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Abstract

Vertical vibrations in classical liquids give rise to non-linear standing waves called Faraday
waves when the driving frequency is greater than a critical value. An analogous phenomena
is seen in Bose Einstein Condensates when the system’s non-linearity is modulated and the
uniform state loses it’s stability to spatially modulated states. We study Faraday Patterns
in Spin-1 Spinor Bose-Einstein Condensate on periodic modulation of the different s-wave
scattering lengths, a0 and a2. The size of these patterns depends upon Bogoliubov mode
resonant with half of the driving frequency. In case of Spin-1 Bose-Einstein Condensate
the nature of Bogoliubov spectrum of spinor BECs depends explicitly on the magnetic
ground state and also they are multi-branched with both spin and density modes, or coupling
between them. The excitations of the spin-modes in some of the ground states leads to spin
dynamics and formation of interesting spin-structures which have wavenumber indicative of
the corresponding Bogoliubov mode. We find that by modulating the two scattering channels
of spin-1 BEC with varied frequencies and amplitudes we can excite and explore different
Bogoliubov modes of the spinor BEC.
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Chapter 1

Introduction

1.1 Bose-Einstein Condensates

Bose-Einstein Condensates are formed when a large fraction of atoms in the system condense
to the lowest energy state on the account of the system being cooled. This transition to a
single quantum state can occur only if the atoms or particles posses a total integer spin such
as F = 0,1,2, .., referred to as "Bosons".

  

High Temperature

“Billiard Balls”

Low Temperature

“Wavepackets with 
De-Broglie 

Wavelength        ”

T=Tcritical : 
Bose-Einstein 
Condensation

“Matter wave overlap”

T=0 : Pure 
Condensate

“Giant matter wave”

Fig. 1.1 Visualization of Bose-Einstein Condensation



2 Introduction

This state of matter was first predicted in the 1920s by Albert Einstein and Satyendra
Nath Bose. It was experimentally realized in dilute neutral atomic gases in 1995 by groups
at JILA and the Massachusetts Institute of Technology (MIT) [1–3]. The spin in these first
gaseous BECs was frozen in a single state as they were magnetically trapped. They were
thus described by scalar order parameter y(r, t).

1.2 Spinor Bose-Einstein Condensates

Optical trapping techniques were employed in 1997 to obtain condensates whose spins were
not frozen in a single state called as spinor BEC [4]. The direction of atomic spins in an
optical trap can change due to the interparticle interaction. As a result the order parameter of
a spinor BEC is a vector that has 2 f +1 components Y = (y f ,y f�1, ....y0, ....,y� f ).

Fig. 1.2 (a)Spin-1 BEC in an optical trap,(b)Absorption image of the different components. (Taken
from Figure 4. Phys. Rev. Lett. 80, 2027)

There are several consequences of this spin degree of freedom.The first being that below
the critcal temperature required to create the BEC (TBEC) there are several ground state
phases possible and which one is realized depends upon the interaction parameters in the
system. The number of ground state phases possible increases further in the presence of
magnetic field [5–7]. The second consequence of this degree of freedom is that it allows for
population exchange among the hyperfine states via the spin-exchange collisions. Lastly,the
distribution of these spin vectors in space gives rise to different interesting structures or
"spin-textures" such as vortex, skyrmion, spiral, helix etc [8–10].

Both degenerate and spinor Bose-Einstein condensates can be used as a powerful tool for
simulating and studying physical effects with analogues throughout physics. Spinor BECs
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which posses both magnetic ordering as well as superfluidity can be used to shed light on an
array of topics such as the entanglement and squeezing of quantum fields, nonequilibrium
quantum dynamics, quantum phase transitions and the role of symmetry and topology in
quantum-ordered materials [11].

1.3 Project Development

1.3.1 Periodically driven BEC

Periodically driven classical systems such as the Kapitza pendulum and kicked rotor display
rich dynamics and the study of their analogues in quantum systems [12] have had applications
in photonic crystals [13], ion traps [14],irradiated graphene [15] and ultracold gases in optical
lattices [16].

Periodic driving of s-wave scattering length in a BEC can be used to gain an insight
into excitations of a BEC [17, 18]. Excitations in BEC are of two types - phonon like
excitations (associated with long wavelengths) and particle like excitations (associated with
higher wavelengths). The low lying excitations ,corresponding long wavelengths, that lead
to collective excitation of the system are responsible for phenomenon of superfluidity and
help understand the macroscopic behaviour of BECs. We study parametric resonance of
the Bogoliubov mode in this excitation regime. The resonance is achieved by periodically
modulating the non-linearity of the system. Translational symmetry breaking and pattern
formation may be seen as a result of this modulation. The low lying excitations in spinor
BEC show both phonon like and magnon like excitations which make it an interesting system
to study using periodic driving.

Also, in the recent years there has been a resurrgence of research interests in periodically
driven quantum systems such as BECs. Understanding periodic modulations in driven
quantum systems is an essential component for Floquet engineering [12, 19, 20]. Parametric
instabilities produced by periodic driving has been studied extensively in the context of a
scalar condensate [21–23].

Periodic driving in spinor BEC has been studied by temporally modulating quadratic
Zeeman coupling term [24]. In this project we explore a periodic driving in the s-wave
scattering lengths of the system. The development and motivation behind the project is
summarized in the next two sections.



4 Introduction

1.3.2 Periodically driven Spin-1 Spinor BEC

Vertical vibrations in classical liquids give rise to non-linear standing waves called Faraday
waves when the driving frequency is greater than a critical value. An analogous phenomena
is seen in Bose Einstein Condensates when the system’s non-linearity is modulated and the
uniform state loses it’s stability to spatially modulated states. Creating Faraday patterns in
Bose Einstein condensates involves temporal periodic modulation of the s-wave scattering
length. This leads to excitations of the sub-harmonic patterns in the atomic density through
a parametric resonance resonance. The dominant wavelength of the instability and the
symmetries of the selected patterns are intrinsic properties of the system, independent of
(or only weakly dependent on the initial or boundary conditions). In case of BECs Faraday
patterns offer important insights about the elementary excitations in BECs since the pattern
size is determined by the Bogoliubov mode resonant with half of the driving frequency.
Faraday pattern formation in spin-0 Bose Einstein Condensates has already been explored
[18, 17]. The nature of Bogoliubov spectrum of spinor BECs depends explicitly on the
magnetic ground state and also they are multi-branched with both spin and density modes,
or coupled between them. We look at Faraday pattern formation in Spin-1 Bose Einstein
Condensates which in addition to the density patterns also exhibits spin dynamics and shows
interesting spin-textures when the spin modes are resonant with half the driving frequency.
Also,in spinor BECs the two s-wave scattering channels with total spin-F F = 0,2 may
be modulated independently or together using the microwave-induced Feshbach resonance
proposed in [25–30]. We look at Faraday pattern formation when each scattering channel is
modulated independently, together with same amplitude and frequency and with different
amplitude and frequency.

1.3.3 Overview

This section provides an overview of the work presented in this thesis. Chapter 1, introduces
Spinor-BECs and periodic driving in quantum sytems. It discusses related works in this area.
It briefly discusses how Faraday patterns may be used in studying elementary excitations in
BECs and discusses motivation of the project.

Chapter 2, discusses the spin-1 BEC system i.e, the Hamiltonian of the system, the
equation describing its dynamics (multicomponent GPE) and elementary excitations in the
system. It then motivates how periodic driving can help study these excitations by studying
Faraday Patterns. It also looks at Faraday Patterns in scalar BEC and scalar dipolar BEC.

The results and observations extend over Chapter 3,4,5. Since there are two scattering
lengths involved here, a0 and a2 we consider three scenarios for time modulated scattering
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lengths: (i) a0 time-dependent and a2 constant which is discussed in Chapter 3 (ii) a0 constant
and a2 time-dependent which is discussed in Chapter 4 and finally (iii) both scattering lengths
are time-dependent which id discussed in Chapter 5. Chapter 6 concludes the thesis and
briefly discusses related work which can be pursued in the future.





Chapter 2

Theory

2.1 Hamiltonian of a Spin-1 BEC

The Hamiltonian describing a spin-1 BEC system can be divided into two parts:

• A non-interacting Hamiltonian which describes a single boson.

• An interaction Hamiltonian that describes the interaction between two bosons.

We discuss each of these parts separately before presenting the Hamiltonian describing the
entire system. Ym here represents the field operator of a spin-1 BEC where m = 1,0,�1.

2.1.1 Non-Interacting Hamiltonian

Ĥ =
Z

d3rÂ
m

ŷ†
m(r)

✓
�h̄2

2M
52 +Û(r)

◆
ŷm(r)+ Ĥz (2.1)

The first term in the Hamiltonian represents the kinetic energy of the boson of mass ’M’.

Û(r) =
M
2
(w2

z z2 +w2(x2 + y2)) (2.2)

The second term which is denoted by Û(r) describes the trap potential. wz and w represent
the trap frequency in different directions. One can change the geometry of the trap by
changing the taking values appropriate to realize the particular geometry. In our case we
take a Quasi-2D trap which is attained by taking wz >> w . The high value of trap in the
z-direction confines the dynamics of the system to the other two directions effectively making
the system 2-dimensional.

Ĥz = Â
m,m0

ŷ†
m[�pFz +qF2

z ]m,m0ŷm (2.3)
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This last term gives the Zeeman splitting from an external magnetic field. The first term is
the first order correction using perturbation theory while the second term is the second order
perturbation. The value of p-coefficient of linear Zeeman effect is given as:

p =�µBB
2

(2.4)

The quadratic zeeman term is composed of two parts. The first is qB which is a contribution
from the second order perturbation due to the applied magnetic field.

qB =
µ2

BB2

DEH f
(2.5)

Here, DEH f is the hyperfine splitting energy. This contribution is positive. The second
contribution is from a linearly polarised microwave field that induces a quadratic (ac) Zeeman
shift of the order

qu =
�h̄W2

4d
(2.6)

Here, W is the Rabi Frequency and d is the detuning. The total quadratic Zeeman Energy is
thus given as:

q = qu +qB (2.7)

By changing the microwave field one can attain both negative and positive values of q. This
has been experimentally explored in [31] [32] and [33]. This tuning of q allows us to look at
not only different ground states of the spinor BEC but also study periodic driving [24] and
quenching in spinor BEC systems [34].

2.1.2 Interaction Hamiltonian

Since BEC is realized in a very dilute gas we can ignore 3-body interactions. However, the
two body interactions which define many properties of the BEC cannot be ignored. In a
spin-1 BEC this two body interaction takes the form of spin-dependent scattering which
conserves both total spin(F) and angular momentum(L). In a BEC interactions with L > 0
can be ignored. Hence we look at s-wave scattering alone. Collisions with spins can be
written as : ⌦

k,v f
�� T̂
��k0,v f 0

↵
(2.8)

Here, f and f 0 are initial and final spin of the system with initial and final momentum k and
k0.
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Fig. 2.1 Spin dependent scattering can change not only the momentum of the system but also the
spin | f ,m > of the particles involved.

This interaction for a BEC can be written in terms of irreducible operators of the form,

VF =
1
2

Z
dr
Z

dr0u(r,r0)
F

Â
�F

Â†
FMs

(r,r0)ÂFMs(r,r
0) (2.9)

Here, ÂF,M(r,r0) is an operator which destroys a pair of bosons at r and r0 and is defined as:

ÂFMs(r,r
0) =

f

Â
m,m0=� f

⌦
F,Ms| f ,m; f ,m0↵ ŷm(r)ŷm0(r0) (2.10)

The position dependence of the interaction is given by the function below in which aF is the
scattering length of an interactions between bosons of total spin F .

u(r� r0) =
4p h̄2aF

M
d (r� r0) (2.11)

The interaction equation can be simplified as:

VF =
1
2

Z
Â

m1,m2,m0
1,m

0
2

Cm1,m2
m0

1,m
0
2
drŷ†

m1
(r)ŷ†

m2
(r)ŷm0

1
(r)ŷm0

2
(r) (2.12)
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Here the coefficient is defined as:

Cm1,m2
m0

1,m
0
2

=
4p h̄2

M Â
F=0,2

aF
⌦

f ,m1; f ,m2
��P̂F
�� f ,m0

1; f ,m0
2
↵

(2.13)

P̂F =
F

Â
�F

|F,Ms >< F,Ms| (2.14)

The Projection operator can be written in the basis of spin density operator and density
operator.

n̂ = (|ŷ�1|2 + |ŷ0|2 + |ŷ1|2) (2.15)
��F̂(r)

��2 = F̂2
x (r)+ F̂2

y (r)+ F̂2
z (r) (2.16)

F̂(a=x,y,z) = Â
m,m0

ŷ†
m( f(n=x,y,z))m,m0ŷm0 (2.17)

fx =
1p
2

2

64
0 1 0
1 0 1
0 1 0

3

75 fy =
ip
2

2

64
0 �1 0
1 0 �1
0 1 0

3

75 fz =

2

64
1 0 0
0 0 0
0 0 �1

3

75

This give us the 2-body interaction Hamiltonian in a spin-1 BEC.

VF =
c0

2
n̂2(r)+

c1

2
��F̂(r)

��2 (2.18)

c0 and c1 are magnitude of spin-independent and spin-dependent interaction. They are
dependent on the scattering lengths a0 (scattering length of channel with total spin F = 0)
and a2 (scattering length of channel with total spin F = 2) as:

c0 =
4p(a0 +2a2)h̄2

3M
(2.19)

c1 =
4p(a2 �a0)h̄2

3M
(2.20)

2.1.3 Spin-1 BEC total Hamiltonian

The complete Hamiltonian of the spin-1 BEC inclusive of both kinds of interactions is given
as:

Ĥ =
Z

d3rÂ
m

ŷ†
m(r)

✓
�h̄2

2M
52 +Û(r)

◆
ŷm(r)+ Ĥz +

c0

2
n̂2(r)+

c1

2
��F̂(r)

��2 (2.21)
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2.2 Mean Field theory - Spinor BECs

At very low temperatures, when the bosons condense to single state the field operator of the
system can be written as:

ŷm = ym +dŷm (2.22)

Here , ym is the average number of particles in the lowest state k = 0. The number of
particles in the other higher energy states represented by field operator d Ŷ is negligible.
Thus, the field operator can be replaced with the its expectation value which helps simplify
the system.A large number of phenomena can be described with the mean field with reliable
accuracy. A many-body approach though more accurate is difficult to work with. We use the
mean field approximation to describe the system in our case.

2.3 Gross-Pitaevskii equations

The Gross-Pitaevskii equations is a Nonlinear Schrodinger Equation(NLSE) that describes
the dynamics of the mean field. In the case of a spin-1 BEC, a coupled multi-component
Gross-Pitaevskii equations(GPE) describes the system.

ih̄
dym

dt
=

�h̄2—2ym

2M
+U(r)ym +(�pm+qm2)ym

+c0(|y1|2 + |y0|2 + |y�1|2)ym + Im (2.23)

I+ = c1(|y0|2 + |y+|2 � |y�|2)y++ c1y2
0 y⇤

� (2.24)

I0 = c1(|y+|2 + |y�|2)y0 +2c1y+y�y⇤
0 (2.25)

I� = c1(|y0|2 � |y+|2 + |y�|2)y�+ c1y2
0 y⇤

+ (2.26)

We restrict ourselves to two dimensional space, which can be realized by considering a
tight pancake shaped potential.In this case the axial confinement energy is so large that the
dynamics in the z direction is frozen in the ground state of the strong harmonic potential.
The procedure for reducing the dimensions is outlined in the Appendix. We get interaction
parameters in 2-dimensions.

c̃0 = c0

r
Mwz

2p h̄
(2.27)

c̃1 = c1

r
Mwz

2p h̄
(2.28)
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The 2-D GPE is given below:

ih̄
dym

dt
=

�h̄2—2ym

2M
+

M
2
(w2(x2 + y2))ym +(�pm+qm2)ym

+c̃0(|y1|2 + |y0|2 + |y�1|2)ym + Im (2.29)

I+ = c̃1(|y0|2 + |y+|2 � |y�|2)y++ c̃1y2
0 y⇤

� (2.30)

I0 = c̃1(|y+|2 + |y�|2)y0 +2c̃1y+y�y⇤
0 (2.31)

I� = c̃1(|y0|2 � |y+|2 + |y�|2)y�+ c̃1y2
0 y⇤

+ (2.32)

The ground states of the spinor BEC in the mean field approximation is obtained by minimiz-
ing the multi-component GPE subject to the constraints of particle number conservation(N)
and magnetization conservation Fz .The magnetization conservation arises as a consequence
of conservation of total spin. We use the method of Lagrange multipliers to evaluate the
ground states of the system analytically for different values of the parameters c1, p and q.
The Table-2.1 states the different ground state phases of spin-1 BEC and the phase diagram
indicates structure of the ground-state spinor as a function of the linear p and quadratic q
Zeeman energies.

2.3.1 Ground State Phases

• In the ferromagnetic phase all the population of the system is in the m = 1 or m =�1
component.

• In the antiferromagnetic phase the population is divided between the m = 1 or m =�1
components.

• In the polar phase all the population in the system is in the m = 0 component.

• In the BA phase the population is divided unequally between the m = 1, m =�1 and
m = 0 components.

2.4 Bogoliubov- de Gennes equations and elementary exci-
tations

Weak excitations in the mean field ground state is described by Bogoliubov- de Gennes
theory. To obtain the Bogoliubov excitation spectra we consider a small deviation to the
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Ground States of Spin-1 BEC
Phase Order Parameter YT fz ẽ = e � c0n

2
(I) F (eic+ ,0,0) 1 �p+q+ c1n

2
(II) F (0,0,eic�) -1 p+q+ c1n

2

(III) AF (eic+

q
1+ p

c1
2 ,0,eic�

q
1� p

c1
2 ) p

c1n q� p2

2c1n
(IV) P (0,eic0 ,0) 0 0

(V) BA (ei(c0+cz) p
p

fz(q+p)
2 ,eic0

q
(q2�p2)(�p2�q2+2c1nq)

4c1nq3 ,

ei(c0+cz) p
p

fz(q�p)
2 )

p(�p2+q2+2qc1n)
2c1nq2

(�p2+q2+2qc1n)2

8c1nq2

Table 2.1 Ground state phases of Spin-1 BEC

(a) c1 > 0 (b) c1 = 0 (c) c1 < 0

Fig. 2.2 Phase diagram of ground states of the spin-1 BEC under (a)c1 > 0 (b)c1 = 0 (c)c1 < 0

mean field value, obtained using the Gross-Pitaevskii equations .i.e,

ŷm = ym +dŷm. (2.33)

Here, ym is the mean field ground state order parameter and dŷm is the weak perturbations
to this state.ŷm is the field order of the perturbed state in the flat potential limit. ŷm can be
expanded in terms of plane waves as:

ŷm =
1
W Â

k
âk,meik.r (2.34)

We use this wave operator in the second quantized Hamiltonian of the spinor BEC. The
condensate is considered to be in the k = 0 state. We expand the Hamiltonian upto a second
order in ˆak 6=0,m, where ˆak,m is the is the annihilation operator of a boson with wavevector k
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and W is the volume of the system. By doing so we get the Hamiltonian represented by ĤB

ĤB = E0 +
Dcorr

4ek
+ Â

k 6=0,m
(ek � pm+qm2 �µ)â†

k,mâk,m

+
N
W Â

k 6=0
Â

m1,m2,m
0
1,m

0
2

(Cm1m
0
2

m0
1m2

+Cm1m
0
2

m2m0
1
)ym0

1
y⇤

m0
2
â†

k,m1
âk,m2

+
N

2W Â
k 6=0

Â
m1,m2,m

0
1,m

0
2

Cm1m2
m0

1m0
2
(y⇤

m1
y⇤

m2
â�k,m0

2
âk,m0

1

+ym0
1
ym0

2
â†
�k,m2

â†
k,m1

) (2.35)

In the previous equation,

E0 = N[Â
m
(�pm+qm2) |ym|2

+
N(N �1)

W2 Â
m1,m2,m

0
1,m

0
2

y⇤
m1

y⇤
m2

ym0
2
ym0

1
] (2.36)

Dcorr =
N(N �1)

W2 Cm1m2
m0

1m0
2
y⇤

m1
y⇤

m2
ym0

2
ym0

1
(2.37)

The first two terms in the Hamiltonian correspond to the condensate that is in k = 0 state.The
rest of the terms in the Hamiltonian are due the fluctuations in the condensate for which
k 6= 0 and the resulting dynamics.

Cm
0
1m

0
2

m1m2 = (c2
0 +2c2

1)dm1m0
1
dm2m0

2

+c1(2c0 � c1) Â
r=x,y,z

( fr)m1m0
1
( fr)m2m0

2
(2.38)

ek in the Hamiltonian is the kinetic energy of the boson for which k 6= 0, W is the
volume of the condensate while âk,m is the annihilation operator of the boson of spin-’m’
and momentum-’k’ and ym is the order parameter.This Hamiltonian can be written in a
(2 f +1)⇥ (2 f +1)matrix form. For spin-1 BEC it is a 6⇥6 matrix given below:

ĤB = E0 �
1
2 Â

k 6=0
Tr[H0

k +H(1)]� Dcorr

2ek
+

1
2 Â

k 6=0

⇣
¯̂a†

k
¯̂ak

⌘

"
H0

k +H(1) H(2)

[H(2)]⇤ [H0
k +H(1)]⇤

# 
âk

â†
k

!
(2.39)
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Here, H0
k , H(1) are Hermitian matrices and H(2) is a symmetric matrix and âk, a†

k are
annihilation and creation operator vectors.They are defined as,

H(0)
k = (ek �µ)1� p fz +q f 2

z (2.40)

H(1)
m1m2 =

N
W Â

m0
1m0

2

(Cm1m
0
2

m0
1m2

+Cm1m
0
2

m2m0
1
)ym0

1
y⇤

m0
2

(2.41)

H(2)
m1m2 =

N
W Â

m0
1m0

2

Cm1m2
m0

1m0
2
ym0

1
ym0

2
(2.42)

âk =

0

B@
âk,1

âk,0

âk,�1

1

CA â†
k =

0

B@
â†

k,1
â†

k,0
â†

k,�1

1

CA (2.43)

This Hamiltonian is diagonalized using Bogoliubov-de Gennes transformations which are
linear transformation that couple the creation and annihilation operators of the Bose-Einstein
condensate while still retaining the statistics of Bosons.

 
âk

â†
�k

!
=

"
Ûk V̂⇤

�k
V̂k Û⇤

�k

# 
b̂k

b̂†
�k

!
(2.44)

(ÛkÛ†
k � V̂⇤

�kV̂T
�k)mm0 = dmm0 (2.45)

(ÛkV̂†
k � V̂⇤

�kÛT
�k)mm0 = 0 (2.46)

This transforms the Hamiltonian of interacting real particles to a Hamiltonian of non-
interacting quasi-particles with dispersion relation e(k). The real particle is a superposition
of forward and backward propagating quasi-particle. Also, the resulting Bogoliubov equation
is an eigenvalue equation for a non-Hermitian matrix and may have complex eigenvalues
giving rise to a dynamic instability. The solution for a given phase gives us three modes, a
density mode and two other spin modes. The energy spectra is obtained for the different
ground state phases of the spin-1 BEC given in Table-2.2 and it also is summarized in [35]

2.5 Bogoliubov Excitations in Spin-1 BEC

Bogoliubov Hamiltonian in a spin system has more than one mode.The density mode is the
mode corresponding to the populated components.It is listed first in Table-2.2. Collective
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Phase Energy spectra Quasi particle (b̂k,m)

F
p

ek[ek +2(c0 + c1)n]

ek + p�q

ek +2p�2c1n

sgn(c0 + c1)

r
ek+(c0+c1)n+Ek,1

2Ek,1
âk,1

+

r
ek+(c0+c1)n�Ek,1

2Ek,1
â†
�k,1

âk,0

âk,�1

P
p

ek[ek +2c0n]

p
(ek +q)(ek +q+2c1n)± p

sgn(c0)
q

ek+c0n+Ek,0
2Ek,0

âk,0

+
q

ek+c0n�Ek,0
2Ek,0

â†
�k,0

sgn(c1)

r
ek+q+c1n+(Ek,±±p)

2(Ek,±±p) âk,±

+

r
ek+q+c1n�(Ek,±±p)

2(Ek,±±p) â†
�k,⌥

AF
q

(ek �q)2 +2c1n(ek �q)+ c2
1 f 2

z

p
ek[ek + c0 + c1 +°]

° =
p

(c0 � c1)2 +4c0c1 f 2
z

p
ek[ek + c0 + c1 �°]

sgn(c1)
q

ek�q+c1n+Ek,0
2Ek,0

âk,0

+
q

ek�q+c1n�Ek,0
2Ek,0

â†
�k,0

sgn(c0)
q

ek+c0n+Ek,1
2Ek,1

(
âk,1+âk,�1p

2
)

+
q

ek+c0n�Ek,1
2Ek,1

(
âk,1+â�k,�1p

2
)

sgn(c1)
q

ek+c1n+Ek,�1
2Ek,�1

(
âk,1�âk,�1p

2
)

+
q

ek+c1n�Ek,�1
2Ek,�1

(
âk,1�â�k,�1p

2
)

BA
p

ek[ek +q]

q
e2

k +(c0 � c1)nek +2(c1n)2(1�q2)±Lk

Lk =
p

[(c0 +3c1)nek +Gk
Gk = 2(c1n)2(1 � q2)] � 4c1(c0 +
2c1)(nqek)

2

sgn(q)
r

ek+q/2+Ek,0
2Ek,0

(
âk,1�âk,�1p

2
)

+

r
ek+q/2�Ek,0

2Ek,0
(

âk,1�â�k,�1p
2

)

Table 2.2 Energy spectra and quasi-particle excitations of ferromagnetic, antiferromagnetic,
polar and broken-axis symmetric phases of spin-1 BEC
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Fig. 2.3 Elementary excitations in a Spin-1 BEC that help populate the spin modes.

excitation in this mode shows phonon like excitations for large wavelengths and particle like
excitations for large wavelengths.

The spin mode corresponds to the last two modes listed in the Table-2.2. The transfer
of population to these spin modes rests on the elementary excitations which conserves spin.
In case of Spin-1 BEC there exists only two such excitations shown in figure 2.3. These
excitations creates fluctuation in the Fx and Fy. Fluctuations in Fx and Fy create interesting
spin-textures which we can carry out further study on.

As has been established earlier, one can study elementary excitations in BEC by periodi-
cally driving the system. Periodic driving of the s-wave scattering length or trap parameter
gives rise to Faraday patterns which have wave number indicative of the Bogoliubov mode
resonant with half the driving frequency. Since, collective excitations in spin-1 BEC have
spin modes which can create intricate spin-textures it would serve us well to study them.

To this end we first carry out a brief study of pattern formation and linear stability analysis
which will help us in exploring the system described so far.

2.6 Pattern Formation

We observe patterns in systems all around us varying from stripes on wind-swept sands to intri-
cate patterns of snowflakes to the complex patterns in weather and living systems[36].Pattern
formations in nonlinear dynamical systems and in context of phase transitions has been
of particular interest.Intricate spatial or temporal patterns emerge from relatively simple
systems when there are instabilities created in the system as a result of some perturba-
tion.Understanding the the concept of instability is central to understanding pattern forma-
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tion.Any system with an instability will deform by large amounts in response to infinitesimally
small perturbations.Non-linearity in the system which moves the unstable system to the new
state is another crucial component for pattern formation [37].

2.6.1 Linear Stability Analysis for pattern formation

The pattern forming tendencies of a nonequilibrium system is classified using linear stability
analysis. Most patterns develops from a state that has no spatial structure- the uniform
state. A uniform system is defined mathematically as a system which is translational
symmetry i.e on infitesimal translation in any direction x ! x+ x0 the system remains
invariant. Nonequilibrium systems such as a periodically driven nonlinear system cannot
have complete translational symmetry as gradients of energy, momentum or matter develop
on being driven which move the system away from equilibrium towards pattern formation.
Thus uniform nonequilibrium states serve as an appropriate starting point for a stability
analysis of a pattern forming system.

The procedure for linear stability analysis starting from a uniform non-equilibrium state
is outlined below[38]:

• The equations describing the dynamics of the system is first obtained.

• To simplify calculations periodic or infinite boundaries are considered.

• A uniform time-independent solution to the system being considered is found

u(x) = uh (2.47)

• Perturbations to this uniform system is considered to be both spatially and temporally
dependent and of the form

u(x) = uh +up(x, t) (2.48)

• The equations describing the dynamics of the system are then linearized with respect
to the perurbations.

• A general solution for the perturbed part can be taken as

up(x, t) = Â
k

ckeskteikx (2.49)

Here, coefficients ck and exponent sk are complex numbers and k is the wave number
corresponding to them.
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• The uniform system is stable if Re(sk) = 0 for all wavenumbers.

• Pattern formation is observed in the system if Re(sk)> 0 for any particular ’k’ and
that perturbation grows exponentially in time.

• The wave number of the pattern correspond to the wavenumber with max(Re(sk))

2.7 Faraday Patterns

A nonequilibrium pattern-forming system to which linear stability analysis can be success-
fully applied to study pattern formation is the Faraday experiment.

The Faraday experiment comprises of vertical vibrations of a thin film of a fluid. This
gives rise to non-linear standing waves called Faraday waves when the driving frequency is
greater than a critical value.The waves form intricate patterns ranging from lattices of stripes
to lattices of squares, and hexagons.Michael Faraday was the first to study and report the
findings of such a system in 1831.

The size and symmetry of these patterns is an indicator of the viscosity and surface
tension properties of the fluid. Similar pattern formation can be used to study elementary
excitation in Bose-Einstein Condensates. The specifics of how this is done is discussed in
the following sections.

2.8 Faraday Patterns in Bose-Einstein Condensates

The analogue of forcing the surface of the fluid up and down in the Faraday experiment is
the periodic modulation of the interatomic s-wave scattering length, a variable that describes
the range of the interatomic forces, of the condensate. This leads to excitations of the
sub-harmonic patterns in the atomic density through a parametric resonance resonance.
The dominant wavelength of the instability and the symmetries of the selected patterns are
intrinsic properties of the system,independent of (or only weakly dependent on the initial or
boundary conditions).

Faraday patterns in periodically driven Bose-Einstein condensates (BECs) have been
studied extensively in various trapping geometries in both scalar [17, 39, 40, 18, 41–47] and
multicomponent condensates [48–51]. It has also been implemented experimentally for a
scalar BEC in a cigar shaped trap[39].

We review the studies on Faraday patterns in scalar BECs and Scalar Dipolar BECs.
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Fig. 2.4 Faraday Patterns in scalar BEC for different driving frequencies.(Taken from Figure 3. in
Phys. Rev. Lett. 89, 210406 )

2.8.1 Faraday Patterns in Scalar BEC

Faraday patterns in scalar BEC was reported in [17]. It outlined how patterns formed on
modulation of s-wave scattering length in a BEC was simlar to the Faraday waves in vertically
perturbed classical fluids.

The pattern size was determined by the Bogoliubov mode resonant with half the driving
frequency much like classical fluids where standing waves which oscillate at half the driving
frequency appear on vertical temporal perturbation.

Linear stability analysis is used to provide insight into pattern formation in this system.
The mean-field equation (or the Gross-Pitaveskii equation) that describes the dynamics of
the system is given as,

i
dy
dt

= —2y +V (r)y + c |y|2 y (2.50)

Here, y is the order parameter of the scalar BEC,V (r) is the trap potential and c = 4p h̄2a
M

represents the magnitude of interactions between the bosons. c depends upon the s-wave
scattering a length which is modulated in time as,

a ! a(t) = a[1+2a cos(2wt)] (2.51)

The modulated state can be given as a sum of uniform and perturbed state.

Y = Yhomg +Yhomgw(t)cos(~k.~r) (2.52)
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where w(t) = u(t)+ iv(t) is the complex amplitude of the spatial perturbation. We solve for
the real amplitude of the spatial perturbations.

d2u
dt2 +[W2(~k)+4c0k2a cos(2wt)]u = 0 (2.53)

W(~k) =
q

k2[k2 +2c0] (2.54)

The solution to the equation describing the dynamics of the amplitude of spatial perturbation
is a Mathieu equation. The solution to the Mathieu equation is of the form:

u(t) = A(t)est (2.55)

where, s is complex. The solution creates an instability which grows with time causing the
system to lose translational symmetry. The nonlinearity in the system drives the system away
from the uniform state.

2.8.2 Faraday Patterns in Scalar Dipolar BEC

Faraday Patterns in scalar BEC with dipolar interactions is much more interesting. The
Bogoliubov excitation of a dipolar BEC has a roton-maxon excitation spectrum [18].

(a) (b)

Fig. 2.5 (a) Dispersion of a 2D scalar dipolar BEC.(b) Most unstable k as a function of w for scalar
dipolar BEC. (Taken from Fig-1 and Fig-4 of Phys. Rev. A 81, 033626)

In the case of a scalar BEC without dipolar interaction the wave number "k" increases
monotonously with driving frequency whereas as wavenumber selection is much more
involved in scalar BEC with dipolar interactions since for a single driving frequency multiple
"k" values are resonant. The "k" selected has the largest value of Re(s).

This selection is again not trivial and abrupt changes in pattern size are seen as indicated
by the relation between unstable "k" as a function of w .
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2.8.3 Faraday Patterns in Spin-1 Spinor BEC

We explore Faraday patterns in homogeneous Quasi-2D Spin-1 BEC. Patterns with wave
number indicative of the Bogoliubov mode resonant with half the driving frequency emerge
in the Q2D spin-1 spinor condensate on periodic modulation of the scattering lengths. The
details of Q2D system is presented in Appendix. A consequence of the spin-degrees of
freedom is that the Bogoliubov modes in a Spin-1 BEC are multi-branched with both spin
and density modes or coupled between them. Since there are multiple modes which can be
excited at the same time we observe not only density patterns as reported in scalar BEC but
also spin dynamics and interesting spin-textures.

Another consequence of the spin-degree of freedom is that there are two s-wave scattering
length channels one with total spin F = 0 and the other with total spin F = 2 which we can
modulate independently or together. Periodic temporal modulation of these channel may be
achieved by magnetic or optical Feshbach resonances[29] or by applying radio frequency or
microwave fields[25–28]. We consider three scenarios for time modulated scattering lengths:

• a0 is temporally modulated and a2 is held constant

• a0 constant and a2 is temporally modulated

• a0 and a2 are temporally modulated

We also have to consider another parameter which influences the dynamics of the system
- c1, which is the magnitude of the interaction between the spins. The spin-dependent
interaction between two bosons with spins, F1 and F2 is given as c1F1 ·F2 .

• Antiferromagnetic interactions c1 > 0- interactions between the bosons is repul-
sive.We consider a BEC with atomic Na-23 which has antiferromagnetic interactions
between its atoms.

• Ferromagnetic interactions c1 < 0- interactions between the bosons is attractive.We
consider a BEC with atomic Rb-87 which has ferromagnetic interactions between its
atoms.

The difference in the kind of interactions between the atoms is also reflected in the ground
state phases of the spinor-condensate.The different ground state phases for the two cases
is listed in Table-2.1 and phase diagram below. We consider the three different kinds of
periodic modulation listed above for the system in each of these ground states. The values
of different parameters that have been used in the numerical evaluations are listed in the
Appendix. We analyse the dynamics of this periodically modulated system both analytically
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as well as numerically using the theory explained in previous section and the algorithm in
[52].





Chapter 3

Results and Discussions-I

3.1 Periodic modulation of the a0 scattering channel

The F = 0 scattering channel is modulated with amplitude a and frequency w .

ã0 = ã0 + ã0(2acos(2wt)) (3.1)

The spin dependent and the spin independent interactions can then be written as:

c̃0 = c0 + ã0(2acos(2wt)) (3.2)

c̃1 = c1 � ã0(2acos(2wt)) (3.3)

Here, c0 =
4p(a0+2a2)h̄2

3M is the magnitude of the spin independent interaction between the

atoms and c1 =
4p(a2�a0)h̄2

3M is the strength of the spin-spin interaction between the atoms
and ã0 =

4pa0h̄2

3M . The modulation results in a spatially homogenous temporally modulated
solution.

Ye[�iµt+a ã0
w sin(2wt)] (3.4)

Here, Y = (y+,y0,y�) is the spatially homogenous order parameter . A dynamical insta-
bility may arise in this system as a result of this modulation. We perform a linear stability
analysis of this uniform state against a spatially and temporally modulated state.

(Y+wcos(~k.~r))e[�iµt+a ã0
w sin(2wt)] (3.5)

Here, w = (w+,w0,w�) is is the complex-valued amplitude of the perturbation. Linear
stability analysis is performed to determine if there might occur a spontaneous spatial
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symmetry breaking as a result of modulation. We find varied results when we start with
different ground state phases.

3.1.1 Spin-1 BEC in Ferromagnetic Phase

Homogeneous spinor field for the ferromagnetic phase in the absence of any perturbation is
given as:

(1,0,0)e�iµt (3.6)

Here,µ =�p+q+ c0 + c1. We look at the dynamics of this system on periodic modulation
of a0 scattering channel. We perform linear stability analysis of this homogeneous state
against a spatially modulated state. The equations below give the results of this analysis.

d2u+
dt2 +[k2(k2 +2c0 +2c1)+4k2 = 0 (3.7)

d2u0

dt2 +[(k2 + p�q)2]u0 = 0 (3.8)

d2u�
dt2 +[(k2 +2p�2c1)

2]u� = 0 (3.9)

We find that the uniform state is indeed stable against the spatially modulated state. The
reason for this is that all collisions that occur in this phase have a total spin F = 2. Thus
the system continues to retain the spatial symmetry despite the perturbation to the system as
there are no atoms in the scattering channel a0. This is further supported by the numerical
simulations performed in the flat potential limit to test the parametric instability of the
uniform state of a spin-1 BEC in the ferromagnetic phase when the interactions between
spins is both antiferromagnic and ferromagnetic.

Spin-1 BEC with antiferromagnetic interactions

We see no patterns in any of the components.Also, we observe no spin-dynamics as there
exists no two-body spin exchange process that conserves spin and transfer population from
the m = 1 component to the m = 0,�1 components.

Spin-1 BEC with ferromagnetic interactions

We make similar observations in system with ferromagnetic interactions that is in the ferro-
magnetic phase. We see no patterns on formation when the a0 scattering channel is modulated.
Translational symmetry is preserved and we observe no spin-dynamics.
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3.1.2 Spin-1 BEC in Antiferromagnetic Phase

Homogeneous spinor field for the antiferromagnetic phase in the absence of any perturbation
is given below: 0

@

s
1+ p

c1

2
,0,

s
1� p

c1

2

1

Ae�iµt (3.10)

Here,µ = q+ c0n. This phase is present only when the interactions between spins is antifer-
romagnetic in nature.To simplify our calculations we take p = 0. The system on temporal
modulation of a0 is given by a spatially uniform but temporally modulated solution,

 r
1
2
,0,
r

1
2

!
e[�iµt+a ã0

w sin(2wt)] (3.11)

We perform linear stability analysis of this uniform system against a spatially modulated
system one. We obtain a Mathieu equation for the spin modes and the coupled density mode.

∂ 2z+
∂ t2 +[(k2 +2c0)k2 � k2(2ã0)(2acos(2wt))]z+ = 0 (3.12)

∂ 2z�
∂ t2 +[(k2 +2c1)k2 � k2(2ã0)(2acos(2wt))]z� = 0 (3.13)

∂ 2u0

∂ t2 +[(k2 �q+2c1)(k2 �q)� (k2 �q)(2ã0)(2acos(2wt))]u0 = 0 (3.14)

Here, z+ = u++u� and z� = u+�u�.
Solution to these equations is obtained using the Floquet theorem [53]. The Floquet

exponent sm = sm(w,a,k) determines the stability of these solutions. The system is unstable
if Re(sm)> 0. The presence of three floquet exponents makes this system different from the
scalar BEC in which a single floquet exponent determines the stability of the system. On
solving the two Mathieu equations we make the following observations:

• Both the density and spin modes are rendered unstable on periodic driving of the a0

scattering channel.

• s0 > s±

– For w = p
2 , the floquet exponent corresponding to most unstable k of each

mode are compared i.e, s+ = 0.0625-density mode,s� = 0.495733-spin mode
< s0 = 0.495734-spin mode
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– For w = p , the floquet exponent corresponding to most unstable k of each mode
are compared i.e, s+ = 0.060545-density mode,s� = 0.273984-spin mode <

s0 = 0.273986-spin mode

• This implies that one of the spin mode is the most unstable and will grow faster than
the others.

Unlike the ferromagnetic phase, there exists two-body spin exchange process that conserves
spin and can transfer population from the m =±1 components to the m = 0 component and
vice versa. Thus on modulation of a0 scattering channel we expect translational symmetry
breaking and spin-dynamics. Numerical simulations were performed to study this system.

Spin-1 BEC with antiferromagnetic interactions

We performed numerical simulations with two different driving frequencies.
The real and momentum space distribution is given in figure [3.1] ,spin-textures and

spin dynamics are shown in the figures [3.2] and [3.3]. Patterns were seen in both real and
momentum space on periodic modulation of the a0 scattering channel.

One observation we make when the spin-mode is the most unstable mode is that several
frequencies are unstable at the same time in the collective system allowing no discernible
symmetry in the pattern formed.

The reason for this is that the ground state of the system corresponds to the system being
in the m =±1 component while the modulation seeks to transfer the population to m = 0
mode. The system tries to restore the population to the m =±1 components via the process
outlined below:

(k1,0)+(k2,0)! (k3,1)+(k4,�1) (3.15)

|k1|= |k2|= k (3.16)

This implies that the bosons transferred from the m= 0 component to the m=±1 components
will have the momenta in the range,

�2k < (k3,k4)< 2k (3.17)

This coincides with the numerical results.The growth of the m = 0 component due to the
instability must be much larger than the rate of transfer of population back to m = ±1
components initially. This is evident in the spin-dynamics which shows rapid growth of the
m = 0 component with time initially.
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 3.1 Real and momentum space distribution of the different components of the AFM phase
of a spin-1 BEC on periodic modulation of a0 scattering channel with amplitude a = 0.2 and for
frequencies w = p/2 (above) and w = p (below). The system shows patterns whose wavenumber
increases with increasing modulation frequency. Here, the wavenumber of the m = 0 component
corresponding to the most unstable mode is k0 = 1.044 and k0 = 1.64 which compares well with the
expected k0 = 0.993 and k = 1.598. The values of wavenumbers excited in the density mode are in
the range of �2k0 < k± < 2k0.
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(a) Real space (b) Momentum space

(c) Real space (d) Momentum space

(e) (f)

Fig. 3.2 Distribution of spins in real and momentum space for the AF phase of spin-1 BEC on
periodic modulation of a0 scattering channel with amplitude a = 0.2 and for frequencies w = p/2
(above) and w = p (below). The system shows patterns whose wavenumber increases with increasing
modulation frequency. Here, the wavenumber of pattens formed by spin-textures corresponding to
one of the spin modes is k = 1.33 and k = 1.88 which compares well with the expected wavenumbers
of the spin mode k = 1.209 and k = 1.739. Fig.(e,f) shows dispersion relations obtained on solving
the Bogoliubov spectra corresponding to the AFM phase. The arrows correspond to the modulating
frequency and the corresponding wavenumber.
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(a) Spin dynamics for w = p/2 (b) Spin dynamics for w = p

(c) Spin-textures in real space with time

Fig. 3.3 We observe flipping of directions of the spins in the spin-domains with time for both driving
frequencies.
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Thus we see that even though wavelength of the patterns decreases on modulation there is
no particular symmetry owing to several k being excited at the same time. The wavenumber
of these patterns offers us an important insight into elementary excitations of spinor BEC. In
case of the antiferromagnetic phase with a0 scattering channel alone being modulated we
observe patterns with wavenumber indicative of the resonant spin mode.

3.1.3 Spin-1 BEC in Polar Phase

Homogeneous spinor field for the polar phase in the absence of any perturbation is given as:

(0,1,0)e�iµt (3.18)

Here,µ = c0. We look at the dynamics of this system on periodic modulation of a0 scattering
channel.We also consider p = 0 to simplify the calculations. We arrive at the equations
describing the dynamics of the system using the same procedure used for the other two
phases i.e, performing a linear stability analysis to test if the translational symmetry may be
broken on perturbation.We arrive at the following equations for the real amplitude of spatial
perturbations:

∂ 2z+
∂ t2 +(k2 +q+ c1)(k2 +q)� (k2 +q)(2ã0)(2acos(2wt))z+ = 0 (3.19)

∂ 2u0

∂ t2 +[(k2 +2c0)k2 � k2(2ã0)(2acos(2wt))]u0 = 0 (3.20)

Here, z+ = u++u�. The real amplitude of both the density mode and the coupled spin mode
is described by Mathieu equations. The stability of this Mathieu equations is given by the
real part of the floquet exponent of each mode. On solving the above equations we make the
following observations:

• Both the density and spin modes are rendered unstable on periodic driving of the a0

scattering channel.

• s0 < s±

– Antiferromagnetic interactions

* For w = p
2 , the floquet exponent corresponding to most unstable k of each

mode are compared i.e, s+ = 0.0625668-density mode < s0 = 0.495734-
spin mode

* For w = p , the floquet exponent corresponding to most unstable k of each
mode are compared i.e, the floquet exponent corresponding to most unstable
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k of each mode are compared i.e, s+ = 0.060545-density mode < s0 =

0.273986-spin mode

– Ferromagnetic interactions

* For w = p
2 , the floquet exponent corresponding to most unstable k of each

mode are compared i.e, s+ = 0.0659502-density mode < s0 = 0.428482-
spin mode

* For w = p , the floquet exponent corresponding to most unstable k of each
mode are compared i.e, s+ = 0.0622128-density mode < s0 = 0.222552-
spin mode

• From the floquet exponents the spin mode is the most unstable and will grow faster
compared to the others.

When the system is in this phase, there exists two-body spin exchange process that conserves
spin and can transfer population from the m = 0 components to the m = ±1 components.
Similar to the AFM phase on modulation of a0 scattering channel we expect translational
symmetry breaking and spin-dynamics. We performed numerical simulations to study this
system for both kinds of spin interactions.

Spin-1 BEC with antiferromagnetic interactions

The results for numerical simulations are listed in Figures [3.4], [3.5] and [3.6]. Real and
momentum space on periodic modulation of the a0 scattering channel show patterns Figures
[3.4]. Patterns in real space do not show have any specific symmetry as seen in the density
patterns of the scalar condensate but are similar to the AF phase. Similar dynamics as
described in the previous section leads to multiple wavenumbers k being excited at the same
time. The modulation results in transfer of population from the m = 0 component to m =±1
components which is the most unstable component.

(0,0)+(0,0)! (k,1)+(�k,�1) (3.21)

The ground state corresponds to population in the m = 0 component, and the system tries
to restore the excited population in the m =±1 components back to m = 0 component.

(k1,1)+(k2,�1)! (k3,0)+(k4,0) (3.22)

|k1|= |k2|= k (3.23)
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 3.4 Real and momentum space distribution of the different components of the Polar Phase
spin-1 BEC with antiferromagnetic interactions on periodic modulation of a0 scattering channel with
amplitude a = 0.2 and for frequencies w = p/2 (above) and w = p (below). The system shows
patterns whose wavenumber increases with increasing modulation frequency. Here, the wavenumber
of m = ±1 components corresponding to the unstable mode is k± = 1.005 and k± = 1.57 which
compares well with the expected k± = 0.991 and k± = 1.6039. The values of wavenumbers excited
in the density mode are in the range of �2k± < k0 < 2k±.
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(a) Real space (b) Momentum space

(c) Real space (d) Momentum space

(e) (f)

Fig. 3.5 Distribution of spins in real space for the polar phase of spin-1 BEC with antiferromagnetic
interactions on periodic modulation of a0 scattering channel with amplitude a = 0.2 and for frequen-
cies w = p/2 (above) and w = p (below). Here, the wavenumber of patterns formed by spin-textures
corresponding to one of the spin modes is k = 1.01 and k = 1.63 which compares well with the
expected wavenumbers of the spin k = 0.991 and k = 1.604. Fig.(e,f) shows dispersion relations
obtained on solving the Bogoliubov spectra corresponding to the polar phase. The arrows correspond
to the modulating frequency and the corresponding wavenumber.
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(a) Spin dynamics for w = p/2 (b) Spin dynamics for w = p

(c) Spin-textures in real space with time

Fig. 3.6 We observe flipping of directions of the spins in the spin-domains with time for both driving
frequencies.
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This spin dynamics shown in Figure [3.6] results in excitation of several k in the range
�2k± < k3,k4 < 2k± in the m = 0 component. The excitation of several k results in the
pattern formed in the modulated system not having a definite symmetry.

We observe distinct patterns in the spin-textures-Figures[3.5]. The patterns are formed
by spin-domains which appear to flip direction with time. The wavenumber of the patterns
increases on increasing the modulation frequency. The wavenumber of these patterns offers
us an important insight into elementary excitations of spinor BEC. In case the polar phase
with a0 scattering channel alone being modulated we observe patterns with wavenumber
indicative of the resonant spin mode.

Spin-1 BEC with ferromagnetic interactions

We make similar observations when the interactions between spins is ferromagnetic as made
when the interactions between the spins in the system is antiferromagnetic. The patterns in
real space do not show any recognizable symmetry shown in Figure [3.7].This is again due
to spin-dynamics (Figure [3.9]) that exchanges populations between the unstable excited
spin mode (corresponding to population in the m =±1 components) and the density mode
(corresponding to population in the m = 0 component).

However,the wavenumber of the patterns increases on increasing the modulation fre-
quency -Figures [3.7],[3.8]. The wavenumber of the pattern indicate the Bogoliubov mode
resonant with the half the driving frequency. In this case it is the spin mode. The spin-textures
form patterns with wavenumber corresponding to the second spin mode.

3.1.4 Spin-1 BEC in BA Phase

Homogeneous spinor field for the BA phase in the absence of any perturbation is given as:
0

@ei(c0+cz) p
p

fz(q+ p)
2

,eic0

s
(q2 � p2)(�p2 �q2 +2c1nq)

4c1nq3 ,ei(c0+cz) p
p

fz(q� p)
2

1

Ae�iµt

(3.24)
Here,µ = (�p2+q2+2qc1n)2

8c1nq2 + c0n
2 and fz =

p(�p2+q2+2qc1n)
2c1nq2

It is difficult to carry out linear stability analysis for this phase. However, we analyse the
system numerically.

Spin-1 BEC with ferromagnetic interactions

We observe stripe like patterns in density space Figure-[3.10] of this phase on modulation
with w = p

2 and square like patterns on modulation with w = p . The spin modes in the
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 3.7 Real and momentum space distribution of the different components of the Polar Phase spin-1
BEC with ferromagnetic interactions on periodic modulation of a0 scattering channel with amplitude
a = 0.2 and for frequencies w = p/2 (above) and w = p (below). The system shows patterns whose
wavenumber increases (size decreases) with increasing modulation frequency. Here, the wavenumber
of m =±1 components corresponding to the unstable mode is k = 1.25 and k = 1.79 which compares
well with the expected k = 1.223 and k = 1.749. The values of wavenumbers excited in the density
mode are in the range of �2k± < k0 < 2k±.
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(a) Spin-textures in real space. (b) Spin-textures in momentum space.

(c) Spin-textures in real space. (d) Spin-textures in momentum space.

(e) (f)

Fig. 3.8 Distribution of spins in real and momentum space for the polar phase of spin-1 BEC with
ferromagnetic interactions on periodic modulation of a0 scattering channel with amplitude a = 0.2
and for frequencies w = p/2 (above) and w = p (below). Here, the wavenumber of patterns formed
by spin-textures corresponding to one of the spin modes is k = 1.29 and k = 1.78 which compares
well with the expected wavenumbers of the spin k = 1.223 and k = 1.749. Fig.(e,f) shows dispersion
relations obtained on solving the Bogoliubov spectra corresponding to the AFM phase. The arrows
correspond to the modulating frequency and the corresponding wavenumber.
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(a) Spin dynamics for w = p/2 (b) Spin dynamics for w = p

(c) Spin-textures in real space with time

Fig. 3.9 We observe flipping of directions of the spins in the spin-domains with time for both driving
frequencies.
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 3.10 Real and momentum space distribution of the different components of the BA phase spin-1
BEC on periodic modulation of a0 scattering channel with amplitude a = 0.2 and for frequencies
w = p/2 (above) and w = p (below). The system shows patterns whose wavenumber increases with
increasing modulation frequency. Here, the wavenumber of m =±1 components corresponding to
the unstable spin mode is k = 1.22 and k = 1.75 which compares well with the expected k = 1.25 and
k = 1.766.
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(a) Spin-dynamics for w = p
2 (b) Spin-dynamics for w = p

(c) (d)

Fig. 3.11 Spin-dynamics and dispersion relation of the BA phase with the arrows pointing the most
unstable k corresponding to the modulation frequency.



3.2 Summary 43

BA phase couples all the components of the spin-1 BEC resulting in patterns in all three
components. This complex coupling makes this phase difficult to analyse. We do not observe
any spin dynamics (Figure-[3.11]) in the system when the system is stable (i.e, not heated
as a results of the modulation). Thus we see patterns of definite symmetry as a single
wavenumner-k is excited.

3.2 Summary

• Periodic modulation of the a0 scattering channel leads to the excitation of spin modes
in spin-1 BEC. The exception is ferromagnetic phase for which we see no excitation.

• The excitation of spin modes in the AFM and Polar phase is accompanied with spin
dynamics, complex pattern and spin textures formation.

• In the BA phase we observe no spin dynamics and the pattern formation is much
simpler with a single wavenumber being excited.

• We do not see patterns indicative of the density mode even though it has parametric
instability because the parametric instability associated with the spin mode grows
faster.





Chapter 4

Results and Discussions-II

4.1 Periodic modulation of the a2 scattering channel

The F = 2 scattering channel is modulated with amplitude a and frequency w . The F = 0
scattering channel is left time independent.

ã2 = ã2 + ã2(2acos(2wt)) (4.1)

The spin dependent and the spin independent interactions can then be written as

c̃0 = c0 +2ã2(2acos(2wt)) (4.2)

c̃1 = c1 + ã2(2acos(2wt)) (4.3)

Here, c0 =
4p(a0+2a2)h̄2

3M is the magnitude of the spin independent interaction between the

atoms and c1 =
4p(a2�a0)h̄2

3M is the strength of the spin-spin interaction between the atoms
and ã2 =

4pa2h̄2

3M . The modulation results in a spatially homogenous temporally modulated
solution.

Ye[�iµt+aa2
w sin(2wt)] (4.4)

Here, Y = (y+,y0,y�) is the spatially homogenous order parameter . A dynamical insta-
bility may arise in this system as a result of this modulation. We perform a linear stability
analysis of this uniform state against a spatially and temporally modulated state.

(Y+wcos(~k.~r))e[�iµt+aa2
w sin(2wt)] (4.5)

Here, w = (w+,w0,w�) is is the complex-valued amplitude of the perturbation. Linear
stability analysis is performed to determine if there might occur a spontaneous spatial
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symmetry breaking as a result of modulation. We look at pattern formation in spin-1 BEC
in the flat potenial limit. The methods and analysis remains similar to the previous section
which looked at a0 modulation. However, the patterns and dynamics of the different ground
state phases changes as a different s-wave scattering channel is being modulated.

4.1.1 Spin-1 BEC in Ferromagnetic Phase

Homogeneous spinor field for the ferromagnetic phase in the absence of any perturbation is
given as:

(1,0,0)e�iµt (4.6)

Here, µ = �p+ q+ c0 + c1. In the previous section we had observed no patterns in this
phase as there was no two body scattering interaction with total spin F = 0. However, we
do expect pattern formation on perturbation of the a2 scattering channel because all the two
body interactions in this phase have total spin F = 2. We proceed similar to the procedure
outlined before. We first consider the spatially homogeneous system and find the spatially
homogeneous and temporally modulated solution. We then perform linear stability analysis
which compares the stability of uniform state against a spatial modulated state. The equations
stated below gives the equation for real amplitude of the the spatial perturbation.

d2u+
dt2 +[k2(k2 +2c0 +2c1 +4k2acos(2wt)]u+ = 0 (4.7)

d2u0

dt2 +[(k2 + p�q)2]u0 = 0 (4.8)

du�
dt

� [(k2 +2p�2c1 �2ã2(2acos(2wt))]v� = 0 (4.9)

dv�
dt

+[(k2 +2p�2c1 �2ã2(2acos(2wt))]u� = 0 (4.10)

The amplitude of spatial modulation of the m = 1 component of the BEC is described by a
Mathieu equation. The solution of this equation gives an instability which grows in time.
Thus,the spatially uniform m = 1 component becomes unstable on the modulation of a2

scattering channel. The equation describing the m = �1 component which also has the
two body interactions that have total spin F = 2 is more difficult to decouple or interpret.
However,since the population of this component is negligible and there exists no spin-
exchange process which might transfer population to this state, we can ignore the dynamics
of this component.
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Spin-1 BEC with antiferromagnetic interactions

Unlike modulation of a0 scattering channel, modulation of a2 scattering channel results in
spontaneous spatial symmetry breaking of this phase. The results of numerical simulations
are listed below. The real space show patterns indicative of the Bogoliubov mode resonant
with half the driving frequency show in Figure-[4.1]. In this case we find density mode is the
Bogoliubov mode that is excited.

(0,1)+(0,1)! (k,1)+(�k,1) (4.11)

The wave number of the patterns increases on increasing the driving frequency (Figure-[4.2])
in agreement with the dispersion relation of this mode. We observe no spin dynamics or
spin-textures due to no spin-exchange collision and negligible populations in these spin
modes.

Spin-1 BEC with ferromagnetic interactions

We make similar observations when the interactions between spins in ferromagnetic in nature.
We observe square like patterns in real space (Figure-[4.3]) whose wavenumber increases
on increasing the driving frequency in good agreement with the dispersion relation of the
density mode (Figure-[4.4]). We also observe no spin-dynamics or spin-textures.

4.1.2 Spin-1 BEC in Antierromagnetic Phase

Homogeneous spinor field for the antiferromagnetic phase in the absence of any perturbation
is given below: 0
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Ae�iµt (4.12)

Here,µ = q+ c0n. This phase is present only when the interactions between spins is anti-
ferromagnetic in nature. To simplify our calculations we take p = 0. We find the uniform
solutions of the system on temporal modulation and then perform linear stability analysis to
check its stability against spatially modulated states and obtain the following equations for
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(a) m=1 component (b) m=1 component

(c) m=1 component (d) m=1 component

Fig. 4.1 Real and momentum space distribution of the spatially modulated component of the FM
phase spin-1 BEC with antiferromagnetic interactions on periodic modulation of a2 scattering channel
with amplitude a = 0.2 and for frequencies w = p/2 (above) and w = p (below). The system shows
patterns whose wavenumber increases with increasing modulation frequency. Here, the wavenumber
of the components corresponding to the unstable mode is k = 0.48 and k = 0.93 which compares well
with the expected k = 0.45 and k = 0.90.
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(a) (b)

Fig. 4.2 Dispersion relation of the modes of FM phase with antiferromagnetic interactions.

(a) m=1 component (b) m=1 component

(c) m=1 component (d) m=1 component

Fig. 4.3 Real and momentum space distribution of the spatially modulated components of the FM
phase spin-1 BEC with ferromagnetic interactions on periodic modulation of a2 scattering channel with
amplitude a = 0.2 and for frequencies w = p/2 (above) and w = p (below). Here, the wavenumber
of the components corresponding to the unstable density mode is k = 0.501 and k = 0.93 which
compares well with the expected k = 0.48 and k = 0.93.
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(a) (b)

Fig. 4.4 Dispersion relation of the modes of FM phase with ferromagnetic interactions.

the real amplitude of spatial modulation.

∂ 2z+
∂ t2 +[(k2 +2c0)k2 + k2(4ã2)(2acos(2wt))]z+ = 0 (4.13)

∂ 2z�
∂ t2 +[(k2 +2c1)k2 + k2(2ã2)(2acos(2wt))]z� = 0 (4.14)

∂ 2u0

∂ t2 +[(k2 �q+2c1)(k2 �q)+(k2 �q)(2ã2)(2acos(2wt))]u0 = 0 (4.15)

Solution to these equations is obtained using the Floquet theorem. The Floquet exponent sm =

sm(w,a,k) determines the stability of these solutions.The system is unstable if Re(sm)> 0.
On solving the two Mathieu equations we make the following observations:

• Both the density and spin modes are rendered unstable on periodic driving of the a2

scattering channel.

• s0 > s±

– For w = p
2 , the floquet exponent corresponding to most unstable k of each mode

are compared i.e, the floquet exponent corresponding to most unstable k of each
mode are compared i.e, the floquet exponent corresponding to most unstable k of
each mode are compared i.e, the floquet exponent corresponding to most unstable
k of each mode are compared i.e, s+ = 0.0625668-density mode,s� = 0.495733-
spin mode < s0 = 0.495734-spin mode.
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– For w = p , the floquet exponent corresponding to most unstable k of each mode
are compared i.e,s+ = 0.060545-density mode,s� = 0.273984-spin mode <

s0 = 0.273986-spin mode.

• This implies that the spin mode is the most unstable and will grow faster than the
others.

We expect to see spin-dynamics as population transfers from the density mode to the spin
mode via the spin-exchange process:

(0,1)+(0,�1)! (k,0)+(�k,0) (4.16)

The observations in terms of which mode is made unstable remains same as when a0

scattering channel is modulated.
The real and momentum space distribution is given in Figures- [4.5], [4.6] ,spin-textures

and spin dynamics are shown in the Figure [4.7].

(k1,0)+(k2,0)! (k3,1)+(k4,�1) (4.17)

|k1|= |k2|= k (4.18)

The patterns in real space do not show have any discernible symmetry due to the multiple
modes in the range of �2k < (k3,k4) < 2k being unstable at the same time as a result of
dynamics described above.

The patterns formed by the spin-textures on the other hand show more distinct patterns
indicative of the spin mode corresponding to m =±11 spin mode. The patterns are formed
by spin-domains which appear to flip direction with time.

The wavenumber of the patterns increases on increasing the modulation frequency. We
observe patterns with wavenumber indicative of the resonant spin mode. Even though the
mode selected is same as the one selected when a0 scattering channel was modulated, the
symmetry in the spin-textures is much different when a2 scattering channel is modulated.

4.1.3 Spin-1 BEC in Polar Phase

Homogeneous spinor field for the polar phase in the absence of any perturbation is given as:

(0,1,0)e�iµt (4.19)
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 4.5 Real and momentum space distribution of the different components of the AFM phase spin-1
BEC on periodic modulation of a2 scattering channel with amplitude a = 0.2 and for frequencies
w = p/2 (above) and w = p (below). Here, the wavenumber of m = 0 component corresponding
to the unstable mode is k0 = 1.01 and k0 = 1.56 which compares well with the expected k0 = 0.993
and k = 1.598. The values of wavenumbers excited in the other components are in the range of
�2k0 < k± < 2k0..
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(a) Spin-textures in real space (b) Spin-textures in momentum space

(c) Spin-textures in real space (d) Spin-textures in momentum space

(e) (f)

Fig. 4.6 Distribution of spins in real space for the AF phase of spin-1 BEC with antiferromagnetic
interactions on periodic modulation of a2 scattering channel with amplitude a = 0.2 and for frequen-
cies w = p/2(above) and w = p (below). Here, the wavenumber of pattens formed by spin-textures
corresponding to one of the spin modes is k = 1.40 and k = 1.67 which compares well with the
expected wavenumbers of the density mode k = 1.209 and k = 1.739. Fig.(e,f) shows dispersion
relations obtained on solving the Bogoliubov spectra corresponding to the AF phase. The arrows
correspond to the modulating frequency and the corresponding wavenumber.
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(a) Spin dynamics for w = p/2 (b) Spin dynamics for w = p

(c) Spin-textures in real space with time

Fig. 4.7 We observe flipping of spin-domains in time in the spin-textures in real space.
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Here,µ = c0. We also consider p = 0 to simplify the calculations. We arrive at the equations
describing the dynamics of the system by performing a linear stability analysis to test if the
translational symmetry may be broken on perturbation.We arrive at the following equations
for the real amplitude of spatial perturbations:

∂ 2z+
∂ t2 � [�(k2 +q+ c1)(k2 +q)+(k2 +q)(2ã2)(2acos(2wt))]z+ = 0 (4.20)

∂ 2u0

∂ t2 +[(k2 +2c0)k2 + k2(4ã2)(2acos(2wt))]u0 = 0 (4.21)

Here, z+ = u++u�. The real amplitude of both the density mode and the coupled spin mode
is described by Mathieu equations. The stability of this Mathieu equations is given by the
real part of the floquet exponent of each mode. On solving the above equations we make the
following observations:

• Both the density mode and coupled spin mode are rendered unstable on periodic
driving of the a2 scattering channel.

• s0 < s±

– Antiferromagnetic interactions

* For w = p
2 , the floquet exponent corresponding to most unstable k of each

mode are compared i.e, the floquet exponent corresponding to most unstable
k of each mode are compared i.e, the floquet exponent corresponding to most
unstable k of each mode are compared i.e, s+ = 0.0625668-density mode <
s0 = 0.495734-spin mode.

* For w = p , the floquet exponent corresponding to most unstable k of each
mode are compared i.e,the floquet exponent corresponding to most unstable
k of each mode are compared i.e,s+ = 0.060545-density mode < s0 =

0.273986-spin mode.

– Ferromagnetic interactions

* For w = p
2 , the floquet exponent corresponding to most unstable k of each

mode are compared i.e, the floquet exponent corresponding to most unstable
k of each mode are compared i.e, the floquet exponent corresponding to most
unstable k of each mode are compared i.e, s+ = 0.0659502-density mode <
s0 = 0.428482-spin mode.

* For w = p , the floquet exponent corresponding to most unstable k of each
mode are compared i.e,s+ = 0.0622128-density mode < s0 = 0.222552-
spin mode.
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• From the floquet exponents the spin mode is the most unstable and will grow faster
compared to the others.

When the system is in this phase, there exists two-body spin exchange process that conserves
spin and can transfer population from the m = 0 components to the m =±1 components.

(0,0)+(0,0)! (k,1)+(�k,�1) (4.22)

We expect translational symmetry breaking and spin-dynamics as population is transferred
from the m =±1 components corresponding to the density mode to the more unstable m = 0
component corresponding to the spin mode. We performed numerical simulations to study
this system for both kinds of spin interactions.

Spin-1 BEC with antiferromagnetic interactions

The results of numerical simulation are shown in Figures [4.8, 4.9, 4.10] Patterns in real
space do not show have any specific symmetry and are similar to the AF phase Figure-
[4.8]. This is because of spin-dynamics which tries to restore the excited population in
the component corresponding to spin mode back to the m = 0 component. This results in
the several wavenumbers in the range of �2k < (k3,k4)< 2k being excited and no specific
symmetry in the patterns formed.

We observe distinct patterns in the spin-textures. The patterns are formed by spin-domains
which appear to flip direction with time. Patterns formed by the spin domains when a2 is
modulated has a different symmetry when compared to patterns formed on modulation of a0

scattering channel.
The wavenumber of these patterns offers us an important insight into elementary excita-

tions of spinor BEC. In case the polar phase with a2 scattering channel alone being modulated
we observe patterns with wavenumber indicative of the resonant spin mode. The wavenumber
of the patterns increases on increasing the modulation frequency in good agreement with the
dispersion relation of the spin mode.

Spin-1 BEC with ferromagnetic interactions

We make similar observations when the interactions between the spins in the system is
ferromagnetic shown in Figures- [4.11, 4.12]. The patterns in real space do not show any
recognizable symmetry due to spin dynamics and several k being excited due to the processes
explained in the previous chapter. The wavenumber of the pattern indicate the Bogoliubov
mode resonant with the half the driving frequency. In this case it is the spin mode.
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 4.8 Real space distribution of the different components of the Polar phase spin-1 BEC with
antiferromagnetic interactions on periodic modulation of a2 scattering channel with amplitude a =
0.2 and for frequencies w = p/2 (above) and w = p (below). The system shows patterns whose
wavenumber increases with increasing modulation frequency. Here, the wavenumber of components
corresponding to the unstable mode is k0 = 1.01 and k0 = 1.62 which compares well with the expected
k0 = 0.991 and k = 1.6039. The values of wavenumbers excited in the density mode are in the range
of �2k0 < k± < 2k0.
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(a) Spin-textures in real space (b) Spin-textures in momentum space

(c) Spin-textures in real space (d) Spin-textures in momentum space

(e) (f)

Fig. 4.9 Distribution of spins in real and momentum space for the Polar phase of spin-1 BEC with
antiferromagnetic interactions on periodic modulation of a2 scattering channel with amplitude a = 0.2
and for frequencies w = p/2 (above) and w = p (below). Here, the wavenumber of patterns formed
by spin-textures corresponding to one of the spin modes is k = 1.01 and k = 1.63 which compares
well with the expected wavenumbers of the spin k = 0.991 and k = 1.604. Fig.(e,f) shows dispersion
relations obtained on solving the Bogoliubov spectra corresponding to the Polar phase. The arrows
correspond to the modulating frequency and the corresponding wavenumber.
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(a) Spin dynamics for w = p/2 (b) Spin dynamics for w = p

(c) Spin-textures in real space with time

Fig. 4.10 We observe flipping of spin-domains in time in the spin-textures in real space.
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) Spin-textures in real space (h) Spin-textures in momentum space

Fig. 4.11 Real and momentum space distribution of the different components of the Polar phase spin-1
BEC with ferromagnetic interactions on periodic modulation of a2 scattering channel with amplitude
a = 0.2 and for frequency w = p . Here, the wavenumber of m =±1 components corresponding to
the unstable mode is k = 1.77 which compares well with the expected k = 1.75. The last two figures
shows distribution of spins in real space and momentum space. Here, the wavenumber of patterns
formed by spin-textures corresponding to one of the spin modes is k = 1.85 which compares well
with the expected k = 1.78. The values of wavenumbers excited in the density mode are in the range
of �2k0 < k± < 2k0.
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(a) (b)

Fig. 4.12 (a)Spin-dynamics on modulation of the a2 scattering channel. (b)Dispersion relations
obtained on solving the Bogoliubov spectra corresponding to the Polar phase. The arrows correspond
to the modulating frequency and the corresponding wavenumber

4.1.4 Spin-1 BEC in BA Phase

Homogeneous spinor field for the BA phase in the absence of any perturbation is given as:

(ei(c0+cz) p
p

fz(q+ p)
2

,eic0

s
(q2 � p2)(�p2 �q2 +2c1nq)

4c1nq3 ,ei(c0+cz) p
p

fz(q� p)
2

)e�iµt

(4.23)
Here,µ = (�p2+q2+2qc1n)2

8c1nq2 + c0n
2 and fz =

p(�p2+q2+2qc1n)
2c1nq2 .This phase is possible only in spin-1

BEC with ferromagnetic interactions between the spins.
It is difficult to analyse this phase for spontaneous translational symmetry breaking

analytically. However, we study pattern formation in this system using numerical simulations.

Spin-1 BEC with ferromagnetic interactions

We observe square like patterns in density space of this phase on modulation with frequencies
w = p

2 and w = p (Figure- [4.13]). The symmetry and wave number of the patterns is
different from when a0 scattering channel was modulated.The wavenumber of the pattern
is reflective of one of the spin modes (Figure- [4.14]). Again, we see no spin-textures in
this phase as there is no spin-dynamics in the initial states when the system is stable and not
heated.
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(a) m=1 component (b) m=0 component (c) m=-1 component

(d) m=1 component (e) m=0 component (f) m=-1 component

(g) m=1 component (h) m=0 component (i) m=-1 component

(j) m=1 component (k) m=0 component (l) m=-1 component

Fig. 4.13 Real and momentum space distribution of the different components of the BA phase of spin-
1 BEC on periodic modulation of a2 scattering channel with amplitude a = 0.2 and for frequencies
w = p/2 (above) and w = p (below). The system shows patterns whose wavenumber increases with
increasing modulation frequency. Here, the wavenumber of the components corresponding to the
unstable density mode is k = 0.48 and k = 0.93 which compares well with the expected k = 0.47 and
k = 0.93.
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(a) Spin-dynamics for w = p
2 (b) Spin-dynamics for w = p

(c) (d)

Fig. 4.14 Spin-dynamics and dispersion relation of the BA phase with the arrows pointing the most
unstable k corresponding to the modulation frequency.
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4.2 Summary

• Periodic modulation of the a2 scattering channel leads to the excitation of spin modes
in spin-1 BEC. The exception is ferromagnetic phase for which we see excitation of
density mode.

• The excitation of spin modes in the AFM and Polar phase is accompanied with spin
dynamics, complex pattern and spin textures formation.

• In the BA phase we observe no spin dynamics and the pattern formation is much
simpler with a single wavenumber being excited.

• We do not see patterns indicative of the density mode even though it has parametric
instability because the parametric instability associated with the spin mode grows
faster.



Chapter 5

Results and Discussions-III

5.1 Periodic modulation of the a0 and a2 scattering chan-
nels

Periodic modulation of a0 and a2 scattering channels simultaneously is given as

ã0 = ã0 + ã0(2a0 cos(2w0t)) (5.1)

ã2 = ã2 + ã2(2a2 cos(2w2t)) (5.2)

Modulation of this form requires independent control over the two scattering lengths. This
may be achieved by using the method outlined in [30]. We study pattern formation in the
different ground state phases of homogenous spin-1 BEC system when a0 and a2 scattering
lengths modulated simultaneously.We consider two specific conditions to this end:

• a0 and a2 scattering lengths modulated at same frequency and amplitude i.e,

a0 ⇡ a2 (5.3)

w0 = w2 (5.4)

• a0 and a2 scattering lengths modulated at different frequency and amplitude i.e,

a0 > a2 (5.5)

w0 > w2 (5.6)
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We arrive at the equations describing the dynamics of the system on modulation of the
scattering lengths by performing a linear stability analysis to test if the translational symmetry
may be broken on perturbation of the the uniform system.

5.1.1 Spin-1 BEC in Ferromagnetic Phase

The pattern formation in this phase is unaffected by the modulation of a0 scattering channel.
The reason for this, as mentioned before, is that all two body interactions in this phase are
are in the a2 scattering channel. Hence, the results are exactly same as when the a2 scattering
channel is modulated. We find that Spin-1 BEC in ferromagnetic phase acts almost like a
scalar condensate except with spins that are frozen in a single spin state.

5.1.2 Spin-1 BEC in Antiferromagnetic Phase

Homogeneous spinor field for the antiferromagnetic phase in the absence of any perturbation
is given below: 0
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Ae�iµt (5.7)

Here, µ = q+ c0n.To simplify our calculations we take p = 0. We studied pattern formation
for uniform system in this phase for the two cases listed below:

a0 and a2 scattering lengths modulated at same frequency and amplitude

The equations for the real amplitude of spatial perturbations on performing linear stability
analysis for this phase under this modulation condition is given as:

∂ 2z+
∂ t2 +[(k2 +2c0)k2 + k2(4ã2)(2acos(2wt))]z+ = 0 (5.8)

∂ 2z�
∂ t2 +[(k2 +2c1)k2]z� = 0 (5.9)

d2u0

dt2 +[(k2 + c1 �q)2 � c2
1(1� f 2

z )]u0(t) = 0 (5.10)

We get a Mathieu equation for one of the coupled modes,z+ = u++u� and a SHO equation
for m = 0 zeeman component (spin mode) and the other density mode z� = u+�u�. The
coupling between the density mode and periodic modulation is evident as the parametric reso-
nance condition in the mathieu equation gives the dispersion relation W(k) =

p
k2(k2 +2c0)

of the density mode. The results of numerical simulations are given in Figure- [5.1]. Transla-
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(a) m=1 component (b)

Fig. 5.1 (a)Real space distribution of the spatially modulated components of the AFM phase spin-1
BEC with antiferromagnetic interactions on periodic modulation of both scattering channels with
amplitude a = 0.2 and for frequency w = p/2. The wavenumber of the unstable mode - density
mode is k = 0.433 which compares well with the expected k = 0.42.(b)Dispersion Relations of AFM
phase as a function of wavenumber.

tional symmetry is broken as a result and we see patterns with wave number characteristic of
the coupled density mode. The spin modes are stable so there is no population transfer (spin
dynamics) or any spin-textures. We can selectively excite the density mode by modulating
both scattering channels with same frequency.

a0 and a2 scattering lengths modulated at different frequency and amplitude

The equations for the real amplitude of spatial perturbations on performing linear stability
analysis for this phase under this modulation condition is given as:

∂ 2z+
∂ t2 +[(k2 +2c0)k2 � k2(2ã0)(2a0cos(2w0t)) (5.11)

�k2(4ã2)(2a2cos(2w2t))]z+ = 0
∂ 2z�
∂ t2 +[(k2 +2c1)k2 � k2(2ã0)(2a0cos(2w0t)) (5.12)

�k2(2ã2)(2a2cos(2w2t))]z� = 0
∂ 2u0

∂ t2 +[(k2 �q+2c1)(k2 �q)� (k2 �q)(2ã0)(2a0cos(2w0t)) (5.13)

�(k2 �q)(2ã2)(2a2cos(2w2t))]u0 = 0

Here, z+ = u+ + u� and z� = u+� u�. The equations for the real amplitude of spatial
modulations is a mathieu equation with two driving frequencies which we cannot solve easily.
We look at which mode is most unstable and pattern formation numerically.
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Numerical simulations show patterns only corresponding to the a0 channel being modu-
lated. We do not see any effect of the a2 scattering channel which was modulated at a lower
amplitude and frequency. The patterns in real space and spin-textures show same results as
a0 channel being modulated and a2 channel is left time-independent.

5.1.3 Spin-1 BEC in Polar Phase

Homogeneous spinor field for the ferromagnetic phase in the absence of any perturbation is
given as:

(0,1,0)e�iµt (5.14)

Here, µ = c0.To simplify our calculations we take p = 0. We studied pattern formation for
uniform system in this phase for the two cases listed below:

a0 and a2 scattering lengths modulated at same frequency and amplitude

The equations for the real amplitude of spatial perturbations on performing linear stability
analysis for this phase under this modulation condition is given as:

d2u0

dt2 +[W2(~k)+4c0k2acos(2wt)]u0 = 0

W(k) =
q

k2(k2 +2c0) (5.15)

d2z+
dt2 +[(L� p)2]z+ = 0 (5.16)

d2z�
dt2 +[(L+ p)2]z� = 0 (5.17)

L =
q
(2c1 + k2 +q)(k2 +q) (5.18)

We get a Mathieu equation for the m = 0 zeeman component(density mode) and a SHO
equation for the coupled modes,z+ = u++u� and z� = u+�u�(spin modes). The coupling
between the density mode and periodic modulation is evident as the parametric resonance
condition in the mathieu equation gives the dispersion relation W(k) =

p
k2(k2 +2c0) of

the density mode. Translational symmetry is broken as a result and we see patterns with
wave number characteristic of the m = 0 density mode. The spin modes are stable so there is
no population transfer (spin dynamics) or any spin-textures. We can selectively excite the
density mode by modulating both scattering channels with same frequency. The results of
numerical simulations are listed in Figures- [5.2 , 5.3]
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(a) m=0 component (b) m=0 component

Fig. 5.2 Real and momentum space distribution of the spatially modulated components of the Polar
phase spin-1 BEC with antiferromagnetic interactions on periodic modulation of both scattering
channels with amplitude a = 0.2 and for frequency w = p left. The wavenumber of the unstable
mode is k = 0.468 which compares well with the expected k = 0.47.

Fig. 5.3 Dispersion Relations of polar phase as a function of wavenumber.
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a0 and a2 scattering lengths modulated at different frequency and amplitude

The equations for the real amplitude of spatial perturbations on performing linear stability
analysis for this phase under this modulation condition is given as:

∂ 2z+
∂ t2 +(k2 +q+ c1)(k2 +q)� (k2 +q)(2ã0)(2a0cos(2w0t))z+ (5.19)

�k2(4ã2)(2a2cos(2w2t)) = 0
∂ 2u0

∂ t2 +[(k2 +2c0)k2 � k2(2ã0)(2a0cos(2w0t)) (5.20)

�(k2 +q)(2ã2)(2a2cos(2w2t))]u0 = 0

Here, z+ = u++ u�. The equations for the real amplitude of spatial modulations is a
mathieu equation with two driving frequencies which we cannot solve easily. We look at the
most unstable and pattern formation numerically.

Numerical simulations show patterns only corresponding to the a0 channel being modu-
lated. We do not see any effect of the a2 scattering channel which was modulated at a lower
amplitude and frequency. The patterns in real space and spin-textures show same results as
a0 channel being moodulated and a2 channel is left time-independent.

5.2 Summary

• We find that the density modes of the spin-1 BEC can be made parametrically resonant
by driving both scattering channels at the same time with almost same amplitude
and frequency such that only spin-independent interactions are modulated. This kind
of modulation suppresses spin-dynamics that might result in creation of parametric
instability in the spin-modes.

• Periodically driving the system with different frequencies and amplitudes results in
dynamics predominantly due to the channel with the higher amplitude. Dynamics due
to periodic modulation of the channel with lower amplitude is suppressed.



Chapter 6

Conclusions and Outlook

The project explored weak excitations in Spin-1 BEC with both ferromagnetic and antiferro-
magnetic interactions between the spins using periodic modulation of the different s-wave
scattering channels for the different ground state phases. It was found that ferromagnetic
phase behaves like a scalar condensate which only posses density modes and whose spin
modes are never excited under modulation of any scattering channel. Also, like scalar BEC
only one scattering channel determines the dynamics of the system i.e, a2 . It was found that
the spin modes of the polar phase, AFM phase and the density mode of the BA phase could
be studied by independent modulation of the a0 and a2 scattering channels. The density
mode of the polar phase and AFM phase can be studied by modulating a2 and a0 scattering
channels with the same amplitude and frequency. Thus, by modulating the two scattering
channels of spin-1 BEC with varied frequencies and amplitudes we can excite and explore
different Bogoliubov modes of the spinor BEC.

We were also able to observe spin-dynamics in the system. This was observed when
either a0 or a2 scattering channel was modulated alone. Spin dynamics occurs as a result of
spin-exchange collisions which can transfer population from one component of the spinor
BEC to another and back. This has been observed experimentally in Rb-87 spin-1 BEC and
Na-23 spin-1 BEC. We also observe spin-textures in the form of domain walls of varied
symmetry as a result of spin-dynamics. The spin-textures showed domains that flipped Fx in
time.

Exploring pattern formation in traps with varied geometry is currently being pursued. We
are especially interested in the variation in spin-textures formed as a result of changing the
trap geometry. Spin-currents associated with the spin dynamics and spin-texture also remains
to be studied. The system with both scattering lengths modulated with different frequencies
remains to be analysed analytically. Periodic modulation results in the heating of the system
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and ultimately destruction of the condensate. By including dissipation in the system the time
over which patterns are observed can be extended[17].



References

[1] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-einstein condensation of lithium:
Observation of limited condensate number. Phys. Rev. Lett., 78:985–989, Feb 1997.

[2] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett.,
75:3969–3973, Nov 1995.

[3] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and Eric A
Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. science,
269(5221):198–201, 1995.

[4] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner,
J. Stenger, and W. Ketterle. Optical confinement of a bose-einstein condensate. Phys.
Rev. Lett., 80:2027–2030, Mar 1998.

[5] Keiji Murata, Hiroki Saito, and Masahito Ueda. Broken-axisymmetry phase of a spin-1
ferromagnetic bose-einstein condensate. Phys. Rev. A, 75:013607, Jan 2007.

[6] Michael Cross and Henry Greenside. Linear instability: basics, page 56–95. Cambridge
University Press, 2009.

[7] Wenxian Zhang, Su Yi, and Li You. Mean field ground state of a spin-1 condensate in a
magnetic field. New Journal of Physics, 5:77–77, jun 2003.

[8] Hiroki Saito, Yuki Kawaguchi, and Masahito Ueda. Breaking of chiral symmetry and
spontaneous rotation in a spinor bose-einstein condensate. Phys. Rev. Lett., 96:065302,
Feb 2006.

[9] Leslie Vengalattore Sadler, Higbie and Stamper-Kurn. Spontaneous symmetry breaking
in a quenched ferromagnetic spinor bose–einstein condensate. Nature, 443, Sept 2006.

[10] Hiroki Saito and Masahito Ueda. Spontaneous magnetization and structure formation in
a spin-1 ferromagnetic bose-einstein condensate. Phys. Rev. A, 72:023610, Aug 2005.

[11] Dan M. Stamper-Kurn and Masahito Ueda. Spinor bose gases: Symmetries, magnetism,
and quantum dynamics. Rev. Mod. Phys., 85:1191–1244, Jul 2013.

[12] S. Lellouch, M. Bukov, E. Demler, and N. Goldman. Parametric instability rates in
periodically driven band systems. Phys. Rev. X, 7:021015, May 2017.



74 References

[13] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi,
Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, and
Iacopo Carusotto. Topological photonics. Rev. Mod. Phys., 91:015006, Mar 2019.

[14] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single
trapped ions. Rev. Mod. Phys., 75:281–324, Mar 2003.

[15] Takashi Oka and Hideo Aoki. Photovoltaic hall effect in graphene. Phys. Rev. B,
79:081406, Feb 2009.

[16] André Eckardt. Colloquium: Atomic quantum gases in periodically driven optical
lattices. Rev. Mod. Phys., 89:011004, Mar 2017.

[17] Kestutis Staliunas, Stefano Longhi, and Germán J. de Valcárcel. Faraday patterns in
bose-einstein condensates. Phys. Rev. Lett., 89:210406, Nov 2002.

[18] R. Nath and L. Santos. Faraday patterns in two-dimensional dipolar bose-einstein
condensates. Phys. Rev. A, 81:033626, Mar 2010.

[19] Jérôme Cayssol, Balázs Dóra, Ferenc Simon, and Roderich Moessner. Floquet topolog-
ical insulators. physica status solidi (RRL)–Rapid Research Letters, 7(1-2):101–108,
2013.

[20] N Goldman, JC Budich, and P Zoller. Topological quantum matter with ultracold gases
in optical lattices. Nature Physics, 12(7):639, 2016.

[21] M. Krämer, C. Tozzo, and F. Dalfovo. Parametric excitation of a bose-einstein conden-
sate in a one-dimensional optical lattice. Phys. Rev. A, 71:061602, Jun 2005.

[22] C. Tozzo, M. Krämer, and F. Dalfovo. Stability diagram and growth rate of parametric
resonances in bose-einstein condensates in one-dimensional optical lattices. Phys. Rev.
A, 72:023613, Aug 2005.

[23] C. E. Creffield. Instability and control of a periodically driven bose-einstein condensate.
Phys. Rev. A, 79:063612, Jun 2009.

[24] Kazuya Fujimoto and Shun Uchino. Floquet spinor bose gases. arXiv preprint
arXiv:1901.09386, 2019.

[25] D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard. Microwave-induced fano-feshbach
resonances. Phys. Rev. A, 81:041603, Apr 2010.

[26] Thomas M Hanna, Eite Tiesinga, and Paul S Julienne. Creation and manipulation of fes-
hbach resonances with radiofrequency radiation. New Journal of Physics, 12(8):083031,
aug 2010.

[27] Yijue Ding, José P. D’Incao, and Chris H. Greene. Effective control of cold collisions
with radio-frequency fields. Phys. Rev. A, 95:022709, Feb 2017.

[28] T. V. Tscherbul, T. Calarco, I. Lesanovsky, R. V. Krems, A. Dalgarno, and J. Schmied-
mayer. rf-field-induced feshbach resonances. Phys. Rev. A, 81:050701, May 2010.



References 75

[29] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in
ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.

[30] Peng Zhang, Pascal Naidon, and Masahito Ueda. Independent control of scattering
lengths in multicomponent quantum gases. Phys. Rev. Lett., 103:133202, Sep 2009.

[31] L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu. Dynamics in spinor condensates tuned
by a microwave dressing field. Phys. Rev. A, 89:023608, Feb 2014.

[32] Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf Mandel, and Immanuel Bloch.
Resonant control of spin dynamics in ultracold quantum gases by microwave dressing.
Phys. Rev. A, 73:041602, Apr 2006.

[33] S. R. Leslie, J. Guzman, M. Vengalattore, Jay D. Sau, Marvin L. Cohen, and D. M.
Stamper-Kurn. Amplification of fluctuations in a spinor bose-einstein condensate. Phys.
Rev. A, Apr 2009.

[34] Seji Kang, Sang Won Seo, Joon Hyun Kim, and Y. Shin. Emergence and scaling of
spin turbulence in quenched antiferromagnetic spinor bose-einstein condensates. Phys.
Rev. A, 95:053638, May 2017.

[35] Yuki Kawaguchi and Masahito Ueda. Spinor bose–einstein condensates. Physics
Reports, 520(5):253–381, 2012.

[36] Michael Cross and Henry Greenside. Introduction, page 1–55. Cambridge University
Press, 2009.

[37] J. P. Gollub and J. S. Langer. Pattern formation in nonequilibrium physics. Rev. Mod.
Phys., 71:S396–S403, Mar 1999.

[38] Michael Cross and Henry Greenside. Linear instability: basics, page 56–95. Cambridge
University Press, 2009.

[39] P. Engels, C. Atherton, and M. A. Hoefer. Observation of faraday waves in a bose-
einstein condensate. Phys. Rev. Lett., 98:095301, Feb 2007.

[40] Alexandru I. Nicolin, R. Carretero-González, and P. G. Kevrekidis. Faraday waves in
bose-einstein condensates. Phys. Rev. A, 76:063609, Dec 2007.

[41] Kestutis Staliunas, Stefano Longhi, and Germán J. de Valcárcel. Faraday patterns in
low-dimensional bose-einstein condensates. Phys. Rev. A, 70:011601, Jul 2004.

[42] M. Modugno, C. Tozzo, and F. Dalfovo. Detecting phonons and persistent currents
in toroidal bose-einstein condensates by means of pattern formation. Phys. Rev. A,
74:061601, Dec 2006.

[43] Alexandru I. Nicolin. Resonant wave formation in bose-einstein condensates. Phys.
Rev. E, 84:056202, Nov 2011.

[44] Pablo Capuzzi, Mario Gattobigio, and Patrizia Vignolo. Suppression of faraday waves in
a bose-einstein condensate in the presence of an optical lattice. Phys. Rev. A, 83:013603,
Jan 2011.



76 References

[45] Kazimierz Łakomy, Rejish Nath, and Luis Santos. Faraday patterns in coupled one-
dimensional dipolar condensates. Phys. Rev. A, 86:023620, Aug 2012.

[46] Nadav Katz and Oded Agam. Parametrically excited ‘scars’ in bose–einstein conden-
sates. New Journal of Physics, 12(7):073020, jul 2010.

[47] Antun Balaž, Remus Paun, Alexandru I. Nicolin, Sudharsan Balasubramanian, and
Radha Ramaswamy. Faraday waves in collisionally inhomogeneous bose-einstein
condensates. Phys. Rev. A, 89:023609, Feb 2014.

[48] Antun Balaž and Alexandru I. Nicolin. Faraday waves in binary nonmiscible bose-
einstein condensates. Phys. Rev. A, 85:023613, Feb 2012.

[49] Kazimierz Łakomy, Rejish Nath, and Luis Santos. Faraday patterns in coupled one-
dimensional dipolar condensates. Phys. Rev. A, 86:023620, Aug 2012.

[50] J B Sudharsan, R Radha, Mihaela Carina Raportaru, Alexandru I Nicolin, and
Antun Balaž. Faraday and resonant waves in binary collisionally-inhomogeneous
bose–einstein condensates. Journal of Physics B: Atomic, Molecular and Optical
Physics, 49(16):165303, aug 2016.

[51] Antun Balaž, Remus Paun, Alexandru I. Nicolin, Sudharsan Balasubramanian, and
Radha Ramaswamy. Faraday waves in collisionally inhomogeneous bose-einstein
condensates. Phys. Rev. A, 89:023609, Feb 2014.

[52] LM Symes, RI McLachlan, and PB Blakie. Efficient and accurate methods for solving
the time-dependent spin-1 gross-pitaevskii equation. Physical Review E, 93(5):053309,
2016.

[53] Wilhelm Magnus and Stanley Winkler. Hill’s equation. Courier Corporation, 2013.

[54] Y. Castin and R. Dum. Bose-einstein condensates with vortices in rotating traps.
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics,
7(3):399–412, Oct 1999.

[55] A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett. Spinor dynamics in an
antiferromagnetic spin-1 condensate. Phys. Rev. Lett., 99:070403, Aug 2007.

[56] L. M. Symes, D. Baillie, and P. B. Blakie. Dynamics of a quenched spin-1 antiferro-
magnetic condensate in a harmonic trap. Phys. Rev. A, 98:063618, Dec 2018.



Appendix A

Spin-1 BEC Quasi-2D system

A.1 Spin-1 BEC System

The Spin-1 BEC system in 3D is described by multi-component Gross-Pitaevskii (GP)
equations given below.

ih̄
dy1

dt
=

�h̄2—2y1

2M
+V (r)y1 +(�pm+qm2)y1 (A.1)

+c0(|y1|2 + |y0|2 + |y�1|2)y1 + c1(|y0|2 + |y1|2 � |y�1|2)y1 + c1y2
0 y⇤

�1

ih̄
dy0

dt
=

�h̄2—2y0

2M
+V (r)y0 +(�pm+qm2)y0 (A.2)

+c0(|y1|2 + |y0|2 + |y�1|2)y0 + c1(|y1|2 + |y�1|2)y0 +2c1y1y�1y⇤
0

ih̄
dy�1

dt
=

�h̄2—2y�1

2M
+V (r)y�1 +(�pm+qm2)y�1 (A.3)

+c0(|y1|2 + |y0|2 + |y�1|2)y�1 + c1(|y0|2 � |y1|2 + |y�1|2)y�1 + c1y2
0 y⇤

1

We restrict ourselves to two dimensional space, which can be realized by considering a
tight pancake shaped potential.In this case the axial confinement energy is so large that the
dynamics in the z direction is frozen in the ground state of the strong harmonic potential.
Thus, the wave function can be written as [54]:

~Y(x,y,z) = ~Y(x,y)(
Mwz

p h̄
)

1
4 e

�Mwzz2
2h̄ (A.4)

~Y =

0

B@
y1

y0

y�1

1

CA



78 Spin-1 BEC Quasi-2D system

We substitute this in eq[1], eq[2] and eq[3] and integrating out the z- component using eq[5]
and eq[6].

Z
(
Mwz

p h̄
)

1
2 e

�Mwzz2
h̄ dz = 1 (A.5)

Z Mwz

p h̄
e
�2Mwzz2

h̄ dz =
r

Mwz

2p h̄
(A.6)

We get interaction parameters in 2-dimensions.

c̃0 = c0

r
Mwz

2p h̄
(A.7)

c̃1 = c1

r
Mwz

2p h̄
(A.8)

The 2-D GPE is given below:

ih̄
dy1

dt
=

—2y1

2M
+V (r)y1 +(�pm+qm2)y (A.9)

+c̃0(|y1|2 + |y0|2 + |y�1|2)y1 + c̃1(|y0|2 + |y1|2 � |y�1|2)y1 + c̃1y2
0 y⇤

�1

ih̄
dy0

dt
=

�h̄2—2y0

2M
+V (r)y0 +(�pm+qm2)y0 (A.10)

+c̃0(|y1|2 + |y0|2 + |y�1|2)y0 + c̃1(|y1|2 + |y�1|2)y0 +2c̃1y1y�1y⇤
0

ih̄
dy�1

dt
=

�h̄2—2y�1

2M
+V (r)y�1 +(�pm+qm2)y�1 (A.11)

+c̃0(|y1|2 + |y0|2 + |y�1|2)y�1 + c̃1(|y0|2 � |y1|2 + |y�1|2)y�1 + c̃1y2
0 y⇤

1

A.1.1 Making the system Dimensionless

System is scaled with h̄wz, in this case wz = 2p ⇥800. The npeak = |y(x = 0, t = 0)|2(this
is used as the homogenous density) value is evaluated for a scalar BEC in a system with
(wx,wy,wz)/2p = (10,10,800) and box size (50,50). This is done for both sodium-23 (An-
tiferromagnetic Spin-1 BEC) which has a0 = 52.746ab, as = 50.277ab [55] and Rubidium-
87(Ferromnagnetic BEC)a0 = 101.8ab, as = 100.4ab[35]. This evaluation is similar to the
procedure outlined in [56]. Lengths in the system are scaled with

q
h̄

mwz
and listed in table

below.
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c̃0npeak
h̄wz

c̃1npeak
h̄wz

ã0npeak
h̄wz

ã2npeak
h̄wz

Sodium-23 7.32482 0.117971 2.31451 2.48127

Rubidium-87 5.28431 �0.0244482 1.77774 1.75329
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