
i

Reactive Reinforcement learning for Robotic

Manipulation

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Ameya Pore

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April 2019

Supervisor: Dr Gerardo-Aragon Camarasa

© Ameya Pore 2019

All rights reserved

ii

iii

Certificate

This is to certify that this dissertation entitled Reactive reinforcement learning for

robotic grasping towards the partial fulfilment of the BS- MS dual degree programme at

the Indian Institute of Science Education and Research, Pune represents study/work

carried out by Mr. Ameya Pore at the University of Glasgow under the supervision of

Dr Gerardo-Aragon Camarasa, Lecturer, School of Computing Science during the

academic year 2018-19.

Mr. Ameya Pore Dr. Gerardo-Aragon Camarasa

gerardo
Stamp

iv

This thesis is dedicated to Unicorn (National Animal of Scotland)

In the hope that the words inscribed here manifest magical powers and

anyone who read this thesis finds love and happiness forever!

Note: Unicorns are imaginary animals and hence they are difficult to find. Traditionally, they are

believed to have magical healing powers.

v

Declaration

I hereby declare that the matter embodied in the report entitled Reactive reinforcement

learning for robotic grasping are the results of the work carried out by me at the School

of computing Science, University of Glasgow, under the supervision of Dr. Gerardo-

Aragon Camarasa and the same has not been submitted elsewhere for any other

degree.

Mr. Ameya Pore Dr. Gerardo-Aragon Camarasa

gerardo
Stamp

vi

vii

Acknowledgements

It has been a long journey and a significant transition, from the Biology Labs at IISER

Pune to the computing Science department at Glasgow, from Epigenetics to

Reinforcement learning. A year of varied experiences, from severe summers to harsh

winters!

I’d first extend my gratitude to my second home, IISER Pune, for actively engaging in this

exchange mobility program with University of Glasgow. Noteworthy acknowledgements

to the International team at IISER Pune (headed by Dr. Naresh Sharma), Deans and other

distinguished faculty members who have thrived to build an international reputation and

research co-operation at global scale. Being only a decade old, IISERs stand one of the

elite education institute in the country. Besides focusing on research based-academics, I

feel glad that IISERs promote student-driven activities. I would distinctively acknowledge

one specific club, the Entrepreneurship and Innovation cell (EIC), which I was part of for

couple of years during my stay at IISER. Special thanks to Prof. Sanjeev Galande, Aditya

Kabra who have pushed me beyond my capabilities to explore innovation, participate in

startup-culture events and form a network. They have helped me immensely in

developing various skills pertaining to communication, presentation and team

management.

Next, I’ll thank Prof. William Cushley (Dean for Global engagement, S&SE Asia, UoG),

Mr. Sanju Dominic (International officer, India, UoG), Ms Sally Baxter (Local coordinator,

Erasmus team) and the Erasmus+ team who have been my first contact related to the

administrative queries and documentation. It would have been extremely difficult without

their funding support to accomplish this project successfully. They have always made

sure that my stay at Glasgow is advancing fruitfully.

Most importantly, I’d be indebted to my project supervisor, Dr. Gerardo, who has kept me

motivated throughout, despite times when my experiments didn’t work out well. I

appreciate the informal chat sessions we had occasionally, that helped in maintaining a

viii

constructive relation. I still wonder his risk in accepting a student with Biology background

without a shred of prior computing science training. I hope I have lived up to his

expectations. Further, I will extend my gratitude to Ali-al-quallaf (PhD student) who has

been humble enough to teach me the basics of various framework such as Visual studio

code, Pytorch etc that have been the foundation to the overlying work. Moreover, I will

thank other academics, doctoral students and visiting researchers of the Computer vision

and automated systems group (CVAS) who have provided important feedback to my

project during group meetings.

Additionally, I will thank Dr Rahul Dehiya (TAC member), who has supported me despite

all ventures in various documentation and applications for future prospects. Although, not

involved directly in Machine learning, he has shown keen interest in the timely updates

that I have given him.

Lastly, thanks to the hidden pillars, parents, teachers, relatives, friends (new and old)

without whom it’s difficult to imagine life. Special thanks to Tans, who has trained me into

an expert cook.

Finally, some words on Scotland, it is blessed with splendid scenes, picturesque

landscapes that are unparalleled. Certainly, travelling around Scotland were among the

big perks of studying at Glasgow University. Best of all, I enjoyed the strange weather,

where one could experience Rain, Snow, Sun, wind at one time. Completely

unpredictable!

Cheers and ready for upcoming expeditions!!

ix

Contents MS thesis

x

Contents

Abstract ……………………………………………………………………………… 1

1. Introduction……………………………………………………………………………. 2

1.1. Background………………………………………………………………………. 2

1.2. Approach…………………………………………………………………………. 5

1.3. Contributions and thesis structure……………………………………………… 6

2. Background ..………………………………………………………………………… 7

2.1. Deep Reinforcement learning…………………………………………………... 8

2.1.1. Actor-critic…………………………………………………………………… 12

2.2. Curiosity-driven exploration……………………………………………………… 14

2.3. Behaviour-based robotic control……………………………………………….... 16

2.3.1. Subsumption architecture ………………………………………………… 18

2.4. Neuroscientific implication ……………………………………………………… 19

2.4.1. Visual pathway …………………………………………………………… 20

3. Experiments and implementation details………………………………………….. 22

3.1. Actor-critic………………………………………………………………………… 22

3.1.1. Environment details………………………………………………………. 24

3.1.2. Architecture details…………………………………………………………. 24

3.1.3. Training details……………………………………………………………… 25

3.2. Intrinsic Curiosity module…………………………………………………………. 25

3.2.1. Experiments………………………………………………………………… 27

3.3. Reactive Reinforcement architecture …………………………………………… 28

3.3.1. Environment details………………………………………………………… 28

Contents MS thesis

xi

3.3.2. Architecture details…………………………………………………………. 30

3.3.3. Experimental details……………………………………………………….. 30

4. Results and Discussion ……………………………………………………………... 33

4.1. Actor-critic + Curiosity ………………………………………………………….. 33

4.1.1. Discussion…………………………………………………………………… 34

4.2. Reactive Reinforcement learning………………………………………………… 34

4.2.1. Discussion ……..…………………………………………………………. 36

4.2.2. Applicability ……………………………………………………………… 38

5. Future work and Conclusion …………………………………………………………. 39

5.1. Conclusion …………………………………………………………………………. 40

6. Reference ………………………………………………………………………………. 41

6.1. Links to Github repositories and online sources …………………………….... 43

List of figures/Tables MS thesis

xii

List of figures:

1. Markov Decision Process …………………………..…………………………… 3

2. RL Validation environment ………………………..…………………………… 4

3. Different trajectories ……………………………..……………………………… 11

4. Dynamics of Actor-critic …………………………..…………………………… 14

5. Hierarchical Setup ………………………………….…………………………… 18

6. Schematics of Asynchronous actor-critic ……….…………………………… 23

7. SuperMarioBros environment ………………………………………………… 24

8. Intrinsic Curiosity module ……………………………………………………… 27

9. OpenAI fetchpickandplace environment ………..………………………….... 29

10. Schematics of reactive behaviour architecture ……………………………… 30

11. Comparison of A3C and Curiosity model …………………………………… 33

12. Performance comparison of e2e and reactive behaviours architectures … 36

List of tables

1. Connection of HRL with Human Brain anatomy …………………………... 20

Abbreviations MS thesis

xiii

Abbreviations used:

1. TD: Temporal difference

2. DQN: Deep Q-Network

3. e2e: End-to-end

4. HRL: Hierarchical Reinforcement learning

5. RL: Reinforcement learning

6. IR: Intrinsic Reward

7. A3C: Asynchronous Actor-Critic

8. A2C: Synchronous Actor-Critic -

9. PPO: Proximal policy approximation

10. TRPO: Trust Region Policy Optimization

11. DNN: Deep Neural network

12. MDP: Markov decision process

13. LSTM: Long short-term memory

14. ICM: intrinsic curiosity module

15. Brain Anatomy: Specified in the context

Abstract MS thesis

__

1

Reactive Reinforcement learning for Robotic

Manipulation

1. Abstract

Robots have transformed the manufacturing industry and have been used for scientific

exploration in human inaccessible environments like distant planets, Oceans, etc.

However, a major barrier in its universal adoption is its lack of fragility and robustness in

a complex and highly-diverse environment. This project constitutes the initial steps

towards flexibility regarding exploration strategies that can be applied to challenging

problems for autonomous grasping of rigid and deformable objects. Here, we employ

recent advances in Deep Reinforcement learning (RL) to generate simple reactive

behaviours like approaching, manipulating and retracting to pick an object. Once such

simple behaviours are learnt, these could be sequenced in various combinations to give

rise to a complex task.

RL is a trial and error optimisation technique where an agent ought to take action in an

environment to maximise some notion of cumulative reward. Current research in RL has

been formulated on traditional techniques such as Deep Q-learning and policy gradient

methods. These methods have worked well when the feedback/reward is dense.

Perhaps, in real-life scenarios, the feedback is sparse, and these methods tend to fail in

finding the optimum solutions and exploring the environment robustly. In this work, we

have implemented two different approaches to solve such sparse reward problem,

namely Curiosity and Reactive behaviour repertoire for long time step tasks. Our results

have shown an immense reduction in training steps required to reach the maximum

reward state in high-dimensional continuous action space compared to the baselines.

Chapter 1 Introduction

2

Chapter 1

Introduction

Autonomous robotic manipulation is one of the active areas of research for its vast

expanses of application in homes, factories and operating rooms. Inspired by the

Moravec's paradox (Moravec, 1988), in robotics, performing simple low-level behaviours

like object grasping tends to be more difficult than higher-order logical reasoning skills

like solving a puzzle. A classic example is the game of chess. In 1997, IBM’s deep blue

chess computer defeated the then world champion, but perhaps even after two decades,

it needs a human being to do the actual moving of the pieces predicted by the algorithm.

Current state-of-the-art robots are trained in highly controlled environments and

specialise in a narrow set of skills. On the contrary, humans can adapt to many

environments and tasks based on previous experience and knowledge.

1.1 Background

Since the advent of Deep learning and high-computing facilities, there have been various

breakthroughs in broad applications such as pattern recognition, computer vision, and

natural language processing. Quite recently, deep learning techniques combined with

reinforcement learning (RL) have shown surprising results where useful feature

representations are learnt from high dimensional raw-input data such as images and

mapped to perform an optimal action (Mnih et al., 2015, 2016; Schulman, Levine, et al.,

2015; Schulman et al., 2017). This research gives us the capability to solve decision-

making tasks such as autonomous robotics, self-driving cars and many more, that were

intractable for centuries.

RL defines a Markov decision process (MDP) (Sutton and Barto, 1998) where an agent

learns by interacting with the environment, observing the results of the action and

Chapter 1 Introduction

3

receiving the reward associated with the transition (Fig 1). Mathematically, MDP is a

framework for modelling discrete time decision-making situations where the outcome is

partly stochastic and partly under the control of the agent. At each discrete time step, the

agent sends an action to the environment, and the environment responds by emitting the

next observation and transition reward. RL enables a robot to find an optimum behaviour

autonomously through trial and error. It offers to robotics a framework to model hard-to-

engineer and sophisticated behaviours (Kober and Peters, 2014). Instead of explicitly

designing or hand-engineering solutions, the controller only needs to give feedback in

terms of a scalar quantity to label whether the action taken is correct or incorrect.

Fig 1. Markov Decision process: Agent in current state St interacts with the

environment by executing action At. As a consequence of this interaction, it reaches

a new state St+1 and received a reward Rt. Markovian assumption: The probability of

future states depends only on the dynamics of the present state and not on the

sequence preceding the present state.

Two broad families of deep learning algorithms have shown promise on RL problems so

far: Q-learning methods such as DQN (Mnih et al., 2015), policy gradient methods

(Sehnke et al., 2010) (e.g., A3C (Mnih et al., 2016), TRPO (Schulman, Levine, et al.,

2015) , PPO (Schulman et al., 2017)).

Deep Q-learning algorithms approximate the optimal Q function with Deep Neural Nets

(DNN), yielding policies. Here, policy refers to the action the agent would take given a

state. That is, for each given state, the agent chooses an action that maximises the Q-

value (Watkins and Dayan, 1992; Mnih et al., 2015; Hessel et al., 2017). Policy gradient

methods directly learn the parameters of a DNN policy (Sehnke et al., 2010). The

technique optimises the policy and outputs the probability of taking each action in each

Chapter 1 Introduction

4

state. In the context of this project, there have been recent advances in robotic grasping

that try to imitate human performance given a large set of tasks, and RL techniques are

being applied in an object-centric demonstration so that the algorithm selects the most

feasible demonstrations to replicate (Gupta et al., 2016). On top of this, meta-learning

algorithms have been employed which use a lesser amount of demonstrations, and that

backpropagate to match the current actions with the demonstrated actions, also called

one-shot imitation (Duan et al., 2017). Further, there have been studies of context

translation for imitation learning based on video prediction (Liu et al., 2017). Another study

that has shown promising results is Zero shot visual imitation where an agent first

explores the world without any expert supervision and then transforms its experience into

a goal-conditioned skill policy (Pathak et al., 2018).

 Fig 2. RL validation environments: Video games provide a constrained environment

for testing RL algorithms. Demonstrated here are the classic Atari-2600 games from

the 80’s. From left to right: SpaceInvaders, Pong, Breakout.

Using human-like dexterous hands possesses challenges concerning high dimensionality

of possible actions and physical contacts. Recently, there have been model-free Deep

reinforcement learning approaches that have shown favorable results trained in addition

to Human demonstrations (Rajeswaran et al., 2017). On the contrary, there have been

adaptive-learning approaches that train real robots on simulations to cope with higher

learning times, sparse and hard to sample useful actions that be validated in Physical

robots (Breyer et al., 2018). But perhaps, behaviours developed in specific simulators are

biased towards the characteristics of the simulator. A report lately claimed to bridge this

gap by randomising dynamics of the simulator while training and to develop policies that

Chapter 1 Introduction

5

are capable of adapting to different dynamics (Peng et al., 2017). Further, a group from

MIT developed a method for object representation called Dense Object Nets (Florence,

Manuelli and Tedrake, 2018). This work devised a consistent object representation for

visual understanding and manipulation and can be trained quickly on previously unseen

objects.

One of the major challenges with robotic grasping is the sparse reward (i.e., for most of

the task, the agent receives no reward). Therefore, various studies have devised an

intrinsically motivated goal exploration process that enables an agent to sample effective

policies in a continuous high dimensional action space where rewards are sparse (Pathak

et al., 2017; Laversanne-Finot, Péré and Oudeyer, 2018). These methods use prediction

errors of networks trained on the agent’s experience to quantify the novelty of new

experience and has shown effective results in robot locomotion skills (Forestier, Mollard

and Oudeyer, 2017). Curiosity-driven exploration or intrinsic motivation works well for

short-horizon/timestep tasks. However, it fails to explore when the tasks are long-time

horizon. The reason for this has been elaborated in section

1.2 Approach

A reason for RL algorithms struggling in long-time horizons and sparse rewards could be

assigned to 1-step Temporal Difference (TD) methods (i.e. at each step the agent tries to

minimize the errors computed between predictions made at consecutive time-steps),

which are limited to forming reward assignment one-time step at a time (Ke et al., 2018).

In addition, learning multiple behaviours end-to-end (e2e) leads to the problem of the

Curse of Dimensionality [33]. Curse of Dimensionality refers to a scenario when there is

a rapid growth of a function caused by the combinatorics of the number of states in an RL

problem.

We, therefore propose a reactive Reinforcement learning architecture, inspired by

Subsumption architecture (Rodney A Brooks, 1990; Brooks, 1991), to learn low-level

skills independently of each other. Once these low-level skills are acquired, they could be

sequenced in different temporal combinations using a high-level actuator we call

Chapter 1 Introduction

6

Temporal Cortex, to give rise to a diverse repertoire of complex behaviours. We

hypothesise that modular reactive behaviours can be trained and sequenced to generate

diverse repertoire to skills. Each behaviour shall consist of simple networks trained

specifically for that skill. This behaviour-based repertoire would be more efficient, general

and transparent in contrast to task-specific e2e learning approach.

1.3 Contributions and Dissertation outline

Implementing algorithms on real-world robotic systems tend to possess various

challenges like transfer learning, real-world hardware issues. Hence, we evaluate our

algorithms in simulated video-games and robotic environment that gives a constrained

and controlled domain. Besides, we compare our approach against the existing baseline

(Actor-critic) for e2e learning. Our method outperforms the benchmark by a considerable

margin, and there is a drastic reduction in the training steps required to learn a specific

behaviour.

This thesis is organised as follows: Background review regarding Deep Reinforcement

learning and Hierarchical decomposition of tasks is described in chapter 2, with recent

advances in Hierarchical RL. In chapter 3, we describe the experimental setup and

implementation details that are used to validate the proposed approach. We present our

experimental results and comparison of reactive behaviour training with e2e approaches

in chapter 4. Our findings are summarised and discussed in chapter 5. Lastly, we end

with the main highlights of our work in chapter 6 and future implications and perspectives

in chapter 7.

Chapter 2 Background

7

Chapter 2

Background

Deep Networks creates a hierarchical representation of raw inputs, from low-level to

higher-level features (LeCun, Bengio and Hinton, 2015). Combining Deep-learning with

traditional RL foundations enables an agent to have a good perception of the environment

and learn control-policies from high-dimensional data input such as images (Mnih et al.,

2015). In RL, an agent interacts with an environment and learn from trial and error. As a

consequence of this interaction, it receives a reward, and the goal is to learn to select

actions the maximise the expected cumulative reward (Sutton and Barto, 1998).

An RL agent acts in an MDP framework as follows: At each time step t, in discrete time

intervals, the agent selects an action 𝑎 from a set of possible actions 𝐴 = 1,2,3, … 𝑘 at

state 𝑠𝑡 ∈ 𝑆, where 𝑆 is the set of possible states. Action selection is based on a policy 𝜋.

The policy is a behaviour descriptor of an agent which decides the actions to be taken for

each possible state. As a result of the action, the agent receives a scalar reward 𝑟𝑡 ∈ 𝑅

and observes the next state 𝑠𝑡+1 ∈ 𝑆. The aim of the learning agent is to find a mapping

from states to actions called optimal policy 𝜋 ∗, which choose the action 𝑎 to take given a

state 𝑆, maximising the cumulative expected rewards 𝑟. The expected discounted return

𝑅 at time 𝑡 is defined as follows:

 𝑅𝑡 = 𝐸[𝑟𝑡 + γ𝑟𝑡+1 + γ2𝑟𝑡+2 + ⋯] = 𝐸[∑ γ𝑘𝑟𝑡+𝑘
∞
𝑘=0] . . . (1)

Where 0 < 𝛾 < 1is called the discount factor. Next, we define an action-value function

𝑄π(𝑠, 𝑎), which gives the expected return achievable starting from state 𝑠, 𝑠𝑡 ∈ 𝑆, and

performing an action 𝑎 ∈ 𝐴, and then following policy 𝜋.

Chapter 2 Background

8

 𝑄π(𝑠, 𝑎) = 𝐸π[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

 𝑄𝜋(𝑠, 𝑎) = 𝐸π[∑ γ𝑘𝑟𝑡+𝑘
∞
𝑘=0 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . . . (2)

To iteratively find the value of each state-action pair, we start at the "end" (i=0) and then

work backward to find 𝑄𝑖+1. From equation 2, we can generate a recursive relation:

 𝑄𝑖+1
π (𝑠, 𝑎) = 𝐸π[𝑟𝑡 + 𝛾 ∑ γ𝑘∞

𝑘=0 𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

 = 𝐸π[𝑟𝑡 + γ𝑄𝑖
π(𝑠𝑡+1 = 𝑠′, 𝑎𝑡+1 = 𝑎′)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. (3)

Now, to learn the optimal policy π* to estimate the trajectory to achieve the greatest future

reward in the course of execution, we define an optimal state-value function as follows:

 𝑄𝑖+1(𝑠, 𝑎) = 𝐸π[𝑟𝑡 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)| 𝑠, 𝑎] . . . (4)

Where 𝑠′, 𝑠 ∈ 𝑆 and 𝑎′, 𝑎 ∈ 𝐴. This iteration ideally converges to the optimal action-value

function, 𝑄 ∗ as 𝑖 → ∞ and called value iteration algorithm or Bellman equation

(Watkins and Dayan, 1992).

2.1 Deep Reinforcement learning

In real world complex problems, the number of possible states and actions are enormous,

and it is impractical computationally to estimate the Q-value for each state-action pair.

Therefore, we require a function approximator as an estimator for action-value function.

Traditionally, these function approximator have been trivial non-linear approximator such

as Decision trees, nearest neighbours etc. (Pyeatt and Howe, 1999), which possess an

inherent limitation of inability to approximate non-trivial solutions with high number of

optimisation parameters. On the contrary, recent advent in DNN gives us capability to

approximate highly complex function with huge number of parameters (in the order of

millions) and generalisation potential. Hence, lately, In the context of Q-learning, DNN’s

have shown surprising results in solving RL problems (Mnih et al., 2015, 2016; Schulman,

Levine, et al., 2015; Schulman et al., 2017). Here, we consider a network parametrized

by vector θ to estimate the value function 𝑄(𝑠, 𝑎 ; 𝜃).

Chapter 2 Background

9

These parameters θ are optimised using gradient-descent methods by minimizing the

following loss function.

 𝐿(θ) = 𝐸π [(𝑟𝑡 + 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; θ) − 𝑄(𝑠, 𝑎; θ))
2

] . . . (5)

Equation 5 is also called 1-step temporal difference (TD) where 𝑟𝑡 + 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃) is

the target value. Here, we compute the error in prediction made at successive time steps.

Intuitively, the expectation of our current estimate 𝑄(𝑠, 𝑎; 𝜃) are better at future time step

than at current time step 𝑡 because the further one goes in time, the more rewards one

collects and eventually the accumulated rewards would be the unbiased estimator to the

true Value function 𝑄(𝑠, 𝑎). This technique is known as Deep Q-Network (DQN).

Differentiation of the loss function yields the equation for the gradient.

 𝛻𝐿(θ) = 𝐸[(𝑟𝑡 + 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; θ) − 𝑄(𝑠, 𝑎; θ))]𝛻𝑄(𝑠, 𝑎; θ) . . . (6)

θ ← θ + α ∇θ𝐿(𝜃)

Although, the mathematical framework for this algorithm was proposed in early 90’s

(Sutton and Barto, 1998), there were practical issues that needed to be acknowledged,

which delayed its application in real-systems until 2015. First, parameters used (weights

of network: 𝜃) were the same for estimating the Target Q-value (𝑟𝑡 + 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃))

and the current Q-value (𝑄(𝑠, 𝑎; 𝜃)). Consequently, there is a big correlation between the

TD error and the parameters (𝜃) we are changing. It means that at each training step, our

Q-value shifts but also our target Q-value shifts. Hence, the algorithm is not stable

because we are getting closer to the target, but the target is moving, resulting in high

variability. Thereby, for successful implementation of DQN (Mnih et al., 2015), Google

Deepmind1 maintained two networks parameterised by different weights and alternately

switched between these networks for learning and feeding in current action-value

estimates as "bootstraps". The two networks denoted here are 𝑄(𝑠′, 𝑎′; 𝜃−) and 𝑄(𝑠, 𝑎; 𝜃),

parametrised by different parameters 𝜃− and 𝜃.

1 Google Deepmind: Pioneer Artificial Intelligence research company based in London (est: 2010)

Chapter 2 Background

10

Therefore, New update rule:

 𝛻𝐿(θ) = (𝑟𝑡 + 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; θ−) − 𝑄(𝑠, 𝑎; θ))𝛻𝑄(𝑠, 𝑎; θ) . . . (7)

At each time step

 𝜃 ← 𝜃−

Other modifications include Off-policy learning. It means that the policy used to generate

a behaviour, usually called the behaviour policy, could be different from the policy that is

evaluated and improved, called the estimation policy. An advantage of this separation is

that the estimation policy can be deterministic (e.g. greedy), while the behaviour policy

can continue to sample all possible actions. Improving the policy will lead to different

behaviours that should explore actions closer to optimal ones, and the agent want to learn

from those. Second, using an experience replay. Experience reply is a memory buffer

that stores the agent’s experiences 𝑒𝑡 = (𝑠t, 𝑎t, 𝑟t, 𝑠t+1). For training, the Q-Network

randomly samples the data from the buffer, thereby removing correlations in the

observation sequence and smoothing over changes in the data distribution. Advantage

of using a replay buffer is that previous experience can be used multiple times for learning.

Also, the Q-value updates are incremental but converge slowly, thereby training with the

same data is beneficial.

Deep Q-learning has worked efficiently for simple Video games (Atari), yet it struggles to

find a convergent solution in continuous action space (Lillicrap et al., 2015). Continuous

action space refers to continuous variable such as torque, force, velocity etc.

Hence, a different approach for solving RL problems has evolved parallelly, called the

policy gradient methods (Sehnke et al., 2010). Policy gradient methods directly map

states to a distribution of actions and directly learn the parameters of the approximator.

Each time the agent interacts with the environment, parameters of the neural network are

tweaked so that “good” actions are sampled more frequently. For having a mathematical

framework, let's assume that we have a policy 𝜋𝜃(𝑠, 𝑎), parameterized by θ such that

 πθ(𝑠, 𝑎) = 𝑃[𝑎|𝑠, 𝜃] … (8)

Chapter 2 Background

11

The goal is to find θ such that it maximises the policy objective 𝑅𝑡,πθ
 function, under policy

𝜋θ defined as:

 𝐽(θ)  =  𝐸[𝑅𝑡,π𝜃
] = 𝐸[∑ 𝛾𝑘𝑟𝑡+𝑘

∞
𝑘=0] . . . (9)

To solve the optimisation problem, calculus approach is used to find the gradient of J,

denoted by ∇θJ(θ). We keep updating J with its gradient until it converges and reaches a

maximum, given by the policy gradient formula.

 𝛻θ𝐽(θ) = 𝐸[𝛻θ𝑙𝑜𝑔πθ
(𝑠, 𝑎)𝑅𝑡,πθ

] . . . (10)

 θ ← θ + α𝛻θ𝐽(θ)

Equation 9 is famously known as the REINFORCE algorithm (Sutton and Barto, 1998).

Although, REINFORCE works well, however it is extremely sample inefficient (Fig 3). We

must wait until the end of the episode to calculate the reward. We may conclude that if

we have a high reward 𝑅𝑡,𝜋𝜃
, all the actions we took during the episode were good, even

if some were bad.

Fig 3. Different trajectories. Upper: All actions except A3 fetched positive reward.

Lower: All actions fetched positive reward. REINFORCE algorithm is unable to

distinguish the two scenario and requires high amount of averaging, since rewards

are computed at the end of the episode.

For example, in Fig 3, even if A3 was a bad action, all the actions would be averaged as

good because total reward was good. Consequently, to find an optimal policy, we require

Chapter 2 Background

12

enormous number of samples. This results in slow learning and more time to converge to

a specific solution.

Summarising Deep Reinforcement learning methods, there are two broad categories:

● Value based methods (Q-learning, DQN): the aim is to estimate the value function

(using function approximator) that maps each state-action pair to a value. Further,

we take actions corresponding to highest value. This works well for discrete actions

and finite states.

● Policy based methods (REINFORCE): the goal is to directly learn a function that

maps each state to an action. We directly optimise policy without using a value

function. We use total rewards acquired in the episode as a measure of novelty of

the policy.

Quite recently, it was shown that both these methods could be merged to increase the

learning efficiency of the agent and update our policy at each time step (Lillicrap et al.,

2015; Mnih et al., 2016). This method is known as the actor-critic.

2.1.1 Actor-Critic

In actor critic, we have two networks that are trained simultaneously

● Critic network: which returns the novelty of the action (value- based scalar,

𝑄𝑤(𝑠, 𝑎))

● Actor network: which controls the agent and decides the action to take

(𝑙𝑜𝑔 πθ(𝑠, 𝑎))

New update rule

 𝛥𝜃 = 𝛼𝛻θ(𝑙𝑜𝑔𝜋θ(𝑠, 𝑎))𝑄w(𝑠, 𝑎) . . . (11)

Since, we make an update at each step, we cannot use the total reward R(t). Instead, we

train a critic model that approximates the value function (it estimates the expected

cumulative future reward given a state-action pair).

Chapter 2 Background

13

At the beginning, when both the networks are untrained, the actor outputs a random action

and the critic provides a random feedback to the action (Fig 4). Learning from this

feedback, the actor updates its policy. Simultaneously, the critic also updates its network

so that it can give better feedback next time.

Hence, two functions are estimated parameterized by two different sets of weights.

Actor (parameterized by 𝜃): 𝜋θ(𝑠, 𝑎)

Critic (parameterized by 𝑤):𝑄𝑤(𝑠, 𝑎)

Both these networks update their parameters separately. Following is the update rule.

 𝛥𝜃 = 𝛼𝛻θ(𝑙𝑜𝑔𝜋θ(𝑠, 𝑎))𝑄w(𝑠, 𝑎) . . . (12)

 𝛥𝑤 = 𝛽(𝑟𝑡 + 𝛾𝑚𝑎𝑥a
′ 𝑄w(𝑠′, 𝑎′) − 𝑄w(𝑠, 𝑎))𝛻𝑄w(𝑠, 𝑎) . . . (13)

As mentioned earlier, value-based methods tend to have high variability. To reduce this

problem, an advantage function 𝐴(𝑠, 𝑎)is defined as follows:

 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) . . . (14)

This function determines the improvement in our action-value compared to the average

value of that action in that state. It calculates the extra reward the agent would get if it

takes this action.

If 𝐴(𝑠, 𝑎) > 0: our gradient is pushed in that direction.

If 𝐴(𝑠, 𝑎) < 0: our gradient is pushed in the opposite direction.

Equation 14 can also be written as

 𝐴(𝑠, 𝑎) = 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠) … (15)

Which denotes the TD error similar to equation 6. So, the final update rule for actor critic

is as follows:

 𝛥𝜃 = 𝛼𝛻𝜃(𝑙𝑜𝑔𝜋𝜃(𝑠, 𝑎)) 𝐴𝑤(𝑠, 𝑎) . . . (16)

Chapter 2 Background

14

Fig 4 Dynamics of actor critic. Actor takes input from the state and critic to produce

an action.

2.2 Curiosity-driven learning

The main challenges in implementing RL in robotic grasping are reward sparseness and

high dimensionality of action space. Reward sparseness refers to a scenario wherein the

agent receives no reward in most of the states of the environment. To cope with the above

problems, studies are being conducted on simpler environments with limited action space

such as exploratory video games such as Super Mario Bros, Doom etc. One way to

tackle the problem of reward sparseness is through Domain-specific reward shaping

(Gupta et al., 2016). An example of reward shaping for the Mario environment would be

about providing a reward whenever the agent moves to the right. A major fallback of this

approach is that it is not flexible to other environments and one needs to know the context

of the environment (in case of Super Mario Bros, the goal is towards the right) to bias

rewards.

A recent study showed that one could form an intrinsic reward mechanism, called

curiosity, that enables an agent to sample effective policies in a continuous high

dimensional action space where rewards are sparse (Pathak et al., 2017; Laversanne-

Finot, Péré and Oudeyer, 2018). The method uses prediction errors of networks trained

Chapter 2 Background

15

on the agent’s experience to quantify the novelty of a new experience. It learns a next-

state predictor model from its experience and uses the prediction error as an intrinsic

reward. As a result, the agent actively attempts to seek unpredictable, new and complex

regions of the environment to maximise prediction error and receive a reward. This study

has shown a drastic reduction in training time compared to other baselines.

Intrinsic motivation such as curiosity provides a RL agent with intrinsic rewards that

encourage exploration; it works best only for short Horizon environments. When it comes

to completing a task with long timestep, Curiosity-driven exploration faces the so-called

detachment issue (Ecoffet et al., 2019).

Detachment: Intrinsic reward (IR) is a consumable resource. A curious agent looks for

states that it has not visited. If we consider a scenario where the agent discovers multiple

regions of state space which gives a high intrinsic reward. In the short term, its policy may

focus on one of such areas. After exhausting the IRs in that area, the policy may by

chance start exploring other areas offering IR, due to ε-greedy exploration strategy. Once

it has exhausted the IR, it is difficult for it to rediscover the frontier it detached from initially

as it has already consumed the IR that led to the frontier. Each time such a process

happens a potential avenue of exploration could be lost.

For long-range planning, we need to learn and operate at a different level of temporal

abstraction. Hierarchical reinforcement learning (HRL) offers such a framework in which

multiple layers of policies are trained to perform decision-making and control at the

successively higher level of behavioural and temporal abstractions (Frans et al., 2017;

Levy et al., 2017; Gomes, Oliveira and Christensen, 2018; Nachum et al., 2018). Having

a hierarchy of policies, a complex task can be decomposed into subtask sequences (also

called Options), which are themselves built by simpler actions. The lowest-level policy of

the hierarchy (subordinate actions) apply actions to the environment whereas the higher-

level policies (basic actions) are trained over a longer time scale. Here, we propose a

reactive architecture to generate a behaviour based repertoire. Once, a set of reactive

Chapter 2 Background

16

behaviours is generated, we sequence these primitive behaviours using a bottom-up

training strategy to complete complex tasks.

2.3 Behaviour-based robotic control

The RL methods discussed above are model-free approaches and work well for an e2e

state-action mapping. An e2e model learns all the features that can occur between the

original state inputs (x) and the final outputs (y). It refers to training a possibly complex

learning system by applying gradient-based learning to the entire system (Glasmachers,

2017). Given the computing power and Deep learning framework advances, most of the

applied RL algorithms use an e2e approach. However, these model-free approaches do

not scale well for more extensive and complex tasks like Robotic manipulation (Lillicrap

et al., 2015). Also, if we look at the Human learning pattern of solving a task, it is quite

intuitive that we don’t follow an e2e approach. For, example, while learning Tennis, we

start with learning basic skills separately such as bouncing the ball, hitting etc., whereas

an e2e approach would attempt to optimise all the possible actions involved at once.

Optimising all possible actions requires a large amount of trial and error interactions.

Humans learn skills in 50-100 attempts whereas a Deep learning agent requires more

than 5 million trials using a sophisticated model-free RL algorithm to complete a trivial

task on simulations. Also, there has not been enough success in transfering the

knowledge from a trained simulator to a real robotic system, called the reality gap

(Collins, Howard and Leitner, 2018).

Instead of having a task directed goal, we propose a framework to generate reactive

behaviours. Reactive behaviour refers to a set of techniques for action selection by

autonomous agents. They differ from classical approaches in the way that behaviours

operate in timely order and can cope with difficulties related to highly dynamic and

unpredictable environments. The idea is motivated from quite famous architecture that

was developed in the 1980s for robotic control by Rodney Brooks, called Subsumption

architecture (Rodney A Brooks, 1990; Brooks, 1991). In this architecture each behaviour

is represented as a separate layer, having direct access to sensory information. Each

Chapter 2 Background

17

layer has an individual specific goal. In this work, we use a trivial form of imitation learning,

called Behaviour cloning (Nakanishi et al., 2004; Bojarski et al., 2016), to train these

distinct behaviour layers. Currently, the low-level reactive behaviours are choreographed

by the developer.

There have been approaches to model behaviours (Frans et al., 2017; Levy et al., 2017;

Nachum et al., 2018) but the results are not convincing enough for the comparison with

baseline model-free approaches due to the following reasons:

1. HRL algorithms autonomously decide how to segment the main task into sub-tasks

(Options). This segmentation is highly task specific i.e. the decomposed subtask

once trained would hardly be able to generalise to different task.

2. Most HRL implementation use a top-down optimisation i.e. Given a main task, first

the algorithm optimises for segmentation of the subtasks. Once the segmentation

is completed, it optimises the low-level actions to take for each subtask. Both these

optimisation takes place simultaneously, referred to a e2e learning.

To tackle the above-mentioned challenges, in our work, we use manual inputs to

decompose the task into basic behaviours. An advantage of this is that these

decomposed behaviours once trained could be used to accomplish different tasks and

are not highly specific to a task. Further, we use a bottom-up approach for training these

modular behaviours. We train all the modular behaviour independently and then combine

them sequentially to complete the task.

Humans roughly tend to assume a hierarchical structure. For example, tea and coffee

making, the overall task can be subdivided into discrete subtasks (adding sugar, adding

cream). Our goal is to expand the basic RL framework to include temporally abstract

actions, and learn representations that group together similar intercalated actions (For

example: grasping the cutlery, using spoon to scoop up sugar, moving the spoon over the

cup etc.) casting them as a single higher-level action or skill (“add sugar’’). These actions

are described as temporally abstract as they describe low-level action sequences

extended over time (Fig 5).

Chapter 2 Background

18

Fig 5 Hierarchical setup: Decomposition of the main task into several subtask. For

completing each of this subtasks, subordinate actions are carried to comprise a basic

action. These basic actions put together give rise to superordinate actions.

Our resulting architecture is a parallel neural network that maps the positional coordinates

and kinematic state stimuli inputs to action outputs via a learned and distributed internal

representation. Note that we demonstrate our experiments on a simplistic simulator which

provides kinematic state vector as an input and does not operate on a camera-based

vision system.

2.3.1 Subsumption Theory

Brooks believed in following the evolutionary path of intelligence of starting with simpler

behaviours. After a successful basic design, one can extend to higher level intelligence.

Subsumption architecture is a layering approach that connects perception to actions for

robot control systems(Rodney A. Brooks, 1990; Brooks, 1991). ” Subsumption” refers to

the coordination process between non-identical layered behaviours. The complex actions

subsume a set of simpler behaviours. A task is accomplished by activating the appropriate

layer, which then enables the lower layers below it.

Concurrently, research based on reward-based learning in neuroscience and behavioral

studies has started convergence to canonical model of Hierarchical behaviours

decomposition and RL. It has been shown that particular regions in the Prefrontal cortex

Chapter 2 Background

19

implicate in learning the rules of the environment using trial and error strategy (Maggi,

Peyrache and Humphries, 2018).

2.5 Neuroscientific implications

Just after the mathematical framework for actor-critic was developed, it was shown that

in human midbrain, some neurotransmitters give a paradigm of temporal-difference

reward signals for goal-directed behaviour. Dopamine (DA), in particular, has been

associated with the function of signaling reward prediction error (Wang et al., 2018). It has

also been established that sections of Prefrontal Cortex (Ventral striatum (VS), see

Table1) represent the expected values of actions, objects and states. Drawing

correspondence with the actor in RL, there are sections (Dorsolateral striatum (DLS), see

Table1) that are considered for extract representations that guide temporally integrated,

goal-directed behaviour. Apart from the actor, there are regions (Dorsolateral prefrontal

cortex (DLPFC) and Premotor cortex (PMC), see Table 1) that represent task sets that

code for particular sequences of low-level actions (Botvinick, Niv and Barto, 2009). A

single activation pattern in these neurons represents a map from stimuli to responses, i.e.

policy. Research on Frontal Cortex (FC) also aligns with HRL in a way that temporally

abstract actions organise into hierarchies, with higher level policy (e.g., making coffee)

calling a lower-level policy (e.g., adding sugar). This research presents evidence that FC

represents actions at multiple nested levels of temporal structure (Frank and Claus,

2006).

Under HRL, in addition to a top-level value function, the critic must also maintain a value

function for each option. In terms of neural structure, another area in PFC (Orbitofrontal

cortex (OFC), see Table 1) shows a strong connection with the option-specific actor

(Dorsolateral prefrontal cortex (DLPFC) and Premotor cortex (PMC), see Table 1). OFC

neurons have been extensively implicated in determining values of events.

Chapter 2 Background

20

Table 1 - Key relations between HRL and human brain anatomy with the functional details.

 Anatomy Function Details

1 Dorsolateral striatum
(DLS)

Actor Coordinates higher level actions

2 Dorsolateral
prefrontal cortex
(DLPFC),
Premotor cortex
(PMC)

Option specific
actor

Builds representation of specific
temporally abstracted action.

3 Ventral striatum (VS),
Dopaminergic system

Critic Coordinates higher level value
function of the event

4 Orbitofrontal cortex
(OFC)

Option-specific
critic

Estimates option specific state
values.

Having established a reward-driven system following a hierarchical structuring in neural

anatomy, an interesting question to explore is how sensory inputs or proprioceptions

mapped to actions. One such instance would be understanding how vision inputs are

processed and replicating such systems.

2.5.1 Visual pathway

Visual information from the retina passes through the thalamus to the primary visual

cortex. Although the visual processing mechanisms are not yet completely

comprehended, physiological and anatomical studies in monkeys suggest that visual

signals are fed into two separate processing systems, also known as the two-stream

hypothesis (van Polanen and Davare, 2015). The two streams- Dorsal and ventral have

different functions. Ventral stream is associated with the identification of the object,

whereas the dorsal stream is involved in the guidance of the action and spatial localisation

of the object. The dorsal stream retrieves information regarding the object identification

from the ventral stream. This dorsal stream links to areas in the prefrontal cortex to give

rise to goal-directed visual behaviour (Sciberras-Lim and Lambert, 2017).

The synergies with human and animal behaviour explicitly related to the visual pathway

motivate our implementation. Our model is canonical to the organisation of the visual

Chapter 2 Background

21

pathway. In our architecture, we have a feature extraction layer (similar to the Dorsal and

ventral stream). Next, we train modular reactive behaviours (identical to motor cortex).

Further, we link the feature extraction layer to the reactive behaviours manually such that

these behaviours are sequenced to complete a specified task. In neural system, this

manual input link depicts the connection between the dorsal stream and Prefrontal cortex.

For simplicity and to showcase our proof-of-concept, we use a simulator that operates on

kinematic state vector as input. However, further steps of this implementation would be

to scale our experiments on a vision-based simulator.

Summarising our hypothesis: reactive reinforcement learning architecture gives us a

direction towards creating digital algorithms that could imitate psychological accounts of

hierarchically organised behaviour.

Chapter 3 Experiments and Implementation details

__

22

Chapter 3

Experiments and Implementation details

In this chapter, we report implementation of two different experimental setups:

1. Actor-critic and Intrinsic curiosity module (Pathak et al., 2017): Note that both

these models have been published previously. However, the published code

appears to be loosely organised with inappropriate labelling drafted in Tensorflow.

Here, we have devised and executed an independent code of the same models in

Pytorch (Deep-learning framework that supports accelerated GPU processing with

multiple parallel threads) that is more intuitive to the readers. This work serves as

a baseline to implement state-of-the-art RL algorithm.

2. Reactive network architecture: In this work, we present an architecture, inspired

from Subsumption architecture, in which simple fully connected networks are

trained to generate reactive behaviours. This is a very preliminary implementation

where each of the modular behaviours are trained using demonstrations

(Behaviour Cloning) and sequenced manually to accomplish a task.

3.1 Advantage Actor-critic (A3C)

In the case of DQN, the agent uses a single environment to train its policy. On the

contrary, advantage actor-critic utilises multiple processing to run an agent in multiple

environments parallelly. The algorithm explores a more significant portion of state-space

in much less time by having multiple independent workers with their own set of

parameters in a separate environment. Actor-critic is an on-policy policy search method,

i.e. they learn and act simultaneously using the same policy.

There are two types of parallel processing actor-critic implementation based on their

synchronicity of update:

1. Asynchronous Actor-critic (A3C)

2. Synchronous Actor-critic (A2C)

Chapter 3 Experiments and Implementation details

__

23

In A3C, there is a global network with multiple workers functioning in parallel threads with

their own set of network parameters (Fig 6). Each worker trains separately and updates

the global network periodically. The global network holds shared parameters. The

updates do not happen simultaneously and hence it’s called asynchronous. After each

update, the agents reset their parameters to those of the global network and continue

their independent exploration and training for n steps until they update themselves again.

Although, the experience of each agent is independent of the experience of others, yet

there is information flow between the agents as each agent resets their weights by the

global network, which contains the shared parameters.

Fig 6. Schematics of Asynchronous actor-critic: Parameters of the shared global

network are updated asynchronously by parallel workers functioning simultaneously.

Each worker consists of separate network for actor and critic.

In the case of A2C, the update of global network parameters happens synchronously.

Each agent waits for other agents to complete their segment and then update the global

network weights and reset the worker agent parameters. It is speculated in recent reports

that A2C performs well in some tasks compared to A3C (Wu et al., 2017). The main

drawback of asynchrony is that some agents play with older version parameters that

result in a decrease in performance.

A3C was first implemented by Google deepmind in 2016 and produced a huge impact on

the RL community due to its simplicity, robustness and drastic increase in performance

Chapter 3 Experiments and Implementation details

__

24

compared to policy gradient and DQN approaches. It was shown that A3C could beat all

other existing RL benchmark algorithms in the standard Atari video games. In the first

part of this project, we implement A3C to solve the SuperMarioBros environment.

3.1.1 Environment details

Super Mario Bros. is a video game (Fig 7) produced and published by Nintendo. It

consists of a player taking the role of Mario. The objective is to race through the kingdom,

collect maximum points, eliminate the enemies and save the princess. The game world

highlights coins spread around the level and special bricks labelled with a question mark

(?), which when hit from underneath by Mario, fetches it rewards. Mario's primary attack

is bouncing on top of enemies to eliminate them. The game consists of 8 worlds with 4

sublevels called "stages" in each world [1]. SuperMarioBros is a challenging game

compared to Atari 2600 games as it requires exploration and knowledge of different

enemies.

Fig 7 SuperMarioBros environment: The agent discovers how to play and reach the

end flag. The environment is rendered using the Nintendo Entertainment system

(NES) emulator.

3.1.2 Architecture details

The input state 𝑆𝑡 is passed through a succession of four convolution layers with 32 filters

each, kernel size 3x3, stride 2 and padding 1. An ELU (exponential linear unit) is used

after each convolution. In order to build temporal connections between previous actions

and states, LSTM (Long short-term memory) layer is used with 256 inputs. The output of

Chapter 3 Experiments and Implementation details

__

25

the LSTM is passed through two separate fully connected layers that are used to predict

the action and the value function. This architecture used is motivated by Generalised

advantage estimation (GAE) which showed that a single network could be used to predict

the action and the value function (Schulman, Moritz, et al., 2015). The initial parameters

for feature extraction from the state are shared between the two networks.

3.1.3 Training details

The Mario environment used has been derived from Kaunteja Github [2]. Here, the action

space is discretised to seven simple actions, using Nes_py wrappers [3]. Moreover, to

accelerate the training time, the original image size (240 x 256 RGB) is downscaled to

(84 x 84 grey-scale). Further, the state representation (St𝑆𝑡) of the environment is built by

concatenating the current frame with the previous three frames. This is done to model

temporal dependencies Also, there are 16 workers used in parallel to speed up training.

The code of the implementation can be found in github [4].

3.2 Intrinsic curiosity module

The model is based on an actor-critic model. This actor-critic model is integrated with an

Intrinsic curiosity module which computes the prediction error as mentioned earlier.

The intrinsic curiosity module consists of a forward and an inverse model (Fig 8). The

inputs of the model are the present state 𝑆𝑡, action 𝑎𝑡 (sampled from the policy trained on

actor-critic), and next state 𝑆𝑡+1 (which the agent reaches after taking action 𝑎𝑡). First, the

state tensors are passed through four convolution layers to extract the features 𝜙(𝑆𝑡) and

𝜙(𝑆𝑡+1) corresponding to 𝑆𝑡 and 𝑆𝑡+1 respectively. The forward model is constructed by

concatenating 𝜙(𝑆t) with 𝑎𝑡 and passing it into a sequence of two fully connected layers,

the output being 𝜙′(𝑆𝑡+1). The inverse model concatenates 𝜙(𝑆𝑡) and 𝜙(𝑆𝑡+1) to output

𝑎′𝑡. Training this neural network accounts to learning functions 𝑔 and 𝑓 defined as:

𝑎𝑡
′ = 𝑔(𝑆𝑡 , 𝑆t+1; 𝜃i) . . . (17)

 𝜙′(𝑆𝑡+1) = 𝑓(𝜙(𝑆t), 𝑎t; 𝜃f) . . . (18)

https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/nes-py/wiki/Wrappers
https://github.com/Ameyapores/Mario

Chapter 3 Experiments and Implementation details

__

26

Where 𝜃𝑖 and 𝜃𝑓 are neural network parameters for the inverse and forward model

respectively. Here 𝑎′𝑡 is the predicted estimate of the action and 𝜙′(𝑆𝑡+1) is the predicted

estimate of 𝜙(𝑆𝑡+1).

The parameters 𝜃𝑖 and 𝜃𝑓 are optimised by minimising the following loss functions 𝐿𝑖 and

𝐿𝑓 respectively

 𝑚𝑖𝑛θ𝑖
[𝐿𝑖 (𝑎t

′, 𝑎t)] . . . (19)

 𝐿𝑓(ϕ(𝑆𝑡+1),  ϕ′(𝑆𝑡+1)) = (||ϕ′(𝑆𝑡+1) − ϕ(𝑆𝑡+1)||
2

) / 2 . . . (20)

The intrinsic reward signal 𝑟𝑡
𝑖 is computed as

 𝑟𝑡
𝑖= (||𝜙′(𝑆𝑡+1) − 𝜙(𝑆𝑡+1)||

2
) 𝜂/ 2 . . . (21)

The total loss function of the network is given as

 𝑚𝑖𝑛θ𝑝,θ𝑖,θ𝑓
[−𝜆𝐸π(𝑆𝑡,θ𝑝)[𝛴𝑡𝑟t] + (1 − 𝛽)𝐿𝑖 + 𝛽𝐿f] . . . (22)

Where 0 ≤ 𝛽 ≤ 1 and 𝜆 > 0 are scalars that weighs the inverse model loss to the forward

model loss and the significance of the policy gradient loss to the significance of learning

the curiosity reward signal respectively.

Chapter 3 Experiments and Implementation details

__

27

Fig 8: Intrinsic curiosity module: The agent in state 𝑠𝑡 takes action 𝑎𝑡 sampled from

the policy. As a result, it goes to a new state 𝑠𝑡+1. The policy π is trained to optimise

the sum of extrinsic 𝑟𝑡
𝑒 and intrinsic 𝑟𝑡

𝑖 rewards. The environment offers the extrinsic

reward and the intrinsic reward is generated by the Intrinsic curiosity module (ICM).

ICM extracts the features of state 𝑠𝑡 and 𝑠𝑡+1 into features 𝜙(𝑠𝑡) and 𝜙(𝑠𝑡+1). The

forward model takes input 𝜙(𝑠𝑡) and 𝑎𝑡 and predict the features 𝜙̂(𝑠𝑡+1) of the next

state 𝑠𝑡+1. Curiosity-driven intrinsic reward 𝑟𝑡
𝑖 is the prediction error in the feature

space. The inverse model takes 𝜙(𝑠𝑡) and 𝜙(𝑠𝑡+1) as inputs to predict the action 𝑎𝑡̂.

The actions 𝑎𝑡̂ and 𝑎𝑡 are compared and used for backpropagation to encode only

features in 𝜙(𝑠𝑡)and 𝜙(𝑠𝑡+1) which affect the dynamics of the agent.

3.2.1 Experiments

We evaluate the performance of the learned policy qualitatively and quantitatively using

the proposed Intrinsic curiosity module in two different setting on the SuperMarioBros

environment: Dense reward, Sparse reward. In the original work, the authors have

evaluated the algorithm on a different environment: Vizdoom with three different reward

setting: Dense ,sparse and very sparse rewards.

The sparseness of the reward is determined by the distance it needs to explore in order

to receive reward. A larger distance means the probability of reaching the goal by random

exploration is low and hence the reward is said to be sparse. In the dense reward setting,

the agent receives the reward after each timestep. In Sparse reward setting, agent

Chapter 3 Experiments and Implementation details

__

28

receives reward after 10% of the total game distance. We compare two different

algorithms

1. ICM+A3C - Refers to our full algorithm that combines ICM with Actor-critic

2. A3C - Baseline

The original work has considered another algorithm:

3. ICM-pixel + A3C - Refer to a variant of ICM without the inverse model.

ICM-pixel is close to ICM, but it is incapable of removing feature representations for

uncontrolled part of the environment. It only uses the forward model to compute the

prediction error in the Observation feature space.

3.3 Reactive reinforcement architecture

In this work, we consider the task of picking a block and taking it to a target position. The

environment used for validation is FetchPickandPlace [5], part of an open-source library

designed by OpenAI.

3.3.1 Environment details

Gym is an open-source module that provides a toolkit for developing and comparing RL

algorithms. It contains collection of various environments to test RL algorithms on such

as Atari video games: pong, pinball and continuous control environment like Humanoid

walking, jumping etc.

FetchPickandPlace- For continuous control tasks like Robot manipulation, gym uses a

physics simulator called mujoco. A physics simulator is a software that provides an

approximate simulation of specific physical systems like rigid-body dynamics(collision),

soft-body dynamics, fluid dynamics. FetchPickandPlace simulated the Fetch research

platform (Fig 9). A goal is randomly chosen in 3D space. RL algorithms should control

Fetch's end effector (using inverse kinematics) to grasp and lift the block up to reach that

goal. Instead of a vision-based camera, this simulation provides the state input in the form

of coordinates and orientation of block, gripper position and its velocity and rotation. This

Chapter 3 Experiments and Implementation details

__

29

scenario is a sparse reward condition as the agent receives a reward (+1), only when it

successfully takes the block to the target position. In all other circumstances, it gets a

reward of (-1).

Fig 9 OpenAI fetchpickandplace environment: Fetch is a robot with a single arm

manipulator and four degrees of freedom. The goal is to pick the block and take

it to the target position (Red colored dot)

First, we decompose the main task into basic skills/behaviours. The primary goal is to

pick and take the block to a target location whereas the sub goals are primitive behaviours

such as approaching, manipulating a block and retracting to a target point (Fig 10). The

idea we propose here is canonical to human learning pattern in order to complete a task.

We learn skills separately and then combine them to accomplish a task. Similarly, we

train the robot to master each skill independently. For, example, if it is approaching

towards the block, we explicitly teach it to move in X, Y and Z cartesian space. We further

repeat this for other sub actions. Once these sub actions are learned, we combine them

to pick the block. The network which decides the movement of the end-effector in x,y,z

are trained to accomplish that specific subtask. Currently the input on which sub action to

take (e.g., approach(a), manipulate(b) and retract(c)) is given by the developer, but our

future work involves developing a highly reactive network based on activation and

inhibition mechanism which fires in a particular temporal sequence to give rise to complex

behavior. We use a simple loss function to imitate from demonstration instead of learning

new policies from scratch.

Chapter 3 Experiments and Implementation details

__

30

Fig 10: Schematics of reactive behaviour architecture: The primary goal of picking

the object is subdivided into simpler subtasks. For each subtask, there are reactive

networks which are trained specially for movement in x, y and z. First, the state

vector (in the form of coordinates of objects) is given as an input to the Feature

extraction layer. The extracted features are relayed on to the reactive layers deciding

the movement of the end-effector. To simplify terminology, we use the following

corresponding letters for denoting the subordinate actions: Approach (a), manipulate

(b) and retract (c).

3.3.2 Architecture details

The raw input of coordinates is fed to feature extraction network consisting of two fully

connected layers with 128 neurons each. The output is mapped to three neurons in the

last layer that determines the movement in x, y and z for each process approach(a),

manipulate(b) and retract(c).

3.3.3 Experimental details

For training the robot, we use a conventional method in imitation learning, called

Behaviour cloning (BC) which learns a policy through supervised learning on

demonstration state-action pairs (Nakanishi et al., 2004; Bojarski et al., 2016). More

Chapter 3 Experiments and Implementation details

__

31

advanced forms of imitation learning include Inverse Reinforcement learning (IRL), where

a reward function is deduced from the demonstrations. Here, we assume the knowledge

of the reward function, therefore omit the comparison with IRL. We introduce a loss

function computed on the demonstration examples as follows:

𝐿𝐵𝐶 = ∑||π(𝑠𝑖|𝜃𝜋) − 𝑎𝑖||
2

𝑁𝐷

𝑖=1

Employing this loss, the learned policy is always near the demonstrated policy, as the

actor is always tied back to demonstrations. The code for the implementation can found

at Github [6]. Here, we have evaluated four different experimental setups:

1. Sequential- First, we train the approach (a) behaviour with a hand-engineered

solution for manipulate (b) and retract (c). Once process a is trained (reaches

100% success rate), process b is trained using the output from a network and

hand-engineered solution for process c. Similarly scaling up, once process b is

learnt, we train on process c, using outputs from network a and b.

2. Sequential + Freezing- In this case, we start with training approach (a), with a

hand-engineered solution for process b and c. After process a is trained, we freeze

the layers that extract features from the raw input (In fig-10, retina+primary visual

cortex). Further, we train process b, using the freezed weights for feature

extraction and the output of network a, and hand-engineered solution for b. Similar

method is applied for scaling up and training on process c.

3. Separate- In this case, we start with training approach (a) with a hand-engineered

solution for process b and c. Once, a is trained, we do not use the output of the

trained network. For training process b, we use hand-engineered solution for a and

c. Similarly, training is carried out for process c. Once, each module is trained

separately, use combine all the skills to accomplish the task.

4. Separate + Freezing - In this case, we start with training approach with a hand-

engineered solution for process b and c. After process a is trained, we freeze the

layers that extract features from raw input (In fig-10, retina+primary visual cortex).

For training process b, output from network trained for process a is not used, we

use hand-engineered solution for a and c with frozen weights of the feature

https://github.com/Ameyapores/Hierarchical-RL-for-robotic-grasp

Chapter 3 Experiments and Implementation details

__

32

extraction layer. Similarly, training is carried out for process c. Once, each module

is trained separately, use combine all the skills to accomplish the task.

Intuitively, the freezing model is motivated by the early development of some aspects of

visual pathway. Infant visual brain is not completely mature. It poorly characterises traits

such as acuity, shape, and color perception. Gradually, some visual capacities (for

example: motion perception) mature over 6-8 months, whereas some properties take time

to become plastic and adult like. Some research opinion suggests that the initial

interaction of newborn’s triggers rapid innate circuiting of some parts of the brain

(subcortical structures) and eventually this rate slows down with age (Buiatti et.al, 2019).

Similarly, we train our network for an initial period in approach (a). Once, the network

optimises the parameters to extract patterns from the data; we use the same weights for

further training on process b and c.

Chapter 4 Results and Discussion

33

Chapter 4

Results and Discussion

Following are the results of the implementation

1. Comparison of Actor-critic and curiosity model

2. Comparison of e2e learning and our proposed hierarchical model

4.0 Actor-critic + Curiosity

Results in Fig 10 depicts that the performance of the baseline A3C degrades with sparser

rewards, ICM+A3C can achieve superior results. In dense reward setting, curious agent

tends to learn faster suggesting more exploration compared to 𝜖-greedy exploration of

the environment. In Sparse condition, baseline fails as expected, whereas the curious

agent is still able to explore effectively and learn the task quickly.

 (a) Dense (b) Sparse

Fig 11: Performance comparison of the A3C agent without curiosity (yellow) against

the full ICM (blue) in two different reward setting (left to right: dense to very sparse).

The results suggest that as the exploration gets harder, A3C finds it difficult to

explore. ICM+A3C is able to perform well in the scenarios. The exploration becomes

Chapter 4 Results and Discussion

34

difficult as the agent goes from Dense to Sparse rewards. For each experiment,

three independent runs are carried out.

We further experiment with training the Mario agent based only of curiosity rewards

without any extrinsic rewards. Surprising, the Mario agent learns to cross about 30% of

level-1. The agent received no reward signal for killing the enemies or jumping over pits,

yet it discovered these behaviours autonomously. One reason for it to learn these

behaviours of killing is only then it could reach a new part of the game space to receive

curious rewards. In other words, curiosity provides indirect supervision for learning new

behaviours

4.0.1 Discussion

One of the major challenges at the frontiers of Machine learning research is how to

explore the parameter space efficiently. In conditions when the feedback is continuous,

standard techniques such as backpropagation with hyper-parameter tuning work best to

find optimal solution. However, when extrinsic rewards are sparse, it becomes extremely

difficult for current RL algorithms to explore and reach out to “novel” states, since it is not

incentivised to do so and it is highly unlikely that it would reach the pre-specified goal

through random exploration. Existing algorithms find it difficult to scale up to high-

dimensional visual inputs such as images and predict pixel values to next state due to

stochasticity of environment. Curiosity generated intrinsic reward outperforms other

methods because it only predicts the changes in the environment that could possibly be

due to agents’ actions or affect the agent. Instead of predicting the raw sensory space,

intrinsic curiosity module transforms raw images to a feature space and predict features

that affect the dynamics of the agent. It ensures that the exploration strategy of the agent

is unaffected by nuisance factors in the environment beyond agents’ control.

Chapter 4 Results and Discussion

35

4.1 Reactive Robotic Behaviour

As mentioned in the implementation we compare the existing e2e methods, where the

actions are optimised for the entire task from the first timestep, to our proposed reactive

architecture. In our reactive structure, the main task is broken down into subtasks and

each task is learnt individually. We evaluate four different scenarios namely - Sequential,

Sequential + Freezing, Separate, Separate+Freezing (see section 3.3.3).

The results are shown in Fig 12. For an e2e learning process, after training for 20000

episodes, it reaches a success rate of 60%. Sequential learning of behaviours and using

the output of the previous behaviour to learn new behaviour in addition to freezing layers

after initial training also seems to take the same amount of data (20000 episodes) to reach

60% success accuracy.

Astonishingly, In the scenario where we learn each skill separately with freezing layers

after initial training, the algorithm is able to reach 100% success rate in 6000 episodes of

training. Further, separate skill training without freezing shows a minor enhancement in

success rate. These results seem to verify the hypothesis we propose that learning can

be more effective if each skill is learnt in isolation and then combined after learning to

accomplish the task. Secondly, as in humans, once the network knows how to extract

features, freezing the knowledge (in this case, the weights) shows more learning potential

for other subtasks.

In sequential learning, where each module is trained incrementally, the results show

similarities with the learning curve of the e2e process. One reason for this counterintuitive

result may be the random position of the target point at each run. Although, the algorithm

has learnt how to approach a randomly positioned block and grasp it. It is difficult to move

in the 3d cartesian space to a random position in each run.

Chapter 4 Results and Discussion

36

Fig 12: Comparison of e2e learning with different proposed implementations:

i) Sequential + Freezing architecture (Yellow) and e2e learning process (Blue)

ii) Sequential (Blue) and e2e process (yellow)

iii) Separate + Freezing (Blue) and e2e process (yellow)

iv) Separate (blue) and e2e (yellow).

In case of hierarchical implementation, the first spike, when the success rate reaches

100 % denotes the completion of training process a (approach), the second spike

denotes the completion of training for process b (manipulate). After the second spike,

the success rate drops down and started training for process c (retract). The results

suggest that it takes the same amount of training episodes for e2e process and

Sequential, Sequential+Freezing. Whereas separate+ freezing shows drastic

increase in success rate. Separate also shows increase in efficiency but further

experiments need to be carried out for longer no. of episodes. Each algorithm is run

independently for three runs with different seeds.

Chapter 4 Results and Discussion

37

4.1.1 Discussion

Today’s deep learning systems are composed of modules, layers and group of layers with

specific roles to extract feature representations. Once the network is designed, the

weights are initialised randomly and they are trained subsequently e2e, with variants of

stochastic gradient descent. The power of e2e learning has been demonstrated on

multiple tasks, like playing a whole array of Atari video games with a single deep network

architecture. As we stride towards creating non-trivial agents resembling human brain,

we end up with customized modules for sensory data, language processing, motor

control, decision making, memory and more. This problem decomposition is central to

solving complex problems. Dividing the problem into subtasks is heavily used while

designing a complex learning machine. However, training such a system in an e2e way

means to explicitly ignore the problem of decomposition. Instead, we just hope that

preconditioning while designing is enough to drive methods like gradient descent from a

random initialisation seed to a non-trivial solution.

Data efficiency is the second issue. Unmodeled interaction between modules may require

large amounts of training data. As the number of modules increases, the training data

required also increase exponentially, also called combinatorial explosion.

In this work, we attempt to show that the above-mentioned problems could be solved

using

1. Dividing a complex task into multiple sub-tasks that are trivial to learn. Each of

these subtasks denote some trivial behaviour. These behaviours are modelled

using simple fully connected networks that are trained specifically for that

behaviour e2e.

2. Learning each of these trivial behaviours separately reduces the data-required for

learning.

This setup is different from standard RL, since the agent performs only a single high-level

action with a reactive policy. The selected action consists of sub-actions that need to be

pre-programmed/pre-trained.

Chapter 4 Results and Discussion

38

Our results suggest that training could be more effective if each module is trained

separately with other modules already trained or using hand-engineered solution. Also,

freezing the feature extraction layer after initial training and using these freezed weights

for training other module has an enormous reduction in training time. This indicates that

training of complex learning systems should be accomplished in a structured fashion,

training simple modules first and independent of the rest of the network. It aligns with the

paradigm of bottom-up learning approach where complex behaviours could arise by

generating and combining simple ones (Duarte et al., 2016; Gomes, Oliveira and

Christensen, 2018).

4.1.2 Applicability

Our study highlights the versatility of hierarchical decomposition of behaviours and offers

significant advantage compared to other works.

1. Incrementally increasing the reactive behaviours: We start from one single

behaviour and increase the number of these reactive behaviours as we increase

the complexity of task.

2. Generality- For different tasks in the same environment, the reactive behaviours

can be sequenced differently manually to complete the task. A set of reactive

behaviours can give rise to multiple task. Whereas, in existing e2e methods, for

each new task, the agent needs to be trained again from scratch.

3. Behaviour reuse- Such reactive behaviours can be reused multiple times to

complete long-term tasks.

4. Control systems using Behaviour decomposition are more understandable and

transparent compared to a black-box-optimiser. Such intelligibility is useful when

the developer needs to modify certain aspects of behaviour.

Our approach allows for these advantages; however, it also mitigates the following

disadvantages:

1. The designer needs to pre-program the subtasks and hence plan upfront. One

needs to have the information of the environment dynamics. Whereas, e2e

Chapter 4 Results and Discussion

39

methods is trained holistically towards an objective function, although the learning

is slow.

2. Extremely difficult and tedious to pre-program behaviours involving high amount

of degree of freedom. For example: While manipulating a block, it is challenging to

decompose the task into simple behaviors and understanding the Degrees of

Freedom associated with that behaviour. Learning problems become much harder

if we do not know how to decompose them, or if we simply get it wrong.

Chapter 5 Future work and Conclusion

40

Chapter 5

Future work and Conclusions

Our future work concerns with training a recurrent network to identify and sequence the

connection between the reactive behaviour primitive to complete a variety of task. This

extension is directed towards adding a sequential reasoning layer that could mitigate the

need for end-to-end training. This would increase automation and reduce human

involvement since the algorithm would decide to reuse, switch between the primitive

behaviours to complete different types of tasks. Also, in our current implementation, we

have used Behaviour cloning to train the reactive behaviour using demonstration.

However, further work would attempt to use advanced RL techniques like PPO in addition

to behaviour cloning to speed up the learning and perform better than the demonstrations.

Additional directions would be to add more levels of Hierarchy to show more general

behaviour. Note that in all these experimentations, we plan to use a vision-based

simulator in contrast to our currently used simulator which gives kinematic state inputs.

This will enable us to develop complex convolution network for feature extraction from

images. Finally, we plan to transfer the knowledge from simulation to a real robotic

system.

On a separate line, instead of using a back propagation based gradient algorithms, recent

researches have shown that Evolutionary strategies and genetic algorithms perform

astonishingly on benchmark RL platforms despite its simplicity (Salimans et al., 2017;

Such et al., 2017). These algorithms reflect the biological process of natural selection,

where the fittest individuals are selected for reproduction in order to produce offspring for

the next generation. There have been limited experimental studies in GA’s, specifically

neuroevolution, but it offers an unconventional, yet theoretically well-studied, approach to

select hyper-parameters, best performing models and faster training cycles. ES and GAs

were believed to not generalise to high dimensional state spaces until a team from

Chapter 5 Future work and Conclusion

41

OpenAI2 showed that these algorithms exhibit competitive performance on Atari games.

In the context of our work, we plan to incorporate GA’s to evolve general behavioural

repertoire. Further to this, a higher-level arbitrator would be evolved to sequence the

primitive actions.

In case of gradient based approaches, usually the optimisation gets stuck in a local

minimum in the parameter space. Also, the 𝜀-greedy exploration strategy becomes biased

towards one particular trajectory. GA’s in combination with Novelty search algorithms

have shown competitive results in terms of robustness and structured exploration. Novelty

search selects individual networks that are different from other network and show a

different behavior. Although overlooked by most research studies, GA’s provide an

interesting direction towards future research.

5.1 Conclusion

We propose an approach to generate repertoire of general behaviours using reactive

network architecture. Our contribution is as follows: We use simple networks to train

specific behaviours incrementally. This type of layering has been inspired from

Subsumption theory, famous in 1980’s. With the recent advent in Deep learning and

Reinforcement learning, most implementations have used an end-to-end approach which

is neither scalable to high-dimensional input nor efficient. Existing RL algorithms has

shown success in trivial tasks of playing Atari games that provide continuous feedback,

however, these algorithms fail to perform in sparse-feedback and long time-step

environments like Robotic grasping. In this work, we have demonstrated, in simulations,

that such long-time tasks can be decomposed and could be learnt independently. These

independently trained networks combined manually, can give rise to behaviours that

could accomplish variety of tasks. The proposed approach opens doors for further

exploration in modular behavioural control.

2 OpenAI - A non-profit AI research company primarily working on RL

Chapter 8 Bibliography

__

a

References

Bojarski, M. et al. (2016) ‘End to End Learning for Self-Driving Cars’. Available at:

https://arxiv.org/abs/1604.07316 (Accessed: 18 March 2019).

Botvinick, M. M., Niv, Y. and Barto, A. C. (2009) ‘Hierarchically organized behavior and its neural

foundations: A reinforcement learning perspective’, Cognition. Elsevier, 113(3), pp. 262–280. doi:

10.1016/J.COGNITION.2008.08.011.

Breyer, M. et al. (2018) ‘Comparing Task Simplifications to Learn Closed-Loop Object Picking Using

Deep Reinforcement Learning’. Available at: http://arxiv.org/abs/1803.04996 (Accessed: 18 March

2019).

Brooks, R. A. (1990) ‘Elephants don’t play chess’, Robotics and Autonomous Systems. North-Holland,

6(1–2), pp. 3–15. doi: 10.1016/S0921-8890(05)80025-9.

Brooks, R. A. (1990) Elephants Don’t Play Chess, Robotics and Autonomous Systems. Available at:

http://people.csail.mit.edu/brooks/papers/elephants.pdf (Accessed: 15 March 2019).

Brooks, R. A. (1991) ‘Intelligence without representation’, Artificial Intelligence. Elsevier, 47(1–3), pp.

139–159. doi: 10.1016/0004-3702(91)90053-M.

Buiatti, M., Di Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., Baldo, E. and Vallortigara, G.,

2019. Cortical route for facelike pattern processing in human newborns. Proceedings of the National

Academy of Sciences, 116(10), pp.4625-4630.

Collins, J., Howard, D. and Leitner, J. (2018) ‘Quantifying the Reality Gap in Robotic Manipulation

Tasks’. Available at: https://arxiv.org/abs/1811.01484 (Accessed: 18 March 2019).

Duan, Y. et al. (2017) ‘One-Shot Imitation Learning’. Available at: http://arxiv.org/abs/1703.07326

(Accessed: 18 March 2019).

Duarte, M. et al. (2016) ‘EvoRBC’, in Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference - GECCO ’16. New York, New York, USA: ACM Press, pp. 93–100. doi:

10.1145/2908812.2908855.

Ecoffet, A. et al. (2019) ‘Go-Explore: a New Approach for Hard-Exploration Problems’. Available at:

http://arxiv.org/abs/1901.10995 (Accessed: 4 February 2019).

Florence, P. R., Manuelli, L. and Tedrake, R. (2018) ‘Dense Object Nets: Learning Dense Visual

Object Descriptors By and For Robotic Manipulation’. Available at: http://arxiv.org/abs/1806.08756

(Accessed: 18 March 2019).

Forestier, S., Mollard, Y. and Oudeyer, P.-Y. (2017) ‘Intrinsically Motivated Goal Exploration

Processes with Automatic Curriculum Learning’. Available at: http://arxiv.org/abs/1708.02190

(Accessed: 18 March 2019).

Chapter 8 Bibliography

__

b

Frank, M. J. and Claus, E. D. (2006) ‘Anatomy of a decision: Striato-orbitofrontal interactions in

reinforcement learning, decision making, and reversal.’, Psychological Review, 113(2), pp. 300–326.

doi: 10.1037/0033-295X.113.2.300.

Frans, K. et al. (2017) ‘Meta Learning Shared Hierarchies’. Available at:

https://arxiv.org/abs/1710.09767 (Accessed: 18 March 2019).

Glasmachers, T. (2017) ‘Limits of End-to-End Learning’. Available at: http://arxiv.org/abs/1704.08305

(Accessed: 12 March 2019).

Gomes, J., Oliveira, S. M. and Christensen, A. L. (2018) ‘An approach to evolve and exploit repertoires

of general robot behaviours’, Swarm and Evolutionary Computation. Elsevier, 43, pp. 265–283. doi:

10.1016/J.SWEVO.2018.06.009.

Gupta, A. et al. (2016) ‘Learning Dexterous Manipulation for a Soft Robotic Hand from Human

Demonstration’. Available at: http://arxiv.org/abs/1603.06348 (Accessed: 18 March 2019).

Hessel, M. et al. (2017) ‘Rainbow: Combining Improvements in Deep Reinforcement Learning’.

Available at: http://arxiv.org/abs/1710.02298 (Accessed: 18 March 2019).

Ke, N. R. et al. (2018) ‘Sparse Attentive Backtracking: Temporal CreditAssignment Through

Reminding’. Available at: https://arxiv.org/abs/1809.03702 (Accessed: 18 March 2019).

Kober, J. and Peters, J. (2014) ‘Reinforcement Learning in Robotics: A Survey’, in. Springer, Cham,

pp. 9–67. doi: 10.1007/978-3-319-03194-1_2.

Laversanne-Finot, A., Péré, A. and Oudeyer, P.-Y. (2018) ‘Curiosity Driven Exploration of Learned

Disentangled Goal Spaces’. Available at: http://arxiv.org/abs/1807.01521 (Accessed: 18 March 2019).

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature. Nature Publishing Group,

521(7553), pp. 436–444. doi: 10.1038/nature14539.

Levy, A. et al. (2017) ‘Learning Multi-Level Hierarchies with Hindsight’. Available at:

https://arxiv.org/abs/1712.00948v4 (Accessed: 18 March 2019).

Lillicrap, T. P. et al. (2015) ‘Continuous control with deep reinforcement learning’. Available at:

http://arxiv.org/abs/1509.02971 (Accessed: 18 March 2019).

Liu, Y. et al. (2017) ‘Imitation from Observation: Learning to Imitate Behaviors from Raw Video via

Context Translation’. Available at: http://arxiv.org/abs/1707.03374 (Accessed: 18 March 2019).

Maggi, S., Peyrache, A. and Humphries, M. D. (2018) ‘An ensemble code in medial prefrontal cortex

links prior events to outcomes during learning’, Nature Communications. Nature Publishing Group,

9(1), p. 2204. doi: 10.1038/s41467-018-04638-2.

Chapter 8 Bibliography

__

c

Mnih, V. et al. (2015) ‘Human-level control through deep reinforcement learning’, Nature. Nature

Publishing Group, 518(7540), pp. 529–533. doi: 10.1038/nature14236.

Mnih, V. et al. (2016) ‘Asynchronous Methods for Deep Reinforcement Learning’. Available at:

http://arxiv.org/abs/1602.01783 (Accessed: 18 March 2019).

Moravec, H. P. (1988) Mind children : the future of robot and human intelligence. Harvard University

Press. Available at: http://www.hup.harvard.edu/catalog.php?isbn=9780674576186 (Accessed: 17

March 2019).

Nachum, O. et al. (2018) ‘Data-Efficient Hierarchical Reinforcement Learning’. Available at:

https://arxiv.org/abs/1805.08296 (Accessed: 18 March 2019).

Nakanishi, J. et al. (2004) ‘Learning from demonstration and adaptation of biped locomotion’, Robotics

and Autonomous Systems. North-Holland, 47(2–3), pp. 79–91. doi: 10.1016/J.ROBOT.2004.03.003.

Pathak, D. et al. (2017) ‘Curiosity-driven Exploration by Self-supervised Prediction’. Available at:

http://arxiv.org/abs/1705.05363 (Accessed: 18 March 2019).

Pathak, D. et al. (2018) ‘Zero-Shot Visual Imitation’. Available at: http://arxiv.org/abs/1804.08606

(Accessed: 18 March 2019).

Peng, X. Bin et al. (2017) ‘Sim-to-Real Transfer of Robotic Control with Dynamics Randomization’.

doi: 10.1109/ICRA.2018.8460528.

van Polanen, V. and Davare, M. (2015) ‘Interactions between dorsal and ventral streams for controlling

skilled grasp’, Neuropsychologia. Pergamon, 79, pp. 186–191. doi:

10.1016/J.NEUROPSYCHOLOGIA.2015.07.010.

Pyeatt, L. D. and Howe, A. E. (1999) ‘Decision Tree Function Approximation in Reinforcement

Learning’. Available at: https://www.semanticscholar.org/paper/Decision-Tree-Function-

Approximation-in-Learning-Pyeatt-Howe/1655cde00456867e6f12de9952fe3a78170fe7bb

(Accessed: 18 March 2019).

Rajeswaran, A. et al. (2017) ‘Learning Complex Dexterous Manipulation with Deep Reinforcement

Learning and Demonstrations’. Available at: http://arxiv.org/abs/1709.10087 (Accessed: 18 March

2019).

Salimans, T. et al. (2017) ‘Evolution Strategies as a Scalable Alternative to Reinforcement Learning’.

Available at: http://arxiv.org/abs/1703.03864 (Accessed: 18 March 2019).

Schulman, J., Moritz, P., et al. (2015) ‘High-Dimensional Continuous Control Using Generalized

Advantage Estimation’. Available at: http://arxiv.org/abs/1506.02438 (Accessed: 18 March 2019).

Schulman, J., Levine, S., et al. (2015) ‘Trust Region Policy Optimization’. Available at:

Chapter 8 Bibliography

__

d

http://arxiv.org/abs/1502.05477 (Accessed: 18 March 2019).

Schulman, J. et al. (2017) ‘Proximal Policy Optimization Algorithms’. Available at:

http://arxiv.org/abs/1707.06347 (Accessed: 18 March 2019).

Sciberras-Lim, E. T. and Lambert, A. J. (2017) ‘Attentional Orienting and Dorsal Visual Stream Decline:

Review of Behavioral and EEG Studies.’, Frontiers in aging neuroscience. Frontiers Media SA, 9, p.

246. doi: 10.3389/fnagi.2017.00246.

Sehnke, F. et al. (2010) ‘Parameter-exploring policy gradients’, Neural Networks. Pergamon, 23(4),

pp. 551–559. doi: 10.1016/J.NEUNET.2009.12.004.

Such, F. P. et al. (2017) ‘Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for

Training Deep Neural Networks for Reinforcement Learning’. Available at:

https://arxiv.org/abs/1712.06567 (Accessed: 18 March 2019).

Sutton, R.S. and Barto, A.G., 1998. Introduction to reinforcement learning (Vol. 135). Cambridge: MIT

press.

Wang, J. X. et al. (2018) ‘Prefrontal cortex as a meta-reinforcement learning system’. doi:

10.1038/s41593-018-0147-8.

Watkins, C. J. C. H. and Dayan, P. (1992) Technical Note Q,-Learning. Available at:

http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf (Accessed: 18 March 2019).

Wu, Y. et al. (2017) ‘Scalable trust-region method for deep reinforcement learning using Kronecker-

factored approximation’. Available at: http://arxiv.org/abs/1708.05144 (Accessed: 18 March 2019).

Links for Github repositories and online sources

1. Super Mario Bros. Instruction Booklet (PDF). USA: Nintendo of America. 1985. Archived (PDF)

from the original on June 23, 2017. Retrieved July 4, 2017

2. https://github.com/Kautenja/gym-super-mario-bros

3. https://github.com/Kautenja/nes-py/wiki/Wrappers

4. https://github.com/Ameyapores/Mario

5. https://gym.openai.com/envs/#robotics

6. https://github.com/Ameyapores/Hierarchical-RL-for-robotic-grasp

https://www.nintendo.co.jp/clv/manuals/en/pdf/CLV-P-NAAAE.pdf
https://en.wikipedia.org/wiki/Nintendo_of_America
https://web.archive.org/web/20170623230708/https:/www.nintendo.co.jp/clv/manuals/en/pdf/CLV-P-NAAAE.pdf

