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Abstract

I review the main results of stochastic thermodynamics, for systems
under external driving or in a nonequilibrium steady state. These include
Crook’s identity, Jarzynski relation and Gallovati-Cohen fluctuation theo-
rem. These give the ratio of probability of entropy production for a trajec-
tory of the system to that of the time-reversed trajectory, and therefore can be
thought of as a natural generalization of the second law of thermodynamics.
After outlining the derivations of these results, various sources of entropy
productions are illustrated for the exclusion process. Though the theorems
are valid under very general conditions, their applicability is restricted as
the quantities appearing are not always directly measurable. However, one
recovers near-equilibrium results as limiting cases.

The second part of the thesis is a review of calculations of thermal con-
ductivity for some low dimensional models. The first is a chain of identi-
cal harmonic oscillators, with nearest-neighbour interactions, coupled at its
ends to stochastic reservoirs at different temperatures. The system is found
to have infinite thermal conductivity in the thermodynamic limit. A more
realistic model, the harmonic chain with mass disorder is considered next,
and the dependence of thermal conductivity on system size L is found to
be
√

L. Lastly the disordered Lorentz gas is is shown to have finite thermal
conductivity.

vi



1 Introduction
Equilibrium statistical mechanics provides us the methods to identify and describe
the behaviour of macroscopic degrees of freedom of a system in thermal equilib-
rium in terms of the microscopic ones, and its success can not be overstated. It
is well-established for systems that are sufficiently large and relax at time scales
sufficiently fast compared to observation times. In this thesis, I have tried to ex-
plore problems that are not addressed by the methods of equilibrium statistical
mechanics, in particular stochastic thermodynamics and heat transport in low di-
mensional systems. The following subsections are summaries of well established
results, which will be elaborated upon in the rest of the thesis.

In this thesis, my focus is exclusively on classical systems. Throughout, the
Boltzmann constant is taken to be 1. Therefore entropy is a dimensionless quantity
and temperature has units of energy.

1.1 Stochastic thermodynamics
Stochastic thermodynamics is a broad framework which emerged as an attempt to
extend the success of equilibrium statistical mechanics for system far from equi-
librium. Where as in equilibrium, the probability of observing a micro-state is
given by a distribution over suitable ensemble, no such formulae valid in general
are known if a parameter of the system is externally driven, or if the system is
brought in contact with multiple reservoirs. The micro-state of the system now
undergoes stochastic evolution. The specification of the driving protocol or baths
prescribes a path (time evolution of microstate) ensemble. Physical quantities
such as work, heat, entropy change etc., being functionals of the trajectory fol-
lowed by the system, are also random variables.

Consider a system in contact with heat bath under time dependent forcing. To
discuss irreversibility, one can define a conjugate time-reversed trajectory corre-
sponding to each trajectory. Although the probability of observing a trajectory is
not known, it has been proven, under some assumptions, that the ratio of prob-
abilities of observing a trajectory to that of observing the conjugate trajectory is
given by the exponential of the entropy produced in the trajectory. Section 2.1
elaborates on this result due to Crooks [1], detailing definitions and assumptions
involved, along with a short proof. This leads to a relation between the equilib-
rium free energy and the nonequilibrium average 〈exp(−βW )〉, W,β denoting the
work and inverse temperature. This was one of the earliest exact result valid ar-
bitrarily far from equilibrium [2]. As reliable measurements of 〈exp(−βW )〉 for
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large systems are not feasible, the full scope of this result is not yet explored.
If the physical quantity under consideration is a time-integral over contribu-

tions throughout the trajectory (e.g. currents), its probability, over a long-run of
the process, depends exponentially on the time-span, with a rate called the rate
function [3]. Thus after a long run of the process the problem of finding moments
of currents, and describing transport properties of the system, reduces to the task
of evaluating the rate function. Though this is a formidable task in general, for the
observable entropy flow a certain symmetry property of this function is known.
Section 2.3 deals with the formulation of this result. It will be shown that the ratio
of probability of a value of entropy production, to the probability of the negative
of that value, is exponential of the value of entropy production [4], similar to the
statement of Crook’s identity.

Although these so called fluctuation theorems are derived in considerable gen-
erality (in fact, the only major assumption is that the micro-states evolve as a
Markov process), the interpretation of entropy production can be rather obscure.
Section 2.4 is on an example in which the entropy production has a clear mean-
ing. Finally, a proof of the well-known Kubo-Green expression of conductivity
is presented in Section 2.5. This demonstrates that, when nonequilibrium effects
can be treated perturbatively, the results given here encapsulate linear response.

1.2 Heat conduction

Figure 1: Schematic diagram of a heat conductor in steady state

Systems not in equilibrium are characterized by the presence of non-vanishing
currents, arising due to inhomogeneities of corresponding physical quantity. In
general, there is no statistical mechanical procedure for predicting the probabil-
ity distributions of these currents, and one often aims for a phenomenological
description by postulating a linear response to the gradients that cause the flow.
For instance, consider an isotropic system in contact with multiple heat baths at
different temperatures at its boundaries, then assuming there is a clear separation
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of microscopic and macroscopic scales of length and time, the local heat current
density j (heat flow per unit area per unit time) at point r, at time t, is related to
the local temperature T , by the well known phenomenological expression,

j(r, t) =−κ(T (r)) ∇T (r, t), (1.2.1)

proposed by Joseph Fourier in the early 19th century. Here the phenomenological
constant κ is the conductivity of the material at the local temperature T . In such
a formulation, local thermal equilibrium is assumed i.e. the distribution of micro-
states in a volume of size small compared to the system size yet macroscopic when
compared to microscopic length scales, and over times much smaller compared to
macroscopic observation times yet much larger than microscopic time scales, is an
equilibrium distribution with the local temperature. This means the variations of
thermodynamic quantities across these ”mesoscopic” regions is small compared
to the equilibrium fluctuations of these quantities in the region [18]. Though often
taken as granted, the task of establishing its validity is quite non-trivial, and there
are simple counter-examples where it is not valid [8]. Given (1.2.1), one can use
local conservation of energy1 to write the evolution of the temperature as

∂T (r, t)
∂ t

=
1

cV (T )
∇(κ(T ) ∇T (x, t),), (1.2.2)

with cV (T ) the specific heat per unit volume.
A large number of attempts to derive (1.2.1) from the underlying microscopic

dynamics of the system have been made [7][9][10]. One of the earliest kinetic
justification for it runs as follows. Consider a system with a temperature gradi-
ent only in the x-direction. Local thermal equilibrium means a collision at (r, t)
results in an energy drawn from equilibrium (canonical) distribution of tempera-
ture T (r, t). Let the average energy density be given by u(T (r, t)). The energy
flux into an infinitesimal region to the right of a point at r is the average energy
carried by the particle times the x-component of the velocity of the particle, vx.
The average energy of the particle is its equilibrium value at last encountered col-
lision, which, on an average, is at a distance of mean free path, λ away from r.
Similarly, the average energy leaving the region is u(T (r))vx. Both fluxes must be
finally averaged over all incoming directions, v̂. Thus, the average curent is

j(r, t)∼ 〈vx u(T (r−λ v̂))〉−〈vx u(T (r))〉 ∼ cV vλ
∂T (r)

∂x
.

1assuming there is no other transport mechanism at play except conduction
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The conductivity depends on temperature via its dependence on the specific heat,
root mean square velocity v and mean free path of the carriers on temperature. For
an ideal gas this goes as

√
T .

Figure 2: Random flight of a particle. The particle considered (in Black) under-
went a collision (random event) with another (in Grey) to reach position ~r with
velocity~v.

This argument underscores that in essence, Fourier’s law can be derived if
we assume the dynamics of the heat carriers (phonons for an insulating solid,
molecules for a fluid) to be a Markovian random walk: with correlations extend-
ing only as far back as the last collision. This assumption is not fully justified, and
is in fact not always true, and the resulting transport is not always diffusive.

Let us assume that an one dimensional system has reached a nonequilibrium
steady state between baths at temperatures T,T +∆T at its two ends i.e. the current
density j is independent of space and time. Then we have a precise definition of
thermal conductivity at temperature T, for system length L as

κ(T ) = lim
L→∞

lim
∆T→0

jL
∆T

. (1.2.3)

If this limit (in this order) does not exist, then the system does not obey Fourier’s
law. This means the current does not scale as L−1 for arbitrarily small temperature
differences. The anomalous exponent α , defined as the scaling κ ∼ Lα , is non-
zero.

Another expression for thermal conductivity, in the thermodynamic limit, with
small temperature gradients (characteristic of linear response results) is the Kubo−
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Green formula [17], given by

κ(T ) =
1

2T 2 lim
t→∞

lim
L→∞

∫ t

0
dt ′

∫ L

0
dx 〈 ĵ(x, t ′) ĵ(0,0)〉eq (1.2.4)

The right hand side is an average over equilibrium distribution at T of the current
density ĵ expressed as a function of microscopic degrees of freedom, for instance
all phase space variables of constituent particles. In terms of the space-integrated
current q̂(t) =

∫
∞

−∞
dx ĵ(x, t),

κ(T ) =
1

2T 2

∫
∞

0
dt ′ lim

L→∞

1
L
〈q̂(t ′)q̂(0)〉eq.

Note that the order of thermodynamic and long time limits is the same as in (1.2.4).
Anomalous heat transport can now be seen as the result of long-time tails, or
power-law decay of equilibrium current fluctuations.

Before proceeding, a few remarks on the derivation of the Kubo-green for-
mula. [7] [10] have derivations which usually begin by assuming Fourier’s law to
be valid, or model temperature gradients as a perturbation to the Hamiltonian of
the system, thereafter proceeding with standard techniques of linear response. I
will present a derivation using the steady-state fluctuation theorem in Section 2.5.
Local thermal equilibrium is assumed in all the derivations, however the deriva-
tion presented here has the advantage of having only one more assumption: the
coupling to heat bath is Markovian, which is rather plausible.

In light of the above general discussion, it is seen that the thermal conduc-
tivity is divergent for many one or two dimensional models, and even in higher
dimensions the necessary and sufficient conditions for its validity are not fully
known. I reviewed three models, the first of which is the Rieder-Lieb-Lebowitz
[11] model. This is simply a collection of nearest-neighbour coupled harmonic
oscillators, with baths modelled by a Gaussian white-noise force acting on the
ends (Langevin dynamics). As the energy of each normal mode is conserved, and
the modes extend over the full length of system, the current does not decay with
length, and conductivity is divergent with α = 1, which will be demonstrated in
Section 3.1, with exact solution for the steady state phase space distribution. The
temperature across the bulk of the system is constant at the mean of bath temper-
atures. A similar model is the one-dimensional fluid of identical hard spheres that
undergo elastic collisions among each other, and collisions with the walls lead
to reflection with a random velocity drawn from Maxwellian distribution. This
model has the same anomalous exponent, again due to absence of scattering of
heat carriers.
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To model more realistic solids, disorder is introduced in the above model [12].
The masses are taken to randomly distributed. As all the normal modes may be lo-
calized [19] in two or lower dimensions, only the low frequency modes, extending
over lengths of the order of system size, contribute to heat flow. Section 3.2 begins
with an estimation of localization lengths of modes, then proceeding to evaluate
currents. If the end particles of the system are pinned via springs, the anomalous
exponent is found to be α = −1/2, the system behaves as an insulator. In the
limit of weak-noise, the temperature profile is also known, and is found to vary
between the bath temperatures. This model also has a continuum (elastic string)
analogue [14], which can be considered with free boundary conditions. The disor-
der is here is equivalent to a random ”refractive index” for the longitudinal waves.
The energy current can be related to the transmission coefficients for the system,
which can be readily estimated. It is found to decay as

√
L, or α = 1/2.

Finally, I will consider the disordered two dimensional Lorentz gas with the
baths being Maxwellian [16]. The system consists of a box of non-interacting
particles with fixed hard sphere scatterers. The particles move freely between
scatterers, and undergo elastic collisions. It will be shown that there is no local
thermal equilibrium, for any configuration of scatterers. The disorder is intro-
duced over scatterer configurations. For this system, in the limiting case of high
density scatterers with their radius tending to zero, such that the mean free path of
gas particles is kept constant, the current density is found to be inversely propor-
tional to L, validating Fourier’s law.

1.3 Entropy, entropy production, entropy flow
Let us conclude this chapter with the most widely used definition of entropy and
its time evolution for a Markov chain. The quantities defined below will be useful
in the next chapter.

Consider a Markov chain, ranging over discrete configurations (denoted by
C,C′ etc.) and continuous time t . The dynamics is given by the transition matrix
w(C,C′), the (time-independent) rate of transition from C′ to C. If p(C, t) denotes
the probability of being in state C at time t, the rate equation is

ṗ(C, t) = ∑
C′

w(C,C′)p(C′, t). (1.3.1)
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The Gibbs-Shannon entropy will be a frequently encountered quantity in the
thesis, and it is worthwhile to explore its time evolution. It is defined by

S(t) =−∑
C

p(C, t) ln p(C, t) (1.3.2)

Its time derivative

Ṡ(t) =−∑
C

ṗ(C, t)[1+ ln p(C, t)] =−∑
C

ṗ(C, t) ln p(C, t)

=−∑
C,C′

w(C,C′)p(C′) ln p(C)

=−∑
C,C′

w(C,C′)p(C′) ln
p(C)w(C′,C)

p(C′)w(C,C′)
+ ∑

C,C′
w(C,C′)p(C′) ln

w(C′,C)

p(C′)w(C,C′)
.

Symmetrizing the first term by interchanging C,C′

Σ(t) =
1
2 ∑

C,C′
[w(C′,C)p(C)−w(C,C′)p(C′)] ln

p(C)w(C′,C)

p(C′)w(C,C′)
≥ 0 (1.3.3)

which can be called entropy production. Analogous term is seen in Boltzmann’s
H-theorem, which indeed concerns relaxation to equilibrium and irreversibility
(but for a deterministically evolving system). The second term

∑
C,C′

w(C,C′)p(C′) ln
w(C′,C)

p(C′)w(C,C′)
=−∑

C,C′
w(C,C′)p(C′) ln p(C′)

+ ∑
C,C′

w(C,C′)p(C′) ln
w(C′,C)

w(C,C′)

of which the first vanishes as it contains a column-sum of rate matrix. The re-
maining term

JS(t) = ∑
C

p(C, t)∑
C′

w(C′,C) ln
w(C′,C)

w(C,C′)
(1.3.4)

can be called entropy flow, and is of the form of average of the inner summation.
It can be interpreted as follows:

ln
w(C′,C)

w(C,C′)
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is the entropy transfer for C → C′ transition, as a measure of how likely is the
backward transition compared to the forward, in a logarithmic scale. The inner
sum weighs them over the rate of the forward transition, the outer sum over initial
probabilities.

Together,
Ṡ(t) = Σ(t)− JS(t) (1.3.5)

There is however some arbitrariness in the above identifications, as any positive
term with a dependence on p similar to (1.3.4) can be added to both terms2. Such
choices are made depending on system under consideration. In steady state,

Ṡ(t) = 0, Σ(t) = JS(t).

2linear positive functional of the distribution p, to be precise.
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2 Stochastic Thermodynamics

2.1 Fluctuation theorems in the canonical ensemble
Let us consider a system described by micro-states {1,2, ...}, and their respective
energies {E1(λ ),E2(λ )...}, parametrised by a work-parameter λ . This could, for
instance be the position of a piston for a volume of gas, the parameters appearing
in potential for a trapped particle, the length of a macromolecule that is being
stretched, applied magnetic field on a spin system or the voltage applied to an
electrical circuit. We will consider processes in which this parameter is externally
varied with time according to prescribed protocol. The system is in contact with
a heat reservoir at inverse temperature β .

Figure 3: An example of a driven process. The position of left end λ of the spring-
mass system is an example of a work parameter. The whole system is immersed
in a heat bath.

The dynamics of the system is given by a discrete-time Markov process X(t)3.
Also the energy levels of the system vary with time, via the change of the work-
parameter. We denote the probability of the system being in state j at time t by
Pj(t), and probability of the transition event4 from initial (i,λ (t)) to final ( j,λ (t+
1)) as P{i,λ (t)→ j,λ (t +1)}. The Gibbs distribution

ρ j(λ ,β ) =
e−βE j(λ )

∑i e−βE j(λ )
(2.1.1)

is assumed to be the invariant distribution of the process, and the transition rates
obey detailed balance with respect to this distribution,

ρi(λ ,β )P{i
λ−→ j}= ρ j(λ ,β )P{ j λ−→ i}. (2.1.2)

3t should be thought of as a multiple of some small time, say τ , over which state of system
undergoes an appreciable change

4this is a probability conditioned on the initial state
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Further bits of notation for the equilibrium partition function and free energy are
Z(λ ,β ) = ∑i e−βE j(λ ) and F(λ ,β ) = −1

β
logZ(λ ,β ). For a transition (i,λ (t))→

( j,λ (t +1)), the heat exchanged (into the system) and work done (on the system)
are defined to be

∆Q = E j(t +1)−Ei(t +1), ∆W = Ei(t +1)−Ei(t) (2.1.3)

i.e heat exchanges are due to transitions between energy levels, where as work
done are due to changes in energy of a fixed state, and their sum can be verified
to be the total energy change of system E j(t +1)−Ei(t) in the transition. These
definitions can be extended to realizations of a process by summing over all the
transitions involved.

Consider a realization of a process, over time span 0,1, ...,T ,

[x] = (x0,λ0)→ (x1,λ1)→ (x2,λ2)→ . . . → (xT−1,λT−1)→ (xT ,λT )

from an ensemble of realizations in which the protocol for changing the work-
parameter is fixed to be λ0→ λ1→ λ2→ . . . → λT−1→ λT . Then the realization
can be equivalently described as

[x] = x0
λ1−→ x1

λ2−→ x2 . . . xT−1
λT−→ xT

so that each transition takes place at fixed value of work parameter and only heat
is exchanged5. We can define the time-reversed realization of this, for the time-
reversed protocol of changing the work parameter, to be

[x̄] = xT
λT−→ xT−1

λT−1−−−→ xT−2 . . . x1
λ1−→ x0

Now, consider the ratio of probabilities of observing the forward realization (with
fixed initial state) to the backward realization (with fixed final state), in their re-
spective ensembles. Due to Markov property

P{[x]|x0}
P{[x̄]|xT}

=
P{x0

λ1−→ x1}P{x1
λ2−→ x2} . . . P{xT−1

λT−→ xT}

P{xT
λT−→ xT−1}P{xT−1

λT−1−−−→ xT−2} . . . P{x1
λ1−→ x0}

(2.1.4)

5the works are done when the system is in the same state and and can be given step label of
half integers i.e. ∆Wn+ 1

2
is the work done in nth step
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and the detailed balance condition (2.1.2),

P{[x]|x0}
P{[x̄]|xT}

=
T−1

∏
n=0

ρxn+1(λn+1)

ρxn(λn+1)
=

T−1

∏
n=0

exp[−β{Exn+1(λn+1)−Exn(λn+1)}] = e−βQ[x]

(2.1.5)
where Q[x] is the total heat exchanged in course of the forward process. This
identity is due to Crooks [1]], from which many results follow as corollaries.

For a functional of the realizations F , the average includes an average over
the Gibbs distributed initial conditions as well

〈F 〉 f wd = ∑
x0

∑
[x]

F [x]P{[x]|x0}ρx0(λ0,β )

This is an average over forward realizations of a process. The average over back-
ward realizations is

〈F 〉bkwd = ∑
xT

∑
[x̄]

F [x̄]P{[x̄]|x0}ρxT (λT ,β )

Using the ratio

P{[x]|x0}ρx0(λ0,β )

P{[x̄]|x0}ρxT (λT ,β )
= e−βQ[x] e−βEx0(λ0)

e−βExT (λT )
e−β∆F = eβ (W [x]−∆F) (2.1.6)

and defining the time-reversal conjugate of the functional as F̄ [x] = F [x̄], it fol-
lows

〈F 〉fwd = 〈F̄ e−βWe〉bkwd, (2.1.7)

where We[x], referred to as the excess or dissipative work, is the difference of work
expenditure of the given process and a process between the same thermodynamic
states carried out reversibly.

We[x] = W [x]− (F(λT ,β )−F(λ0,β )) = W [x]−∆F (2.1.8)

β∆E−β∆F is the (total) entropy change of the system, of which βQ is ac-
counted for as inflow from the bath. Thus We[x] = β∆E − β∆F − βQ is the
entropy produced in the system, due relaxations at time scales much smaller com-
pared to changes in the work parameter.

Substituting delta function of the excess work, and the dissipative work being
odd under time reversal,

F [x] = δ (βWe−Σ), F̄ [x] = δ (βWe +Σ),

11



one obtains
Pfwd(Σ)

Pbkwd(−Σ)
= eΣ. (2.1.9)

This expression, in terms of entropy production, is perhaps the most frequently
found form of the fluctuation theorem. It is a quantification of the exponentially
low probability of observing negative entropy productions, sometimes mislead-
ingly called ”Second law violation”.

In terms of work done, it follows that the ratio of probabilities of observing
a value of work W in a process, to that of observing the value −W in the re-
versed process, is again eβ (W −∆F). The two probabilities are same for a reversible
process, their common value being ∆F .

Lastly, F = 1, results in the famous Jarzynski6 relation.

〈e−βW 〉= e−β∆F (2.1.10)

The second law of thermodynamics, as in W ≥ ∆F , is an immediate consequence
of Jensen’s inequality, with W as the average work. The Jarzynski relation is
sometimes used in reverse, to estimate free energy from nonequilibrium work
measurements or simulations.

2.2 Jarzynski’s Equality in absence of heat bath

Figure 4: Compression or expansion of a box of gas as the position of piston λ is
changed. The system is initially prepared at inverse temperature β , then isolated
by adiabatic walls.

Consider a system, initially in thermal equilibrium at inverse temperature β ,
under going Hamiltonian evolution with (time-dependent) Hamiltonian H(x,λ (t)),

6His original derivation in [2] of the result was for a system undergoing Hamiltonian evolution,
to be discussed in the next section
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where x is the phase space variable (microstate) of the system and λ is the work
parameter as in the previous section, changed over time interval (0,T ). The work
functional is now just a function of initial micro-state (the final state carrying the
implicit dependence on initial state) as

W = H(x(T ),λ (T ))−H(x(0),λ (0))

Then 〈e−βW 〉 can be evaluated as the average over initial states distributed ac-
cording to Gibbs distribution ρ(x,λ (0)),

〈e−βW 〉=
∫

dx ρ(x,λ (0))e−βW (x(0)).

Simplifying,

〈e−βW 〉=
∫

dx ρ(x,λ (0))e−βW (x(0))=
∫

dx
e−βH(x,λ (0))∫

dy e−βH(y),λ (0))
e−βH(x(T ),λ (T ))eβH(x,λ (0))

=

∫
dx e−βH(x(T ),λ (T ))∫
dy e−βH(y),λ (0))

where x,y are both the fiducial integration variables running over the initial micro-
states. Now using Liouville’s theorem to change integration variable in numerator
from x to x(T ), one obtains a ratio of partition functions at initial and final value
of λ , resulting in (2.1.10).

As the derivation demonstrates, the temperature appearing in the relation is the
initial temperature in which system was in equilibrium. The final temperature is a
valid notion only after the system is allowed to equilibrate at time T , with λ held
constant. Also this indicates possible extensions to thermodynamic cycles (heat
engines) between multiple heat baths, as well as other thermodynamic ensembles.

2.3 Fluctuation theorems for nonequilibrium Steady States
Consider a Markov chain, ranging over discrete configurations (denoted by C,C′

etc.) and discrete time (t in 0,1,2...), and an associated observable (often called
”current”) of the form

JT [Ct] =
T−1

∑
t=1

j1(Ct+1,Ct), (2.3.1)

when the process has had the trajectory [C0→C1→C2→ . . . →CT−1→CT ],
with j1 an time-independent function of subsequent states. The dynamics is given
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by the transition matrix M(C,C′), the probability of transition from C′ to C, and
p(C, t) denotes the probability of being in state C at time t. In general, the tran-
sition probabilities do not satisfy detailed balance. After a long time, the system
reaches a unique steady state7, characterised by invariant p∗

∑
C′

M(C,C′)p∗(C′) = p∗(C). (2.3.2)

The quantity of interest is the probability distribution of the current. Since for
physical systems the number of configurations increases exponentially with sys-
tem size, finding it by direct solution for p∗ is, in general, not feasible. However,
for large times the probability distribution for current P(JT ) is expected to have a
large deviation form [3],

P( jT )≈ exp(−T ε( jT )) (2.3.3)

for the scaled variable jT = JT/T . More precisely this means

lim
T→∞

1
T

lnP( jT ) =−ε( j), lim
T→∞

JT

T
= j

To fully exploit this simplification, we need to know the explicit form of the rate
function ε , which has been done only for a few examples. Motivated by the dis-
cussion in Section (1.3), let us consider the function

a1(C,C′) = ln
M(C,C′)
M(C′,C)

.

The resulting current AT , for now called the action functional, is related to the
logarithm of ratio of probabilities of a realization and its time reversal conjugate.
A symmetry property of the resulting rate function is valid independent of the
system under consideration, which I will prove in this section.

The joint probability distribution for action and configuration evolves as

P(C,T ;AT |C0) = ∑
C′

M(C,C′)P(C′,T ;AT −a1(C,C′)|C0). (2.3.4)

The generating function, or Laplace transform with respect to the action

G(C,T ;κ|C0) =
∫

dAT e−κAT P(C,T ;AT |C0)

7we assume the system is ergodic and the steady state is unique
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evolves as

G(C,T ;κ|C0) = ∑
C′

M(C,C′)e−κa(C,C′)G(C′, t;κ|C0). (2.3.5)

Defining the tilted matrix

Mκ(C,C′) = M(C,C′)e−κa(C,C′), (2.3.6)

results in a linear recursion relation for G. All of (2.3.4)-(2.3.6) is valid for any
current and leads to

G(C,T ;κ|C0) = MT
κ (C,C0) (2.3.7)

The specific form of a1 results in the following property of the tilted matrix,

Mκ(C,C′) = M(C,C′)e−κa1(C,C′) = M(C,C′)
M(C′,C)κ

M(C,C′)κ

= M(C,C′)1−κM(C′,C)κ ,

i.e.
Mκ(C,C′) = M1−κ(C′,C). (2.3.8)

The generating function evolves via a linear recursion relation, with the positive
Mκ as the transfer matrix. According to Perron-Frobenius theorem, such matrices
have a positive largest eigenvalue8, which can be denoted as e−φ(κ). This means,
by (2.3.8)

φ(κ) = φ(1−κ). (2.3.9)

Now for large T , using (2.3.3)

G(C,T ;κ|C0) =
∫

dAT e−κAT P(C,T ;AT |C0)

e−T φ(κ) ≈
∫

dA e−κTae−T ε(a)

Steepest descent for the integral means

φ(κ) = min
a

κa+ ε(a), ε(a) = max
κ

φ(κ)−κa (2.3.10)

8additionally, the corresponding eigenspace is one dimensional, and has an eigenvector with
all entries positive
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and (2.3.9) leads to

ε(a) = max
κ

φ(κ)−κa = max
κ

φ(1−κ)−κa = max
κ ′

φ(κ ′)− (1−κ
′)a

=−a+max
κ

φ(κ)−κ(−a),

i.e.
ε(a)− ε(−a) =−a. (2.3.11)

For the probability distribution of current (2.3.3), we obtain (for large T )

P(−a)≈ P(a)e−Ta (2.3.12)

This goes under the name of steady-state fluctuation theorem [4] or the Gallovati-
Cohen9 fluctuation theorem. It is somewhat peculiar to see entropy flow, rather
than entropy production, appearing in such a theorem. However they are equal in
the steady state, and the interpretation as a quantification of irreversibility essen-
tially carries over.

Instead of the above defined action

AT [Ct] =
T−1

∑
t=1

a1(Ct+1,Ct) =
T−1

∑
t=1

ln
M(Ct+1,Ct)

M(Ct ,Ct+1)

= ln
P[Ct]

P[C̄t]
+ ln

p∗(CT )

p∗(C0)
,

consider the related quantity

ΩT [Ct] = AT [Ct]− ln
p∗(CT )

p∗(C0)
,

Which is simply the ratio of probabilities of a realization and its time-reversal
conjugate. The corresponding generating function satisfies

∑
[Ct]

exp(−κΩT [Ct])P[Ct] = ∑
[Ct]

P[Ct]
1−κP[C̄t]

κ = ∑
[Ct]

exp(−(1−κ)ΩT [Ct])P[Ct]

(2.3.13)
means the symmetry relation holds, for all T . This result is referred to as transient
fluctuation theorem. However, for small T , this does not lead to any obvious
relation between probabilities of observables10. I am not aware of any physical
application of this equation.

9originally observed in simulations of deterministically thermostatted systems [5]
10in contrast to the Legendre transform pair (2.3.10)
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2.4 Application to Exclusion Processes
In this section, I will demonstrate the meaning of the action functional for a simple
example. First, consider a ring of L sites, each of which can be occupied by at
most one particle. cx denotes the occupation number of site x. The configurations
of the system is then given by C = (c1,c2, ...,cL). The dynamics (in continuous
time) is governed by rates rx,x+1(C) of the sites x and its nearest neighbour x+1
exchanging their occupancy. Also, Cx,x+1 denotes a configuration differing from
C only by exchange of occupation at site x and x+1, all other sites being same11.

Figure 5: The exclusion process on a ring of length L

If the system is in equilibrium, the steady state distribution, is of the form
peq(C)∼ e−H0(C), where H0 is the Hamiltonian of the system, with no assumptions
about it’s form. The rates satisfy detailed balance

rx,x+1(C)e−H0(C) = rx,x+1(Cx,x+1)e−H0(Cx,x+1).

It is easy to see that, AT is just the difference H(C0)−H(CT ), and the scaled
action a vanishes. Somewhat more general is a situation in which the jumps are
biased, so that after a long time a unique nonequilibrium steady state is achieved.
However, if the driving force is a constant f , a local detailed balance or local
equilibrium is assumed for the rates,

rx,x+1(C)e−H0(C) = rx,x+1(Cx,x+1)e−H0(Cx,x+1)+(cx−cx+1) f .

11in terms of earlier notation w(Cx,x+1,C)) = rx,x+1(C)
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The modified Hamiltonian is H(C) = H0− f ∑x xcx. However, the steady state is
not of the form e−H(C), and there is no detailed balance unless f = 0.

Then,
a1(Cx,x+1,C) = H0(C)−H0(Cx,x+1)+(cx− cx+1) f

Noting that cx− cx+1 is 1 if a particle jumps from x to x+1 and −1 if vice-versa,
the action is, ignoring boundary terms H0(C0)−H0(CT ),

AT = f
T

∑
jumps

∑
x

jx,x+1

where jx,x+1 is local current across the bond, which summed over sites x gives
total current upto time T . This relation between action and current holds only
in local equilibrium regime, otherwise the force f has no direct relation to the
transition rates or the quantity a1. The fluctuation theorem here is a statement
about the probability of a value of current to the probability of the negative of that
value, for large times.

Next, instead of a ring, consider the system connected to two different reser-
voirs at either end. N(C) will denote the number of particles in configuration C,
Cx the configuration different from C only at a boundary site x ∈ {1,L}, rx(C) the
rate of such transition, i.e of inserting or removing particles from system at the
boundaries, leaving others unchanged.

Figure 6: The exclusion process driven by reservoirs of different chemical poten-
tials at boundaries

Detailed balance in the bulk means, for x,x+1 6= 1,L

rx,x+1(C)e−H0(C) = rx,x+1(Cx,x+1)e−H0(Cx,x+1),

and local detailed balance at boundary means

rx(C)e−H0(C) = rx(Cx)e−H0(Cx)eµx(1−2cx),
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µ1,µL being the chemical potentials of the respective reservoirs. A nonequilib-
rium steady state will be obtained only if the chemical potentials are unequal.
Then,

a1(C′,C) =


H0(C)−H0(Cx,x+1) jump in the bulk
H0(C)−H0(C1)+µ1(N(C1)−N(C)) jump at the left bath
H0(C)−H0(CL)+µL(N(CL)−N(C)) jump at the right bath

and with currents j1 out of the left bath and jL into the right bath,

AT = ∑
jumps

[µ1 j1−µL jL].

Again, boundary terms H0(C0)−H0(CT ) are ignored. In the steady state, the rate
of particles entering equals those exiting and

AT = (µ1−µL) ∑
jumps

j1.

2.5 Application to heat conduction

Figure 7: One-dimensional rod of length L between heat baths at differing tem-
peratures

The system under consideration in this section is a one dimensional solid rod
connecting two reservoirs at inverse temperatures βr > βl , with ∆β = βr − βl .
Let j(t) be the heat current at time t, and Q(t) =

∫ t
0 dt ′ j(t ′) the total heat flow

upto time t. A steady state is assumed to be reached, when heat input at the
left end equals heat output at right, and the corresponding entropy exchanged are
−βlQ,βrQ respectively. This means the entropy produced till time t is

Q(t)(βr−βl) (2.5.1)
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This, also is the action functional once the steady state is reached. Assuming the
coupling to heat baths is sufficiently weak so that dynamics remains Markovian,
for the scaled variable j = Q/t, in the long time limit, the steady state fluctuation
theorem implies,

ε( j,∆β )− ε(− j,∆β ) = ∆β j, (2.5.2)

where ε( j,∆β ) is the large deviation function for the scaled current (instead of the
entropy production itself). Accounting for the factor ∆β , the generating function
G(t,λ ) = 〈exp(−λQ)〉 satisfies

G(t,λ ,∆β )≈ e−tφ(λ ,∆β )

φ(λ ,∆β ) = φ(∆β −λ ,∆β ) (2.5.3)

As G was the cumulant generating function, φ(λ ) has a power series expansion

−tφ(λ ,∆β ) =
∞

∑
n=1

(−λ )n

n!
〈Qn〉c

where the cumulants depend on the temperature difference. For small temperature
difference and λ , expansion upto second order is

φ(λ ,∆β ) = φ
′(0,∆β )λ +φ

′′(0,∆β )
λ 2

2

φ(∆β −λ ,∆β ) = φ
′(0,∆β )(∆β −λ )+φ

′′(0,∆β )
(∆β −λ )2

2
.

where ′ is the derivative with respect to the first argument. Equating the coeffi-
cients of λ

2φ
′(0,∆β ) =−φ

′′(0,∆β )∆β

Expanding the left hand side with respect to ∆β again, and ignoring second order
terms

2φ
′(0,∆β ) =−φ

′′(0,0)∆β .

In terms of current correlations, the right side is the nonequilibrium steady state
average −2〈Q〉/t, where as the left side is the equilibrium (no temperature gradi-
ent) correlation −∆β 〈Q2〉eq/t, which can be expressed as

〈Q2〉eq =
∫ t

0
dt1dt2 〈 j(t1) j(t2)〉eq = t

∫ t

0
dt ′ 〈 j(0) j(t ′)〉eq,
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using the time-translation invariance of equilibrium correlations.
Combining and expressing in terms of reservoir temperature T and difference

∆T , we get the Kubo-Green formula for conductivity

κ(T ) = lim
∆T→0

jL
∆T

=
1

2T 2

∫
∞

0
dt ′

∫
∞

0
dx 〈 j(x, t ′) j(0,0)〉eq. (2.5.4)

In fact many of the linear response results, which relate nonequilibrium aver-
ages (or transport coefficients) to equilibrium correlations, can be obtained from
symmetry properties of large deviations. Heat conduction, however, is peculiar in
the sense that temperature gradients can not be introduced as perturbations to the
system’s Hamiltonian (unlike an electric field, say). Many alternate derivations
of the Kubo-Green formula for thermal conductivity either rely on such pseudo-
perturbations [10], or tacitly assume diffusive heat flow [7].

2.6 Conclusion
The entropy produced till time t, denoted by Σt , in the steady state, in a variety of
systems under going Markov evolution, was found to obey

Prob(Σt)

Prob(−Σt)
� eΣt .

It means trajectories leading to overall decrease in entropy are exponentially un-
likely. However for small systems, where the values of entropy production (com-
pared to 1 in the units of our choice) are small, such trajectories can be observed
and form the basis a large body of experimental work [6].

The identification and interpretation of entropy production varies. In some
contexts it can be related to work, which leads to a nonequilibrium extension of
the second law of thermodynamics, in the form of Jarzynski relation. For the ex-
clusion process on a ring the entropy production is proportional to the bulk driving
force times total particle current, provided a form of local detailed balance relates
the force to the transition rates. In case of boundary driven exclusion process, it
is difference of chemical potentials of the two reservoirs times the current. For
a conductor between a hot and a cold reservoir, assuming steady state and local
thermal equilibrium, a similar identification with difference of inverse tempera-
tures times current can be made.
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3 Heat conduction in low-dimensional systems

3.1 The harmonic chain
Consider N oscillators, with harmonic nearest neighbour interactions of equal nat-
ural frequency ω , the first and last of which are coupled to Langevin baths at tem-
peratures Tl and Tr respectively, with the same dissipation constant γ . The mass
of every oscillator is the same and is taken to be unity.

Figure 8: A chain of harmonic oscillators, between heat baths of different temper-
atures.

For co-ordinates qn denoting displacement about equilibrium position of nth
oscillator, and the corresponding momenta pn, the equations of motion are,

q̇n = pn n = 1,2, ...N

ṗn =−ω
2

N

∑
n=1

Gnmqm n = 2,3, ...N−1

ṗn =−ω
2

N

∑
n=1

Gnmqm− γ pn +Rnη(t) n = 1,N

where η(t) is the Gaussian white noise of unit strength satisfying 〈η(t)η(t ′)〉 =
δ (t− t ′) and R2

1 = 2γTl , R2
N = 2γTr, by the Einstein fluctuation-dissipation rela-

tion. The tridiagonal N×N matrix G is given by, 2’s along the diagonal and −1’s
along both the first semi-diagonals, with all other entries zero. Similarly, let

Γ = diag[γ,0...0,γ] R = diag[R1,0...,0,RN ].

Then the equations can be cast in a matrix form, for columns q=(q1,q2, ...,qN), p=
(p1, p2, ..., pN), (

q̇
ṗ

)
=

(
0N IN
−ω2G −Γ

)(
q
p

)
+

(
0N 0N
0N R

)
η(t).
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One can solve this linear matrix-differential equation by use of integrating fac-
tor, but even without explicitly doing so it can be seen that the solution is a lin-
ear combination of Gaussian driving terms η(t). Thus the solution is a family
(parametrised by t) of Gaussian random variables. Without directly dealing with
exponentiation of large matrices, an alternate solution exploits this fact.

This set of Langevin equations are equivalent to a Fokker-Planck equation, for
phase space density ρ(x, t), x = (q,p),

∂ρ(x, t)
∂ t

= ∇(Axρ(x, t))+
1
2

∇(B∇ρ(x, t))

Where ∇ is the phase space gradient ( ∂

∂q1
, ∂

∂q2
, ..., ∂

∂qn
, ∂

∂ p1
, ∂

∂ p2
, ..., ∂

∂ pn
) and

A =

(
0N −IN

ω2G Γ

)
B =

(
0N 0N
0N R2

)
.

Since the general solution to this equation is a multivariate Gaussian, we take the
steady-state solution to be of the form

ρ(x) =
1

(2π)Ndet(S)
exp[−1

2
〈x,S−1x〉].

The correlations are given by the matrix

S(Tr,Tl) =

(
Sqq Sqp
Spq Spp

)
.

It is useful to express the bath temperatures by their average T = (Tl +Tr)/2 and
(half of) relative difference θ = (Tl−Tr)/2T . Also, define dimensionless relative
strength of couplings ν = ω2

γ2 . Substituting the Gaussian in the Fokker-Planck
equation and solving for elements of S, which is algebraically non-trivial, but
was accomplished by Rieder, Lieb, and Lebowitz [11], by virtuoso use of linear
algebra, yields the correlations in terms of Chebyshev polynomials. The result is
conveniently expressed after subtracting the equilibrium correlations S(θ = 0,T ),
which is the Gibbs distribution at temperature T ,

ρ0(q,p)∼ exp[−〈p,p〉
2T

] exp[−ω
2 〈q,Gq〉

2T
].

This means that the position-momenta correlations vanish and

S−1
qq (0) = ω

2 G
T

S−1
pp (0) =

IN

T
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Let

X =
ω2

θT
[Sqq(θ)−Sqq(0)] Y =

1
T θ

[Spp(θ)−Spp(0)]

Z =
γ

θT
Sqp(θ) .

The result by Rieder, Lieb ,Lebowitz is

Z =


0 ϕ1 . . . ϕN−1
−ϕ1 0 ϕ1 . . .
...

. . .
. . .

. . .

−ϕN−1 . . . −ϕ1 0

 X =


ϕ1 . . . ϕN−1 0
ϕ2 . . . 0 −ϕN−1
... . .

.
. .
. ...

0 −ϕN−1 . . . −ϕ1


Y = νX +diag[1,0, . . . ,0,1],

where

coshα = 1+
ν

2
ϕl =

sinh(N− l)α
sinhNα

.

For large N,

ϕl = e−lα e−α =
ν

2
+1−

√
4ν +ν2.

The local temperature near nth site is given by (Spp)nn, the local kinetic en-
ergy, which in the limit of large N turns out to be,

Tn =


T [1+θ(1−νϕ1)] n = 1
T [1−θν ϕ

2n−1
1 ] 1 < n≤ N/2

T [1+θν ϕ
2(N−n)−1
1 ] N/2 < n < N

T [1+θ(1−νϕ1)] n = N

which is plotted below, for coupling parameters ν = 0.05, 0.2, 1.0 (solid, dotted
and dashed lines, respectively). It is almost constant in the bulk, even for as few
as 16 oscillators, due to exponential dependence on distance from the nearest end.
Another peculiar feature is that the minimum (maximum) temperature is obtained
closer to the bath with a higher (lower) temperature. The deviations at these points
from the bulk temperature increases with increasing coupling strength.
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Figure 9: Steady state temperature profile of harmonic solid, from [10]

Defining the energy at site l as sum kinetic energy and half of the potential
energies of interaction with both neighbouring sites, the energy current from l to
l +1 in steady state is

〈 jl+1,l〉= ω
2〈pl+1ql− pl+1ql+1〉=

θT
γ

Zl,l+1 =
Tr−Tl

γ
ϕ1.

It is proportional to the temperature difference, not the gradient, in stark violation
of Fourier’s law. Equivalently, the conductivity κ is proportional to N, and di-
verges in the large N limit considered. This happens for the following reason: as
all the springs and masses are identical, any disturbance (say, a pulse or a normal
mode oscillation) arising due to driving at one end propagates to the other end
without changing its amplitude and velocity, and carries all of its initial energy to
the other end at a fixed rate. This means the current density does not decay with
length, and hence the infinite conductivity.

3.2 Mass disordered solids
If the masses in the system in Section 3.1 are allowed to be random, many essen-
tial aspects of the problem are changed. A novel phenomena called localization
comes into play [19], meaning that a normal mode has displacement profile qn
centred around some n0, decaying exponentially with increasing distance from it.
Borrowing notations from Section 3.1, but including the masses mn of nth oscil-
lator, taken to be independent and identically distributed random variables, and

25



setting the natural frequency to unity, the normal mode of frequency ω satisfies,

−mnω
2un = un−1 +un+1−2un, (3.2.1)

where un denotes displacement of nth oscillator, for n 6= 1,N. This is equivalent
to a linear recursion (

un+1
un

)
=

(
2−mnω2 −1

1 0

)(
un

un−1

)
(3.2.2)

The transfer matrix here is a random matrix. Furstenberg’s theorem [13] states
that, the norm12 of a product of random matrices acting on any nonzero vector,
MnMn−1 . . .M1v, has exponential n dependence as n→ ∞ with probability 1, pro-
vided

i. They all have unit determinant.

ii. The smallest closed matrix subgroup containing all the matrices which have
non-zero probability of appearing, say G, is not bounded as a subset of all
2×2 matrices.

iii. No subgroup of G having finitely many cosets is left invariant under action
of itself.

These hypotheses hold if there are atleast two different masses [12]. Thus there
exists ξ > 0, such that

E
[

ln
∣∣∣ uN

uN−1

∣∣∣]= ξ
−1.

Here and henceforth, E denotes average over the realizations of the random masses.
To estimate ξ , let zn =

un
un−1

, then (3.2.1) means,

zn+1 = 2−mnω
2− 1

zn
. (3.2.3)

The masses, mn are independently drawn from a distribution µ(m), with mean m̄,
variance σ2

m. To find ξ−1 = limn→∞ n−1E[ln|zn|], first change variables to

z =
cos(θ +α)

cosθ
, cosα = 1− ω2m̄

2
. (3.2.4)

12sum of squares of components
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then

cos(θn+1 +α)

cosθn+1
= cosα− sinα tanθn+1 = 2−mnω

2− cosθn

cos(θn +α)
,

tanθn+1 =
cosα

sinα
+

1
sinα

cosθn

cos(θn +α)
− 2−mnω2

sinα

=
cosα

sinα
+

1
sinα

cosθn

cos(θn +α)
+

(mn− m̄)ω2

sinα
+

ω2m̄]−2
sinα

=
1

sinα

cosθn

cos(θn +α)
− cosα

sinα
+

(mn− m̄)ω2

sinα

=
1

sinα

cos(θn +α)cosα +(sinθn +α)sinα

cos(θn +α)
− cosα

sinα
+

(mn− m̄)ω2

sinα

Thus the recursion relation is given by,

tanθn+1 = tan(θn +α)+
(mn− m̄)ω2

sinα
. (3.2.5)

Let the inverse of this relation be of the form θn = h(θn+1,mn,ω). For large n,
the disorder averaged distribution f (θ ,ω) is expected to remain invariant. This
means

f (θ ,ω) =
∫

dm µ(m) f (h(θ ,m),ω)
dh(θ ,m,ω)

dθ
(3.2.6)

and

ξ
−1 =

∫
dθ f (θ ,ω) ln

∣∣∣cos(θ +α)

cosθ

∣∣∣.
Using expansion of h in powers of ω to determine coefficients of the expansion of
f in ω , the inverse correlation length, in leading order for ω → 0 is found to be

ξ
−1 =

σ2
m

8m̄
ω

2. (3.2.7)

As only extended modes i.e modes with ξ of the order of system size, contribute
to energy transport, this turns out to be an important quantity. This means a nor-
mal mode of frequency ω is extended (ξ ∼ N) if ω . N−1/2. Now for small
frequencies the number of modes is almost uniformly distributed in wave number
k, with a density proportional to N−1. Thus, the number of extended modes is of
the order

√
N.
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Now by method similar to the one outlined in Section 3.1, (changing qn →
qn
√

mn, pn = pn/
√

mn), in the weak-noise limit γ → 0, the temperature profile is
found to be

Tn =
N

∑
k=1

un(k)2 Tlu1(k)2 +TruN(k)2

u1(k)2 +uN(k)2 , (3.2.8)

with un(k) the nth component of normal mode k. This is not a closed form solu-
tion, since analytic expressions for normal modes is not known. In fact, it is known
from numerical experiments that the temperature profile does not converge to an
average in the thermodynamic limit N→∞, or temperature realizations (over dis-
orders) are not self-averaging [10].

In steady state, energy current is just the work done on first particle by the
bath,

j(L) =
γ

m1
(Tr−T1) = γ(Tl−Tr)

N

∑
k=1

u1(k)2uN(k)2

u1(k)2 +uN(k)2 . (3.2.9)

Assuming the low frequency extended modes are given by their ordered counter-
part

un(k) =

√
2m̄

N +1
sin(

nkπ

N +1
),

it can be seen that each amplitude is of the order k/N
3
2 , the sum being upto

√
N of

these modes. Thus size dependence of current density is N−3/2, the conductivity
N−1/2 and the system is an thermal insulator.

Let us consider the continuum analogue [14], longitudinal oscillations u(x, t)
of a string of length L, free to move at both ends. The wave equation for monochro-
matic u(x)e−iωt , can be written assuming a space-dependent propagation speed
c(x)

d2u(x)
dx2 +

ω2

c2(x)
u(x) = 0, (3.2.10)

the wavenumber k = ω/c, with c being the propagation speed in absence of dis-
order. The mechanical analogue of refractive index, n(x) = c/c(x), is the quantity
that relates directly to mass disorder, via mass density m(x), c(x)∼ 1/

√
m(x) and

n2(x)∼ m(x). Subtracting off the value in absence of disorder, let

y(x) = n2(x)−1.

This is a random field13, and if E denotes an average over disorder, E[y] = 0. The

13defined over all real x, though only [0,L] part is relevant
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field will be assumed to be Markovian, with range [−1/2,+1/2] (corresponding
to the range masses of discrete system being some [m−δ ,m+δ ]).

If a wave of incident amplitude is incident from right at x = 0,

u(x) = eikx +R(k,L)e−ikx, u(x) = T (k,L)eikx (3.2.11)

are the waves to right of x = 0, and left of x = L, where R(k,L),T (k,L) are the
reflection and transmission coefficients. The boundary conditions are continuity
of u(x),u′(x) at both ends.

Defining

φ(k,x) =
1
2

e−ikx[u(x)+
1
ik

u′(x)] ψ(k,x) =
1
2

eikx[u(x)− 1
ik

u′(x)],

the second order wave equation is now a coupled pair of linear first order ordinary
differential equations,

d
dx

(
φ(k,x)
ψ(k,x)

)
=

1
2

iky(x)
(

1 e−2ikx

−e2ikx −1

)(
φ(k,x)
ψ(k,x)

)
(3.2.12)

with
φ(k,0) = 0, φ(k,L) = T (k,L),

ψ(k,L) = 0, ψ(k,0) = R(k,L).

The choice of white noise Langevin bath at temperature Tl to left is tanta-
mount to assuming equal number of waves of any frequency are incident, and the
fluctuation-dissipation theorem means this number is proportional to Tl . There is
no loss of generality in assuming no waves are incident from right of x = L, thus
The right bath can be assumed to have temperature zero.

The energy transmitted for each k is proportional to square of amplitude of
transmitted wave, and thus the energy current is their sum over all k, weighted by
the number of incident waves of each k. Averaging this over disorder,

j(L) = cTl

∫
dk E[|T (k,L)|2].

As the localization length for a mode with wave number k is of the order k−2

for small k, the suitable scaling limit is taken holding the number of extended
modes constant k→ k/

√
L, L→ ∞. Thus

j(L)∼ lim
L→∞

∫
∞

0

dk√
L

E[|T (k/
√

L,L)|2] (3.2.13)
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Now from (3.2.3), a bound can be obtained via large-deviation properties14 of the
Markov field y.

E[|T (k,L)|2] ≤ A exp(−g(k)L),

with a positive function g, constant A, with the leading order dependence of g(k)
as k2. Then

lim
L→∞

∫
∞

0
dk E[|T (k/

√
L,L)|2] < ∞ (3.2.14)

. Thus j(L) ∼ L−1/2 and Fourier’s law is not valid. Also, the size dependence
continues to remain the same for any other choice of frequency spectrum I (ω)
of baths, as long as

lim
L→∞

∫
∞

0
dk I (ω) E[|T (k/

√
L,L)|2] < ∞.

The size dependence of conductivity is

κ(L)∼
√

L .

3.3 The disordered Lorentz gas
Consider a rectangular box in the plane, bounded by lines x = 0, x = L, y =
−B, y = B. Inside the box there are circular scatterers of radius a, centred at
r1,r2, . . .r j . . . , which may overlap over each other. The gas consists of non-
interacting point particles of unit mass, evolving according to Newton’s Laws in
the interior i.e undergoing elastic collisions with scatterers as well as the top and
bottom walls. Their interactions with left and right walls are prescribed as fol-
lows: on reaching x = 0, x = L the particle is reflected with a speed drawn from
distribution ρl(v), ρr(v) respectively, independent of its incoming velocity or po-
sition of impact. A particular case would be the distributions being Maxwellians,
and it would model heat baths that interacts so strongly with the gas particles as
to thermalize it instantly.

The scattering centres are randomly distributed. Assuming translation invari-
ance (let the scatterers be all over the plane, though only the box is relevant to the
problem), locations of the scattering centres is a Poisson point process. A config-
uration in which all scatterers are only in a horizontal strip would mean infinite
thermal conductivity due to free flow of gas between reservoirs, and such distribu-
tions with long range correlations are automatically excluded. For the rest of the

14This is the continuum analogue of Fustenberg’s theorem [15]
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Figure 10: The Lorentz gas

discussion, let us assume the limit of large B. Then averaging over this disorder
can be interpreted as average over a large number horizontal strips of height small
compared to B but large enough to have no correlations across.

Let R denote a realization of the disorder. For a fixed R, the particle undergoes
deterministic evolution in the bulk and near the insulating boundaries, while at
the conducting boundaries the state (position and momentum) of a particle at the
next instant is independent of initial momentum, the position dependence being
deterministic. The process overall is Markovian.

The steady state number density n(x,y) is uniform, and can be taken to be
unity. If the trajectories are assumed to originate or terminate at the conducting
walls, steady state distribution must be a constant along each trajectory (qt ,vt)

(R),
a consequence of Liouville’s theorem. Given position q, velocity v, let p(R)l (q,v)
denote the probability of the trajectory passing through this point having orig-
inated at the left wall, and p(R)r (q,v) the similar probability for the right wall.
These probabilities depend only on the direction v̂. Then the steady state15 is

f (R)(q,v)∼ p(R)l (q, v̂)ρl(v)+ p(R)r (q, v̂)ρr(v) (3.3.1)

Note that even for Maxwellian baths, the steady state distribution is not a
Maxwellian. Hence there is no local thermal equilibrium.

A new process can be defined such that the probability of a phase space trajec-
tory is the probability of the trajectory for a fixed R, averaged over all realizations

15Not unique, due to presence of trajectories that never reach either of the conducting walls.
However, the measure of scatterer configurations {R} for which such trajectories exist, in the limit
considered, goes to zero.
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of R, referred to as the disordered Lorentz process. This is not a Markov pro-
cess, as the state of the system at next instant is determined by the probability of
encountering a scatterer (disorder), and this in turn can be related to earlier colli-
sion with the same scatterer. At this point it is useful to introduce the following
notations: a quantity (including probabilities) F(R) denotes its value for a fixed
realization R, F(a) its value when averaged over the disorder.

The steady state of the Lorentz process is (3.3.1) averaged over disorder,

f (a)(q,v) =
1

Na
[p(a)l (q, v̂)ρl(v)+ p(a)r (q, v̂)ρrl(v)].

Now consider the following limiting procedure :

a→ 0, c→ ∞, such that
1

2ac
→ λ (3.3.2)

i.e large density of small scatterers with the mean free path held constant, called
the Boltzmann-Grad limit. The gas particles now move freely between collisions
(as without the limit), with probability of a collision after a free flight of length r
proportional to exp(−r/λ ) dr, independent of earlier history. Due to small size
of scatterers, probability of re-collision with a scatterer is zero. The outcome of
collision is a change in direction of the particle, according to a distribution that can
be obtained by calculating scattering cross section. Collisions with boundaries are
as described earlier. This process is evidently Markovian.

In this limit, the absorption probabilities can be shown [16] to be

pl(q, v̂) = 1− x
L
, pr(q, v̂) =

x
L
. (3.3.3)

The average heat current (x-component) can be expressed as

j(q) =
∫

d2v vx
v2

2
f (q,v).

Using the estimate (3.3.3), and assuming Maxwellian distributions with tem-
peratures Tl,Tr for the baths,

j(q) =
8
3

√
2
π

√
TlTr√

Tl +
√

Tr
λ

Tr−Tl

L
. (3.3.4)

This is the validation of Fourier’s law of heat conduction, as far as scaling is
concerned. Also temperature dependence of the conductivity is

√
T , the same as

in an ideal gas.
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3.4 Conclusion
The thermal conductivity of an one-dimensional electrically insulating solid, may
not be independent of the length of the solid. Measurements of conductance have
large sample to sample fluctuations. This means there is no linear relation relating
the heat current density to the temperature gradient.

For a perfectly harmonic solid, the conductivity (κ) is proportional to the size
(N) of the solid. The exponent α , defined for size dependence of conductivity,
κ ∼Nα , is the 1. This can be attributed to the lack of sufficient interaction between
modes of vibration and indicates the role anharmonicity and disorder can play for
transport properties of a system.

For a harmonic solid with disordered masses, the collective vibrations of the
constituents experience localization in one and two dimensional systems. For
low-frequency modes, the inverse localization length is proportional to square of
the frequency. Among these low frequency modes, only those extending over the
entire system contribute to energy transport. Accounting for these, α actually de-
pends on the frequency distribution of fluctuations due to the bath, as well bound-
ary conditions for the solid. The interactions with the baths being via white noise,
if the ends of the solid are fixed, then α = −1/2, and if they are free, α = 1/2.
The former is an insulator.

For a gas of non-interacting particles in a region with randomly distributed
hard sphere scatterers, in the limit of point scatterers with infinite average density
such that the mean free path of the particles is fixed, the current scales as required
by Fourier’s law. But there is no unique definition of local temperature, as there is
no local thermal equilibrium (with or without the limit considered). This is mainly
due to the fact that scatterings do not change the energies of the particles.

Many possible alterations to these models can be considered. For instance, one
may include anharmonicity in the oscillator chains. For an anharmonic solid, as
crystal momentum is conserved in all interactions, and a low energy collision can
not involve higher momenta. Therefore, momentum is conserved at low tempera-
tures, and any mode with initially non-vanishing crystal momentum never decays.
Such modes lead to infinite thermal conductivity at low temperatures. At higher
temperatures, it is expected that in presence of both anharmonicity and disorder,
the conductivity will be finite in three dimensions. For lower dimensions however,
the same cannot be said.
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