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Abstract

In this thesis we study Malliavin calculus on infinite dimensional Wiener space and study

properties of Malliavin operators. We then see how these along with what is known as Stein’s

method for distributional approximation is used to obtain quantitative limit theorems inside

a fixed Wiener chaos and also sometimes more generally. In a joint work with David Nualart

which is the content of chapter 4, we apply these results to prove an invariance principle

for functionals of Gaussian random vector fields on Euclidean space for a large class of

covariances. This is an extension of the original famous result by Breuer and Major and

recent functional convergence results by Nualart et. al. to the case of vector valued fields.

We then briefly also look into further applications in the area of geometry of random fields.
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Introduction

The classical central limit theorem (CLT) states that for a sequence of random variables

{Xn : n ∈ N} such that Xi’s are independent and identically distributed with mean zero and

variance one, we have that as n→∞

n−1/2

n∑
i=1

Xi ⇒ N (0, 1) (0.0.1)

where N (0, 1) denotes the standard normal distribution with mean zero and variance 1 and

⇒ denotes convergence in distribution, i.e as n → ∞ for every u ∈ R, P(n−1/2
∑n

i=1Xi ≤
u) → Φ(u) where Φ(u) =

∫ u
−∞(2π)−1/2e−x

2/2dx. From this result, one is then interested in

quantifying the error that one makes when assuming the distribution of the scaled sum to

be normal. The Berry-Esseen bound for the classical CLT gives precisely that. It states that

if Sn = (n)−1/2
∑n

i=1Xi and N ∼ N (0, 1), then

dKol(Sn, N) ≤ 0.4785E[|X1|3]√
n

(0.0.2)

where dKol(F,G) = supz∈R |P(F ∈ (−∞, z]) − P(G ∈ (−∞, z])|, is called the Kolmogorov

distance between laws of random variables F and G. One line of inquiry from this result

would be to consider a general case of convergence in distribution, i.e. suppose that for a

sequence of random variables {Fn : n ∈ N}, we have Fn ⇒ N (0, V ), how do we deduce

the rate of convergence and error estimates of the form of equation (0.0.2) when the law of

Fn is approximated by a normal law? Charles Stein in his landmark paper [1] essentially

gave a method for doing this using a simple approach. This approach since then has been

widely researched, applied and extended to other target distributions and the same is now
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known as Stein’s method. For example, L. Chen in [2] extended the method for Poisson

approximation. We refer the reader to [3] for complete survey on Stein’s method.

In this thesis, we study distributional limit theorems similar to the classical central limit

theorem for the case of stochastic processes instead of sequences of random variables. More

precisely, we are interested in random fields which are stochastic processes on arbitrary

parameter sets. Due to their general nature, for stochastic modelling of phenomenon, they

have found applications in a wide variety of sciences from medicine to oceanography. When

modelling an activity over a region using random fields, one is usually interested in the

extreme regions i.e. regions corresponding to very high or very low activity. These are called

excursion or sojourn sets respectively of random fields and recently there has been significant

interest in studying distributional asymptotics of various geometric functionals of excursion

sets. We describe this area of study in Chapter 5. We will also be interested in rates of

convergence similar to the Berry-Esseen rate in these asymptotics.

One other question from the classical central limit theorem that one might ask is what

about the case when Xi’s are not independent? An answer in this direction was given by

Péter Breuer and Péter Major in 1983 in their paper [4] wherein they gave a very general

central limit theorem under some conditions on the covariances. Since the appearance of

their result, the same has been extended to variety of different settings and it has proved

to be one of the most applicable results in stochastic analysis. We discuss this theorem

in detail in chapter 5 and we give a proof of it’s version for random vector fields. This is

joint work with David Nualart, [5]. This version for vector valued random fields finds it’s

applications in the study of limit theorems for various geometric characteristics of excursion

sets of random fields. We discuss this in Chapter 5. For more applications of this theorem,

we refer the reader to the introduction in [6].

For our proofs and to obtain our results, we rely on tools from stochastic analysis, mainly

Malliavin calculus. Paul Malliavin in [7] had initially developed the theory to give a proba-

bilistic proof for Hormander’s theorem ([8]) and to give conditions for regularity of probability

laws of random variables. Since then the theory has found many applications in areas in-

cluding finance and limit theorems. In this thesis, we introduce all the necessary tools that

we will need in our study in Chapter 2. For an extensive treatment of the theory, we refer

the reader to the monograph by David Nualart, ([9]).

We now briefly give organization of various chapters. Chapter 1 introduces the necessary
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and preliminary definitions regarding theory of random fields and we state few important

results concerning them. In Chapter 2, we introduce the tools from Malliavin calculus that

we will require further in our study. Chapter 3 is about an important breakthrough in the

approach to prove distributional limit theorems of the form of classical central limit theorem.

We will use these techniques to prove our results. Chapter 4 contains our work wherein we

prove a version of the aforementioned theorem by Breuer and Major and prove additional

results. Finally, in Chapter 5 we discuss applications in area concerning geometry of random

fields and we conclude by mentioning further lines of research.
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Chapter 1

Random Fields

In this chapter we will describe the necessary framework of random fields and in particular

Gaussian random fields which will remain our main focus in this thesis. We will limit our

discussion to random fields on metric spaces and real valued random fields. However, the

corresponding definitions for complex valued random fields are immediate. We will also often

use the term “field” instead of random field and we will never imply it to mean the algebraic

structure of a field on a set. We fix a complete probability space (Ω,F ,P) on which all

random elements are defined.

1.1 First definitions

We recall that a random element is a measurable map, X : Ω → (S,S), where (S,S) is

measurable space and the distribution or law of X is the probability measure LX on (S,S)

given by LX(A) = P(X−1(A)) for A ∈ S.

Definition 1.1.1. A random field ξ on a metric space (T, d) is a map ξ : Ω× T → R such

that ξ(·, x) is a random variable for every x ∈ T .

We will abbreviate ξ(·, x) as ξ(x) and sometimes we will also use the notation ξx to mean

the same. We recall that a distribution γ on Rm is multivariate Gaussian if and only if it is

either a dirac mass at some point or there exist µ ∈ Rm and a non-negative definite matrix

C such that γ̂(x) =
∫
Rm e

i〈t,x〉γ(dt) = ei〈x,µ〉−
1
2
〈Cx,x〉.
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Definition 1.1.2. A random field ξ is Gaussian if all the finite dimensional distributions

of ξ are multivariate Gaussian, i.e. for every m ∈ N and every (x1, ..., xm) ∈ Tm, the

distribution of the vector (ξ(x1), ..., ξ(xm)), is multivariate Gaussian.

For a metric space (T, d), we denote the Borel σ-algebra on T by B(T ).

Definition 1.1.3. A random field ξ is said to be measurable if the map ξ : Ω × T → R is

measurable, i.e. for every Borel set B ∈ B(R), ξ−1(B) ∈ F ⊗ B(T ), the product σ-algebra.

Definition 1.1.4. For a random field ξ : Ω × T → R, the function m : T → R given

by m(x) = E[ξ(x)] is called the mean function and r : T × T → R given by r(x, y) =

E[(ξ(x)− E[ξ(x)])(ξ(y)− E[ξ(y)])] is called the covariance function of the field.

Definition 1.1.5. A field on T is centered if m(x) = 0 for all x ∈ T .

1.2 Regularity

We now define various notions of regularity for random fields.

Definition 1.2.1. A random field ξ : Ω × T → R is said to be almost surely continuous

if almost all sample paths are continuous, i.e. for almost every ω ∈ Ω, ξ(ω, ·) : T → R is

continuous.

When T = Rn, the same definition will also be used for stronger almost sure regularity

conditions on fields where almost every sample path is of class Ck(Rn).

Definition 1.2.2. A random field ξ is said to be stochastically continuous if for every x ∈ T
and any ε > 0, P(|ξ(x)− ξ(y)| > ε)→ 0 as d(x, y)→ 0.

Definition 1.2.3. A random field ξ is said to be mean-square continuous if for every x ∈ T ,

E[(ξ(x)− ξ(y))2]→ 0 as d(x, y)→ 0.

Remark 1.2.4. If ξ is mean-square continuous then it is also stochastically continuous.

Under the assumption of stochastic continuity of a random field ξ, we have that there

exists a measurable random field ξ̃ such that for every x ∈ T , ξ(x) and ξ̃(x) have the same

distribution (Pg. 5, [10]).

6



1.3 Separability

Definition 1.3.1. A random field ξ : Ω × T → R is said to be separable if there exists a

countable dense set I ⊂ T and a fixed event N such that P(N) = 0 and for any closed set

B ⊂ R and open set D ⊂ T , {ω ∈ Ω : ξ(ω, x) ∈ B ∀ x ∈ D}∆{ω ∈ Ω : ξ(ω, x) ∈ B ∀ x ∈ D∩
I} ⊂ N , where ∆ denotes the symmetric difference operator, i.e. A∆B = (A∩Bc)∪(Ac∩B).

For a random field ξ on Rn, there exists a separable random field ξ̃ on Rn such that for

every x ∈ Rn, ξ(x) and ξ̃(x) have the same distribution (Pg. 6, [10]). Apart from the first

chapter, in this thesis, we will only consider measurable and separable random fields on Rn.

For a random field ξ on a metric space (T, d), we can define a pseudo metric d′ on T

given by d′(x, y) =
√

E[(ξ(x)− ξ(y))2]. With this, we have the following lemma (an improved

version of Lemma 1.3.1 of [11]).

Lemma 1.3.2. A mean-square continuous, separable random field ξ on (T, d) is almost

surely continuous w.r.t. the d metric if and only if it is almost surely continuous w.r.t. d′

metric, i.e.

P({ω ∈ Ω : lim
d(x,y)→0

|ξ(ω, x)− ξ(ω, y)| = 0 ∀ x ∈ T}) = 1

if and only if

P({ω ∈ Ω : lim
d′(x,y)→0

|ξ(ω, x)− ξ(ω, y)| = 0 ∀ x ∈ T}) = 1.

Proof. We make the observation that as (T, d) is a separable metric space, we have that

(T, d) is Lindelöf, i.e. every open cover has a countable subcover. Then we conclude the

result by arguing in the exact same manner as of the proof of Lemma 1.3.1 of [11].

1.4 Stationarity

We now turn to describing the notions of stationarity and isotropy for random fields on Rn.

The same notions can be extended to the case when T admits a (abelian) group structure.

Definition 1.4.1. A random field ξ : Ω×Rn → R is said to be weakly stationary if for any

t, x, y ∈ Rn, m(x+ t) = m(x) and r(x+ t, y + t) = r(x, y).
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Definition 1.4.2. A random field ξ : Ω×Rn → R is said to be strictly stationary if for any

m ∈ N, (x1, ..., xm) ∈ Rnm and t ∈ Rn, the distribution of (ξ(x1 + t), ..., ξ(xm + t)) is the

same as that of (ξ(x1), ..., ξ(xm)).

For a weakly stationary random field on Rn, we will make use of the notation, r(x, y) =

r(x − y) and we will also call the function r : Rn → R given by r(x) = E[ξ(0)ξ(x)] as the

covariance function.

Remark 1.4.3. In general, strict stationarity of a field is a stronger condition but for a

Gaussian field, the two notions coincide.

Definition 1.4.4. A random field on Rn is said to be isotropic if for any x, y ∈ Rn and any

A ∈ SO(n), m(Ax) = m(x) and r(Ax,Ay) = r(x, y), where SO(n) denotes the group of all

rotations on Rn.

For a weakly stationary and isotropic random field on Rn, we have that the covariance

function r(x, y) depends only on the distance |x− y|, i.e. we have r(x, y) = r(|x− y|).

1.5 Bochner and Karhunen’s Theorem

The following notion of non-negative definite functions is useful in our study of random fields.

Definition 1.5.1. Given a set T , a function f : T × T → R is said to be non-negative

definite if for any m ∈ N and any (x1, ..., xm) ∈ Tm, the matrix A = (f(xi, xj))1≤i,j≤m is

non-negative definite.

We state the following classical result in harmonic analysis due to Bochner without proof

(Theorem 5.4.1 of [11]). In the theorem below, by saying that f is non-negative definite, we

imply that f ′ : Rn × Rn → C given by f ′(x, y) = f(x− y) is non-negative definite.

Theorem 1.5.2. (Bochner) A continuous function f : Rn → C is non-negative definite if

and only if there exists a finite measure (called spectral measure) ν on Rn such that f(x) =∫
Rn e

i〈t,x〉ν(dt).

Due to Bochner’s theorem and the fact that covariance functions are non-negative defi-

nite, the following is immediate.
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Lemma 1.5.3. Given a mean-square continuous, stationary random field on Rn, there exists

a finite measure ν on Rn such that r(x) =
∫
Rn e

i〈t,x〉ν(dt).

We now describe complex random measures and representations of random fields as

integrals with respect to random measures.

Definition 1.5.4. Given a σ-finite measure space (T, τ, ν) and set τν = {A ∈ τ : ν(A) <∞},
a complex random measure W based at ν is a random field W : Ω × τν → C such that for

any A,B ∈ τν, E[W (A)] = 0 and E[W (A)W (A)] = ν(A). Moreover, if A ∩ B = ∅, then

E[W (A)W (B)] = 0 and W (A ∪ B) = W (A) + W (B) almost surely. W is called a complex

Brownian (or Wiener) measure or white noise if W (A) ∼ N (0, ν(A)) for every A ∈ τν.

We note that the above definition gives us that the covariance ofW is given by E[W (A)W (B)] =

ν(A∩B). As by definition, a random measure W is an L2(Ω) valued measure, we can define

integrals with respect to W of a function f ∈ L2(T, τ, ν) using a simple approach. For simple

functions f of the form f(x) =
∑m

i=1 ai1Ai(x) for disjoint sets Ai ∈ τ , we define

I(f) =

∫
T

f(t)W (dt) =
m∑
i=1

aiW (Ai). (1.5.1)

We have that this definition gives us an isometry between the space of simple functions

and a subspace of L2(Ω). Clearly I is a linear operator. For f(x) =
∑m

i=1 1Ai(x) and

g(x) =
∑n

i=1 1Bi(x), we can write f and g in terms of the same partition by taking the new

partition to consist of disjoint sets Ci,j = Ai ∩ Bj for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence, we

can write f(x) =
∑l

i=1 ai1Ci(x) and g(x) =
∑l

i=1 bi1Ci(x) for disjoint sets Ci ∈ τ . We have,

E[I(f)I(g)] =
l∑

i=1

aibiE[W (Ci)W (Ci)] =
l∑

i=1

aibiν(Ci) = 〈f, g〉L2(T ), (1.5.2)

which gives us that I also preserves inner product. I can now be extended to an isometry

from L2(T, τ, ν) onto a closed subspace of L2(Ω).

We can now state the following representation for stationary fields due to Karhunen
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(Theorem 5.4.2 of [11], Pg. 10 of [10]).

Theorem 1.5.5. (Karhunen) If ξ : Ω × Rn → R is mean-square continuous, stationary

random field, then by lemma (1.5.3), we have that there exists a finite measure ν on Rn such

that r(x) =
∫
Rn e

i〈t,x〉ν(dt). There also exists a complex random measure Z based at ν such

that for every x ∈ Rn, almost surely we have

ξ(x) =

∫
Rn
ei〈t,x〉Z(dt). (1.5.3)

Furthermore, ν is absolutely continuous with respect to the Lebesgue measure on Rn with

density (called spectral density) g if and only if for every x ∈ Rn, almost surely we have

ξ(x) =

∫
Rn
α̂(t)W (dt), (1.5.4)

where W is a complex random measure based at the Lebesgue measure on Rn and α ∈ L2(Rn)

is such that |α(x)|2 = g(x). Here α̂ denotes the Fourier-Plancherel transform of α.
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Chapter 2

Analysis on Wiener space

In this chapter, we introduce the Malliavin operators associated with an isonormal Gaussian

process which is defined as follows. We will further note properties of these operators. We

fix a real separable Hilbert space H throughout this chapter.

Definition 2.0.1. An isonormal Gaussian process X on H is a centered Gaussian random

field X : Ω× H→ R such that for every f, g ∈ H, we have E[X(f)X(g)] = 〈f, g〉H.

The existence of such a process follows from Kolmogorov’s theorem. From now on we

assume that X is an isonormal Gaussian process on H and the σ-field F is generated by the

family {X(f) : f ∈ H}.

2.1 Hermite polynomials

We introduce the Hermite polynomials which are of central importance in Gaussian analysis.

There are many equivalent ways of defining the Hermite polynomials. We define it by means

of Rodrigues’ formula.

The n-th Hermite polynomial is given by the formula

11



Hn(x) = (−1)nex
2/2 d

n

dxn
(e−x

2/2). (2.1.1)

Hermite polynomials are also the coefficients which appear in the series expansion of the

function F (x, t) = etx−t
2/2 in terms of the powers of t. Indeed we have

etx−t
2/2 = ex

2/2e−(x−t)2/2 = ex
2/2

∞∑
q=0

tq

q!
× dq

dtq
e−(x−t)2/2

∣∣∣∣∣
t=0

(2.1.2)

= ex
2/2

∞∑
q=0

(−1)qtq

q!
× dq

dxq
e−x

2/2 (2.1.3)

=
∞∑
q=0

tq × Hq(x)

q!
. (2.1.4)

From this, we note the following properties of the Hermite polynomials.

Lemma 2.1.1. For every n ≥ 0 and x ∈ R, we have

1) H ′n(x) = nHn−1(x).

2) Hn+1(x) = xHn(x)− nHn−1(x).

3) Hn(−x) = (−1)nHn(x).

The next lemma gives us the relation between Hermite polynomials and Gaussian random

variables (Lemma 1.1.1 of [9]).

Lemma 2.1.2. Let (X, Y ) be a bivariate normal vector with E[X] = E[Y ] = 0, E[X2] =

E[Y 2] = 1 and E[XY ] = ρ. Then

E[Hn(X)Hm(Y )] =

n!ρn if n = m

0 if n 6= m.

We next define the Hermite polynomials in the multivariate case. For any multi-index

a = (a1, . . . , am), ai ∈ N ∪ {0}, we write |a| =
∑m

i=1 ai, a! =
∏m

i=1 ai! and

Ha(x) =
m∏
i=i

Hai(xi). (2.1.5)
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The below result is fundamental concerning Hermite polynomials (Lemma 1.3.2 of [12]).

Theorem 2.1.3. The set { 1√
a!
Ha : a is a multi-index} is an orthonormal basis of L2(Rm, γm),

where γm denotes the standard Gaussian measure on Rm.

Let G : Rm → R be such that G is not a constant and G ∈ L2(Rm, γm). Denoting,

Iq = {a ∈ Zm : ai ≥ 0, |a| = q}, we have the following expansion of G where the convergence

of the series is in L2 sense,

∞∑
q=0

∑
a∈Iq

c(G, a)Ha(x) = G(x). (2.1.6)

In above expansion c(G, a) = 1√
a!

∫
Rm G(x)Ha(x)γm(dx). We now give the definition of

Hermite rank.

Definition 2.1.4. For G ∈ L2(Rm, γm) with expansion in equation (2.1.6), the smallest

integer d ≥ 1 such that there exist a multi-index a such that |a| = d and c(G, a) 6= 0 is called

the rank of G.

2.2 Malliavin derivative

We now proceed to move ahead with our main goal of developing Malliavin calculus on

Wiener space, (Ω,F ,P,H, X). We omit proofs in our discussion and the same can be found

in monographs [9] and [13]. We first define the notion of Wiener chaos which is due originally

to Norbert Wiener, [14].

Definition 2.2.1. For a fixed n ≥ 1, the closed linear span in L2(Ω) of the set of variables

{Hn(X(f)) : ‖f‖H = 1, f ∈ H} is called the n-th Wiener chaos. We denote it by Hn.

From lemma (2.1.2), we have that for q1 6= q2, Hq1 and Hq2 are orthogonal. With

this we have the following decomposition of L2(Ω) which is known as the Wiener chaos

decomposition.

Theorem 2.2.2. Let F ∈ L2(Ω). Then there exist Fq ∈ Hq such that the following expansion

holds in L2(Ω), F − E[F ] =
∑∞

q=1 Fq. Therefore, we have L2(Ω) =
⊕∞

q=1Hq.

13



For F ∈ L2(Ω), we will use the notation JqF = Fq, the projection of F onto the q-th

Wiener chaos.

Definition 2.2.3. For any Hilbert space H , Lq(Ω; H ) is the set of all H -valued random

elements F such that E[‖F‖qH ] <∞.

We denote by Sn, the set of all smooth functions f on Rn such that f and all it’s partial

derivatives have at most polynomial growth. Further, we denote by L as the set of all

smooth and cylindrical random variables F of the form F = f(X(h1), ..., X(hn)) where

f ∈ Sn, h1, ..., hn ∈ H and n ≥ 1. We have that L is dense in Lp(Ω) for all p ≥ 1 (Lemma

2.3.1 of [13]). We will also denote by H�k as the set of all symmetric tensors in H⊗k.

Definition 2.2.4. For F ∈ L given by F = f(X(h1), ..., X(hn)) , the k-th Malliavin deriva-

tive of F is H�k-valued variable given by

DkF =
n∑

i1,...,ik=1

∂kf

∂xi1 ...∂xik
(X(h1), ..., X(hn))hi1 ⊗ ...⊗ hik . (2.2.1)

We note that from the definition of the derivative, we have D(FG) = FDG + GDF for

F,G ∈ L . We now give the definition of closability of a linear operator from functional

analysis.

Definition 2.2.5. A linear operator A : D(A)→H from some domain D(A) into a Hilbert

space H is said to be closable if it admits a closed extension B : D(B) → H where

D(A) ⊂ D(B). By closed we mean that if xn ∈ D(B) → x and Bxn → x′ as n → ∞, then

x ∈ D(B) and Bx = x′.

Definition 2.2.6. The set Dk,p which is the closure of the operator Dk in Lp(Ω) with respect

to the norm ‖ · ‖k,p defined by

‖F‖pk,p =

(
E(|F |p) +

k∑
i=1

E(‖DiF‖p
H⊗i)

)1/p

,

for any natural number k and any real number p ≥ 1 is called the domain of the operator Dk

in Lp(Ω).
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The above closure operation is valid due to the result that for any p ≥ 1, Dk : L ⊂
Lp(Ω)→ Lp(Ω;H�k) is closable (Proposition 2.3.4 of [13]). We note that the above definition

implies that F ∈ Dk,p if and only if there exists a sequence {Fn}∞n=1 ∈ L such that Fn → F

in Lp(Ω) and for every j = 1, ..., k, the sequence DjFn is a cauchy sequence in Lp(Ω). We

will use the notation, ∩k≥1Dk,p = D∞,p.

The space Dk,2 which gives us the domain of Dk in L2(Ω) will be of most interest to

us and the following result is characterization of Dk,2 using the Wiener chaos expansion

(Proposition 1.2.2 of [9]).

Lemma 2.2.7. Let F ∈ L2(Ω) with expansion F =
∑∞

q=0 JqF . Then F ∈ Dk,2 if and only if∑∞
q=1 q

k ‖JqF‖2
2 <∞.

Moreover, we have that the Malliavin derivative verifies the following chain rule (Propo-

sition 2.3.7 of [13]).

Lemma 2.2.8. Let F = (F1, ..., Fm) is such that for every i, Fi ∈ D1,p for some p ≥ 1

and let ψ : Rm → R be continuously differentiable function with bounded partial derivatives.

Then ψ(F ) ∈ D1,p and

Dψ(F ) =
m∑
i=1

∂ψ

∂xi
(F )DFi.

The next lemma is an important integration-by-parts formula (Lemma 1.2.1 of [9]).

Lemma 2.2.9. For any F ∈ L and h ∈ H, we have E[〈DF, h〉H] = E[FX(h)]. In particular,

we have for F,G ∈ L , E[G〈DF, h〉H] = E[−F 〈DG, h〉H + FGX(h)].

We next extend the Malliavin derivative to Hilbert space valued variables.

Let V be a real separable Hilbert space and denote by LV the space of all smooth and

cylindrical V -valued random variables F of the form F =
∑n

i=1 Fivi where Fi ∈ L and

vi ∈ V .

Definition 2.2.10. The k-th Malliavin derivative of F ∈ LV of the form F =
∑n

i=1 Fivi is

H�k ⊗ V -valued variable given by
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DkF =
n∑
i=1

DkFi ⊗ vi.

We will also denote by Dk,p(V ), the closure of Dk with respect to the norm

‖F‖pk,p,V =

(
E(||F ||pV ) +

k∑
i=1

E(‖DiF‖p
H⊗i⊗V )

)1/p

.

2.3 Malliavin divergence

Our next goal is to define δk, the Malliavin divergence operator of order k. It is the adjoint

of the derivative operator Dk. The divergence operator δ is also known as the Skorokhod

integral.

Definition 2.3.1. The set Dom δk ⊂ L2(Ω;H⊗k) consisting of elements u such that

|E[〈DkF, u〉H⊗k ]| ≤ cu
√

E[F 2] (2.3.1)

for every F ∈ Dk,2 is called the domain of the operator δk.

The relation (2.3.1) implies that the operator F 7→ E[〈DkF, u〉H⊗k ] on Dk,2 equipped with

L2(Ω) norm is continuous and by Riesz representation theorem, there exists a unique element

δk(u) ∈ L2(Ω) such that the following relation holds,

|E[〈DkF, u〉H⊗k ]| = E[Fδk(u)]. (2.3.2)

The above duality relationship is also known as the integration-by-parts formula.

Definition 2.3.2. For u ∈ Dom δk, the k-th divergence of u, δk(u) is given by the unique

element obtained in the relationship (2.3.2).

Putting F = 1 in equation (2.3.2), we have that E[δk(u)] = 0 for all u ∈ Dom δk and

from lemma (2.2.9), we have that H ⊂ Dom δ and δ(h) = X(h) for every h ∈ H. One also

has that H⊗k ⊂ Dom δk.
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Similar to the derivative operator, for a real separable Hilbert space V , we define δk for

H⊗k ⊗ V valued random elements.

Definition 2.3.3. For u ∈ H⊗k ⊗ V such that u =
∑n

i=1 hi ⊗ vi with hi ∈ H⊗k and vi ∈ V ,

δk(u) is V -valued variable given by

δk(u) =
k∑
i=1

δk(hi)vi. (2.3.3)

It is known that δk can be extended to bounded operator on H⊗k ⊗ V (section 2.6 of

[13]). Due to this definition, we have for f ∈ H⊗k, δk(f) = δk−q(δq(f)).

2.4 Ornstein-Uhlenbeck semigroup and Meyer inequal-

ities

We next introduce the Ornstein-Uhlenbeck semigroup of operators. Our interest will mainly

be in it’s infinitesimal generator L and what we define as it’s pseudo inverse L−1.

Definition 2.4.1. For F ∈ L2(Ω) with expansion F =
∑∞

q=0 JqF , the semigroup of operators

{Pt : t ≥ 0} acting on F by

PtF =
∞∑
q=0

e−qtJqF (2.4.1)

is called the Ornstein-Uhlenbeck semigroup of operators.

We recall the generator of the semigroup of operators is given by limt→0
PtF−F

t
where the

limit is in L2(Ω).

Definition 2.4.2. For F ∈ D2,2, we define LF = −
∑∞

q=0 qJqF .

The operator L with domain D2,2 coincides with the infinitesimal generator of the semi-

group {Pt : t ≥ 0}.
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We next have a crucial relationship between the operators D, δ and L on which we will

rely heavily in our subsequent discussion including our proof of a functional Breuer-Major

theorem presented in Chapter 4 (Proposition 2.8.8 of [13]).

Lemma 2.4.3. For F ∈ L2(Ω), we have F ∈ Dom L if and only if F ∈ D1,2 and DF ∈
Dom δ and in this case we have LF = −δDF .

We now define the pseudo inverse of L.

Definition 2.4.4. For F ∈ L2(Ω) with expansion F =
∑∞

q=0 JqF , we set L−1F = −
∑∞

q=0
1
q
JqF .

It is immediate that L−1F ∈ Dom L and LL−1F = F−E[F ]. Therefore, for any F ∈ D1,2

such that E[F ] = 0, we have that F can be expressed as

F = LL−1F = −δDL−1F. (2.4.2)

We next state an important result due to P. A. Meyer which gives us equivalence in

Lp(Ω) for any p > 1 of operators Dk and the operator Ck acting on L2(Ω) as following (see

Theorem 1.5.1 of [9]). The operator Ck is also denoted as −(−L)k/2.

Definition 2.4.5. For F ∈ Dk,2 with expansion F =
∑∞

q=0 JqF , we define

CkF = −
∞∑
q=1

qk/2JqF.

Theorem 2.4.6. (Meyer) For any p > 1 and F ∈ Dk,2, there exists constants cp,k and Cp,k

such that

cp,kE[
∥∥DkF

∥∥p
H⊗k

] ≤ E[|CkF |p] ≤ Ck,p

(
E[
∥∥DkF

∥∥p
H⊗k

] + E[|F |p]

)
. (2.4.3)

One other consequence of the Meyer inequalities is the continuity of the operator δk from

Dk′,q(H⊗k) to Dk′−k,q for k′ ≥ k ≥ 1 and q ∈ [1,∞) (Proposition 1.5.7 of [9]).
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Theorem 2.4.7. For k′ ≥ k ≥ 1 and q ∈ [1,∞), there exists a constant ck′,k,q such that for

any u ∈ Dk,q(H⊗k), we have ∥∥δk(u)
∥∥
Dk′−k,q ≤ ck′,k′q ‖u‖Dk,q(H⊗k) . (2.4.4)

2.5 Multiple Wiener-Itô integrals

We now turn to discussing another fundamental objects in this thesis called multiple Wiener-

Itô integrals. For now we will assume that H = L2(T, τ, ν) for some σ-finite measure space

(T, τ, ν) with no atoms and we let W denote a complex Wiener measure based at ν (see

definition (1.5.4)). The isonormal process X on H is given by X(f) =
∫
T
f(t)W (dt) as

defined by equation (1.5.1). For f ∈ L2(T k, τ k, νk) of the form

f(x) =
n∑

i1,...,ik=1

ai1···ik1Ai1×···×Aik (x), (2.5.1)

we define

Ik(f) =

∫
Tk
f(x1, ..., xk)W (dx1)...W (dxk) =

n∑
i1,...,ik=1

ai1···ikW (Ai1) · · ·W (Aik). (2.5.2)

From this definition, the following properties of the operator Ik are true (see [9]). We

recall that for a function f(x1, ..., xk) in k variables, the symmetrization of f is given by

f̃(x1, ..., xk) =
1

k!

∑
σ∈Gk

f(xσ(1), ..., xσ(k)) (2.5.3)

where Gk is the group of permutations of k elements.

Lemma 2.5.1. 1) E[Ik(f)] = 0.

2) Ik is linear.

3) Ik(f) = Ik(f̃).

4) E[Ik(f)Ik′(g)] = 0 if k 6= k′ and equals k〈f̃ , g̃〉L2(Tk) otherwise.

Since functions of the form of equation (2.5.1) are dense in L2(T k), the above lemma
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gives us that Ik can be consistently extended to L2(T k) and moreover Ik equipped with the

norm
√
k!‖ · ‖ is an isometry from L2

S(T k) onto a closed subspace of L2(Ω) where L2
S(T k)

denotes the subset of L2(T k) consisting of all symmetric functions.

An equivalent way of defining the operator Ik on H⊗k is by the divergence operator. For

a general Hilbert space H and an isonormal process X on H, we define the k-th multiple

Wiener-Itô integral as follows.

Definition 2.5.2. For an integer k and f ∈ H�k, the k-th multiple Wiener Itô integral of

f , Ik(f) is defined as Ik(f) = δk(f).

We can then define Ik(f) = Ik(f̃) for f ∈ H⊗k. We have that this definition of the integral

coincides with the multiple stochastic integral with respect to a complex Wiener measure

in the case when H = L2(T, τ, ν) and satisfies the same properties as of lemma (2.5.1) (see

exercise 2.7.6 of [13]). By the property of the divergence operator, we have that Ik(f) is

infinitely differentiable (Proposition 2.7.4 of [13]).

Lemma 2.5.3. For any q ≥ 1 and f ∈ H�q, we have for all p ≥ 1, Iq(f) ∈ D∞,p and

DrIq(f) =

 q!
(q−k)!

Iq−r(f) if r ≤ q

0 if r > q.
(2.5.4)

We next state an important result which gives us that Ik from H�k is an isometry onto

the k-th Wiener chaos Hk (Theorem 2.7.7 of [13]).

Lemma 2.5.4. For f ∈ H such that ‖f‖H = 1, Ik(f
⊗k) = Hk(X(f)). As a result, Ik : H�k →

Hk is an isometry and for every F ∈ L2(Ω), we have the expansion F −E[F ] =
∑∞

q=1 Iq(fq)

for some fq ∈ H�q.

We next intend to state what is known as the product formula for multiple Wiener Itô

integrals. It will remain a fundamental tool in our analysis. We first define the notion of

contraction of tensors.

Definition 2.5.5. For two tensors f =
∑∞

j1,...,jp=1 aj1,...,jpej1 ⊗ · · · ⊗ ejp ∈ H⊗p and g =∑∞
k1,...,kq=1 bk1,...,kq = ek1 ⊗ · · · ⊗ ekq ∈ H⊗q, the l-th contraction of f and g (l ≤ min(p, q)) is
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the element of H⊗p+q−2l given by

f ⊗l g =
∞∑

j1,...,jp=1

∞∑
k1,...,kq=1

aj1,...,jpbk1,...,kq

l∏
i=1

〈eji , eki〉Hejl+1
⊗· · ·⊗ejp⊗ekl+1

⊗· · ·⊗ekq . (2.5.5)

When H = L2(T, τ, ν) for measure ν without atoms, the above definition is equivalent to the

following,

f ⊗l g(a1, ..., ap+q−2l) = (2.5.6)∫
T l
f(x1, ..., xr, a1, ..., ap−l)× g(x1, ..., xr, ap−l+1, ..., ap+q−2l)ν(dx1)...ν(dxl). (2.5.7)

Notice that even if f and g are symmetric, the contraction f ⊗l g is not necessarily a

symmetric tensor and we denote it’s symmetrization by f⊗̃lg. We recall that for a real

separable Hilbert space H with orthonormal basis {ej}j≥1, we have that for an element

f ∈H ⊗q given by f =
∑

j1,...,jq
aj1,...,jqej1 ⊗ · · · ⊗ ejq , the symmetrization of f is given by

f̃ = (q!)−1
∑
σ

∑
j1,...,jq

aj1,...,jqejσ(1) ⊗ · · · ⊗ ejσ(q) . (2.5.8)

We can now state the product formula.

Theorem 2.5.6. For f ∈ H�p and g ∈ H�q where p, q ≥ 1, we have

Ip(f)Iq(g) =

p∧q∑
l=0

l!

(
p

l

)(
q

l

)
Ip+q−2l(f⊗̃lg). (2.5.9)

We next state a final result regarding multiple Wiener Itô integrals (Theorem 2.10.1 of

[13]).

Theorem 2.5.7. For any k ≥ 1 and f ∈ H⊗k such that ‖f‖H�k > 0, the law of Ik(f) is

absolutely continuous with respect to the Lebesgue measure on R.
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Chapter 3

Fourth Moment Theorem

3.1 Introduction

In this chapter, we discuss what is now known as the Fourth moment phenomena. The

Fourth moment theorem was first proved by David Nualart and Giovanni Peccati in 2005

(see [15]). It gives equivalence of convergence in distribution of a sequence of multiple

Wiener Itô integrals of fixed order to a Gaussian distribution and convergence of the second

and fourth moments of the sequence to the corresponding moments of a Gaussian variable.

This provided a huge simplification from what is known as the Markov method of moments

which requires proving convergence of every moment to that of the Gaussian variable for the

convergence in distribution to hold (see Proposition 5.2.2 of [13]).

Namely in the following theorem, Nualart and Peccati in [15] established the equivalence

of 1) and 2) using tools from classical stochastic analysis. After that in [16], Nualart and

Ortiz-Latorre used properties of Malliavin operators to give another equivalent condition,

namely condition 4) below which paved the way for normal approximation using Malliavin

calculus. Nourdin and Peccati in [17] then gave a simple proof by combining Stein’s method

and Malliavin calculus. Here ⇒ denotes convergence in distribution.

Theorem 3.1.1. For fixed q ≥ 1 and a sequence {Fk}∞k=1 such that Fk = Iq(fk) for some

fk ∈ H�q, if limk→∞ E[F 2
k ] = 1, then the following are equivalent as k →∞.

1) Fk ⇒ N (0, 1).
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2) E[F 4
k ]→ 3.

3) ‖fk ⊗r fk‖H⊗2q−2r → 0 for every 1 ≤ r ≤ q − 1.

4) Var
(
q−1 ‖DFk‖2

H

)
→ 0.

We will here sketch a proof using Nourdin and Peccati’s approach.

3.2 Stein’s method

We first define notion of distances between laws of random variables.

Definition 3.2.1. A class C of Borel measurable complex-valued functions on Rm is called

separating if for any two Rm-valued variables F,G ∈ L1(Ω), E[f(F )] = E[f(G)] for all f ∈ C

implies that F and G have the same distribution.

Given a separating class C , we can define distance induced by class C , between laws of

two random variable F and G such that f(F ), f(G) ∈ L1(Ω) for every f ∈ C given by

dC (F,G) = sup
f∈C
|E[f(F )]− E[f(G)]|. (3.2.1)

One can check that the above defined distance is indeed a metric on a subset of probability

laws on Rm.

The four commonly used distances are given below.

• Kolmogorov: CKol = {f : f(x1, ..., xm) = 1(−∞,c1](x1)...1(−∞,cm](xm) where ci ∈ R}

• Total Variation: CTV = {f : f(x) = 1B(x) for a Borel set B}

• Wasserstein: CW = {f : f is Lipschitz with Lipschitz constant ‖f‖Lip ≤ 1}

• Fortet-Mourier: CFM = {f : f is bounded and Lipschitz with ‖f‖Lip + ‖f‖∞ ≤ 1}

We will use the notation dKol, dTV , dW and dFM to denote distances induced by these various

classes. We gather the properties of these distances in the lemma below (Appendix C.3 of

[13]). In below lemma we consider a sequence of variables {Fk}∞k=1.
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Lemma 3.2.2. 1) If dC (Fk, F )→ 0 as k →∞ for any of the four distances, then Fk ⇒ F .

2) As k →∞, Fk ⇒ F if and only if dFM(Fk, F )→ 0.

3) If z 7→ P(F ≤ z) is continuous for every z ∈ R, then as k → ∞, Fk ⇒ F if and only if

dKol(Fk, F )→ 0.

4) dTV (F,G) = 1
2

sup‖f‖∞≤1 |E[f(F )]− E[f(G)]|.
5) We have dW (F,G) ≥ dFM(F,G) and dTV (F,G) ≥ dKol(F,G) for any variables F and G.

We now briefly introduce what is known as Stein’s method for distributional approxima-

tion. Specifically, we will introduce the method for normal approximation.

We start with what is known as Stein’s lemma (Lemma 3.1.2 of [13]).

Lemma 3.2.3. A random variable F has standard normal distribution if and only if for

every differentiable function f such that E[f(F )] <∞, we have E[Ff(F )] = E[f ′(F )] <∞.

Based on this lemma, and the heuristic that if the quantity |E[Ff(F )]−E[f ′(F )]| is small

for a suitable class of functions f , it should imply that the law of F is close to standard normal

law, Stein constructed the following ordinary differential equation for normal approximation.

For a given Borel function h : R → R such that E[h(N)] < ∞ where N ∼ N (0, 1), one

considers the equation

f ′(x)− xf(x) = h(x)− E[h(N)]. (3.2.2)

Denoting fh to be a solution of equation (3.2.2), we can replace the dummy variable x

by variable F whose law we are interested in approximating and take expectation on both

sides to write

sup
h∈C
|E[f ′h(F )]− E[Ffh(F )]| = sup

h∈C
|E[h(F )]− E[h(N)]|. (3.2.3)

We can thus then try to estimate the right hand side of above which is what is required

for approximating law of F to law of N in view of distance in equation (3.2.1) for a suitable

class C , by means of estimating the left hand side. Notice that in the above equation, the

left hand side does not involve the target variable.
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We have that the equation (3.2.2) is straighforward to solve.

Lemma 3.2.4. Every solution of the equation (3.2.2) is of the form

f(x) = cex
2/2 + ex

2/2

∫ x

−∞

(
h(y)− E[h(N)]

)
e−y

2/2dy, (3.2.4)

for c ∈ R. Further, the solution f with c = 0 is the unique solution satisfying

limx→±∞ e
−x2/2f(x) = 0.

Proof. We can write equation (3.2.2) as

ex
2 d

dx

(
e−x

2/2f(x)
)

= h(x)− E[h(N)].

It then follows that every solution is indeed of the form equation (3.2.4). Further by domi-

nated convergence theorem we have that

lim
x→±∞

∫ x

−∞

(
h(y)− E[h(N)]

)
e−y

2/2dy = 0

which yields the remaining claim in the lemma.

We will next consider the class CKol in equation (3.2.3) to illustrate the method and to give

a proof of the Fourth Moment Theorem (3.1.1). In this case, the function h(x) = 1(−∞,c](x)

for some c ∈ R. We will the denote the solution of equation (3.2.2) with this h as fc. It is

easy to show that in this case the solution in equation (3.2.4) becomes

fc(x) =


√

2πex
2/2Φ(x)(1− Φ(c)) if x ≤ c

√
2πex

2/2Φ(c)(1− Φ(x)) if x ≥ c
(3.2.5)

where Φ(c) = P(N ≤ c) = E[h(N)] denotes the cumulative distribution function of a stan-

dard normal variable.

With this, one can deduce the following estimates for the solution fc (Theorem 3.4.2 of

[13]).

Theorem 3.2.5. For c ∈ R, the function fc in equation (3.2.5) is such that ‖fc‖∞ ≤
√

2π
4

and ‖f ′c‖∞ ≤ 1.
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3.3 Nourdin and Peccati’s result

Using the previous estimates on solution of Stein’s equation, we have the following result

which is due to Nourdin and Peccati.

Theorem 3.3.1. For F ∈ D1,2 such that E[F ] = 0 and the law of F is absolutely continuous

with respect to the Lebesgue measure on R, we have

dKol(F,N) ≤ E[|(1− 〈DF,−DL−1F 〉H|] ≤
√
E[(1− 〈DF,−DL−1F 〉H)2] (3.3.1)

where N ∼ N (0, 1).

Proof. One has from equation (3.2.3) that

dKol(F,N) ≤ sup
c∈R
|P(F ≤ c)− Φ(c)| = sup

c∈R
|E(f ′c(F ))− E[Ffc(F )]|. (3.3.2)

Using equation (2.4.2), lemma (2.2.8) and equation (2.3.2) we have

E[Ffc(F )] = −E[δ(DL−1F )fc(F )] = E[f ′c(F )〈DF,−DL−1F 〉H]. (3.3.3)

The claim now follows by applying Cauchy-Schwarz inequality.

Sketch of proof of theorem (3.1.1)

In Nourdin and Peccati’s result, for the case when F = Iq(f), for some f ∈ H�q, we have using

L−1Iq(f) = −q−1Iq(f) that 〈DF,−DL−1F 〉H = q−1 ‖DF‖2
H. Using the product formula for

multiple Wiener-Itô integrals, we can compute the following (Lemma 5.2.4 of [13] along with

Lemma 1 of [16]).

q−1 ‖DF‖2
H = E[F 2] + q

q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf). (3.3.4)

We note that this implies that q−1E[‖DF‖2
H] = E[F 2]. One can further compute the following

27



optimal bound and expression in terms of contractions (Lemma 5.2.4 of [13]).

Var

(
q−1 ‖DF‖2

H

)
= q−2

q−1∑
r=1

r2r!2
(
q

r

)4

(2q − 2r)!
∥∥f⊗̃rf∥∥2

H⊗2q−2r (3.3.5)

Var

(
q−1 ‖DF‖2

H

)
≤ q − 1

3q

(
E[F 4]− 3E[F 2]2

)
≤ (q − 1)Var

(
q−1 ‖DF‖2

H

)
. (3.3.6)

From equation (3.3.1), we have that

dKol(Fk, N) ≤ |1− E[F 2
k ]|+

√√√√Var

(
q−1 ‖DFk‖2

H

)
. (3.3.7)

The result can now be concluded easily.

3.4 Chaotic Central Limit Theorem

After the appearance of Nualart and Peccati’s Fourth moment theorem, Peccati and Tudor

in [18] gave the following important multivariate version of the theorem.

Theorem 3.4.1. Consider a sequence of vectors Fk = (F 1
k , ..., F

m
k ) where F i

k = Iqi(f
i
k) for

some f ik ∈ H�qi and a non-negative definite symmetric matrix C. If E[F i
kF

j
k ] → C(i, j) as

k →∞ then the following are equivalent.

1) Fk ⇒ N (0, C)

2) For every 1 ≤ i ≤ m, F i
k ⇒ N (0, C(i, i)).

Combining the Fourth Moment theorem and the above multivariate limit theorem, we

can prove the following powerful general limit theorem. The below is also known as chaotic

central limit theorem. It was proved in the univariate setting by Nualart and Hu in [19].

Here we consider a multivariate version.

Theorem 3.4.2. Let Fk = (F i
k)1≤i≤m be a sequence of vectors such that F i

k ∈ L2(Ω) with

E[F i
k] = 0 for every k ∈ N and 1 ≤ i ≤ m. Then we have the expansions, F i

k =
∑∞

q=1 Iq(f
i
k,q)

for some f ik,q ∈ H�q. Further assume the following conditions.

1) For every 1 ≤ i, j ≤ m and every q ≥ 1, E[Iq(f
i
k,q)Iq(f

j
k,q)]→ V i,j

q .
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2) For every 1 ≤ i, j ≤ m, bi,j =
∑∞

q=1 V
i,j
q <∞.

3) For every 1 ≤ i ≤ m, every q ≥ 1 and every 1 ≤ r ≤ q − 1,
∥∥f ik,q ⊗r f ik,q∥∥H�2q−2r → 0 as

k →∞.

4) For every 1 ≤ i ≤ m, supk≥1

∑∞
q=l+1 E[Iq(f

i
k,q)

2]→ 0 as l→∞.

Then as k →∞ we have Fk ⇒ N (0, B) where B = (bi,j)1≤i,j≤m.

Proof. Let N ∼ N (0, B). We first note that for the desired joint convergence to hold, it

suffices to show the pointwise convergence of the characteristic function, i.e. for t ∈ Rm, we

need to show |E[eit
TFk ]− E[eit

TN ]| → 0 as k →∞.

Let Nl ∼ N (0, Bl), where Bl(i, j) =
∑l

q=1 V
i,j
q and let Fk,l = (F i

k,l)1≤i≤m where F i
k,l =∑l

q=1 Iq(f
i
k,q). Now for t ∈ Rm we have,

|E[eit
TFk ]− E[eit

TN ]| ≤ |E[eit
TFk ]− E[eit

TFk,l ]|+ |E[eit
TFk,l ]− E[eit

TNl ]|+ |E[eit
TNl ]− E[eit

TN ]|
(3.4.1)

Considering the first term in the above expression we have,

|E[eit
TFk ]− E[eit

TFk,l ]| ≤ E[||eitTFk − eitTFk,l||]
≤ E[|tTFk − tTFk,l|]

≤ E[|
n∑
j=1

tj(F
j
k − F

j
k,l)|]

≤
n∑
j=1

|tj| E[|F j
k − F

j
k,l|]

≤
n∑
j=1

|tj|
√
E[|F j

k − F
j
k,l|2]→ 0

(3.4.2)

as by condition 4) we have for every 1 ≤ j ≤ m, supk≥1 E[|F j
k−F

j
k,l|2] = supk≥1

∑∞
q=l+1 E[(Iq(f

j
k,q)

2]→
0 as l→∞. Considering the third term we have,

|E[eit
TNl ]− E[eit

TN ]| = |e−
1
2
〈Blt,t〉 − e−

1
2
〈Bt,t〉| → 0 (3.4.3)
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as for every 1 ≤ i, j ≤ m, Bl(i, j) → B(i, j) as l → ∞. Now, considering the second term,

we have that conditions 1), 2), 3) along with theorems (3.1.1) and (3.4.1) and orthogonality

of multiple Wiener Itô integrals of different order imply that as k →∞,

(I1(f 1
k,1), ..., Il(f

1
k,l), ..., I1(fmk,l), ..., Il(f

m
k,l))⇒ N (0, P ) (3.4.4)

where P is the appropriate covariance matrix governed by condition 1). Therefore, by

continuous mapping theorem, we also have that |E[eit
TFk,l ] − E[eit

TNl ]| → 0 as k → ∞
completing the proof..
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Chapter 4

Breuer-Major Theorem

This chapter is based on a joint work with David Nualart ([5]).

4.1 Introduction

The classical Breuer-Major theorem in its primitive form, as proved first by Péter Breuer and

Péter Major in their seminal paper [4] in 1983, states that, under an appropriate condition

involving the covariances, the sum of a functional of a stationary sequence of Gaussian

variables, scaled by the square root of the number of terms, converges in distribution to a

Gaussian variable. A formal statement is as follows. For a centered stationary sequence of

Gaussian variables {ξk : k ∈ Z} with unit variance and a function G ∈ L2(R, γ1) of Hermite

rank d (see definition (2.1.4)), where γ1 denotes the standard Gaussian measure on R, if∑
k∈Z |E[ξ1ξ1+k]|d <∞, then the following convergence in law holds

1√
n

[ n∑
k=1

G(ξk)− nE[G(ξ1)]
]
⇒ N (0, V )

as n→∞, for some V ∈ [0,∞).

The theorem has now become one of the most celebrated and widely applicable results

in stochastic analysis. An extension of the original version to sequences of vectors was done

by Arcones in [20] and continuous versions of the theorem for real valued fields are found in
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[21, 22, 10].

A continuous version of this theorem (see Theorem 2.3.1 of [10]) asserts that for a zero

mean, stationary, isotropic Gaussian random field ξ : Ω× Rn → R with covariance function

r(x) = E[ξ(0)ξ(x)], if r ∈ Ld(Rn) and r(x) → 0 as |x| → ∞, then as s → ∞, the finite

dimensional distributions of the processes

Zs(t) =
1

sn/2

∫
Bn(st1/n)

[
G(ξ(x))− E[G(ξ(x))]

]
dx, t ∈ [0,∞)

converge to those of a scaled Brownian motion. Here Bn(a) denotes the ball of radius a

centered at the origin in Rn.

Estrade and León have partially addressed the case of random vector fields on the Eu-

clidean space in [23] where they mention adapting the Breuer-Major theorem to prove a

Central Limit Theorem for the Euler characteristic of an excursion set (see Proposition 2.4

of [23]).

In this chapter we obtain a multidimensional extension of the continuous Breuer-Major

theorem for random fields, including the corresponding invariance principle. We will use the

n-cubes [−s, s]n instead of balls as expanding sets and we prove it without the assumption

of isotropy. We will also give a proof for the convergence of Zs to hold in a functional

sense, i.e. convergence in law in C([0,∞)) under the condition that G ∈ Lp(Rm, γm) for

some p > 2, where γm denotes the standard normal distribution on Rm. This remains an

unaddressed question in the literature in the case of vectors. The approach here is similar

to the method that has been employed in [24] and [25], namely using the representation by

means of the Malliavin divergence operator, which is obtained through a shift operator, and

applying Meyer inequalities to show tightness. However, in the case of vectors fields, this

approach is more involved and requires the introduction of weighted shift operators.

The modern proof of the Breuer-Major theorem is based on the Stein-Malliavin approach

and is presented in [13]. We will rely on this methodology for the proofs. We refer the reader

to the monographs [13] or [9] for unexplained usage of terms.

We organize the chapter as follows. Section 2 describes the necessary framework and

notations. The third section contains the statements of our results. In Section 4 we write

the Wiener chaos expansions of variables of interest. Finally, Section 5 contains the proofs.
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4.2 Setup

Let ξi : Ω × Rn → R, i = 1, . . . ,m be zero mean, mean-square continuous, stationary

Gaussian random fields which are jointly stationary, i.e., for 1 ≤ i, j ≤ m, the cross covariance

functions, ri,j(x, y) = E[(ξi(x)ξj(y)] = ri,j(x − y) (in an abuse of notation), depend only on

x− y. Then the function r : Rn →Mm(R), r(x) = (ri,j(x))1≤i,j≤m is the covariance function

for the vector valued field,

ξ : Ω× Rn → Rm, ξ(x) = (ξi(x))1≤i≤m.

Let G : Rm → R be such that G is not a constant and G ∈ L2(Rm, γm). Denoting,

Iq = {a ∈ Zm : ai ≥ 0, |a| = q}, we have the following expansion of G where the convergence

of the series is in L2 sense,

∞∑
q=0

∑
a∈Iq

c(G, a)Ha(x) = G(x). (4.2.1)

In above expansion c(G, a) = 1√
a!

∫
Rm G(x)Ha(x)γm(dx). Let G0 =

∫
Rm G(x)γm(dx) = 0 and

let Hermite rank of G be d (see definition (2.1.4)). Therefore,

∞∑
q=d

∑
a∈Iq

c(G, a)Ha(x) = G(x). (4.2.2)

For any integer q ≥ 1, we will make use of the notation

Gq(x) =
∑
a∈Iq

c(G, a)Ha(x). (4.2.3)

We are interested in the asymptotic behavior as s→∞ of the random variables defined

by

Ls =
1

(2s)n/2

∫
[−s,s]n

G(ξ(x))dx. (4.2.4)

For any integer q ≥ 1, we put

L(q)
s =

1

(2s)n/2

∫
[−s,s]n

Gq(ξ(x))dx. (4.2.5)
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Also we denote the variances of Ls and L
(q)
s by Var(Ls) = Vs and Var(L

(q)
s ) = V

(q)
s , respec-

tively. Set

CG(x, y) = E[G(ξ(x))G(ξ(y))]

as the covariance function of G(ξ(x)). We ignore the degenerate case when Vs = 0 for all

s > 0.

Remark 4.2.1. We will use Fubini-Tonelli’s theorem to exchange integrals and expectation

and everytime its use will be justified by Theorem 1.1.1 of [10]. We will also use it to

interchange the multiple Wiener-Itô integral and Lebesgue integral.

We will impose the following condition on the covariances. As noted in the proof of

Theorem 1 of [20], given that r(0) is invertible, by a linear transformation we can assume

that r(0) =Idm×m (m×m identity matrix). Moreover, recall that d ≥ 1 is the Hermite rank

of our functional G.

Condition (C1). r(0) =Idm×m and for every 1 ≤ j, k ≤ m, rj,k ∈ Ld(Rn).

Remark 4.2.2. Since by Cauchy-Schwarz inequality and stationarity, E[ξj(x)ξk(0)] ≤ 1,

(C1) implies that rj,k ∈ Lp(Rn) for all p ≥ d.

4.3 Statements

We are now in a position to state the main results. The lemma below provides a simple

characterization for the asymptotic variance of Ls defined in equation (4.2.4). Note here

that we have assumed E[G(ξ(0))] = 0, that means the Hermite rank of G is d ≥ 1.

Lemma 4.3.1. Under (C1), the random field G ◦ ξ : Ω×Rn → R is weakly stationary, i.e.

CG(x, y) = E[G(ξ(x))G(ξ(y))] = CG(x − y) is a function of x − y and CG ∈ L1(Rn). The

following also holds,

V := lim
s→∞

Vs =

∫
Rn
CG(x)dx <∞, (4.3.1)

where we recall that Vs denoted the variance of the random variable Ls defined in equation

(4.2.4).
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Theorem 4.3.2. Under (C1),

Ls =
1

(2s)n/2

∫
[−s,s]n

G(ξ(x))dx ⇒ N (0, V ) as s→∞.

Here V is as in Lemma (4.3.1) and ⇒ denotes convergence in law.

The above statement is a continuous version of Theorem 4 of [20].

Theorem 4.3.3. Under (C1) as s→∞, the finite dimensional distributions of the process

Zs,y =
1

(2s)n/2

∫
[−sy1/n,sy1/n]n

G(ξ(x))dx, y ∈ [0,∞),

converge to those of
√
V By on [0,∞), where B = {By, y ≥ 0} is a standard Brownian

motion.

The above statement is a multi-dimensional extension of Theorem 2.3.1 of [10]. The above

two theorems are presented separately for better elucidation and to save on unnecessary

notation. Clearly Theorem (4.3.3) contains Theorem (4.3.2).

Theorem 4.3.4. Assume (C1) and G ∈ Lp(Rm, γm) for some p > 2. As s → ∞, the

probability measures {Ps : s > 0} on C([0,∞)) induced by {Zs : s > 0} (as defined in

Theorem (4.3.3)) converge weakly to the probability measure induced by
√
V By on C([0,∞)),

where again B denotes a standard Brownian motion.

The above result is multi-dimensional counterpart of Theorem 1.1 of [24].

Consider the m×m symmetric matrix C = (cj,k)1≤j,k≤m given bycj,k =
∫
Rn G(x)xjxkφm(x)dx, for j 6= k

cj,j =
∫
Rn G(x)(x2

j − 1)φm(x)dx, for j = k.
(4.3.2)

We have the following lemma which gives an expression for the asymptotic variance of the

second chaos component.

Lemma 4.3.5. Let G be of Hermite rank 2 and assume (C1). Let C be the matrix defined
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in equation (4.3.2). Then,

lim
s→∞

V (2)
s = V (2) =

1

2
‖Tr[rCrC]‖L1(Rn) . (4.3.3)

Suppose in addition that for every 1 ≤ j, k ≤ m, rj,k ∈ L1(Rn). Note that due to the

stationarity and mean-square continuity of the fields ξjs, we have, by Bochner’s theorem

(Theorem 5.4.1 of [11] or equation 1.2.1 of [10]), that there exist finite measures νjs (called

the spectral measures) such that

rj,j(x) =

∫
Rn
ei〈t,x〉νj(dt). (4.3.4)

Moreover, due to the integrability of the covariances, we have that the νjs are absolutely

continuous with respect to the Lebesgue measure and admit densities (called spectral den-

sities). Denote the spectral density of ξj as fj and αj =
√
fj. Set α(x) = (αi(x))1≤i≤m and

let H(x) = αT (−x)Cα(x). Under these conditions, equation (4.3.3) can be written as

V (2) =
(2π)−n

2
‖H‖2

L2(Rn). (4.3.5)

This formula has been motivated by the result obtained in [26] in the context of the Central

Limit Theorem for the number of critical points, where V (2) is obtained as the L2-norm of a

function.

4.4 Chaos expansions

We claim that there exist a Hilbert space H and elements βj,x ∈ H, 1 ≤ i, j ≤ m, x ∈ Rn,

such that

ri,j(x− y) = 〈βi,x, βj,y〉H

for all x, y ∈ Rn and 1 ≤ i, j ≤ m. Indeed, it suffices to choose as H the Gaussian subspace

of L2(Ω) generated by the random field ξ and take βi,x = ξi(x). Consider an isonormal

Gaussian process X on H. That is, X = {X(h) : h ∈ H} is a Gaussian centered family of

random variables, defined in a probability space (Ω,F , P ), such that E[X(h)X(g)] = 〈h, g〉H
for any g, h ∈ H. In this situation, {ξi(x) : x ∈ Rn, 1 ≤ i ≤ m} has the same law as
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{X(βi,x) : x ∈ Rn, 1 ≤ i ≤ m}. Therefore, without loss of generality we can assume the

existence of an isonormal process X on H such that

ξj(x) = X(βj,x). (4.4.1)

We will also assume that the σ field F is generated by ξ.

We now turn to giving the chaos expansions for Ls given by equation (4.2.4). For βj,x as

introduced in equation (4.4.1), we have that for any x ∈ Rn and j 6= k, under (C1),

〈βj,x, βk,x〉H = E[ξj(x)ξk(x)] = 0. (4.4.2)

Now consider any multi-index a such that |a| = q. By the previous facts, equation (2.1.5),

equation (4.4.1) and taking into account the product formula in theorem (2.5.6) and equation

(4.4.2), we can write

Ha(ξ(x)) =
m∏
j=1

Iaj(β
⊗aj
j,x ) = Iq(β

⊗a1
1,x ⊗ · · · ⊗ β⊗amm,x )

We introduce the elements ρqx and χqs which characterize the expansions. Let

ρqx =
∑
a∈Iq

c(G, a)β⊗a11,x ⊗ · · · ⊗ β⊗amm,x . (4.4.3)

Notice that, although for each a ∈ Iq, the tensor β⊗a11,x ⊗ · · · ⊗ β⊗amm,x is not necessarily

symmetric, the element ρqx is symmetric because c(G, a) is a symmetric function of the

multiindex a. Set

χqs =
1

(2s)n/2

∫
[−s,s]n

ρqxdx. (4.4.4)

By linearity of the multiple Wiener-Itô integral and Fubini’s theorem for multiple Wiener-Itô

integral, we have that

Gq(ξ(x)) = Iq(ρ
q
x); L(q)

s = Iq(χ
q
s),

where Gq and L
(q)
s are defined in equations (4.2.3) and (4.2.5), respectively. Therefore, we

have the chaos expansion

Ls =
∞∑
q=d

Iq(χ
q
s) =

∞∑
q=d

L(q)
s . (4.4.5)
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This is true because,

E
[(
Ls −

l∑
q=d

L(q)
s

)2]
=

1

(2s)n
E

[(∫
[−s,s]n

G(ξ(x))−
l∑

q=d

Gq(ξ(x))dx
)2
]

=
1

(2s)n

∫
[−s,s]n

∫
[−s,s]n

E
[(
G(ξ(x))−

l∑
q=d

Gq(ξ(x))
)(
G(ξ(y))−

l∑
q=d

Gq(ξ(y))
)]
dxdy

≤
E
[
(G(ξ(0))−

∑l
q=dGq(ξ(0)))2

]
(2s)n

∫
[−s,s]n

∫
[−s,s]n

dxdy → 0

as l→∞. The last step follows from stationarity and Cauchy-Schwarz inequality.

Remark 4.4.1. Due to properties of the multiple Wiener-Itô integrals, we have E[Lqs] =

E[Iq(χ
q
s)] = 0 and E[Gq(ξ(x))] = E[Iq(ρ

q
x)] = 0. Also E[Gq1(ξ(x))Gq2(ξ(y))] = 0 for all

q1 6= q2.

4.5 Proofs

4.5.1 Proof of Lemma 3.1

Let us first prove the weak stationarity of the random field G ◦ ξ. Taking into account

that Gq(ξ(x)) is the projection on the qth Wiener chaos of G(ξ(x)), we can write, for any

x, y ∈ Rn,

E[G(ξ(x))G(ξ(y))] =
∞∑
q=d

E[Gq(ξ(x))Gq(ξ(y))].

Furthermore, in view of the Diagram formula (see [20]) we have that CGq(x, y) depends on

the covariances ri,j(x− y) and hence CGq(x, y) is a function of x− y. As a consequence, we

get that CG(x, y) = CG(x− y) is a function of x− y.

To show equation (4.3.1) we will make use of Lemma 1 of [20] and condition (C1). We

have

(2s)nVs = E
[( ∫

[−s,s]n
G(ξ(x))dx

)2]
=

∫
[−s,s]n

∫
[−s,s]n

CG(x− y)dxdy.

Since by Cauchy-Schwarz inequality and stationarity, E[G(ξ(x))G(ξ(y))] ≤ E[(G(ξ(0)))2],
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we have Vs <∞ for all s > 0 and

Vs =
1

(2s)n

∫
[−s,s]n

∫
[−s,s]n

CG(x− y)dxdy

=

∫
[−2s,2s]n

CG(x)
n∏
i=1

(
1− |xi|

2s

)
dx

=

∫
Rn
CG(x)

n∏
i=1

(
1− |xi|

2s

)
1[−2s,2s]n(x)dx

=:

∫
Rn
CG(x)I2s(x)dx.

(4.5.1)

We set

ψ(x) =

(
sup

1≤i≤m

m∑
j=1

|ri,j(x)|

)
∨

(
sup

1≤j≤m

m∑
i=1

|ri,j(x)|

)
. (4.5.2)

By Lemma 1 of [20], on the set {x : ψ(x) ≤ 1}, we have

|CG(x)| = |E[G(ξ(0))G(ξ(x))]| ≤ ψd(x) ‖G‖2
L2(Rm,γm) .

Also
∫
Rn ψ

d(x)dx < ∞ as
∫
Rn |ri,j(x)|ddx < ∞ for all 1 ≤ i, j ≤ m. On the other hand, on

the set {x : ψ(x) > 1} we can write, taking into account that |CG(x)| ≤ ‖G‖2
L2(Rm,γm),∫

{ψ(x)>1}
|CG(x)|dx ≤

m∑
i,j=1

∫
{|ri,j(x)|> 1

m
}
|CG(x)|dx

≤ ‖G‖2
L2(Rm,γm) m

d

m∑
i,j=1

∫
Rn
|ri,j(x)|ddx <∞.

Observe that |I2s(x)| = |Πn
i=1(1− |xi|

2s
) 1[−2s,2s]n| ≤ 1 for all s > 0 and as s→∞, I2s(x)→ 1.

Therefore by dominated convergence theorem,

V = lim
s→∞

Vs =

∫
Rn
CG(x)dx <∞.
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4.5.2 Proof of Theorem 3.2

We will apply Nualart and Hu’s criteria for convergence in distribution to a normal variable

(see theorem (3.4.2)). As a consequence, the theorem follows if the following conditions hold,

1) For every q ≥ d, V
(q)
s → Vq <∞ as s→∞.

2) V =
∑∞

q=d V
(q) <∞.

3) For every q ≥ d and every 1 ≤ b ≤ q − 1, ||χqs ⊗b χqs||H⊗(2q−2b) → 0 as s→∞.

4) sups>0

∑∞
q=l+1 V

(q)
s → 0 as l→∞.

Here χqs is given by equation (4.4.4). Conditions 1), 2) hold by Lemma (4.3.1). For

condition 3), by equation (4.4.4) we have that

χqs ⊗b χqs =
1

(2s)n

∫
[−s,s]n

∫
[−s,s]n

ρqx ⊗b ρqydxdy. (4.5.3)

Denoting for a multi-index i = (i1, ..., iq), ζi,x = βi1,x⊗· · ·⊗βiq ,x, for the desired convergence

to hold, we have, by equation (4.4.3), that it suffices to show that for any multi-indices i and

j,

Js :=

∥∥∥∥ 1

(2s)n

∫
[−s,s]n

∫
[−s,s]n

ζi,x ⊗b ζj,ydxdy
∥∥∥∥2

H⊗(2q−2b)

→ 0 (4.5.4)

as s→∞. We have, using equation (2.5.5),

Js =
1

(2s)2n

∫
[−s,s]4n

(
b∏

k=1

rik,jk(x− y)rik,jk(z − w)

×
〈(
⊗q`=b+1βi`,x

)
⊗
(
⊗q`=b+1βj`,y

)
,
(
⊗q`=b+1βi`,z

)
⊗
(
⊗q`=b+1βi`,w

)〉
H⊗(2q−2b)

)
dxdydzdw.

In the above expression, pairing together βib+k,x and βib+k,z and similarly with the index j,

we get that,

Js =
1

(2s)2n

∫
[−s,s]4n

(
b∏

k=1

rik,jk(x− y)rik,jk(z − w)

q∏
k=b+1

rik,ik(x− z)rjk,jk(y − w)

)
dxdydzdw

≤ 1

(2s)2n

∫
[−s,s]4n

ψb(x− y)ψb(z − w)ψq−b(x− z)ψq−b(y − w)dxdydzdw.
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where ψ is as defined by equation (4.5.2). In what follows, the value of constant C is

immaterial and changes with each step. By Hölder’s inequality and the fact that ψ ∈ Lq(Rn)

for all q ≥ d we have that

Js ≤ Cs−2n

∫
[−s,s]3n

ψb(x− y)ψq−b(y − w)dxdydw. (4.5.5)

By the change of variables (x, y, w) 7→ (x− y, y − w,w) we have

Js ≤ Cs−n
∫

[−2s,2s]2n
ψb(u)ψq−b(v)dudv.

We proceed in a manner similar to [21]. For k > 0 denote Tk = [−k, k]2n and T ck to be its

complement in R2n. Consider the decomposition

Js ≤ Cs−n
∫

[−2s,2s]2n∩Tk
ψb(u)ψq−b(v)dudv + Cs−n

∫
[−2s,2s]2n∩T ck

ψb(u)ψq−b(v)dudv.

For any fixed k, since ψ is bounded, we have that the first term tends to zero as s → ∞.

For the second term, by Hölder’s inequality we can write

s−n
∫

[−2s,2s]2n∩T ck

ψb(u)ψq−b(v)dudv

≤ Cs−n

(
sn
∫
Rn\[−k,k]n

ψq(u)du

)b/q(
sn
∫
Rn\[−k,k]n

ψq(v)dv

)(q−b)/q

≤ C

∫
Rn\[−k,k]n

ψq(x)dx→ 0

as k →∞ yielding the desired conclusion.

Condition 4) also holds as we have, by equation (4.5.1) in Lemma 3.1,

∞∑
q=l+1

V (q)
s =

∞∑
q=l+1

∫
Rn
CGq(x) I2s(x)dx ≤

∞∑
q=l+1

∫
Rn
CGq(x)dx =

∞∑
q=l+1

V (q) → 0

as l→∞ uniformly in s.
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4.5.3 Proof of Theorem 3.3

As defined in the statement,

Zs,y =
1

(2s)n/2

∫
[−sy1/n,sy1/n]n

G(ξ(x))dx, y ∈ [0,∞).

We gather the necessary notation for the Wiener chaos expansions for the new variables. By

the Wiener chaos expansions in equation (4.4.5), we have for any y > 0, Zs,y =
∑∞

q=d Z
(q)
s,y =∑∞

q=d Iq(χ
q
s,y). Here

Z(q)
s,y =

1

(2s)n/2

∫
[−sy1/n,sy1/n]n

Gq(ξ(x))dx

and

χqs,y =
1

(2s)n/2

∫
[−sy1/n,sy1/n]

ρqxdx.

Due to theorem (3.4.2), the convergence of the finite dimensional distributions of Zs to those

of the Brownian motion
√
V By follows if we show that the covariances of the corresponding

projections on each Wiener chaos converge. Namely for any q ≥ d and y1, y2 > 0,

E[Z(q)
s,y1
Z(q)
s,y2

]→ V (q)y1 ∧ y2

as s→∞, where V (q) = lims→∞ V
(q)
s .

Let y1 ≤ y2 and set s1 = sy
1/n
1 and s2 = sy

1/n
2 . Denote As = [−s1 − s2, s1 + s2]n and

Cs = [s1 − s2, s2 − s1]n. By the change of variables (x, y) 7→ (x− y, y) we have,

E[Z(q)
s,y1
Z(q)
s,y2

] =
1

(2s)n

∫
[−s1,s1]n

∫
[−s2,s2]n

CGq(x− y)dxdy

=
1

(2s)n

∫
Cs

CGq(u)(2s1)ndu

+
1

(2s)n

∫
As\Cs

CGq(u)
n∏
i=1

(
s1 + s2 − |ui|

)
du.

Due to Lemma 3.1 applied to the random field Gq(ξ(x)), we have that as s→∞

1

(2s)n

∫
[s1−s2,s2−s1]n

CGq(u)(2s1)ndu→ V qy1
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and by dominated convergence theorem the second term converges to zero, that is,∫
Rn
CGq(u)

n∏
i=1

(y1/n
1 + y

1/n
2

2
− |ui|

2s

)
1[As\Cs]du→ 0.

Therefore, the theorem follows.

4.5.4 Proof of Theorem 3.4

Since we have established the convergence of the finite dimensional distributions, it now

suffices to show that the family of probability measures {Ps : s > 0} is tight. By problem

4.11 of [27], it suffices to show that for some p > 2 and for every T > 0, the following holds

for 0 ≤ y1 ≤ y2 ≤ T ,

sup
s>0
‖Zs,y2 − Zs,y1‖Lp(Ω) ≤ CT |y2 − y1|1/2. (4.5.6)

The desired estimate will be obtained by employing a weighted shift operator and obtaining

a representation using the divergence operator. We proceed to define the shift operator.

If G ∈ L2(Rm, γm) has rank d ≥ 1 with the expansion given in equation (4.2.2), for any

index i = 1, . . . ,m, we define the operator Ti by

Ti(G)(x) =
∞∑
q=d

∑
a∈Iq

c(G, a)
ai
q
Hai−1(xi)

m∏
j=1,j 6=i

Haj(xj) . (4.5.7)

We know that G(ξ(x)) has the Wiener chaos expansion

G(ξ(x)) =
∞∑
q=d

∑
a∈Iq

c(G, a)Iq(β
⊗a1
1,x ⊗ · · · ⊗ β⊗amm,x ). (4.5.8)

The shift operator allows us to represent G(ξ(x)) as a divergence. Notice that this

operator is more complicated than the shift operator considered in the one-dimensional

case (see [25]) because we need the weights ai/q in order to have the representation as a

divergence. Actually, we are interested in representing G(ξ(x)) as an iterated divergence.
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For any 2 ≤ k ≤ d and indexes i1, . . . , ik ∈ {1, . . . ,m}, we can define the iterated operator

Ti1....,ik = Ti1◦
k)
· · · ◦Tik .

The following result is our representation theorem.

Lemma 4.5.1. For any 2 ≤ k ≤ d, we have

G(ξ(x)) = δk

(
m∑

i1,...,ik=1

Ti1,...,ikG(ξ(x))βi1,x ⊗ · · · ⊗ βik,x

)
.

Proof. Using the Wiener chaos expansion in equation (4.5.8) and the operator L−1 introduced

in definition (2.4.4), we can write

L−1G(ξ(x)) = −
∞∑
q=d

∑
a∈Iq

c(G, a)
1

q
Iq(β

⊗a1
1,x ⊗ · · · ⊗ β⊗amm,x )

= −
∞∑
q=d

1

q

∑
a∈Iq

c(G, a)Ha(ξ(x)).

This implies, taking into account that H ′m = mHm−1, that

−DL−1G(ξ(x)) =
∞∑
q=d

∑
a∈Iq

c(G, a)
m∑
i=1

ai
q
Hai−1(ξi(x))

m∏
j=1,j 6=i

Haj(ξj(x))βi,x

=
m∑
i=1

TiG(ξ(x))βi,x. (4.5.9)

Iterating k times this procedure, we can write

(−DL−1)kG(ξ(x)) =
m∑

i1,...,ik=1

Ti1....,ikG(ξ(x))βi1,x ⊗ · · · ⊗ βik,x. (4.5.10)

Taking into account that −δDL−1 is the identity operator on centered random variables, we

obtain

δk(−DL−1)kG(ξ(x)) = δk−1δ(−DL−1)[(−DL−1)k−1G(ξ(x))]

= δk−1(−DL−1)k−1G(ξ(x)).

44



Iterating this relation and using equation (4.5.10), yields

G(ξ(x)) = δk(−DL−1)kG(ξ(x)) = δk

(
m∑

i1,...,ik=1

Ti1....,ikG(ξ(x))βi1,x ⊗ · · · ⊗ βik,x

)
.

Then, the statement in the lemma is a consequence of equation (2.4.2). This completes the

proof.

The next result is the regularization property of the shift operator Ti1,...,ik .

Lemma 4.5.2. Let p ≥ 2. Suppose that G ∈ Lp(Rm, φm). Then Ti1,...,ikG(ξ(x)) belongs to

Dk,p for any k ≤ d and, moreover,

sup
x∈Rn

sup
1≤i1,...,ik≤m

‖Ti1,...,ikG(ξ(x))‖k,p <∞. (4.5.11)

Proof. Because 〈βi,x, βj,x〉H = δij, using equation (4.5.10), we can write for any x ∈ Rn,

Ti1,...,ikG(ξ(x)) = 〈(DL−1)kG(ξ(x)), βi1,x ⊗ · · · ⊗ βik,x〉H⊗k .

Then, by Meyer inequalities, which imply the equivalence in Lp of the operators D and

(−L)1/2, we can estimate the Dk,p-norm of Ti1,...,ikG(ξ(x)) by a constant times the Lp(Ω)-

norm of G(ξ(x)).

Let si = sy
1/n
i and Si = [−si, si]n for i=1,2. We now have

‖Zs,y2 − Zs,y1‖Lp(Ω)

=
1

(2s)n/2

∥∥∥∥∫
S2\S1

G(ξ(x))dx

∥∥∥∥
Lp(Ω)

=
1

(2s)n/2

∥∥∥∥∥
∫
S2\S1

δd

(
m∑

i1,...,id=1

Ti1,...,idG(ξ(x))βi1,x ⊗ · · · ⊗ βid,x

)
dx

∥∥∥∥∥
Lp(Ω)

=
1

(2s)n/2

∥∥∥∥∥δd
(

m∑
i1,...,id=1

∫
S2\S1

Ti1,...,idG(ξ(x))βi1,x ⊗ · · · ⊗ βid,xdx

)∥∥∥∥∥
Lp(Ω)

.
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Applying Meyer inequalities (see theorem (2.4.7)), we obtain

‖Zs,y2 − Zs,y1‖Lp(Ω)

≤ Cp,d

d∑
j=0

1

(2s)n/2

∥∥∥∥∥Dj

(
m∑

i1,...,id=1

∫
S2\S1

Ti1,...,idG(ξ(x))βi1,x ⊗ · · · ⊗ βid,xdx

)∥∥∥∥∥
Lp(Ω;H⊗(j+d))

= Cp,d

d∑
j=0

1

(2s)n/2

(
E

∣∣∣∣∣
m∑

i1,...,id=1

m∑
j1,...,jd=1

∫
S2\S1

∫
S2\S1

〈DjTi1,...,idG(ξ(x)), DjTi1,...,idG(ξ(x))〉H⊗j

× ri1,j1(x− y) · · · rid,jd(x− y)dxdy

∣∣∣∣∣
p/2)1/p

.

Now, using Minkowski’s inequality and the estimate obtained in equation (4.5.11), we can

write

‖Zs,y2 − Zs,y1‖Lp(Ω)

≤ Cp,d sup
j=0,...,d

sup
x∈Rn

sup
i1,...,id=1,...,m

‖DjTi1,...,idG(ξ(x))‖Lp/2(Ω;H⊗j)

× 1

(2s)n/2

(
m∑

i1,...,id=1

m∑
j1,...,jd=1

∫
S2\S1

∫
S2\S1

|ri1,j1(x− y) · · · rid,jd(x− y)|dxdy

)1/2

≤ Cs−n/2
m∑

i,j=1

(∫
S2\S1

∫
S2\S1

|ri,j(x− y)|ddxdy
)1/2

.

Therefore, we finally obtain

‖Zs,y2 − Zs,y1‖Lp(Ω) ≤ CT |y1 − y2|1/2
n∑

i,j=1

(∫
Rn
|ri,j(x)|ddx

)1/2

.

4.5.5 Proof of Lemma 3.5

Recall that C = (cj,k)1≤j,k≤m is the matrix given by equation (4.3.2). For any j 6= k, we

denote by a(j,k) the multiindex in I2 such that a
(j,k)
j = 1, a

(j,k)
k = 1 and a

(j,k)
` = 0 for any

` 6= j, k. Also a(j,j) will denote the multiindex in I2 such that a
(j,j)
j = 2 and a

(j,j)
` = 0 for any
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` 6= j. Then,

I2 = {a(j,k), 1 ≤ j, k ≤ m}.

Moreover, from the definition of the matrix C, it follows that for any j, k = 1, . . . ,m, j 6= k,

c(G, a(j,k)) = cj,k

and for all j = 1, . . . ,m, c(G, a(j,j)) = 1
2
cj,j. With this notation we can write

V (2) =

∫
Rn

E[G2(ξ(0))G2(ξ(x))]dx

=
1

4

∫
Rn

m∑
i,j,k,`=1

ci,jc`,kE
[
Ha(i,j)(ξ(0))Ha(`,k)(ξ(x))

]
dx.

The computation of the expectations E
[
Ha(i,j)(ξ(0))Ha(`,k)(ξ(x))

]
depends on the indexes

i, j, `, k. Consider the following cases:

(i) Case i 6= j and ` 6= k: In this case, we have

E
[
Ha(i,j)(ξ(0))Ha(`,k)(ξ(x))

]
= E [ξi(0)ξj(0)ξ`(x)ξk(x)]

= ri,`(x)rj,k(x) + ri,k(x)rj,`(x).

(ii) Case i 6= j and ` = k: In this case, we have

E
[
Ha(i,j)(ξ(0))Ha(`,`)(ξ(x))

]
= E

[
ξi(0)ξj(0)(ξ2

` (x)− 1)
]

= 2ri,`(x)rj,`(x).

(iii) Case i = j and ` = k: In this case, we have

E
[
Ha(i,i)(ξ(0))Ha(`,`)(ξ(x))

]
= E

[
(ξ2
i (0)− 1)2(ξ2

` (x)− 1)
]

= 2ri,`(x)2.
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As a consequence, taking into account the symmetry of the matrix C, we obtain

V (2) =
1

2

∫
Rn

m∑
i,j,k,`=1

ci,jc`,kri,`(x)rj,k(x)dx =
1

2

∫
Rn

Tr[r(x)Cr(x)C]dx.

This completes the proof of Lemma (4.3.5).

Finally, we will show formula in equation (4.3.5), assuming that the covariances are

integrable. To do this, it is convenient to choose a different underlying isonormal Gaussian

process. Let W denote a complex Brownian measure on Rn and define the isonormal process

X on L2(Rn) by

X(f) =

∫
Rn
F [f ](t)W (dt), (4.5.12)

where F [f ] denotes the Fourier transform of f ∈ L2(Rn). Recall the following properties of

the Fourier transform: ∫
Rn
f(t)F [g](t)dt =

∫
Rn
F [f ](t)g(t)dt, (4.5.13)

for f, g ∈ L2(Rn) and F [F [f ]](x) = (2π)−nf(−x).

Due to the assumption that for 1 ≤ i, j ≤ m, ri,j ∈ L1(Rn), we have that the spectral

measures νjs of ξjs are absolutely continuous with respect to the Lebesgue measure and

hence ξjs admit spectral densities. Denoting the spectral density of ξj as fj, we have that

the following representation holds (see equation 1.2.16 of [10]).

ξj(x) =

∫
Rn
F [αj](t− x) dW (t), (4.5.14)

where αj ∈ L2(Rn) are such that |αj(t)|2 = fj(t). Denoting β′j,x(t) = ei〈t,x〉αj(t), we get that

ξj(x) = X(β′j,x) and so we have an “embedding” of the field into the isonormal process given

by equation (4.5.12). Moreover, we have

rj,k(x) = E[ξj(x)ξk(0)] = 〈β′j,x, β′k,0〉L2(Rn) = F [αjαk](x). (4.5.15)
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As a consequence, we can write

V (2) =
1

2

∫
Rn

m∑
i,j,k,`=1

ci,jc`,kri,`(x)rj,k(x)dx

=
1

2

∫
Rn

m∑
i,j,k,`=1

ci,jc`,kF [αiα`](x)F [αjαk](x)dx.

By Plancherel’s theorem,∫
Rn
F [αiα`](x)F [αjαk](x)dx =

∫
Rn
F [αiα`](x)F [(αjαk) ◦ sign](x)dx

= (2π)−n
∫
Rn
αi(x)α`(x)αj(−x)αk(−x)dx,

where sign(x) = −x. This implies

V (2) =
(2π)−n

2
||H||2L2(Rn),

where

H(x) =
m∑

j,k=1

cj,kαj(−x)αk(x) = αT (−x)Cα(x). (4.5.16)

This completes the proof of equation (4.3.5).
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Chapter 5

Further applications and conclusion

In this chapter, we will briefly describe some applications to distributional asymptotics of

various geometric characteristics of excursion sets of random fields.

5.1 Geometry of random fields

We first give an brief overview of the area concerning geometry of random fields.

Random fields with parameter spaces even other than the Euclidean space as such have

found their applications in a variety of settings like Neuroimaging, Oceanography and in

Cosmological applications. For motivations coming from cosmological applications random

fields are considered over sphere (S2), for example, as in the monograph by Marinucci and

Peccati [28] and also a theory concerncing random fields over vector bundles, [29]. Results

concerning geometry of random fields in this setting include asymptotics and limit theorems

for Euler characteristic and lipschitz killing curvatures as they appear in [30] and [31] and

other studies concerning critical points, as in [32]. One interesting result in this setting

(invariant random fields over S2), as described and extended in [33] gives impossibility of

simulating a non-Gaussian random field using i.i.d. coefficients in it’s Fourier expansion.

For random fields on Euclidean spaces, other than asymptotics of stationary points and

volume functionals as obtained in [34], [35] and [26], other topological aspects like the per-
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sistant homology of excursion sets which keeps track of appearance and disappearance of the

various homology elements as the level ’u’ is increased and questions of the sort concerning

probability that two points lie in same connected component of an excursion set have been

considered by Robert Adler et. al in [36], [37], [38] and [39]. And the behaviour of the

field when the entire field lies above a certain level has been considered recent enough by

Chakraborty et. al in [40].

5.1.1 Euler characteristic and number of critical points

We consider random fields on Euclidean space and the central limit theorem like behaviour

of the Euler characteristic and number of critical points. The CLT for Euler characteristic

was established by Estrade and Leone ([34]) and then that for number of critical points was

done by Nicolaescu ([26]) using the same approach as had been done in the previous one.

Here the asymptotics has been considered in the following sense.

For a centered (i.e. E[ξ(x)] = 0 ∀ x) stationary Gaussian random field ξ on Rn, if Zu
s

denotes the Euler characteristic or number of critical points of the field in Au∩ [−s, s]n where

Au = {x ∈ Rn : ξ(x) ≥ u} denotes the excursion set.

Zu
s − E[Zu

s ]

(2s)n/2
⇒ N (0, σ2

u)

as s→∞, where⇒ denotes convergence in law and N denotes the normal distribution. The

above two are proved by using the following integral representation of the number of critical

points which holds true in the deterministic case and hence in almost sure sense (assuming

ξ is at least almost surely C2). We state the general result (Theorem 11.2.3 of [11]). The

below result is also known as Kac-Rice formula. We denote by NT (f, u; g,B) the number of

times f(x) = u and g(x) ∈ B for x ∈ T .

Theorem 5.1.1. Let f : Rn → Rn be continuously differentiable and g : Rn → Rm be

continuous. Let T ⊂ Rn be closed and B ⊂ Rm be open. Assume that for every x ∈ ∂T ,

f(x) 6= u and there exists no x ∈ T satisfying both f(x) = u and g(x) ∈ ∂B or det∇f(x) = 0.

Then,
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NT (f, u; g,B) = lim
ε→0

∫
T

δε(f(x)− u)1B(g(x))| det∇f(x)|dx. (5.1.1)

where δε(x) = (2ε)−n1[−ε,ε]n(x).

With this we would have that the number of critical points Nu
s in the set Au ∩ [−s, s]n

of an almost surely C2 Gaussian (or non-Gaussian) random field ξ on Rn is given by the

random variable (almost surely)

Nu
s = lim

ε→0

∫
[−s,s]n

δε(∇ξ(x))1[u,∞)(ξ(x))| det∇2(ξ(x))|dx, (5.1.2)

where ∇2(ξ(t)) denotes the Hessian of ξ and the convergence is in almost sure sense.

Using this formula, one can define a modified Euler characteristic µus of the set Au∩[−s, s]n

as µus =
∑n

i=1(−1)iNu
s,i where Nu

s,i denotes the number of critical points of the field in the set

Au ∩ [−s, s]n of index ’i’. We recall that the index of a critical points is given by the number

of negative eigenvalues of the Hessian of the function at that point. With this we get that

almost surely (notice the disappearance of the mod)

µus = (−1)n lim
ε→0

∫
[−s.s]n

δε(∇ξ(x))1[u,∞)(ξ(x)) det∇2(ξ(x))dx, (5.1.3)

where convergence is in almost sure sense.

After considering the above representations, one fundamental question is to know whether

Nu
s and µus have finite variance. This question of determining the admissibility of moments

by these random variables itself has rich history in literature which we refrain from discussing

here. We point the reader to the original paper [23] for some discussion.

Estrade and Leon in [23] show that the convergence in equations (5.1.2) and (5.1.3) also

holds in L2(Ω) under the condition that almost every sample path of the field is of class C3

(Proposition 1.1 of [23]). They then consider the m = 1 +n+n(n+ 1)/2 dimensional vector

field ξ̃(x) = (ξ(x),∇ξ(x),∇2(ξ(x)) and the function Gε(x, y, z) = δε(y)1[u,∞)(x) det∇2(z)

where x ∈ R, y ∈ Rn and z ∈ Rn(n+1)/2. We have that the function Gε is square integrable

with respect to the standard Gaussian measure on Rm and hence admits a Hermite expansion.

With this, one can prove thatNu
s or µus admits an expansion in L2(Ω) of the form (Proposition
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1.3 of [23])

µus = (−1)n
∞∑
q=1

∑
|a|=q

c(a)

∫
[−s,s]n

Ha(ξ̃(x))dx. (5.1.4)

Here due to the dirac-delta function in formula given in equation (5.1.3), the coefficiants

c(a) are such that
∑∞

q=1

∑
|a|=q c(a)2 = ∞ and hence a central limit theorem for µus cannot

directly be concluded by means of the Breuer-Major theorem (4.3.2). To show the central

limit theorem for µus , after an intermediatery step which consists in showing that the asymp-

totic variance of µus is finite, it suffices to show a central limit theorem for finitely many

terms in the expansion in equation (5.1.4) which indeed follows from theorem (4.3.2). We

refer the reader to the paper [23] for complete details.

5.1.2 Remarks

We note that from theorem (4.3.2), we obtain a central limit theorem for volume of excursion

set by taking the function G to be G(x) = 1[u,∞)(x). Also, in this case the functional

covergence also holds. In [41], the author obtains rates of convergence for the central limit

theorem for volume of excursion sets by means of Malliavin calculus.

5.2 Conclusion and future directions

In this thesis, we studied distributional limit theorems by means of Malliavin calculus and

Stein’s method. Using these tools, we had given a proof of the Breuer-Major theorem for the

case of vector valued fields on a Euclidean space of arbitrary dimension. We also proved that

the functional convergence holds under mild extra assumptions on the function. We then

saw how this is used to obtain some limit theorems for geometric characteristics excursion

sets of random fields.

One thing that we had not pursued in this thesis was to obtain rates in the Breuer-Major

theorem in the case of random fields. In the discrete case for sequences of vectors, this was

done by Nourdin, Peccati and Podolskij in [6]. We wish to pursue this in future.
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