarity graphs N and G respectively, where G is as described in

section 2.2.

Being one of the simpler method to implement, it does not capture more complex form of

interactions in which one microbe depends on (or is influenced by) multiple other microbes

and it also suffers from the problem of spurious edges. For instance, let m1, m2 depend on

each other and m3 depend on m2 then S(m1,m3) > 0 even though m1 and m3 don’t interact

with each other directly but rather through m2, where S is a similarity measure such as

correlation.

2.7.2 Regression-based Network Analysis

Regression-based network analysis in contrast captures complex relationships. Consider

an arbitrary regression model Y ≈ f(X, β) on data-set Ds as defined in section 2.2, where

Y ∈Ms , X ⊆Ms \ Y and β is the coefficient matrix that quantifies the strength of relation

between Y and mi ∈ X. f is the function that relates X and Y . If f is linear, then the

regression model is called a linear model.

We construct a weighted graph Ns on Ds with Ms as the vertex set and the edge set Es

computed using the regression model. ∀emi,mj
∈ Es

emi,mj
=

[βmi
]mj

if mj ⊂ X

0 otherwise

where, [βmi
]mj

is an element of the coefficient matrix [βmi
] corresponding to the mth

j microbe

and [βmi
] is the coefficient matrix obtained from the regression model, mi ≈ f(X, β)

Unlike the Similarity-based analysis, this method captures both pairwise and complex

interactions. However, implementation of this method is difficult as it’s computationally

intensive.
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2.7.3 Ensemble approach for network inference

In similarity based network inference, a single similarity measure such as Pearson’s or

Spearman’s correlation is employed to identify relationships/edges. The issue with this is, the

microbial association networks are dependent on the choice of similarity measure. Similarity

measures are only capable of capturing certain relationships such as linearity, monotonicity

etc. Consequently, there is a need for multiple similarity measures to identify relationships

more reliably. Further, due to the disadvantage of the similarity based network inference, a

regression-based network inference is also required.

Figure 2.2: An ensemble approach of Network Inference: Network of microbes are built on microbes from all the
biomes. Edge weights along with their statistical significance, are ascertained using four different similarity measures and
GBLM(Gradient Boosting with Component-wise linear models), resulting in five different microbial networks one based on each
measure. A merged microbial network is derived from the 5 networks with appropriate weighting(green colored text). P-values
are combined using weighted Sime’s test and edge weights are a weighted sum is taken after proper standardisation.

Therefore, we use the following measures,

Pearson’s Correlation
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Measure of linearity between two random variables X and Y

ρX,Y =
cov(X, Y )

σXσY

where cov, is the co-variance and σX is the standard deviation of X. This was imple-

mented in R using the “cor” function.

Spearman’s Correlation

Measure of Monotonicity between two random variables X and Y

ρr(X),r(Y ) =
cov(r(X), r(Y ))

σr(X)σr(Y )

where r(X) and r(Y ) denote the ranked random variables of X and Y . This was

implemented in R using the “cor” function.

Mutual Information

Measures stochastical dependence or mutual dependence between two random variables

X and Y

I(X, Y ) = E

(
log

p(X, Y )

p(X)p(Y )

)
where, E(Z) denotes the expectation of Z, p(X, Y ) denotes the joint density and

P (X) and P (Y ) denote their respective marginal densities of X and Y . This was

implemented using the “minet” package [Meyer et al., 2008] in R using Miller-Madow

corrected estimator to estimate Mutual information and the ARCANE algorithm to

build the network.

Bray-Curtis Similarity

Measures Compositional similarity between two sites Si and Sj as defined in section

2.2

BCi,j =
2Cij
Si + Sj

This was implemented in R using the “vegan” package [Oksanen et al., 2018]

Gradient Boosting with Component-wise Linear Models -(GBLM)

This method uses a regression-based network inference approach to identify complex

relationships. A Linear Model(LM), captures the relationship between outcome vari-

able y and predictor variable x := (x1, x2, . . . , xp) to get an “optimal” prediction of y
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given x. This is accomplished by minimising a loss function ρ(y, f) ∈ R over predic-

tion function f(x) which is linear. In the framework of gradient boosting, the aim is

to estimate the optimal prediction function f ∗ which is defined as,

f ∗ := argminf EY,X[ρ(y, f(x))]

“Component-wise gradient boosting” [Hofner et al., 2014] algorithm is implemented to

find the minimum of the above expectation over f . Component-wise linear models of

the predictors x are used, in this algorithm as base-learners. Hence, named Gradient

Boosting with Component-wise Linear Models (GBLM). This method was implemented

in R using the “glmboost” function of “mboost” package[Hothorn et al., 2018] with

ν = 0.05 and mstop was tuned for the optimal value using 10-fold cross validation.

All the above five approaches are used to create five different microbial association net-

works as described in section 2.8. Further, these networks are then merged together by

a weighted sum of the edge weights after appropriate standardisation. Standardisation is

achieved by scaling the edge weights for each approach to a percentage with respect to the

maximum edge weight of that network score = score
max(score)

× 100 where score is the edge

weights. 1
12
, 1

12
, 1

6
, 1

6
, 1

2
were used as weights for Pearson’s, Spearman’s, Mutual Informa-

tion, Bray-Curtis similarity and GBLM respectively. These weights were assigned because

GBLM is the only measure from the ensemble that captures complex interaction and spear-

man, pearson’s both capture correlation. Additionally, FDR corrected p-values of the edges

were merged using weighted Sime’s method [Benjamini and Hochberg, 1997] using the above

weights.

Let H(0,i) with i ∈ (1, n) denote n hypothesis, pi denoting their p-values and wi denote

their weights. Under H(0,i), pi ∼ U(0, 1), we want to test for the global null H0 = ∩iH(0,i).

Weighted Sime’s test[Benjamini and Hochberg, 1997] does this by reordering p-values p(1) ≤
p(2) ≤ . . . p(n) to calculate the Sime’s statistic Tn = mini{p(i)

n∑i
k=1 w(k)

}, where w(i) is the

weight corresponds to the p-value p(i). Under H0 and independence of pi Sime’s test rejects

H0 if Tn < α.
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2.8 Network Construction

Consider the bacteriome(D1), fungome(D2) and virome(V ) from example 2.1.1 & 2.1.2

these datasets were concatenated on patients P i.e. Let p, q and r be the number of microbes

in M1,M2 and M3 respectively. We define the concatenated microbiome data-set D =

[dij] ∈ R217×(p+q+r) with patients P = {p1, p2, . . . , p217} and microbes M = ∪(M1,M2,M3).

Where, di,j represents the relative abundance of microbe mj in patient pi. Virome(V ) was

renormalised to satisfy property described in section2.2.1, before it was concatenated with

others and renormalised to calculate relative abundance.

2.8.1 Similarity-based Network construction

Figure 2.3: Network construction from similarities: 1)Similarity measure is calculated between every pair of species over all
patients. 2)Bootstrap distribution of for each similarity measure is constructed. 3)Reboot[Permutation and re-normalisation]
distribution for each similarity measure is built. 4)Distributional difference between bootstrap and reboot is assessed using
Mann-Whitney U test and a p-value is assigned for each edge/similarity measure.

We construct the microbial association network for each similarity measure S ∈ (Pear-
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son’s, Spearman’s, Mutual Information, Bray-Curtis) as follows:-

1. A similarity graph N was constructed on D using the method previously described in

section 2.7.1.

2. A bootstrap distribution of similarities for each edge i.e., ∀emi,mj
∈ E was calculated

over 100 iterations, where E is the edge set ofN . Bootstrapping is a type of re-sampling

where large numbers of smaller samples of the same size are repeatedly drawn, with

replacement, from a single original sample. S(mi,mj) was assessed on these bootstrap

samples to get the bootstrap distribution.

3. A ‘reboot’ distribution of similarities for each edge is calculated over 100 permutations

i.e., ∀emi,mj
∈ E, abundance values of microbe mi is permuted across all fixed patients

P followed by re-normalisation of the rows and computation of S(mi,mj). This process

is repeated over 100 iterations, resulting in the ‘reboot’ distribution of edge weights

between each mi and mj

4. Mann-Whitney U test, a non-parametric test to assess difference in distribution, is

applied between the ‘reboot’ and the bootstrap distribution for each edge weight

emi,mj
∈ E and a p-value is calculated for each edge.

5. P-values of all edges were FDR(False Discovery Rate) corrected to account for mul-

tiple testing and the resulting p-value of the test is appended with the edge weight

representing the statistical significance of the edge.

2.8.2 Network construction using GBLM

1. We create a Network N on D using the method previously described in section 2.7.2

withMs = M andX = M̂\Y , where M̂ = {mi ∈M | abs(S(mi, Y )) > 0.05 & abs(S(mi, Y )) 6=
1} where, S is spearman correlation.

2. The models for which the R2, coefficient of determination < 0.5 was dropped from

further analysis and edge weights were set to 0.

3. A bootstrap distribution of the edge weights for each edge is constructed by repeated

fitting of a GBLM model over 100 bootstraps samples.
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Figure 2.4: GBLM for network construction: 1)GBLM model was implemented to predict each microbe from all other
microbes. The coefficients of the microbes served as edge weights. 2)Bootstrap distribution of these coefficients were created.
3) A reboot(permutation-renormalisation) distribution of these coefficients were created. 4)Statistical significance(p-values) of
the coefficients were assessed using Mann-Whitney U test between bootstrap and Reboot distribution.

4. A ‘reboot’ distribution of edge weights for each edge is constructed by permuting the

abundance values of mi across the fixed patients P . Followed by, re-normalisation

across rows. This processes is repeated over 100 iterations to get the ’reboot’ distribu-

tion of the edge weights between each microbes.

5. Mann-Whitney U test, a non-parametric test to assess difference in distribution, is

applied between the ‘reboot’ and the bootstrap distribution for each edge weight

emi,mj
∈ E and a p-value is calculated for each edge.

6. P-values of all edges were FDR(False Discovery Rate) corrected to account for mul-

tiple testing and the resulting p-value of the test is appended with the edge weight

representing the statistical significance of the edge.

All the described methods in this section are implemented in R and Python and is
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available at https://github.com/Jayanth-kumar5566/Integrative-Microbiomics

2.9 Network Analysis using Cytoscape

Let Nf denote the final merged network from section 2.7.3 with microbes as vertex and

edges ei,j = (w(i,j), p(i,j)) where w(i,j) represents the merged scores or edge weights between

(mi, mj) and p(i,j) represents the merged p-value of that edge. Edge weights w(i,j) of edges

with p(i,j) < 0.001 were set to zero. We reconstructed Nf using only statistically significant

edge weights and graph theoretical measures such as number of nodes, number of edges,

average number of neighbours and characteristic path length were computed. All the above

analysis was done in Cytoscape[Shannon et al., 2003] and python. Cytoscape was also used

to calculate the following:

Degree: Degree of a vertex vi is the total number of edges incident on that vertex.

Stress Centrality: Stress centrality Cs(v) of a vertex v is defined as

Cs(v) =
∑

p6=q 6=v∈V

ρp,q(v)

where ρp,q(v) is the number of shortest paths from p to q passing through v.

Betweeness Centrality: Betweeness centrality Cb(v) of a vertex v is defined as

Cb(v) =
∑

p 6=q 6=v∈V

ρp,q(v)

ρp,q

where p and q are vertices that lie in a different network from v, ρp,q is the total number

of shortest paths from p to q and ρp,q(v) is the number of shortest paths from p to q

that pass through v

The cytoscape and python codes can be found at https://github.com/Jayanth-kumar5566/

Integrative-Microbiomics/tree/master/Co-occurance
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Chapter 3

Results

3.1 Bacteriome clusters identify high risk patients

Spectral clustering on the bacterial microbiome with bacteria that were present in atleast

5% of the CAMEB patients(n=10) revealed 3 clusters. The average silhouette value of these

clusters is 0.386 indicating moderate clustering [Table 3.1]. Figure 3.1A further validates the

presence of 3 clusters visually using a PCoA(Principal coordinates analysis) plot. Figure 3.1B

reveals that cluster 1 is a Pseudomonas dominant, cluster 2 is Streptococcus dominant and

Cluster 3 as Haemophilus dominant. The Haemophilus dominant cluster has a relatively low

BSI (median = 9) compared to the Pseudomonas dominant cluster (median = 12) but have

a relatively higher MMRC score and Aspergillus terreus conidial burden with a relatively

low number of hospitalisation (median = 0) [Table 3.1]. Even though the Pseudomonas

dominant cluster have relatively low MMRC score (symptomatic score) than the Haemophilus

dominant cluster the Pseudomonas dominant cluster seem to associate with greater number

of hospitalisations. We also observe that the median Body Mass Index(BMI) is relatively

higher in Haemophilus dominated cluster than Pseudomonas dominant cluster. On the

other hand, the Streptococcus dominant cluster seem to be clinically more favourable than

the other two clusters with less hospitalisations and exacerbations.

The fungome and virome clusters did not show any difference in clinical measures other

than Aspergillus terreus conidial burden in fungome and “Asian or European” in both fun-

gome and virome [Table 3.1].
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Figure 3.1: Spectral clustering on the bacteriome of CAMEB patients: A) PCoA(Principal Coordinate Analysis) plot
of the bacteriome clusters using bray-curtis dissimilarity with x and y axis representing the first and second principal axis
respectively. B) A histogram representing relative abundance of bacteria’s in each cluster. C,D,E,F) Box-plots representing
differences in various outcomes and indices, Mann-Whitney U test was used to asses statistical significance. “*” represents
p-value ≤ 0.05, “**” p-value ≤ 0.01, “***” p-value ≤ 0.001 and “n.s” not significant

.

3.2 Integrative Microbiomics using Similarity Network

Fusion (Unweighted)

Spectral clustering on the integrated bacterial, fungal and viral datasets using SNF with

t = 20 and k = 9(tuned) was implemented using the microbes that were present in at least
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Slno Outcomes Bacteria (Silhouette: 0.386) Fungi (Silhouette: 0.808) Virus (Silhouette: 0.998)

Cluster 1 Cluster 2 Cluster 3 P-value Cluster 1 Cluster 2 P-value Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value

Number of patients 23 125 69 190 17 121 80 14 2

1 BSI 12 9 9 0.0039

2 A.terreus conodial burden 231.03 1499.1 3096.2 0.0326 2205.55 810.4 0.035

3 MMRC Score 1 1 2 0.0036

4 No of Hospitalisation bf study 1 0 0 0.0144

5 No of Exacerbation bf study 2 1 2 0.00021

6 BMI 20.69 20 25.76 4.39E-05

7 Asian/European(Asian,European) (73.91%,26.09%) (72%,28%) (18.84%,81.16%) 0.00049 (52.63%,47.37%) (25.92%,74.07%) 0.0274 (69.42%,30.58%) (35%,65%) (57.14%,42.85%) 0.00049

Table 3.1: Clinical outcome comparison on clusters based on bacteriome, fungome and virome. Each value of the clusters
column represents the median value of that outcome in that cluster. Medians of variables that were not statistically significant
at an α level of 0.05 are not reported.

5% of the CAMEB patients(n=10). This revealed 3 clusters with an average silhouette

score of 0.799. Figure3.2A illustrates these three clusters by a heatmap of the merged

paiwise similarity matrix of the patients. Figure 3.2B represents the species that are most

influential in differentiating the clusters. Fuscoporia in cluster 3, Candida in cluster 2 and

Para Influenza Virus 3 (PIV3), Aspergillus and Trechispora in cluster 1 are the microbes

that most differentiate the clusters. Upon assessing for clinical outcome for these clusters

we find a cluster that is differentiated by Candida of relatively high-risk patients with a

higher median number of exacerbation(median=2) and MMRC score compared to the rest

[Table 3.2]. However, we find that the p-value to identify the median number of exacerbation

is increased (i.e. decrease in precision) from 0.00021, bacteriome alone to 0.03964 merged

biome.

Slno Outcomes Cluster 1 Cluster 2 Cluster 3 P-value

Number of patients 115 88 14

1 BSI

2 A.terreus conodial burden 1254.4 2713.3 1409.3 0.01599

3 MMRC Score 1 2 1.5 0.0030

4 No of Hospitalisation bf study

5 No of Exacerbation bf study 1 2 1 0.03964

6 BMI

7 Asian/European(Asian,European) (75.65%,24.34%) (28.41%,71.59%) (57.14%,42.86%) 0.00049

Table 3.2: Clinical outcome comparison of clusters derived by integrating bacteriome, fungome and virome using SNF. Each
value in the clusters column represents the median value of that outcome. Medians of variables that were not statistically
significant at an α level of 0.05 are not reported.

35



Figure 3.2: Clusters based on the integrated biome(Unweighted): A) Heat map of the patient similarity matrix Qc

obtained from the merging of bacteriome, fungome and virome plotted in log scale. x and y axis of the matrix represent the
patients and each entry of the matrix represents the similarity between them. B) A plot representing the results of LEfSe on
the clusters with x-axis and y-axis representing the effect size and species respectively. The plot only represents species that
have an LDA score of ≥ 3. C,D,E,F) Box plot representing the differences between various outcomes, Mann-Whitney U test is
applied to calculate the statistical significance for difference in the clusters. “*” represents p-value ≤ 0.05, “**” p-value ≤ 0.01,
“***” p-value ≤ 0.001 and “n.s” not significant

3.3 Integrative Microbiomics using weighted Similar-

ity Network Fusion indentifies a high-risk cluster

with increased precision

Spectral clustering on the integrated microbiome(bacteriome, fungome and virome) using

weighted SNF with t = 20 and k = 5(tuned) was implemented using the microbes that

were present in at least 5% of the patients(n=10) revealed two clusters [Table 3.3] with an

average silhouette score of 0.796. The weights for each biome were set to the number of

microbes that were present in at least 5% of the CAMEB patients(n=10) i.e. Bacteriome:

62, Fungome: 52, Virome: 4, because the number of microbes in each dataset affects the

quality of the individual similarity network since similarity is assessed using bray-curtis.

Figure 3.3A illustrates these 2 clusters by a heat map of the merged pair-wise similarity
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matrix of the patients. Figure 3.3B represents the top 20 species that are most influential

in differentiating the clusters. Analysing the clinical difference between clusters we find a

cluster of high risk patients that have relatively high number of exacerbation (median = 2)

and MMRC Score(median=2). Further, we also observe that using a weighted stratergy has

increased the statistical significance of “number of exacerbations” between the two clusters,

which is reflected by the drop of p-value from 0.03964 [Table 3.2] to 2.46× 10−5 [Table 3.3].

Figure 3.3: Clusters based on the integrated biome(Weighted): A) Heat map of the patient similarity matrix Qc

described from the merging of bacteriome, fungome and virome in a weighted fashion plotted in log scale. x and y axis of the
matrix represent the patients and each entry of the matrix represents the similarity between them. B) A plot representing
the results of LEfSe on the clusters with x-axis and y-axis representing the effect size and species respectively. The plot only
represents species that have an LDA score of ≥ 3 and the top 20 species. C,D,E,F) Box plot representing the differences between
various outcomes, Mann-Whitney U test is applied to calculate the statistical significance for difference in the clusters. “*”
represents p-value ≤ 0.05, “**” p-value ≤ 0.01, “***” p-value ≤ 0.001 and “n.s” not significant
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Slno Outcomes Cluster 1 Cluster 2 P-value

Number of patients 134 83

1 BSI

2 A.terreus conidial burden 1186.5 3617 0.00027

3 MMRC Score 1 2 6.25E-06

4 No of Hospitalisation bf study

5 No of Exacerbation bf study 1 2 2.46E-05

6 BMI 20.25 26.24

7 Asian/European(Asian,European) (78.35%,21.64%) (18.07%,81.92%) 0.00049

Table 3.3: Clinical outcome Comparison on the merged bacteriome, fungome and virome using weighted SNF. Each value of the
column cluster 1 & 2 represents the median value of that outcome. Medians of variables that were not statistically significant
at an α level of 0.05 are not reported.

3.4 Co-occurrence analysis reveals difference in num-

ber of negative interaction between clusters

A co-occurrence analysis with microbes that were present in at least 5% of the patients

at an abundance of ≥ 1% was implemented on the two clusters obtained in section 3.3.

Interactions between microbes were classified as negative if the sign of the edge weights

between them is negative. If an interaction is negative then increase in the abundance

of source microbe leads to decrease in abundance of the target microbe. 26.05% of the

interactions were negative in cluster 1 whereas 32.51% were negative in cluster 2 as shown

in Figure 3.4

3.5 Busy, influential and critical microbes among in-

dentified clusters

The degree, betweenness centrality and stress centrality of the nodes/microbes were as-

sessed in the microbial association networks of the two clusters described in section 3.3 [Table

3.4 ]. From a biological standpoint, highest degree nodes are regarded as “busy” microbes.

Nodes that have high-stress centrality are considered as the most “critical” microbes, and the

nodes that have high betweenness centrality are equated to the most “influential” microbe.
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Figure 3.4: Differential interactions:The above graphs represent the microbial association network in cluster 1 and 2. The
‘white’ colour nodes represent the microbes, ‘green’ coloured edges represents positive interactions, ‘red’ the negative interactions
and the depth of the colour represents the strength of the interaction.

Upon assessing for microbes that are busy, influential and critical in the microbial association

network of cluster 1, we find Rothia, Streptococcus and Haemophilus as the top 3 microbes.

Figure 3.5 illustrates the interactome[i.e. interaction between microbes] in cluster 1 and

highlights the interactions of these 3 microbes. These 3 microbes together, interact with

all other microbes of the network [Figure 3.5C]. Also, Figure 3.5D shows that Haemophilus

interacts negatively with some microbes.

Haemophilus, Leptotrichia, Porphyromonas, Prevotella, Veillonella and Cryptococcus

have the highest betweenness centrality, degree and stress centrality in the microbial as-

sociation networks of cluster 2 [Table 3.4]. Hence, these microbes are busy, influential and

critical in cluster 2. However, Leptotrichia and Porphyromonas are bacteria that are mainly

present in the oral cavity [Eribe and Olsen, 2008][Darveau et al., 2012]. Figure 3.6 illus-

trates the interactome of cluster 2 highlighting the interactions of Haemophilus, Prevotella,

Veillonella and Cryptococcus. These microbes together, connect all other microbes in the

network.
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Figure 3.5: Interactome of Cluster 1: C) Represents the interactome(i.e, interactions) of cluster 1. Highligthed yellow edges
represent the interactions of Haemophilus, Rothia and Streptococcus. A,B,D) Represents the interaction of Rothia, Streptococcus
and Haemophilus respectively with ‘green’ edges representing positive interactions and ‘red’ edges the negative interactions.
The depth of the color represents the strength of the interactions.



Figure 3.6: Interactome of Cluster 2: C) The graph represents the interactome(i.e. interactions) of cluster 2. Highligthed
yellow edges represent the interactions of Cryptococcus, Veillonea, Prevotella and Haemophilus. A,B,D,E) These graphs rep-
resent the interaction of Cryptococcus, Veillonea, Prevotella and Haemophilus with other microbes, respectively with ‘green’
edges representing positive interactions and ‘red’ edges the negative interactions. The depth of the color represents the strength
of the interactions.



Table 3.4: Table showing total degree, in degree, out degree, betweenness centrality and stress centrality of the nodes from the
microbial association networks of both the clusters from section3.3.

Figure 3.7: Pseudomonas specific interaction :Pseudomonas specific interactions in cluster 1 and 2 are coloured in ’red’ and
’green’ with ’red’ representing negative interaction and ’green’ the positive interaction. The depth of the edge colour represents
the strength of the interaction.

3.6 Pseudomonas specific interaction in the clusters

Pseudomonas is a pathogenic bacteria and well known for its role in bronchiectasis

[Evans et al., 1996]. Pseudomonas specific interaction was assessed in microbial associa-

tion networks from both the clusters described in section3.3. Figure 3.7 shows that Pseu-

domonas interacts negatively with Haemophilus and positively with Sterptococcus in Clus-

ter 1. Whereas Pseudomonas interacts negatively with Streptococcus and positively with

Haemophilus and Neisseria in Cluster 2. Further, a loss of Pseudomonas specific negative

interactions is observed, from 22 in cluster 1 to 4 in cluster 2.
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Chapter 4

Discussion

4.1 Introduction

Clustering of Bray-Curtis similarity graphs on CAMEB patients constructed using their

bacteriome, by spectral clustering, identifies clusters of potential high-risk patients, i.e. pa-

tients that have a relatively high median number of exacerbation whereas other individual

biomes such as fungome and virome fail to do so. Integrating these microbiomes using

weighted SNF and further clustering them using spectral clustering identifies clusters of po-

tential high-risk patients with increased precision(i.e., decrease in p-value from 2.1× 10−4 to

2.4 × 10−5). Interestingly, analysis of the microbial association network between these two

clusters revealed an increase in the number of negative interactions in the potential high-

risk cluster and dissection of Pseudomonas specific interaction revealed that Pseudomonas

interacts differently with the same microbes in different clusters.

4.2 Integration of Microbiomes

In this thesis, we have integrated microbiomes using SNF. However, SNF[Wang et al., 2014]

suffers from limitations which include assigning equal weights to all datasets; not all biological

datasets are collected with the same precision/quality. In the context of the microbiomes,

there is an inherent problem in the quality of different biomes; this is because the qual-

ity/precision of the microbiomes depends on the reference database that the sequences are

43



matched with. Presently, the 16s bacterial database is better characterised than ITS1 and

ITS2 fungal databases, and viral reference databases are the least well characterised. Hence

there is an inherent need to weight datasets in the application of any integration strategy,

particularly in the context of the microbiome. Therefore, we modified the method of SNF to

incorporate weights and showed that weighting increases the precision of identifying high-risk

patients based on clinical outcomes [section 3.3]. There are several modifications of SNF in-

cluding Affinity Network Fusion(ANF)[Ma and Zhang, 2018] and Robust Similarity Network

Fusion(RSNF)[Zhang et al., 2017] which are as good as SNF or even better. ANF is com-

putationally less expensive that SNF and also supports weighting on the other hand RSNF

is robust to noise and uses random forest for similarity matrix construction. The weighted

SNF proposed in this thesis is well suited in the microbiome and ecological setting as, unlike

SNF, ANF and RSNF which uses the gaussian kernel and random forest to create similarity

matrices which is often not suitable due to sparse and relative abundance structure of the

microbiome datasets. We use biologically relevant, context-dependent, bray-curtis similarity

measure to merge microbiome datasets. However, the proposed weighted SNF can only be

applied in the integration of 3 or more datasets, and further analysis is needed to benchmark

the weighted SNF algorithm with other modified SNF algorithms. Data integration can be

achieved through different methods, Rappoport in his paper [Rappoport and Shamir, 2018]

describes and benchmarks different type of data integration algorithms including SNF(an in-

termediate integration technique), LRAcluster(an early integration technique), PINS(a late

integration technique) and Deep learning based integration methods. Performance of SNF

in terms of identifying significant clinical parameters with precision was not the best of all

algorithms considered.

Even though better data integration algorithms other than weighted SNF can be applied

to integrate microbiomes, in this thesis, we show for the first time that integration of micro-

biomes is possible, advantageous and a weighting strategy is necessary. As proof of concept,

we showed this using SNF and weighted SNF with bray-curtis similarity as a similarity index

in the context of bronchiectasis. Singular analysis of fungal and viral datasets separately is

not capable of identifying high-risk patients and traditionally would have been considered not

useful and dropped. However, integration of these fungal and viral with bacterial data-set

refines clustering by increasing or decreasing the statistical significance of clinical outcomes

as it makes use of even small signals that are common between the microbes and amplifies

it. This increase in statistical significance can be observed by a decrease in a p-value of

“number of exacerbation” from 2.1 × 10−4, bacteriome alone to 2.4 × 10−5, merged biome
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using weighted SNF. Further, we observe that integrating microbiomes using Unweighted

SNF does not increase statistical significance in identifying the potential high-risk patients

which is reflected by the increase in a p-value of “number of exacerbation” from 0.00021,

bacteriome alone to 0.03964, merged biome using SNF.

4.3 Microbes and Microbial association network

4.3.1 LEfSe and isolated microbes

LEfSe is a bio-marker discovery tool that uses relative abundance data between two

or more groups. In the context of microbiomes, this tool is capable of identifying species

that are most influential in differentiating the clusters. Some microbes such as Aspergillus,

Pseudomonas, Streptococcus and Candida are known to be associated with disease severity in

bronchiectasis. LEfSe successfully captures these organisms in the clusters of weighted SNF

[Figure 3.3B]. Fuscoporia and Trechispora are one of the many microbes that differentiate the

clusters from Unweighted SNF [Figure 3.2B]. However, these fungi are previously not known

to be pathogenic and associated with bronchiectasis. This may be due to the drawbacks

of LEfSe which includes assumption of independence between microbes, this is not true as

microbes interact with each other and co-exist in communities. These interactions might

be more important in disease progression rather than isolated organisms. Hence we sought

resolve this by implementing a co-occurrence approach.

4.3.2 Co-occurrence analysis

Microbes interact in various ways with each other, some common types of interactions are

Parasitism or Predation (+,−), Amensalism (0,−), Commensalism (+, 0), Mutualism (+,+)

and Competition (−,−). Also, microbial datasets suffer from the problem described in sec-

tion 1.1.1 i.e. observed relative abundance values might be due to both random processes and

actual ecological interactions. To account for this, we implemented a co-occurrence analysis

with statistical significance testing using “Reboot” as described in [Faust et al., 2012] with

some modifications [described in section 4.3.3]. Although this method tries to capture ac-

tual ecological interactions between the microbes, it does not stratify the type of interaction
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which is crucial in identifying possible mechanisms and pathways. Hence further experimen-

tal validation of these interactions is needed. Our lung microbiome is dynamic and changes

as time progresses. The co-occurrence analysis presented in this thesis does not consider

dynamic changes in the lung microbiome due to the cross-sectional nature of the CAMEB

cohort[Mac Aogáin et al., 2018]. An interaction from the microbial association network of a

time slice may not necessarily be constant over time. However, these methods serve as good

starting point to make hypothesis which can be further validated experimentally.

4.3.3 Improvements

Improvements from the method of [Faust et al., 2012] includes the implementation of

Mutual Information as a similarity measure instead of Kullback-Leibler(KL) divergence.

Mutual information is the KL divergence of uni-variate distribution of X from conditional

distribution of X | Y and this biologically more relevant than KL divergence between X

and Y . Secondly, we implemented the Mann-Whitney U test instead of a Z-test with the

pooled variance to compare between the null and bootstrap distribution. As the distributions

are not necessarily normal and hence a non-parametric test such as Mann-Whitney is more

appropriate. Thirdly, we merge the networks from the ensemble in a weighted fashion using

weighted Sime’s test. This is important as an imbalance in the ensemble method can suppress

actual signals and exemplify the errors. Lastly, we use an abundance-prevalence filter to the

microbiome datasets before running co-occurrence analysis. The abundance-prevalence filter

keeps only the microbes that are more than 1% abundant in at least 5% of the patients.

This filter is applied to remove interactions that result from random noise. However, the

filter also removes weak signals.

4.4 Clinical Relevance

Exacerbation is a significant event in bronchiectasis because during exacerbation symp-

toms such as cough, sputum purulence (sputum that contains white blood cells), breath-

lessness, fatigue and haemoptysis (cough with blood)get worse abruptly requiring clinical

intervention. It is associated with increased hospitalisation and mortality. The ability to

predict exacerbation may allow early identification and treatment. Exacerbation in CRDs

is known to be associated with microbes such as virus and bacteria [Dickson et al., 2014].
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However, it is not known whether it is a cause or effect [Dickson et al., 2014]. The micro-

biome that is used in this thesis is assessed from the sputum of stable bronchiectasis patients.

Dickson showed that in CRDs there is no change in bacterial density or community diver-

sity during exacerbation compared to the stable state [Dickson et al., 2014]. Hence studying

microbes at a stable state is useful. We find that the bacteriome clusters identify high-risk

patients that have a higher exacerbation [Figure 3.1] which is consistent with the literature

[Dickson et al., 2014]. However, our virome data-set does not seem to identify patients that

have a higher exacerbation [Table 3.1]; this might be due to small number of viruses in the

data-set. Only four viruses were used for further analysis after filtering the data.

Co-occurrence analysis of the two clusters from weighted SNF shows an increase in the

number of negative edges in the potential high-risk cluster. Hence there is relatively greater

competition among microbes in the high-risk cluster compared to cluster 1. This increase

in competition may lead to a decrease in the diversity of the lung microbiome which is

associated with increased exacerbation.

Microbes/nodes that have a high degree(i.e. busy) may not always be suitable for targeted

therapy. For example, Pseudomonas in cluster 1 is busy (highest degree) and it is known that

Pseudomonas is associated with bronchiectasis [Rogers et al., 2014]. However, it is difficult

to eradicate Pseudomonas from the lung microbiome of the patients [Rogers et al., 2014].

Hence, it is important to target critical nodes (i.e. nodes that have high stress, number of

shortest paths passing through it) and influential nodes (i.e. nodes with high Betweeness

centrality). Hence we looked at microbes that are all busy, influential and critical in dif-

ferent clusters. Rothia, Streptococcus and Haemophilus are the busy, influential and critical

microbes of the potential low-risk cluster from weighted SNF. These microbes have been re-

ported in the context of bronchiectasis previously [Lee et al., 2018][Mac Aogáin et al., 2017].

Lee in his paper [Lee et al., 2018] finds that Rothia and Haemophilus are significantly more

abundant in a mild bronchiectasis group consistent with our finding. On the other hand,

Haemophilus, Leptotrichia, Porphyromonas, Prevotella, Veillonella and Cryptococcus are

busy, influential and critical in the potential high-risk cluster of weighted SNF. Haemophilus,

Prevotella, Veillonella and Cryptococcus are previously known to be associated with bronchiec-

tasis [Mac Aogáin et al., 2018][Faner et al., 2017]. However, Leptotrichia and Porphyromonas

is not well known in bronchiectasis. Leptotrichia species is found in the oral cavity and gen-

itourinary tract. It is reported as an emerging pathogen in neutropenic (lack of neutrophils)

patients [Eribe and Olsen, 2008]. Porphyromonas is an oral bacteria mainly found in dental
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plaques. It has been found that Porphyromonas has a strong association with periodontitis

disease[Darveau et al., 2012]. These two oral taxa’s could be possibly due to oral contami-

nation of the sputum from the patients if not this shows that microbes from different sites

such as lung and oral cavity interact with each other and probably play an influential and

critical role to maintain in the lung microbiome of the potentially high-risk patients.

Pseudomonas is a well-known pathogen in the context of bronchiectasis [Purcell et al., 2014].

Pseudomonas in the potential low-risk cluster is one of the busiest and critical but not in

the top 5 influential microbes [Table 3.4]. Whereas, Pseudomonas in the potential high-risk

cluster is the least busy, least critical and least influential. However, Pseudomonas is known

to be associated with exacerbation and reduced lung function [Purcell et al., 2014], but we

observe Pseudomonas is the least busy, critical and influential in the high-risk cluster with

relatively high exacerbation. Hence, we looked into the Pseudomonas specific interactions in

both the clusters. Interestingly, we find that how Pseudomonas interacts with Haemophilus

and Sterptococcus is different between both the clusters [Figure 3.7]. In the low-risk clus-

ter, we find that Pseudomonas interacts negatively with Haemophilus and positively with

Streptococcus whereas in the high-risk cluster this interaction is reversed. Interestingly,

Pseudomonas also interacts positively with Neisseria. Hence, it is not the presence of Pseu-

domonas that characterises the high-risk cluster; rather it is what and how Pseudomonas is

interacting with other organisms which defines it. Hence interactions between organisms are

of equal if not greater importance than isolated organisms. However, experimental validation

is needed to confirm this interaction. Further, little is known about Neisseria in the context

of bronchiectasis, and future studies are required to assess its role in bronchiectasis.

4.5 Conclusion

In this thesis, as a proof of concept, we showed that integrating microbiomes is advan-

tageous as it increases precision in identification of high-risk patients based on clinical data

in bronchiectasis. However “Integrative Microbiomics” is not disease-specific and can be

applied to merge microbiomes in general. Implementation of other data-set merging algo-

rithms such as ANF, Deep learning based methods instead of SNF may further increase the

precision of identification of high-risk patients. We also showed that a weighted strategy in

integrating microbiomes increases the precision of identifying high-risk patients as not all

microbiomes are of equal biological relevance. Future microbiome research should consider
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integrating microbiome datasets for their studies rather than focusing on singular microbiome

data. Using co-occurrence analysis, we showed that interactions between microbes are more

important than isolated microbes in driving various disease states by showing the differen-

tial interaction of Pseudomonas between low-risk and high-risk patients. However, this is

not limited to bronchiectasis and Pseudomonas, and can be applied to microbiomes of any

disease. Hence, future research should start looking into the interactome (i.e. interactions

between microbes) rather than associating clinical outcomes to isolated organisms.
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S. J., and Chotirmall, S. H. (2018). Geographic variation in the aetiology, epidemiology
and microbiology of bronchiectasis. BMC Pulmonary Medicine, 18(1).

[Connor and Simberloff, 1979] Connor, E. F. and Simberloff, D. (1979). The assembly of
species communities: Chance or competition? Ecology, 60(6):1132.

[Darveau et al., 2012] Darveau, R., Hajishengallis, G., and Curtis, M. (2012). Porphy-
romonas gingivalis as a potential community activist for disease. Journal of dental re-
search, 91(9):816–820.

[Dickson et al., 2014] Dickson, R. P., Martinez, F. J., and Huffnagle, G. B. (2014). The role
of the microbiome in exacerbations of chronic lung diseases. The Lancet, 384(9944):691–
702.

[Eribe and Olsen, 2008] Eribe, E. R. K. and Olsen, I. (2008). Leptotrichia species in human
infections. Anaerobe, 14(3):131–137.

51



[Evans et al., 1996] Evans, S., Turner, S., Bosch, B., Hardy, C., and Woodhead, M. (1996).
Lung function in bronchiectasis: the influence of pseudomonas aeruginosa. European
Respiratory Journal, 9(8):1601–1604.

[Faner et al., 2017] Faner, R., Sibila, O., Agust, A., Bernasconi, E., Chalmers, J. D., Huffna-
gle, G. B., Manichanh, C., Molyneaux, P. L., Paredes, R., Prez Brocal, V., Ponomarenko,
J., Sethi, S., Dorca, J., and Mons, E. (2017). The microbiome in respiratory medicine:
current challenges and future perspectives. The European respiratory journal, 49.

[Faust and Raes, 2012] Faust, K. and Raes, J. (2012). Microbial interactions: from networks
to models. Nature Reviews Microbiology, 10(8):538.

[Faust et al., 2012] Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D.,
Raes, J., and Huttenhower, C. (2012). Microbial co-occurrence relationships in the human
microbiome. PLoS computational biology, 8(7):e1002606.

[Hofner et al., 2014] Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M. (2014). Model-
based boosting in r: a hands-on tutorial using the r package mboost. Computational
statistics, 29(1-2):3–35.

[Hope, 1968] Hope, A. C. (1968). A simplified monte carlo significance test procedure. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 30(3):582–598.

[Hothorn et al., 2018] Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., and Hofner, B.
(2018). mboost: Model-Based Boosting. R package version 2.9-1.

[Hubbell, 2011] Hubbell, S. P. (2011). Unified Neutral Theory of Biodiversity and Biogeog-
raphy (MPB-32). Princeton University Press.

[Knight et al., 2017] Knight, R., Callewaert, C., Marotz, C., Hyde, E. R., Debelius, J. W.,
McDonald, D., and Sogin, M. L. (2017). The microbiome and human biology. Annual
Review of Genomics and Human Genetics, 18(1):65–86.

[Lee et al., 2018] Lee, S., Lee, Y., Park, J., Cho, Y.-J., Yoon, H., Lee, C.-T., and Lee, J.
(2018). Characterization of microbiota in bronchiectasis patients with different disease
severities. Journal of clinical medicine, 7(11):429.

[Ma and Zhang, 2018] Ma, T. and Zhang, A. (2018). Affinity network fusion and semi-
supervised learning for cancer patient clustering. Methods, 145:16–24.
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