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Abstract

In this thesis, we study the two generation problem for special linear groups and symplectic
groups. Let k denote a finite field of characteristic not equal to 2 and Z denote the ring of
rational integers. In this thesis, we study that special linear groups SL, (k) and symplectic
groups Spa, (k) defined over k, are generated by two elements. We study that special linear
groups SL,(Z) defined over Z, are generated by two elements.
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Introduction

Classical groups are defined as certain subgroups of matrix groups. In this thesis, we study
the two generation problem of classical groups. In particular, the two generation of the special
linear groups and symplectic groups. The elementary matrices of special linear groups and

symplectic groups are helpful in solving two generation problem for these groups.

Groups defined by generators and relations

A group can be defined in many different ways, one of the ways is to define a group by its
generators and relations. Generators of a group are those elements of the group which will
generate the group which means that every element of the group can be written as a product
of powers of these generators and relations are defined among these generators. Defining a

group by its generators and relations is called Presentation of a group.

In general, a presentation P =< T | R >, contains a set T which is called generators
and a set R of words on the set T" which are called relators. A word defined on a set T has
the form b7'652.....b)", where r; € Z and b; € T. A group can be defined by the presentation

P. For example a cyclic group of finite order n can be defined as follows:
G=<g | g"=1>
where the set {g} is the set of generator for G and g™ = 1 is the defined relation.

1



The two generation problem for finite simple groups

Generation of a group by two elements is called two generation of a group. If we classify all

the finite simple groups then they are isomorphic to one of the following groups:

Cyclic group of prime order

Alternating group A,,, where n > 5

Groups of Lie type

One of 26 sporadic groups

Groups of Lie type are subgroups of matrix groups when matrices are defined over a finite
field F,. Examples of groups of Lie type are : Projective Special linear groups PSL,(F,),
Projective Symplectic groups PSpa, (F,), which we define in the chapter 1. In [6] , Guralnick,
Kantor, Kassabov and Lubotzky proved the following result about two generation of simple

groups of Lie type:

Theorem 0.0.1. /6, Guralnick] All non abelian finite simple groups of Lie type, except the

Ree groups, are two generated with at most 80 relations.

In [14] , R. Steinberg proved that the groups PSL,(F,), PSps,(F,) can be generated by
two elements. In this thesis, we study two generation for SL,(F,) and Sps,(F,). In [11] ,
Macbeath proved that the group PSLy(F,) is two-generated for certain values of g.

Now, we discuss the significance of the two-generation problem in computational group
theory. Computational group theory is the study of groups through computers, it is used
to gather information about groups. There are a lot of groups of large orders for which we
can’t do the calculations by hand, so to study them we have to use computers. So, if we can
generate these groups by just two elements and some relations then it is very easy to study

these groups using computers.



Two generation problem for some groups

If a group is generated by an element of order 2 and an element of order 3 , then this
generation of the group is called (2, 3)-generation. Besides the two generation of the finite
simple groups , in [13], M.A.Pellegrini proved that the group SLq2(F,) is (2, 3)-generated.
Now we also find some examples of two generation , where the matrices are not defined on
a finite field. In [5] , Gow, Tamburini proved that the special linear groups SL,(Z) defined
over the ring of rational integers Z are generated by a unipotent matrix and its transpose.

This gives us the two generation of SL,(Z).

A Chapter-wise description

e In chapter 1, we define classical groups, and give some examples of classical groups

and classical simple groups.

e In chapter 2, we give brief survey of results in the area of two generations of classical

groups.

e In chapter 3, we study the two generation of SL,(F,) from the paper of Steinberg

([14]).

e In chapter 4, we study the two generation of the group SL,(Z) from the paper of Gow,
Tamburini ([5]).

e In chapter 5, from the paper of Bhunia, Ayan Mahalanobis, Pralhad Shinde and Anu-
pam Singh ([1]), and Steinberg ([14]), we study the two generation of the symplectic

groups using the elementary matrices of the group.

In [14], Steinberg proved the two generation for all finite simple groups of Lie type. In the

thesis we study the two generation of special linear groups and symplectic groups.






Chapter 1

Classical Groups

In this chapter we define classical groups, discuss examples of classical groups and related

definitions to these groups and further properties.

1.1 Bilinear Forms and Classical Groups

Definition 1.1.1. Bilinear Forms : Let V be a d dimensional vector space over a finite
field k. A map
B:V XV =k

15 called bilinear form if it satisfies

1. (v + svg,v3) = B(v1, v3) + s5(v2, v3)

2. B(v1,ve + svg) = B(v1,v2) + sP(v1, v3)

for all vi,vy,v3 €V and s € k.

Definition 1.1.2. Matrixz associated to a bilinear form: If we fix a basis of a vector
space V' over k then for any bilinear form, we define a matriz associated to it. Let dim(V) =d

and {uy, us, ...uq} be the basis of V' then matriz associated to a bilinear form ( is B =

[(B(us, uy))].



Definition 1.1.3. Symmetric bilinear form: A bilinear form B is called symmetric if
B(v1,v9) = Blvg,v1) for all vi,vy € V. In this case if we fix a basis of V' then matriz B
associated to the symmetric bilinear form B satisfies BT = B, where BT denotes the transpose

of matriz B.

Definition 1.1.4. Skew symmetric bilinear form: A Bilinear form 3 is called skew
symmetric if f(vy,vy) = —B(ve,v1) for all vi,vy € V. In this case if we fix a basis of V' then
matrix B associated to this skew symmetric bilinear form [ satisfies BT = —B, where BT

matrix is the transpose matrix of B.

Definition 1.1.5. Non-degenerate bilinear form: A bilinear form [ is called Non-

degenerate bilinear form if its associated matriz B has non-zero determinant.

Definition 1.1.6. Degenerate bilinear form: A bilinear form [ is called Degenerate

bilinear form if determinant of associated matrix B is equal to zero.

Definition 1.1.7. Classical Group: Let V be a finite dimensional vector space defined
over the field of real numbers R, or the field of complex numbers C. A classical group is a

group which preserves a bilinear form defined over vector space V.

Now let B be a non-degenerate bilinear form defined on a vector space V', and M is the

matriz associated to the bilinear form B, then the Classical group G is defined as follows:
G:={AeM,(k) | AMA= M}

where M, (k) denotes the set of n x n invertible matrices defined over finite field k.

1.2 Examples of Classical Groups
Let k be a finite field with char(k) # 2. The following groups are some examples of classical
groups.

Definition 1.2.1. General Linear Group GL,(k): The set of n x n invertible matrices

M, (k) forms a group under the operation of matriz multiplication. This group is called

General Linear group G L, (k). This means if A € GL, (k) then det(A) # 0.
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Definition 1.2.2. Special Linear Group SL,(k) : Special Linear Group SL,(k) is a
subgroup of GLy(k) which contains all n X n invertible matrices which have determinant

equal to 1.
SLy(k):={A € GL,(k) | det(A) =1}

SL,(k) is a normal Subgroup of GL, (k). As VM € GL,(k),YN € SL,(k) we can see
that det(MNM™') = det(M)det(N)det(M~') = det(M)det(N)det(M)™ = det(N) = 1.
This shows that MNM~! € SL,(k).

Definition 1.2.3. Symplectic Group Sp,(k): Let B be a matriz associated to the non-
degenerate skew-symmetric bilinear form B. A matriz A € G L, (k) is called symplectic matrix

if ATBA = B. The group formed by symplectic matrices is called symplectic Group.

Definition 1.2.4. Orthogonal Group O,(k): Let B be a matriz associated to the non-
degenerate symmetric bilinear form B. A matriz A € Gl,,(k) is called Orthogonal if ATBA =

B. The group formed by orthogonal matrices is called orthogonal group.

One can see that if A € O, (k) then det(A) = +£1.

Definition 1.2.5. Special Orthogonal Group SO, (k): The subgroup of Orthogonal
Group O, (k) containing matrices of determinant 1 is called special orthogonal group. The

group SO, (k) is a normal subgroup of O, (k).

1.3 Classical Simple Groups

Definition 1.3.1. Commutator: Let A,B € GL,(k), then commutator of A and B is
defined as follows: [A, B] = A"'B71AB.

Definition 1.3.2. Simple Group: A group which has no non-trivial normal subgroup is

called a simple group.

Definition 1.3.3. Centre of a Group: Centre of a group G, is the subgroup of G which
is defined as follows:
Z(G)={2€G | VgeG; zg=ygz}

Now following are some examples of Classical Simple Groups:

7



Definition 1.3.4. Projective Special Linear Group PSL,(k): The Quotient group
SL,(k)/Z(SLy(k)) is known as Projective special linear Group PSL,(k), where Z(SL,(k))
is the centre of the Special Linear Group SL,(k).

Projective special linear Group PSL, (k) is a simple group for n > 2 except for the groups
PSLQ(FQ) and PSLQ(IF3)

Definition 1.3.5. Projective Symplectic Group PSp,(k): The Quotient group
Spn(k)/Z (Spn(k)) is known as Projective symplectic group PSp,(k), where 2 (Sp,(k)) is
the centre of the symplectic group Sp,(k).

Projective Symplectic Group PSp, (k) are simple groups except for the groups PSps(FFs),
PSpg(Fd) and PSp4(]F2)

Definition 1.3.6. Commutator Subgroup of Orthogonal Group ,(k): The Com-
mutator Subgroup of Orthogonal Group U, (k) is simply defined as Q,(k) = [On(k), On(k)].

Now the corresponding projective group PS),(k) are usually simple groups.



Chapter 2

History of The Problem

The main problem we are studying is Two generation of classical groups. If a group can be
generated by 2 elements, then the group is called two generated and this generation of the

group is known as Two-generation.

The aim of this chapter is to give a brief survey of results in the area of two generation

of classical groups.

Notation: In this chapter, we denote ¢ = p™, where p is a prime number and n € N.

e [F,: Finite field containing ¢ elements.

e 7. Multiplicative group of the finite field F,.

2.1 Two generation of finite simple group of Lie type

Groups of Lie type are the subgroups of general linear groups when matrices are taken over
a finite field F,. Example of Groups of Lie type are PSL,(F,), PSps,(F,), and PSU,(F,)

ete.

In [6], Guralnick, Kantor, Kassabov, and Lubotzky proved the following result about
finite simple groups of Lie type :



Theorem 2.1.1. [6, Theorem A] All non abelian finite simple groups of Lie type, except the

Ree groups are two generated with at most 80 relations.

2.2 Two generation of Symmetric Group

Definition 2.2.1. Permutation: A permutation is a bijective map from a set to itself.

Example 1. We take a set containing 3 elements namely {1,2,3} then all the permutations
on this set are: (1),(1,2),(1,3),(2,3),(1,2,3),(1,3,2).

Example 2. For a set containing n elements has n! number of permutations.

Definition 2.2.2. Symmetric Group : Let X be a set. The group of all the permutations
of set X is called symmetric group. If | X| = n then |S,| = n!, where S,, denotes symmetric
group defined on the set X.

Now onwards, .5,, denotes the symmetric group of degree n.

Definition 2.2.3. Cycle : A cycle of length k is a permutation in S, which permutes k

elements cyclically, where 2 < k < n.
Example 3. Permutation (1,2,3) in S,, is a cycle of length 3.

Definition 2.2.4. Transposition: In the symmetric group S,, a transposition is a cycle
of length 2.

Definition 2.2.5. Even Permutation : An even permutation is a permutation in S,,

which is product of even number of transpositions.
Example 4. (1,2,3) = (1,3)(1,2), so (1,2,3) is an even permutation.

Definition 2.2.6. Odd Permutation : An odd permutation is a permutation in S,,

which is product of odd number of transpositions.

Example 5. (1,2,3,4) = (1,4)(1,3)(1,2), so (1,2,3,4) is an odd permutation.

Now, we study two generation of the symmetric Group ([3]).
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Theorem 2.2.1. [3, Theorem 2.5] Let S, be a symmetric group defined on the finite set
containing n elements and the 2-cycle (1,2) and the n-cycle (1,2,......n) € S,. Then S, is
generated by cycles (1,2) and (1,2,....,n).

Proof. We know that all the permutations in S,, are product of disjoint cycles. Let (vy,vs, ...v;)
be a cycle in S, of length j , then we can write (v1,vq,...v;) = (v1,v;)(V1,Vj-1)...... (v1,v9).

This gives that every element of .S,, is product of transpositions.

Now take any arbitrary transposition (¢, j) in S,,. Now we prove that S,, can be generated
by the set {(1,2),(2,3),.....(n — 1,n)}. To prove this we will use induction on the difference
between i and j , where 1 < i # j < n. We consider j —i = 1, then (¢,5) = (i,i + 1),
which proves the statement. Now assume it’s true for j —¢ = k — 1. We further consider
the case when j — i = k, then (4,j) = ((¢ + 1,4)(¢ + 1,7)(¢,¢ + 1) , as j — i = k, we have
j—(i+1)=k—1, by induction hypothesis, we get (i + 1,7) can be written in product of
elements of type (u,u+ 1), Therefore from induction we proved that .S,, can be generated by
the set {(1,2),(2,3),.....(n — 1,n)}. We know that , if we have a cycle (uq, us,...u;) and an

arbitrary permutation 7 in S, then we have 7(uy, ug, ...u; )7 = (7(u1), 7(uz), ....7(u;)).
Let 7 = (1,2,...,n) then
T(1,2)r 7 = (7(1),7(2)) = (2,3)
so now take r =1,2,....,n — 2 then,
(1,2)r " = ("(1),7"(2)) = (r + 1,7 + 2)

This proves that the symmetric group S, is generated by the 2-cycle (1,2) and the n-cycle
(1,2,...,n). O
2.3 Two generation of Special Linear Group

In this section we will provide some results of two-generation of Special Linear group:

11



2.3.1 (2,3)- generation of the group SLi»(F,)

Definition 2.3.1. (2, 3)-generation of a group: A group is called (2,3)-generated if it is

generated by an element of order 2 and an element of order 3.

In [13], Marco Antonio Pellegrini proved the following result:

Theorem 2.3.1. [13, Prop 2.3, Corollary 2.5] For a prime number p and n € N, the group
SLia(Fpn) is (2,3)-generated.

Let V' be a 12-dimensional vector space over F,, we consider the standard basis # =

{ul, U, ..., u12} of V over F,. To give sketch of proof of Theorem 2.2.1 , we define Alternating
group.

Definition 2.3.2. Alternating Group: The group of even permutations of a finite set, is

known as Alternating group.

Let Alt(#) be Alternating group defined on the set . We know that the matrix 7
corresponding to an element in Alt(%) has determinant equal to 1, so we get that Alt(#) <
SLis(F,).

We define w = (uq, ug, us)(us, us, ug) (ur, us, ug) (U1g, U1, u12) € Alt(A) < SL1a(F,) , then
we compute that w? = (uy, us, us)(ug, ug, us) (ur, ug, ug) (U109, U2, U1y ) and w? = (u;) = w
is an element of order 3. If p # 5 , then we define a matrix ¢ of SLio(F,) with respect to
the basis Z# as following;:

[ ] ¢U1 = us, gbug = Uy, ¢U2 = —U9, ¢U5 = Uy
® Quz = Uy, Pus = U7, PUy = U3, QU7 = Ug
® Qug = Uig, PUig = Uy, PU11 = U1 + tUiz, PUI2 = —Uia; T € Fq-

It is easy to check that ¢ has order 2 , and group K =< ¢,w >< SL1»(F,). In [13] authors
showed that K = SL»(F,).

Now we consider the case p = 5, in this case we define a matrix ¢ of SLio(Fsn) with

respect to the basis £ as following:

12



o Puy = —uy, Pus = us, P'us = ug
o ¢ug = ur, P'ur = ug, P'ug = uig, Pur9 = Ug
° ¢’u2 = 3ug + 2ug + 3uy, d)/u;), = 3ug + 3ug + uy, ¢,U4 = 2Uo + uz + 3uy

/ / .
o Q'uip = upp + tugg, P'uip = —usa; t € Fsn

Here again ¢’ has order 2. In [13] authors proved that SLis(Fsn) =< w, ¢’ >.

2.3.2 (2,3,7)-generation of the groups SL,(F,) and SL,(Z)

Recall that ¢ = p™,

Definition 2.3.3. Hurwitz Groups: A (2,3,7)-generated group is a group generated by
an element of order 2 and an element of order 3, such that order of product of these two

elements is 7. A finite (2,3,7)-generated group is called Hurwitz Groups.

In [10] , Lucchini, M.C.Tamburini and J.S.Wilson proved the following results:
Theorem 2.3.2. [10, Corollary 1] For all n > 287 , SL,(F,) is Hurwitz Group.

Theorem 2.3.3. [10, Corollary 1] For all n > 287 , SL,(Z) is (2,3,7)-generated.

2.4 Two generation of Symplectic Group

In this section we will provide some results of two-generation of Symplectic group :

2.4.1 (2,3)-generation of Sps(F,) for g even

In [12] , Marco Antonio Pellegrini proved that the group Sps(F,), where ¢ is an even number,
is (2, 3)-generated.
Let ¢ € F,, from now onwards in this chapter , z;;(¢) denotes the matrix, whose (i, j)™"

entry is equal to ¢ and all other entries are 0.
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Let 0, ¢ be 6 x 6 matrix defined as follows: 6 = x13(1) 4+ 224(1) + 231 (1) +242(1) +255(1) +
ze6(1) + z65(g), and

¢ =211(1) +214(1) + 215(1) + 202(1) + 34(1) +243(1) +244(1) +752(g) + 53(1) + 254(1) +
T55(1) 4 w56(1) + z62(g) + w63(1) + 265(1) , where g € Fi. We observe that 62 = (* = I and
0,C € SpG(IFq).

In [12], author proved the following result :

Theorem 2.4.1. [12, Theorem 2.5] Let q be an even number and g € F: | such that F, =

q 7’

F,lg] then 0,¢ defined above generates the group Spes(F,) i.e. Sps(F,) =< 6,¢ >.

The above result proves that the group Sps(F,), where ¢ is an even number, is (2, 3)-

generated.

2.4.2 (2,3)-generation of Sp(7Z)

In [15] , Vsemirnov and vasilyev proved the following theorem :

Theorem 2.4.2. [15, Theorem 2.1] The group Spio(Z) is (2,3)-generated.

2.4.3 Two generation of Spy,(F,) for large n

In [9], Lucchini and M.C.Tamburini proved the following result:

Theorem 2.4.3. [9, Theorem 1] For n > 371 , the group Spa,(F,) is Hurwitz group.

2.5 Two generation of Special Unitary Group

2.5.1 (2,3)-generation of SU;(Fz)

Let 0" and ¢’ be 7 x 7 matrices defined as follows:

14



9’ = ZE12<1) —f- ZEQl(l) —|— 5(717<h) —|— 5(727<h) —|— 1734(1) + ZL‘43(1) —f- ZE56(1) —|— 1357(—1) —|— $65<1) +
I67(—1) + ZE77(—1), and

C/ = ZL’H(]_) —|—l’13(—1) +Qf15(—1) +l’17<h—|—l — 1) —l—l’gg(—l) +Z’32(1) —|—ZL'33<—1) +$45(—]_) +
T5a(1) + 255(—1) + 267(—1) + 276(1) + 277(—1), where either h =i € F, or i = h? € Fe.

Theorem 2.5.1. [12, Theorem 3.8] Let h € Fp \ F, and it satisfies

o h2 — pItl 4 B2 4201+ 20 +4 40 ;
o (h+h?)> —8(h+ hi—2)%—8ht™ £ 0, when p is odd ;

o o = F,[hT]
Then the group SU7(F,2) is generated by ¢',(" i.e. SU7(Fpe) =<¢,{ >.

This proves the (2, 3)-generation of the group SU7(F2).

2.5.2 Two generation of SUs,.7(F,) for large n

In [9], Lucchini and M.C.Tamburini also proved the following result:

Theorem 2.5.2. [9, Theorem 2] The group SUsy,7(F,) is Hurwitz group, when q is an odd

number and n > 371.

2.6 (2,3,7)-generation of Alternating Group

In [2] , Conder proved the following theorem :

Theorem 2.6.1. [2] For n > 167, the Alternating Group is a Hurwitz Group.
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2.7 (2,3,7)-Generation of Projective Special Linear Group
PSLy(F,)

In [11], Macbeath gives the values of ¢, for which PSLs(F,) is (2,3, 7)-generated group.

Theorem 2.7.1. [11, Theorem 8] The group PSLy(F,) is a Hurwitz Group if :

e g=7
e ¢ =p wherep is a prime and p=1 or 6 ( mod 7)

e ¢ =p?® where p is a prime and p=2,3,4 or 5 ( mod 7)

2.8 Probabilistic methods for (2,3) generation problem

In [8], Martin W. Liebeck and Aner Shalev proved the following result related to (2,3)

generation problem:

Theorem 2.8.1. [8, Theorem 1.4] Let H be a finite simple classical group where H #
PSpy(F,). If we randomly choose an element of order 2 of H and an element of order 3 of
H, then the probability that these elements generate the group H goes to 1 as cardinality of
the group tends to infinity.

2.9 Some Negative results towards Two Generation of

Classical Groups

In [4], Di Martino, M.C.Tamburini proved that the following classical groups are not Hurwitz

Groups:

Theorem 2.9.1. [/, Theorem 3] If J is one of the following groups:

1. Whenn =8,9,11 then
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(a) Spn(F,), where q is an odd number.
(b) SU,(F.2), where q # 27.

3. Sp12(F,), where q is an odd number.

Then J is not a Hurwitz group.
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Chapter 3

Steinberg Generators for Special

linear group SLy(k)

In this chapter we will prove that the Special linear groups defined over a finite field & = [F,
SL,(k) (taking the field k& which has char(k) # 2) can be generated by 2 of its elements.
To prove this we will first prove that the special linear group SL, (k) can be generated by
its elementary matrices defined in the section 3.1. Then we will prove that we can generate
all the elementary matrices from those 2 elements of SL,(k), which will prove the Two
Generation of SL, (k). We follow the paper of Steinberg ([14]) here.

Notation: k£ = IF; a finite field with ¢ elements.

3.1 Elementary Matrices in SL, (k)

Definition 3.1.1. Elementary matriz of SL,(k) is defined as follows : N\ € k , 1 # j ,

‘ ‘ A at yth postion
eij(A) = L,+x;;(X) where x;;(X) matriz has the following form : z;;(\) = .
0 otherwise

In this chapter we are taking e;;(\) as elementary matrices of SL, (k). (In chapter 5, e;;

are defined in a different manner for the symplectic groups)

Definition 3.1.2. Commutator of 2 matrices A and B is defined as: [A, B| = A"'B~'AB.
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Theorem 3.1.1. SL, (k) is generated by the following set of Elementary matrices : {e;;(\)
Jfori#£g1<i<n1<j<nand A€k }.

Proof. The idea of the proof is to start with a matrix A € SL, (k) and multiply it with the
matrices e;;(A). We notice that it amounts to the row-column operations of first kind. So

now to prove this theorem we will use induction on n.

first case when n = 2:

b
Define A = | y € SLy(k) now if (i) ¢ # 0 then we can simply say that ¢! will
c
exist and A € SLy(k) so det(A) = 1 and the way matrix A is defined, det(A) = ad — bc =
d—1)c!
1 = b= (ad—1)c! sonow A = a (a J Je )] so now multiply A with the matrix
c

[1 —(a—1)ct

then we will have:
0 1

1 —(a— l)c_1] [a (ad — 1)0_1] _ [1 (d—1)ct

] then multiply with the matrix

_O 1 c d c d
(1 0 1 o] [t (d—1)c? 1 (d—1)!
we will get ( Je = ( Je which proves that
—c 1 —c 1| |c d 0 1
A I (a=Dec*f |1 0 [1 (d=1)c?
o 1 —c 1| |0 1

which shows that A is a product of elementary matrices of SLy(k)

(ii) if b # 0 it will proceed in the same way just that now b~ will exist so

a bl 1 0| [1 b 1 0
¢ dl  |(d=1bt 1| |0 1] [(a—1)p7t 1

0
(iii) now if b = ¢ = 0 then we have A = g 1] . We first multiply A with the matrix
a

A:
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1 0 ; ;
o get,
1—a ! 1 &

1 0 . a 0
1—at 1 a—1 a!
1 -1 a 0| 1 —a!
0 1|la=1 a'| |a—1 a!

(1)] with the matrix [
1 0 1 —a ! |1 —a !
l—a 1| |la=1 at| |0 1

which eventually gives us,
11 1 0|1 —at
0 1f la—1 1] (0 1

So the theorem is true for n = 2. Now assume that theorem is true for n = m and now

We further compute,

1
Now we multiply [
1—a

that,

1 0

A=
at—1 1

we prove that the theorem is true for n = m + 1.

Let’s take an (m + 1) x (m + 1) matrix C,

a by b,
a2 &1 Cm

C= )
aerl dl dm

The following cases are possible:
Case 1: a; # 0,a; # 0 for some ¢

In this case we will multiply row i to (1 — a;)/a; and then add row i to row 1, that will
make the first entry one and after that we will multiply a; to row 1 and subtract it from row

J to make other entries zero of column 1 for 2 < j <m + 1.
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Case 2: a; =0,a; # 0 for some ¢
In this case first we will add row ¢ to row 1 and then follow the case 1.
Case 3: a; #0,a, =0 for 2 <i <m + 1,b; # 0 for some j

In this case we will multiply column j to (1 — a;)/b; and then add column j to column

1, that will make the first entry 1 in the place of a;.
Case 4: a; #0,a;, =0for 2<i<m+1,b;=0for 1 <j<m
In this case because C' € SL,,41(k) , a; = 1.

Now from all these possible cases we will get a matrix which will have the form:

1y, b
5 0 ¢ -
0d - d

in all these cases whatever elementary matrices we used they are in SL,,.1(k) so if we

/

/
Cl Cm

define A = | : . ¢ | it will be a m x m matrix and it will be in SL,,(k). So from
d - d,
our induction hypothesis A can be written in product of elementary matrices so now D =

(ITeij)E. Where e;; are elementary matrices in SL,,;1(k) defined initially in the chapter

Lo - b,
01 --- 0 . ‘

and £E= | . . Now we just have to multiply b, to (k+ 1)-th row and subtract
00 --- 1

it from row 1 for each k = 1,2, 3....,m which reduces F to identity matrix. This proves C
can be written as product of elementary matrices in SL,,+1(k) which proves the theorem for

n=m-+1.

So in this way by induction our theorem is proved. O
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3.2 Two Generation of SL, (k)

Reference for following theorem is [14, 3.11]:

Theorem 3.2.1. SL, (k) is generated by following two elements:
Ym = In — .1'11(1) — 1'22(1) + xn(m) + 1722(771/71)

and
S = 612(1)5

, where x;;(\) are the matrices defined in Definition 3.1.1 and m is the generator of the

multiplicative group of the finite field k such that m # 1, e12(1) is the usual elementary

00 0 - 0 (=1)]

10 0 - 0 0
matriz in SL,(k) andé=10 1 0 --- 0 0

00 O 1 0

Proof. So s = e13(1)6 = (I, + z12(1)) (= 1)" M 21, (1) + 221 (1) + w32(1) + ...... + Znpn-1(1))

s=z11(1)+ (=1)" 2, (1) + 291 (1) + 232(1) + ... + 2, ,—1(1) in this way we can easily
calculate s7! and s71 = (=1)""2,1 (1) — Z2(1) + 212(1) + 223(1) + ... + Tp_1a(1).

Now we will conjugate 7, from s and this will define as follows:

5 = S’}/mS_l = (l’n(l) -+ (_1)n+1$1n(1> + Zﬂgl(l) + 1’32(1) 4+ ... -+ In,n—1<1)>(ln — $11(1) —
To9(1) + 211(m) + 2o (M) (= 1)" My (1) — 2no(1) + 212(1) + 223(1) + ... + p1n(1)).

6 = .1711(1) + Ilz(m — 1) + $22(m) + x33(m_1) + I44(1) —+ ZE55(1) 4+ e + l’nn(l).
Now take commutator of matrices 8 and ~,, ;

(8, 7m] = B9, Bym ; We can easily see that v 1 = I, —x11(1)—x9a(1)+211 (m ™) +290(m)
and ﬁ_l = 1'11(1) + l’lg(m_l — 1) + .l’gg(m_l) + .Igg(m) + 1'44(1) + LE55(1) 4+ ...+ .]fnn(l)

5o now [B,7m] = (211(1) + z12(m™ — 1) + Zoo(m ™) + z33(m) + 244(1) + x55(1) + ... +
Inn(l))(In - :1:11(1) — ZE22(1) —|—x11(m_1) +$22(m))(x11(1> —|—x12(m — 1) + ng(m) + $33<m_1) +
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.1744(1) + £L‘55(].) + ... + xnn(]-))(jn — ZL‘H(]_) — ZEQQ(l) + l’u(m) + Jfgg(mil)).
By calculating this matrix multiplication we eventually get [3, 7] = L, + z12(9)=e12(9).

where e15(g) is the usual elementary matrix in SL, (k) and g = (1 —m)(1 —m™?) and in
the theorem we stated that m # 1 which implies g # 0.

Lemma 3.2.2. [14, 3.9] Let G be the subgroup generated by the elements {Wm,s} and we
proved above that e;5(g) € G where g € k* and k* is the multiplicative group of the finite
field k. Then v, and e;2(g) will generate {e;5(t),t € k}.

Proof. Let’s take conjugation by =, on the element e15(g) we will get:

Yme12(9)Vm' = (In = 211(1) = 222(1) + @11(m) + @22(m ™)) (Tn + 212(9)) (In — z12(1) —
Too(1) + 211 (m™) + @99(m)) = I, + x12(gm?) = e1a(gm?) now if i take

Yme12(gm?)yt = e1a(gm?) so by taking repeated conjugation by 7, we will get element

of type {e12(gm;?)} C G where i am taking m;*> = m* where i = 1,2,3, ...

now if we multiply all these elements we will get {e12(g Y., m®)} C G. Now define a
subset of the finite field k as S = {g >, mi? : e12(g >, mi®) € G} C k which simply says that
S= {gmlz, gma?, ..., g(mi2+my?), ... } and § is closed under addition so that’s why it is an
additive subgroup of the finite field k. Now we have the finite field which has characteristic
not equal to 2 so the multiplicative group k£* which is a cyclic group will have even order
and m is a generator of £* so definitely half the elements of k are in the subgroup S which

2,...gm;?} now if we showed that there is at least one more element is in S

are {gm12,gm2
then because S is an additive subgroup , by Lagrange’s theorem S will be the whole field &

ie. S =k.

So now assume that the element gmi? + gms®> = gm;® for some j but we know that
mi? = m? ;my? = m* and m? = m?" for some r so from our assumption gm? + gm* =
gm2r S m2 + m4 — m2r s

14 m? =m0 (3.1)

Now k = [F, a finite field with ¢ elements where ¢ is a prime power. So then cardinality
of F,* will be |F,*| = ¢ — 1 and m is the generator of F,* , so m?! =1 so if we take power
(¢—1)/2 both side of the equation 3.1 then (1+m?)l@=Y/2 = (m2=D)@=1/2 then right hand

24



side will be equal to 1 but LHS will be (1 + m?)@ /2 =141+ ... =2+ ...

which is greater than 1 which is a contradiction so our assumption that gm% 4+ gms? =
gm;? for some j is wrong so (gmi? + gms?) is a new element which proves that S = k and
the way S is defined S = k shows {es(t) : t € k} C G . O

Now {es(t) : t € k} C G. Now take deqa(t)6" = ((—=1)" @y, (1) 4201 (1) +232(1) +..coo +
Frn (D) + 212N (=1 01 (1) - 12(1) 2351 o1 0(1)) = (—1) (1) +
o1 (D)4 232(1) 4o+ 21 (1) + 202 () (1) Pz (1) +212(1) +223(1) + oo+ 21 (1)) =
11(1) + woa(1) + x33(1) + ...... + T (1) + @o3(t) = I, + ma3(t) = ea3(t). So depa(t)d?
exs(t) = eas(t) € G.

0')
I

So now take degs ()0t = ((—1)" oy, (1) + 221(1) + x32(1) + ... + ZTppo1 (1) (I +
223(t)) ((—1)" T an (1) +212(1) + 223 (1) oo A 2po1,0(1) = (1) a1, (1) 221 (1) +232(1) +
...... @1 (1) + 235 (0) (=)™ (1) + 215(1) + 223(1) 4 oo T 10(1)) = L+ a(t) =
634(t) - 5623( )5 e 634(t) €q.

(5634(t)(5_1 = ((—1)n+1$1n(1)+1’21(1)"‘1’32(1)"‘ ...... +$n’n_1(1>>(ln+$34(t))((-1)n+1l’n1
x12(1) + 223(1) + ... + Zno10(1)) = ((=1)" 21, (1) + 221 (1) + 232(1) + ... + Zpno1(
l‘44(t))((—1)n+1l'n1(1)+$12(1)+l’23(1)+ ...... +xn—1,n(]—)) = In+l‘45(t) = 645(t) — 645(t
G.

in this Way if we calculate de;;11(6)07" = e41,442(t) for i = 1,2,3,....,(n —2) =
{612 623 634(t), ....... >€n—1,n<t>} C G.

Now take commutator of ej5(t) and eqg3(t’) where ¢,t € k we will get :

[e12(t), e23(t)] = €12 (B)eas™ (¥)erz(t)eas(t) = (In — 12(t)) (Ln — w23(t') (Ln + 212()) (L +
To3(t') = (L, — x12(t) — @a3(t') + 213 (tt')) (Ln + 12(t) + 223(t) + 213(t)) = 1, + 213(tt') =
e3(tt’) = [e1a(t), ea3(t’)] = e13(tt’) where t and ¢’ are arbitrary elements of the field £ and
tt'" € k so tt' will vary on all over the field k and we will have {e13(0),0 € k} C G.

In the same way [e13(t), e34(t')] = e14(tt’) so now in general ;

le1j-1(t), ej—1,(t)] = ey (tt)) for j =3,4,5,....n = {elj(gb) cpek; g =234, ,n} C
G.
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Now if we take [ea3(t), e34(t")] = eau(tt’) and [eqq(t), eq5(t")] = ea5(tt’) and as above we
saw in this case we will get that {er(<b) o € k;j=3,4,5, ,n} C G. So by taking these
conjugation and commutator we will eventually get that {eij(<b) o € ki< g1l <0 <
n—1,1<j<n}CQG.

Now let’s conjugate d with the element ey,,(t) so we will have : dey, ()01 = ((=1)" "z, (1)
21 (1) 4+ 255(1) 4 s 4 21 (1) (I + 210() (= 1) (1) + 219(1) + 25(1) + oo +
Tp-1,n(1)) = ((=1)" " 21,(1) + 221(1) + @32(1) + oo+ T (1) + 220 (8)) ((—1)" 2 (1) +
,I‘u(l) —+ .ﬁ(}gg(l) + + xnfl,n(l)) =1, + $21(t) = €21(t> - 621(t> € G.

Now calculate deg (£)61 = ((=1)"M 21, (1) + zo1(1) + w32(1) + ... + Tyt (1) (L +
221 () ((=1)" M 2p1 (1) 4+ 212(1) + 293(1) + ... + Tpo1,(1) = (1) zy,(1) + 221 (1) +
x3a(1) + ... + Tppo1(1) + 231 (8) (1) 1 (1) + 212(1) + 203(1) + ... + Tp1a(1) =
L, + x32(t) = es2(t). So as previously we did, similarly de; 1,;(t)0~" = e;19:11(t) for i =
2,3,4,..m—2. = {ea(t),es(t),ess(t), ....enn(t)} C G.

Now take commutator of ezs(t) and eg ('); [e32(t), €21 ()] = €327 (t)ea1 (') eza(t)ear () =

(In — I32(t))(]n — l’gl(t/))(]n + xgg(t))(]n + I’Ql(t/)) = In + Jfgl(tt/) = 631(tt/); tt’ € k.
le43(t), es2(t')] = eqa(tt’) and [esa(t), €91 ()] = eq1(tt).

In this way we can see that {es;(¢):p € k;j=1,2} C G, {esj(¢):p € k;j=1,2,3} C
G, {es;(p) :p € k;j=1,2,3,4} CG,....... cAeni(@) o €ek;j=1,23,4,..(n—1)} CG.

This shows that {e;j(¢) : p € k;i>j,1<i<n 1<j<n-1}CG.
So we showed that {e;;(¢) :p € k;i#j,1<i<n,1<j<n}CG.

From Theorem 3.1.1 we can see that SL, (k) is generated by the set {e;;(¢) : ¢ € k;i #
J, 1 <i<n,1<j<n}soitshowsthat SL,(k) < G, but G is a group generated by {v,, s}
and v, and s both are elements of SL, (k) which implies that G =< 7,,,, s >< SL, (k) =
G =< Y, s >= SL,(k).

G =< Ym,s >= SL,(k)

Which eventually shows that we can generate SL, (k) group by two elements 7,, and s. [
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Chapter 4

Generation of SL,(Z) by Two Jordan
Unipotent Matrices

In this chapter we study the generation of S, (Z) by a Unipotent matrix € and its transpose.
To study this generation problem first we will study that for a Euclidean Ring R the set
which is generated by elementary matrices of R will generate the whole SL,(R). Now Z is
also a Fuclidean Ring so then we will use all this above information to prove the desired

result, which is Two Generation of SL,(Z).

Notation: diag(si, Sa, ..., S,): means an n X n diagonal matrix.

Definition 4.0.1. Unipotent Matrix: A square matriz M is said to be Unipotent Matrix
if M — I is nilpotent, where I is an Identity matriz. That is, (M — I)* = 0 for some positive

integer k.

Let Z denote the ring of rational integers and SL,(Z) the group of n x n invertible
matrices with determinant 1 with entries in Z. Let 6 denote the Jordan Unipotent n x n
invertible matrix which has determinant 1 , so 0 € SL,(Z) and ¢ is its transpose means

¢ = 607 and 0 has following matrix form:
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10 0 0
11 0 0

=10 1 0 0 = In + ZL’Ql(l) + 1’32(1) + . + $n,n—1(1)-
00 0 11

) t at ijth postion
where x;;(t) is defined as follows: ¢t € Z , x;;(t) =

0 otherwise

so 0 and ¢ are in SL,(Z)

Theorem 4.0.1. [5] For n > 2 and n # 4 the elements {0, ¢} generate the group SL,(Z).

. We will prove this Theorem in following sections.

4.1 Generation of the Group SL,(R) by elementary ma-

trices where R is a Euclidean Ring

GL,(R): The group of n x n invertible matrices over R.

Definition 4.1.1. A ring R is said to be Fuclidean Ring, if there exists a norm function
N : R — Z=° such that for each a,b € R with b # 0 there exists q,r € R such that a = bq+r
with r =0 or N(r) < N(b).

Before starting the lemmas we introduce embedding of GL,,(R) as a subgroup of GL,, 1 R).
GL,(R) sits inside GL,,1(R) as follows :
GL,(R) = GL,+1(R)

A0
0 1

A—

and considering GL;(R) as a subgroup of GL,(R) it consist of n x n diagonal matrices
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with first entry of the diagonal is a unit and other entries are 1,which means if a € R* then
a — diag(a,1,....,1) € GL,(R)

Definition 4.1.2. Unit of a Ring R: An element a # 0 € R s said to be a unit if there
exists an element b # 0 € R such that ab = 1.

Lemma 4.1.1. [7, Theorem 1.2.10, page 24] If R is a Euclidean Commutative Ring ,then for
n>1, GL,(R) = GL{(R)E,(R), where E,(R) is the group generated by the set {e;(t),i #
J,1<i<n,1<j<n,te R} whereeyt) =1,+x;(t) the elementary matrices for SL,(R)
as defined in Chapter 3.

Proof. We will prove this lemma by induction on n.The lemma is simply true for n = 1
because GL;(R) = GL1(R), now assume the statement is true for Kk = n — 1 which implies
that we are assuming that GL,_1(R) = GL(R)E,_1(R).Now let ¢ € GL,(R) so we have
to just prove that 3 Q and 6 € E,(R) such that Q(6 € GL,_1(R) , let’s assume that it
is true then we know that GL;(R) normalizes F, (R) because if we take diag(sy, Sa, ..., Sn)
then diag(si, s, ...., Sn)esi(t)diag(sy, S2, ....8,) " = eij(sitsj_l) and diag(s,1,1,....,1) are the
elements of GL;(R) when considered as subgroup of GL,(R) so it shows that GL;(R) nor-
malizes F,, (R).Now we have (0 € GL,_1(R) = GL;(R)E,_1(R) so let’s take that Q(d = o7
where 0 € GLi(R) and 7 € E,,_1(R) so Q( = 07§ ' so 767! =7 € E,(R) so Q( = o7’
which implies that 07'Q¢ = 7/ and because GL;(R) normalizes E,(R) ¢ 'Q = to~! where
t € E,(R) so to™'¢( =17 = ( = ot7'7 where 0 € GL{(R) and t7'7" € E,(R) so
¢ € GL1(R)E,(R) which implies that GL,(R) = GL1(R)E,(R).

Now we have to prove that 3 Q and § € E,(R) such that Q20 € GL,_1(R).So let’s
define a double coset E,(R)(E,(R) = {Q¢d : Q,6 € E,(R)}.Define a Norm function N
as defined in the Definition 4.1.1 and p € R in such a way so that N(p) is minimum and
it is possible in a Euclidean Ring to find such element.If we see the effect of arbitrary g
and ¢ € E,(R) on ( they are just elementary row and column operations so there will
be an appropriate g and ¢’ such that matrix g(g’ will contain p as an entry.Now if we
define a matrix d;;(t) = e;;(¢)eji(—t~1)e;;(t) where e;;() are usual elementary matrices. Then
di;(1) = e;;(1)eji(—1)e;;(1) and the effect of d;;(1) on the matrix g(g¢" will be simply that
it will interchange the ith and jth row and multiply by —1 to the new jth row when it
multiplied from the left and it will do the same thing to the columns if it multiplied from

the right.So if we multiply g(g’ by product of these matrices with an appropriate ¢ and j
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then ([, ; di;(1))9¢g (1, du(1)) will contain p at (n,n) position. and Simply [, ; di;(1)) €
E,(R) Jlet b < n and in the matrix ([T, ; di;(1))gCq (I 1, du(1)) let’s say g is at (b, n) position
, then from division algorithm ¢ can be written as ¢ = ap + r where N(r) < N(p).

Now let’s take e, (—a) and multiply eyn(—a)([ ], ; di;(1))9Cg (1, dw(1)) then this ma-
trix will have r at its (b,n) position but N(r) < N(p). So r = 0 so in this way we get a
matrix which has 0 at (b, n) position where b < n and b is arbitrary so by varying b and take
(Ipen €0 (=a)) (T L ; dij(1))gC9 (11, dur(1)) this matrix will have all entries of nth column as
0 except p at (n,n) position and the same thing we do from right. We will get a matrix which
has all entries of nth row as 0 except p at (n,n) position and p € R* because the resultant
matrix is in GL,(R). So now if we multiply the resultant matrix with d,,—1,(p)dn—1,(—1)
then we will get a matrix which has all entries of nth row and nth column as 0 except 1 at

(n,n) position.So we get a matrix which is in GL,,_1(R) and also in the double coset. [
Corollary 4.1.2. [7, Theorem 1.2.11, page 25] If R is a commutative Euclidean ring then
SL,(R) = E,(R).

Proof. In a commutative ring R, E,(R) < SL,(R) and from Lemma 4.1.1 SL,(R) <
GL,(R) = GLi(R)E,(R) < E,(R) which implies SL,(R) < E,(R) = SL,(R) =
E.(R). O

Corollary 4.1.3. Because Z is also a Fuclidean Commutative Ring , then from Corollary
4.1.2 SL,(Z) = E,(Z).

Lemma 4.1.4. SL,(Z) is generated by the set {e;(1),i# j,1 <i<n,1<j<n}.
Proof. From corollary 4.1.3 we have SL,(Z) = E,(Z) which implies that SL,,(Z) is generated

by the set {eij(t),i #7,1<i<n,1<j<n,te€Z}sonowlet’s take t € Z,i # j and take
e;j(t) = e;5(1)" this simply proves the lemma. O

4.2 Proof Of The Theorem 4.0.1 in the case of n =2

10 11 b
In this case ¢ = [1 1] and ¢ = 07T = 01 Now take an arbitrary element v = [a d] €
C

SL(2,7Z). Let’s say ¢ # 0 and also let’s assume |a| > |¢| means the lower left entry has lower
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absolute value than the upper left entry then by dividing a by ¢ from divison algorithm
a = cq+ r where 0 < r < |c|. Now if we multiply ¢~7 to v from the left side then ¢~ %y =

1 — b — b—qd b—qd
7401 _ ¢ 1 but we have a—cq = r so then ¢~y = " 1 now
0 1 c d c d c d
) . 0 1 s c d ) ) )
if we take o~ ¢ == , define ¢~ pp~ 1y == in this matrix also we
-1 0 —r qd—>b

have the lower left entry with lower absolute value than the upper left entry. So multiplying
by enough copies of ¢f~¢ and powers of ¢ we will get the lower left entry zero (because

of the divison algorithm) and the resultant matrix will be in SLs(Z) so the determinant of

+1 kA
that matrix will be one and the form of the matrix will be as follows: 0 41 for some

h € 7Z where the diagonal entries will have the same sign. So the matrix is either ¢" or
—¢~". Now let’s define that H the subgroup of SLy(Z) generated by § and ¢. Then Jy € H
such that yy = £¢’ for some j € Z. Define ¢pf~1¢ = V then V? = —I, which shows that
v =4y ¢/ € H. H is the subgroup generated by § and ¢, and 7 is an arbitrary element of
SL(2,7Z) which shows 6 and ¢ will generate SL(2,Z). So the theorem is proved for n = 2.

Now in further section we will take n > 3. Before going further let’s define some elements:
First take H is the subgroup of SL,(Z) for n > 3 generated by {6, ¢}

Let {uy,.....,u,} be the standard generators (written in column vectors) of the free Z-
module Z" of rank n.which means wu; is a column vector having entry 1 at ¢th place and other

place 0.Now define 0 = §71¢ and w = 0~ ¢o.

So we can easily see that ou; = 07 1gu; = 07 uy = uy—ug+....+(—=1)""tu, and ou; = uiy
for 2 <i<n.

So wup = uy — Uy + ... + (=1)" ", wuy = uy and wu; = u; + ;g for 3 <i < n.

1 0
So we can write w in the matrix form in following way: w = [f 5 ] where f is the
1
-1
. (—1)? .
following column vector:f = . and ¢ is the (n — 1) x (n — 1) analogue of ¢.

(-1t
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4.2.1 The Subgroup %, and the map 7

1 0
Let %, be the subgroup of SL,(Z) consisting of all matrices of the type [ ] where u
u a

runs over all elements (written in column vectors) in Z"~! and a runs over all elements in
SL,_1(Z). Let’s define a map n:

n: (gn — SLnfl(Z)
10
—a
U a
we can easily see that n is a group homomorphism considering them as multiplicative
groups because if we identify %, with set of all ordered pairs (u,a) where v € Z"1 and
a € SL,_1(Z) and the multiplication will be defined in the following way to these ordered
pairs:
(u,a)(v,b)=(u+ av, ab)

n((u+ av,ab)) = n((u, a)(v,b)) = ab = n(u, a)n(v,b)

u a
surjective group homomorphism. Ker n = _#, = {M € €, : n(M) = I} so

10
and for any arbitrary a in SL,_1(Z) we will always have a matrix ] € 6, s0mnis a

10
In = {[ ]] :u € Z" '}, The elements 6 and w which we defined above clearly we
u
1

0
can see that they are in €, where 0 = (s,6;) where s = and 6y is the (n —1) x (n—1)

analogue of § and w = (f, ¢1) .

Lemma 4.2.1. [5, Lemma 1] If r and s are integers in such a way that 1 < s <r <n then

O ters(Q)erirs(@)d = err1.6(Q)err1s11(q) , where q is a non-zero integer.
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Proof. exs(q) = I, + x,5(q) as defined earlier now we have following thing: xs(q)x(t) = 0 if

s # k , otherwise if s = k, then z,5(¢)zg(t) = z,1(qt) and we want to prove

€rs (Q)er+1,S(Q)¢ = ¢er+1,S(Q)€r+1,s+1 (Q) (4’ 1)

and ¢ = I 4+ x15(1) 4+ wo3(1) + ... + Zy10(1) so LHS of equation 4.1 is : ew(q)err15(q)¢ =
(I + ZL’rs<q))(I + IH—LS(Q))(I + ZElg(l) + ZL‘Qg(l) + ...+ xn—l,n(]-)) =1 + I12(1> + 1’23(1) + ... +
'rnfl,n<1> + xrs(Q) + xr,s+1(Q) + xr+1,s(Q) + xr+1,s+1 (Q)

Now if we calculate RHS of equation 4.1 : ¢e,15(q)eri15+1(q) = I + z12(1) + z23(1) +

Lemma 4.2.2. [5, Lemma 2] Let v = syu; + Sotip + ..... + Spuy, be an element of 7™, where
u; 1s the standard basis of Z". Then if s; # 0 for some i then the sub-module of Z'" which is
generated by the set {gu :g € H} , contains (|s;|Z)". So if any s; will have value 1 then the
set {gu : g € H} will generate Z™ , where H =< 0, ¢ >.

Proof. Let M be the submodule of Z™ generated by the set {gu : g € H}. We can see that
Ou; = ui+ujyq for 1 <i <n—1and fu, = u, , so if we take v —v = syus+Souz~+.....Sp1uy €
M and let’s define v — v = m then if we take 6m — m = sjus + Saug + ..... Spolly € M
this process will occur upto we got Q) = s1Unir1 + SoUpnit2 + .-... siu, € M . Now we will
take ¢Q — QQ = S1Up; + SoUpir1 + .....Siuny € M and let’s define ¢Q — @ = @’ and take
oQ — Q' = Q" = s1upi1 + SoUni + .....8Uno SO0 Q" € M in this way if we do this process we
will eventually get that s;u; € M Vi which means {slul, Sollg, .....Spln } € M. Now let’s take
Os1uy = s1(uy + ug) € M which simply implies that sjus € M in the same way operating 6
on these elements will give us that {syu; € M for 1 < j < n} . In the same way operating 6
on Spug we will get that {SQU/j € M for 2 < j < n} and operating ¢ on spus we will see that
PSaUus = Souy + Sous € M but it is proved above that sous € M which implies that squ; € M.
So in this way by operating 6 and ¢ we will get {siuj EMforl1<i<n,1<j<n}. O

The proof in the following section follows very closely to that of Theorem 1 of [5].
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4.3 Proof of Theorem 4.0.1 in the case of n = 3 and

n=>5

Let’s take n = 5, the way %5 is defined it is obvious that # and w are in the subgroup

1 0 0 0 0
-2 1 1 0 0
€5.Now define y = 0w then y = | 3 —1 0 1 0| so now x° = [1 0 ] where
41 00 1 ot
5 -10 0 0

is a 4 x 4 identity matrix and p; is a column vector [4 4 2 6} Then the commutator

1 0
0,x°] = 071 °0x° = [ I] where p, is the column vector [—2 -2 =2 0] Now we
P2

see that from lemma 4.2.2 , if we define the sub-module {gps : g € H} of Z*, then this
sub-module will contain (2Z)* , now let’s define a subgroup {k(ps, 1)k™ : k €< f,w ><
H} < _#5 and this subgroup will contain all the elements of the form (p3,I) where p3 is
a column vector in Z* which has even integers as its components, this we can see because
75 is a Normal Subgroup of €5 so then Vg € €5 and Vh € #5, ghg™t € #5 and the
components of ps are even integers because let’s take g = (¢1,a) € €5 where a € SLy(Z)
then ¢g7! = (—ate,a™t), then g[0, x°lg™ = (c1,a)(pa2, [)(—ater,a™t) = (ape, I) and py
has even integers as components which implies ap, will also have only even integers as
components. That’s why the components of ps are even integers and (ps, I) € H. So which

shows e;1(2) € H for 2 < i <5. Now we will show that e;;(2) € H for j < .
We will use induction on j to prove that e;;(2) € H for 1 < j <1 <5.

For j =1 it is proved above , now assume it is true for 1 < 5 < i < 5 we will prove it for
1 <j+1<i+1<5. From lemma 4.2.1 we know that ¢~ 'e;;(2)eir15(2)¢ = eir15(2)eir15+1(2)
, now we know that ¢ 'e;(2)eir15(2)¢ € H from induction hypothesis and e;y1;(2) € H

which simply says that e;11;4+1(2) € H which proves our statement from induction. So we

(1 0 0 0 0
41 0 00
proved that e;(2) € H for j < i. Now let’s take 6* = |6 4 1 0 0| € H. Which
46 410
1464 1]
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states that 0% = e51(2)%e31(2)3e41(2)%e51(1)e32(2)%ea0(2)%e50(2)%ea3(2)%e53(2)%e54(2)? € H |
and we proved that e;(2),j < ¢ € H which shows that e5;(1) € H. Now e5 (1) = /)14 (;]
where p4 is the column vector [O 00 1] so from lemma 4.2.2 if we define the sub-module
{ gps : g € H} of Z* then this sub-module will generate the whole Z* and now define a set
{g(p4,f)g*1 1 g €< 0,w >} and this set will be a subgroup of #5 and in this case from
lemma 4.2.2 {g(ps,1)g™" : g €< b,w >} = _#5. This implies that e (1) € H for 2 < i < 5.
Now as above we proved by using lemma 4.2.1 that e;(2) € H for j < i similarly we can
prove that e;;(1) € H for j < i. So now ¢ is the transpose of 8 so if we use ¢ instead of ¢
in this proof we will get that e;;(1) € H for j > i because H =< 6, ¢ >. This shows that
that the set {e;(1),i # 4,1 <i,j <5} € H and H is the subgroup of SLs(Z) but now from
Lemma 4.1.4 ; SL5(Z) C H which implies that H =< 0, ¢ >= SL;(Z).

1 0 0
Now take the case for n = 3, similarly define y = 67'w = =2 1 1| then x3 =
3 -1 0
1 0 0 1 00
2 —1 0| So[0,x*]=0"x30x>=|-2 1 0| = ez (—2) which implies ey (—2) € H
4 0 -1 0 01
which further implies e91(2) € H because they are inverse of each other and H is a group.we
can see that eq(2) = [pl O] where [ is a 2 x 2 identity matrix and ps is a column vector
5

[2 O} so we can use lemma 4.2.2 as we use in the case of n = 5 it will give us that

ei1(2) € H for i = 2,3 and similarly using lemma 4.2.1 we will get that e;;(2) € H for j <.
1 00

Now 62 == [2 1 0| = e21(2)es2(2)esi (1) which implies that e3;(1) € H now use the same

1 21
argument which we used in the case of n = 5 we will eventually get that e;(1) € H for

j < i and same as in n = 5 we will get {eij(l),i # 7,1 < 4,7 < 3} € H which shows that
H=<0,p>=SL;(Z).
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4.4 Generation of SL,(Z) for n > 6

Definition 4.4.1. Perfect Group: Perfect group is a group in which the commutator
subgroup of the group is exactly equal to the group i.e. if G is a Perfect group then [G,G]| = G.

Lemma 4.4.1. SL,(Z) is a Perfect group for n > 3.

Proof. To prove this we will use the commutator relation among elementary matrices of
SL,(Z).If we take i, 7,1 in such a way that ¢ # j # [ then [e;(1), e;(1)] = ea(1) other than
this if we have [e;;(1), exi(1)] = I where j # k. We know that [SL,(Z), SL,(Z)] is always
a subgroup of SL,(Z) , so let’s take an arbitrary element v € SL,(Z) we will prove that
v € [SLu(Z), SL,(Z)] then from lemma 4.1.4 we can write v as v = [[; ; e;5(1) so now for
each (1) i can choose an [ in such a way that ¢ # j # [ and e;;(1) = [eq(1), e5(1)] then each
element of product is in the commutator subgroup and SL,(Z) is a multiplicative group so
then it simply proves that v € [SL,(Z), SL,(Z)] and = is an arbitrary element of SL,(Z) so
it proves that SL,(Z) = [SL,(Z), SL,(Z)] for n > 3 , which at last proves that SL,(Z) is a
perfect group for n > 3. O]

Lemma 4.4.2. [5, Lemma 3] The group €., is perfect for n > 4.

Proof. We earlier saw that 4, contains a Normal subgroup _#, which simply we can see
that it is isomorphic to Z"~! and €,/ _#, is isomorphic to SL,_1(Z) (from first isomorphism
Theorem of groups applied on the map 7) and we proved the fact that SL,(Z) is a perfect
group for n > 3 which implies that SL(n —1,7Z) is a perfect group for n > 4. So €,/ _#, is
a Perfect group for n > 4. This means that [,/ _Z,, €/ #n| = €n/_ 7w so now if i take
an element M € %, and define [6,,%,] = €,. Now M € €, that’s why M 7, € €./ 7
and we have the fact that 4,/ ¢, is a perfect group for n > 4 which means 3 P _gZ,
and Q_Z, such that [P_#,,Q_#,] = M _¢,. This implies that P'Q'PQ ¢, = M ¢,
which means M~ 'P~1Q'PQ € _7, so we can take an element j, € _#, so that j, =
M=1P71Q7'PQ = M = P'Q'PQj; ' which says M = [P,Q]j;* and M was an
arbitrary element of €, that proves that ¢, =[¢,,%,| . = €, = ¢, _#,. Now if we
prove that ¢, is a subgroup of €, then we are done. As we previously state that we can
write elements of ¢, as ordered pairs (u, a) where u € Z" ' and a € SL,,_;(Z) . Now we have

(u, I)71(0,a7 ") (u, I)(0,a) = (e 'u — u, I). So let’s take uy,ug, ......, u,_; are free generators
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of #, so let’s take u to be u; where uy = | | and a™* to be €;;(1) where 2 < i <n —1.

0
Then (u1, 1)71(0,€;1(1))(u1, 1)(0,e:1(—1)) = (u;, I) for 2 < i < n — 1 which also shows that
(u;, I) € €. for 2 < i < n—1. Now if we take u = up and @' = e12(1) then it shows that
(w1, I) is also a commutator , but (u;, ) for 1 <4 < n—1 generates _#, and that proves _#Z,
is a subgroup of ¥’ which states that €,, = €. = [6,,%,] which shows that %, is a perfect
group for n > 4. O

4.4.1 Proof Of Theorem 4.0.1 when n > 6

The proof in the following section follows very closely to that of Theorem 2 of [5].

We will proceed by induction on n, so the theorem is true for n = 5 by previous section
and assume the theorem is true for k = n — 1. Intially we defined the surjection n : 6, —
SL,_1(Z) given by n(u,a) = a and kern = _Z,. Let %, be the subgroup of €, generated by
6 and w So the way 6 and w are defined in previous sections we can clearly see that 7(6) and
n(w) are the elements of SL,_(Z) that are the (n — 1) x (n — 1) analogue of 6 and ¢. So
from induction hypothesis 7(f) and n(w) will generate SL,_1(Z) and thus n(J%,) = n(%6,).

Now we prove the following lemma:

Lemma 4.4.3. 7,7, =6,

Proof. So we know that #,.%, C €,. Now let’s take an element (v,a) € 6, we will prove
that (v,a) € _#,%, so to prove this we can write (v,a) = (v1,])(v2,a) and the way the
multiplication of these ordered pairs are defined we have to choose our v, in such a way so that
v1+vy = v and (vg,a) € %, and we know that a € SL,,_1(Z) and from induction hypothesis
SL,_1(Z) is generated by n(6) and n(w) so a = n(8)'n(w)’ so (ve, a) = (ve, n(0)'n(w)’) and in
section 4.2.1 we saw that 0§ = (s,0;1) = (s,1(0)) and w = (f, phi1) = (f,n(w)) so let’s take the

n=s m=j

element @'w’ = Hl(s,n(ﬁ)”) IT (f,n(w)™) = (s +n(0)s +n(0)%*s + ..... + n(0)Ls,n(0))(f +

M@+ 0@ F + e+ (@) (),
which implies that 6w’ = (s+n(0)s+n(0)*s+.....+n(0) " s+n(0)" (f+n(w)f+n(w)>f+
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so we will choose our vy as vy = s +9(0)s +n(0)*s + ..... + n(0) " Ls + n(0) (f + n(w)f +
n(w)f + ... + n(w)?~1f) taking this vector as vy it will give us that (vq,a) = 6w’ which
implies that (vs,a) € J, because %, =< 0,w > and vy = v — vy and (v1,1) € ¢, =
(v,a) € _#,2, which implies that €, C _#,,.#;, which ultimately shows that €, = _#,.%,,.

[

Now Let %,_1 be the subgroup of SL,_1(Z) same as %,, subgroup of SL,(Z). Now let
&, be the preimage of %,,_1 in %, which implies that &, < %, , now the preimage of %,,_;

under the map 7 in %, will contain in a subgroup .7 of %,, which will have elements of the

G() 0
type §) R where b € Z , G(b) is a 2 x 2 matrix and G(b) = e1(b), Jisa (n—2) x 2

matrix and R € SL, _2(Z). Now as we saw earlier that n(.%#,) = n(%,) similarly, the way &,
and .7 defined and because 7 is onto that’s why we will have 1(&,) = n(.7) = €,—1 . Now
if we see the group _#, is in the group .7 means ¢, < .7 with R = I. So then from lemma
143, T = 7.6,

Now Let’s define a map, f: 7 — 7Z

G@b) 0
J R

the map [ is a surjective homomorphism considering .7 as a multiplicative group and Z as
an additive group which means 5(de) = 5(d)+ B(e). Now take the commutator |7, .T] < T
and let’s say t € .7 then we can easily see that B([t,t]) = 0 and we have that &, < 7 so
it says that [&,,6,] < [7, 7] < kerp and n([&,, &) = (&), ()] = [€n-1,€,—1] but
from lemma 4.4.2 we have that %, is a perfect group for n > 4 so [6,_1, 6,1 = €n—1. Let’s
denote [€,, €, = €, then (&) = €,-1 and then it follows that 7 = _#,6..

Now 0 € .7 with b =1s0 3(f) = 1 and let’s say Jy € ¢, and ¢ € &, so that 6 = yq
and B(0) = B(yq) = B(y) + B(q) but ¢ € &, and that’s why [(q) = 0 which implies 5(y) =1
and 0 € 7, and q € &, < &, < J,, which implies y € ¢, N %, so y € _#, such that
B(y) = 1 so this says that y = (z,1) where z € Z"! and 2 = [1, ]/ so from lemma 4.2.2
the sub-module {gz : g € J#,} will generate module Z" and the set {gyg~' : g € J#,} is
a subgroup of JZ, because y € J#, and also subgroup of _#, but because of lemma 4.2.2
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this subgroup will generate _#, so that implies ¢, < J#,. From the map n and from first
isomorphism theorem of groups we have J,/ #, N, = SL,_1(Z) but 7, N, = 7,
so we have %,/ 7, = SL,_1(Z) but we also have ¢,/ _#, = SL,_1(Z) this implies that
G, = K.

Which says that 4, =< 0,w >< H. Now the way %, is defined it contains all the
elementary matrices of the form e;;(1) for 2 < i < n which implies that e;(1) € H for
2 < i < n and then from lemma 4.2.1 we can see that e;;(1) € H for i > j. Now H =<
0,¢ > and we have ¢ = 07, so the group H will contain all the transpose of its elements
which implies that {e;;(1),1 < i,j < n,i # j} € H so from lemma 4.1.4 we can see that
H=<0,¢ >=SL,(Z) for n > 6.

So in this way we proved Theorem 4.0.1.

4.5 The group generated by # and ¢ when n =4

When we stated Theorem 4.0.1 we stated that § and ¢ will generate the whole SL,,(Z) except
the case of n = 4 so in this section we will see which type of subgroup of SL4(Z) , 6 and ¢

will generate , what are the properties of that subgroup.

Lemma 4.5.1. [5, Lemma 4] In the case of n = 4 ,the set {e;;(2),1 < i # j <4} € H,
where H is the subgroup of SL4(Z) generated by 0 and ¢.

1 0 0 0
. -2 1 10
Proof. In this case also let’s define y = 0~ 'w = ; Lo now x* has the form:
—4 1 0 0
1 000
. |-6 100
YTlo o010
6 0 0 1

= x* = (v,I) € €, where v is the column vector [—6 0 6] so similarly as we got

in section 4.3 using lemma 4.2.2 we will get that (pg, /) € H where vector pg will have
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integers divisible by 6 as its components.Which implies e;1(6) € H for 2 < ¢ < 4 and
1 0 0 0
) , , 19 12 1 0 0

then using lemma 4.2.1 , €;;(6) € H for i > j. Now take §'% = =
66 12 1 0
220 66 12 1

012 = e91(6)%e31(6)  e39(6)%€41(6)3 es1(—2)es2(6) es3(6)> € H. We proved that e;;(6) for
i>je€H = ey(—2) € H then eq(2) € H. Then from lemma 4.2.2, ¢;;(2) € H for
2 < i <4 and in the same way as we did in previous sections from lemma 4.2.1, eij(2) cH
forv > jand H =< 0,¢ > and ¢ = 07 so if M € H then MT € H so it implies that
e;j(2) € H for i < j which implies the set {e;;(2),7 # j,1 <i,j <4} € H. O

Define a map vy : SLy(Z) — SL4(Z/27) which is just sending to the matrix of SL,(Z)
to its equivalence class in SL4(Z/27) . This map is clearly surjective so now if we talk about

the kernel of this map it will be :

Kerypg = {M € SLy(Z) | ¢o(M) =1} so if M € Keriy, , then M will have following
matrix form:

1 wheni=j
M;; = where a € Z.

2a otherwise

So if we take e;;(2) for i # j will contain in Kerty, and also if we take any arbitrary
element of Kert, that can be written as product of powers of e;;(2) which simply implies
that Keryy =< €;;(2),1 < i # j <4 > = Keryp < H. So it means that Keryp, is
contained in H which is the subgroup of SL4(Z) generated by 6 and ¢.

Theorem 4.5.2. [5, Theorem 3] The subgroup H of SL4(Z) which is generated by 6 and ¢
has index 8 in SLy(Z).

Proof. We know that Keryy < H < SLy(Z) and from first isomorphism theorem of Groups
we have that SLy(Z)/Kery = SLy(Z/2Z). So index of Keriy, in SLy(Z) is the cardinality
of SL4(Z/27Z) and that will be (2* — 1)(2* — 2)(2% — 22)(2% — 23) and we have a fact that
H /Keryy = A; where A7 is the alternating group which is the subgroup of symmetric group

S7 and it has cardinality Z So [SL4(Z) : H] = %

Which implies that [SLy(Z) : H] = 12x1xX2x8x2 — g
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Which proves that the subgroup H of SL4(Z) which is generated by 6 and ¢ has index
8 in SLy4(Z). O
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Chapter 5

Steinberg Generators for Symplectic
Group Sp(2l, k)

In this chapter we will study two generation of the Symplectic Group Sp(2l, k) ( char(k) # 2).
It means that 2 elements can generate Sp(2l, k). For this first we will define all the elementary
matrices of Sp(2l, k) and then we will show that those elementary matrices will generate
Sp(2l, k). Then we will prove the Two Generation of Sp(2[, k).

Notation: £ = [Fy; a finite field with ¢ elements.

5.1 Symplectic Group Sp(2l, k)

We defined Symplectic Group in Chapter 1 ,so now in this section we will define Symplectic

0
Group with B = / ‘| where B is the matrix associated to the non-degenerate skew-
—1
symmetric Bilinear form [ as defined in Chapter 1.

So now as defined in the Chapter 1, let’s take the dimension of the Vector space V', an odd
number then the matrix associated to § which is B will also have an odd order and we know
that B is skew-symmetric and an odd order skew-symmetric matrix will have determinant
0. So if (3 is skew-symmetric and non-degenerate then the dimV has to be even ;so let’s take
dim(V') = 2l, then size of the matrix will also be (2] x 2[) and let’s denote the first I rows
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and [ columns as {1,2,3, ..... 0} and [ + 1 to 2 rows and columns as { —1,-2,.... = 1}

Then let’s fix the basis of V' as standard basis {uy, ug, .....tu;, u_1,u_g, .....u_;} where basis

vector u; is defined as follows:

1 at ith postion
U; =
0 otherwise

then with respect to this basis we can always find the matrix associated to skew-symmetric
0

and non-degenerate bilinear form § as B = /
—1

I
()l] where B is a (2] x 2]) matrix and

is a [ x [ identity matrix.

Definition 5.1.1. Symplectic Group Sp(2l,k): Symplectic Group defined with the B =

0 I
[ / Ol] over a finite field k is denoted as Sp(2l, k).
—1

In this chapter we will just deal with this Symplectic Group Sp(2, k).

For section 5.2 and 5.3 Reference is [1].

5.2 Elementary Matrices of Sp(2[, k)

We are denoting rows by 1,2,.....1,—1,—-2, ..., —1. Now take | > 2,t € k

Then in this chapter we are defining e; ; (a 20 x 2] matrix) as follows:

1 at ijth postion

el:] - .
0 otherwise

. Now following are the elementary matrices of Sp(2l, k) where, 1 <i <[, 1 <j <

Wij(t) =1 +tlei; —eji) i#]

Wi (t) = I +t(es—j +eji), 0 <j
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Vo) =1 +tleij+e ), i<
‘Ili,—i<t) = _[ + tei,—i

\If,m‘(t) =1 + te,iji

So if we write them in matrix form using block diagonal notations , there will be following

Elementary matrices :

S 0

Q1 : 0 (5T where S = I +te;;; ©# j and S is a [ x [ matrix.
1 5] . o

Q2 : 0 I where S is either t(e;; +€j;) ;1 < j or te;;
1 0] o o

Q3 : 5 7 where S is either t(e;; +ej;) ;@ < j or te;;

5.2.1 Elementary Operation for Sp(2l, k)

In this section we will see how the above defined elementary matrices of Sp(2[, k) will effect

an arbitrary element of Sp(2l, k).

M N
Now let h = [T P] € Sp(2l,k) where M, N, T, P all are | x [ matrices.Elementary

Operations are:

pr |S0 | [M N]_| sm SN
o (SO T P [(S)TMT (SR
) _ o o
sen | M ON|[s 0 | [Ms N(sT)
T P||0 (S7)! TS P(ST)™!
T .
ERY. S| [M N|_|M+ST N+sSP
o If|T P | T P
seg. | M ON| LS| _|M MSs+N
T P||0 I|] |T TS+P
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7 ol (M N | M N
ER3: —

s 1| |T P SM+T SN+ P

‘v N[ o]l [M+NS N
ECS3: = +

T P||S I T+PS P

5.3 Generation of Sp(2[, k) by Elementary Matrices:

Theorem 5.3.1. [1 4.1] Symplectic Group Sp(2l, k) is generated by the elementary matrices
(Wi ()50 # 5, Wi 5(t);0 < 5, Wy (t);0 < g, Wy (1), U_;(t) |t €k}

M N
Proof. Now let’s take h = T p € Sp(2l,k) so it’s a 2] x 2] matrix. We will prove that

h which is an arbitrary element of Sp(2l, k) is product of the elementary matrices defined
in section 5.1 . We also note that the inverse of an elementary matrix is also an elementary

matrix.

My Ny

First Step: h will be converted into h; = [ 2
1 1

] by elementary matrices:
So let’s see the effect of ER1 and EC1 on the block M.It changes M to SM where
S = I + te;;. There are 2 cases , first if M is invertible [ x [ matrix and second is that M is

not an invertible matrix.So take the first case:

(i)Block M is Invertible: In this case we will prove that by multiplying S to M for dif-
ferent 4, j we will get a matrix M; which will have the following form:M; = diag(1,1,1, ....., u)
where p # 0.

Lemma 5.3.2. H SM = My where My = diag(1,1,1,....., ).

Proof. We know that M is a [ x [ matrix and we will prove the lemma by applying induction

on [ so let’s take [ = 2 , then M = [Zl Z2] and in this case S = I + te;; where 1 < ¢ <
1 02

2,1<j<2, i#]

0 Ao — albgbfl

so let’s take S; = I + (—a1b; ep then S{M = [b ;
1 2

] we can take ag —
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0

arbeby' = py € k then S{M =
by by

Now take Sy = I + (—bouj')es then Sy S M =

O,lil

0 —1
; Now let’s take S35 = (I + e91)(I — e12)(I + e21) = €91 — €15 = ) O] then
1

0 =110 b 0
535'251M = H = ! NOW take S4 = (I — bflem)(f + b1€21)<[ —
1 0| 0 0
. bt 0 10
bl 621)([ - 612)([ + 621)([ - 612) = . So now S4SgSQSlM = and
0 —b1 0 —bl,ul

1 0
we can take —byuq; = p, so then; S4535,51M = [O ]
1

which shows our statement is true for [ = 2.

Assume the lemma is true for [ — 1. Now take the case when M is a [ x [ matrix

a; as -
then M = [+ - ‘| now if we apply S = I + te;; on M with the condition that
bl
1 <14,7 <1 —1 then it is equivalent to applying on a [ — 1 x [ — 1 matrix and then from
(10 - 0 a
0O 1 -+ 0 Y
induction hypothesis these operations will change M to M' = |: : .. : . Now
00 - w K
U
) . -
0 1 by
Take Sy =1 — lie;; and S1M' = : :
0 - k;
i lo -+ L1 ll_alll_
Now take S; =1 —lie;; for 1 <i<[—1 and
_ . al_
0 b
evaluate szlfl SiM' = |+ ¢+ . where ¢/ =1, — ayly — bly — ... — kil—4.
00 -+ m Kk
00 -~ 0 o
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In the same way we can make a;, by, ...k; all entries zero by appropriate elementary oper-

ations and we will get:

0 0
01 0 O
M'= |+ + . = diag(1,1,...., g, it')
pr 0
0 /

now take S = (I + pi ' eim1)(I — paen—1)(I + pitem1) (I — erig) (L + emn) (I — e_1y) =
diag(1,1, ..., 47", ). So SM" = diag(1,1,...1, uypt') ; so we can take i’ = p # 0 which
implies SM" = diag(1,1, ..., u) = M; which proved our lemma. O

Now because we are observing the effect of ER1 and EC1 on h so it will also affect the
block T because it will change T to (ST)™'T. Now we will prove that these elementary

Ty, T,
T2 where Ty is al—1x1—1 symmetric
21 1o

matrix and T = uTy,. To prove this we will prove following lemma:

operations will change T' to T} where T} =

Lemma 5.3.3. [1, Lemma 4.1] If A = diag(1,1,..,1, p, ju, ...;s) is a matriz of size | and
number of 1s equal to m < | and p # 0. Then let’s say we have a matriz X such that

X1 X
AX is symmetric then X = 2 here X11 will be a m x m symmetric matriz and
Xo1 Xoo
X12 = /LXgl
X X

Proof. Now AX = [

X7 XTI
] , but AX is symmetricso (AX)T = AX = [ n M 21]

puXo1  pXoo Xy pXg,

X1 X
S P X, = Xi; which shows that Xi; is symmetric
Xo1 Xoo
and X5 = uXJ,. O
. ) M, N
Now in The first step we wrote that we will get hy = T p from h and h; €
1
Sp(2l, k) so from the definition of Sp(2l,k) we will have h]Bh; = B so which implies
MT 1] 0 I |M N 0 I
that Lot : R - : ; after solving this matrix equation
Ny PI||-5 ol |Tn P 1, 0
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we will get M{T} = T{M; but we get M; = diag(1,1,....,u) so M{ = M; so we will
get MiTy = TfM] = M7y = (M;T1)" which shows that M;T; is symmetric and

Tll T12

M, = diag(1,1, ..., ). So from lemma 5.2.3 we will get that T} = where T7; is

01 I
al—1x1[—1symmetric matrix and To = puTy;.

M, N
So in the First Step (i) we got hy = [ ! P1] where M, = diag(1,1,....,u) where
1 P
T T3
w#0and Ty = " MT | where Ty; is a l — 1 x [ — 1 symmetric matrix.
21 122

(ii) Block M is not invertible: In this case also we will apply ER1 and EC1 on & in
the same way as in the case (i) but because M is not invertible so there will be some rows
and columns which will be linearly dependent on other rows or columns so when we will
apply these elementary operations on M , then that many rows will become zero and that
number will depend upon the rank and let’s say rank(M) = m then in this case M; will be
M, = diag(1,1,...,1,0,0,...,0) where no of 1s will be m < .

T, T,
In this case also M;T7 is symmetric and let’s say T = M T12] then M Ty = (M T))T =
21 129
T, T 5 0
e which says that T7; is a m X m symmetric matrix and Ti5 = 0 so
0 O T,
Ty . . .
1= where T1; is a m X m symmetric matrix.
Ty T

M, N;

So in the First Step (ii) we got hy = [ J
1 N

] where M; = diag(1,1,..,1,0,0,...,0)

T
where no of 1s equal tom < [ and 177 = M

21 T22

] where 17 is a m X m symmetric matrix.

M, Ny

Second Step: h; will be converted into hy = "l
0 (M3)

] by elementary
matrices ; where M, = diag(1,1,...,1, 1"):

T MT2T1

(i) When M; = diag(1,1,...,) and 17 =
01 I

We will observe the effect of
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I 0| |My, Ny M, N
ER3 on the block 77, because ER3: = so let’s
S Il |Ty P SMy+T, SN+ P,
see the effect on T it changes it into SM; + T; where S = t(e;; +€j;) ; @ < j or te;;
a1 ar—1
, , b bi—1 ,
and M; = diag(1,1,...,p) . Let’s define 133 = | al—1x1—1 symmetric
SRR
ap a1 A
by - b pAe
matrix and Ty = [/\1 Ai—1| ; then Typ = pTJ; then Ty = | : : let’s
k1 ki1 ,U)\l—l
A1 Ai—1 d
0 a1 pAr
by bi_1 pAe
take S = (—ay)eyy then SM; + T = : : so now in this way we can do
k1 kiy ph—y
A1 Ai—1 d
pAL
P2
multiply by these elementary matrices and change T} to 7] = : : now take
0 pA—
0 0
0 0
0 [L)\Q
S = (—)\1)61’1 then SMl + Tll =
0 u/\l_l
0 0

in this way we will eventually change 7} into zero matrix that means 7 changes into
Ny

v

case '’ = p and hy € Sp(2l, k) so if we use the fact that hlBhy = B where B =

T5 = 0 so hy converted into hy = where My = diag(1,1,...,1, ") where in this

0 I
- 0

where [ is a [ x [ identity matrix.Then we will get that P, = (MJ)™*
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My Ny
then hy = )
0 (M7)™"
.. . . T11 0
(ii) When M; = diag(1,1,...,1,0,...,0) where no of 1s is m < [ and T; = :
Ty T
where Ty is a m X m symmetric matrix. Now in the same way as we did in the Second
al DY am
. ' by - b,
Step (i) we will observe the effect of ER3 on the block T , let’s say T1; = _
ml DRI mm

is a m x m; m < [ symmetric matrix and in this case Ty is a [ — m X m matrix. So now
the way M is defined in this case and by using appropriate S = t(e; j +e€;,) ; i < j by doing

SM; + T similarly as the case (i) we can easily make 7T}; matrix as zero matrix. Now T}

0 0
changes into 7] = | So now ER3 will not change M; and N; so upto now h; is
21 122
. , My, M S : .
changed into b} = ™ p ; h) being a 2] x 2] matrix and element of Sp(2l, k). So now in
1 12

the matrix h} the block M; has 0 as an entry from (m + 1)th row to [th row. and the block

T} has 0 as an entry from (—1) row to (—m)th row.

Now let’s define a matrix for 1 <i <1; w; ; = V; ;(1)V_;;(—=1)¥; (1) = Iy + e —
e_ii—e;—e_i_; € Sp(2l, k) where Iy is a 2] x 2/ identity matrix. When this matrix w; _;
multiplied to the matrix A} it will interchange the ith and (—i)th row and it will multiply
one of these rows by (—1). So we will use these matrices to interchange the rows of h} to
make 7] a zero matrix.

So [T L wiih = [M{ Ny

e ’ 0 P
interchanged in ] as we saw above so now we can follow the same proof as we did in the case
First Step (i) means we can use ER1 and EC1 to make M| diagonal so then the block M will
M; N,

0 B

. Now all the rows which was zero in the block M; is

change into M, = diag(1,1,...,1, ") and [[.=. ., w; ik} will change into hy =

i=m+

and now using the fact that hy € Sp(2l, k) gives us that P, = (M])~!.

M, Ny

So now we got our desired matrix which is hy = o
0 (M)

] where My = diag(1,1,....,1, u)
and p # 0.
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M, 0
0 (M)~
trices ; where M, = diag(1,1,...,1,): To prove this we will first prove following lemma:

Third Step: hy; will be converted into h; = [ ] by elementary ma-

Lemma 5.3.4. [1, Corollary 4.3] Let Q =

D :
0_1] € Sp(2l, k) where C = diag(1,1, ..., )

Dy p~'DY

then D will have following form D =
Doy Do

] where Dyy 1s al—1 X1 —1 symmetric

matrix .

Proof. Now because @) € Sp(2l, k) then QTBQ = B
CT 0 C D 0

0 I
(CY)T [—Il o] 0 ¢! s
matrix equation we will get DTC™! = (C~HTD but CT = C so we have DT(C™HT =
C'D = (C7'D)" = C7'D which says that C~1D is symmetric.

which implies that

I
()l] after solving this

D D DT -1pI
Now C—'D=| ! 2o P A IR ek implies that DI, = Dy which
-1 -1 T -1pT 1
Doy 7 Do Diy ™ Dy
says that Dq; is a symmetric matrix and Dip = /le;l. O

Ni p~'Ng
Nyy Na
where Nj; is al—1 x [ —1 symmetric matrix. Now this matrix has the same form as 7} had

Now in our case () = hy , C' = My, D = N5 so from Lemma 5.2.4 Ny = [

in the First Step and now if we observe the effect of ER2 on the block N is same as effect
of ER3 on the block 77 in the Second step and from that elementary operations we made
T} into a zero matrix, so similarly here we can make N, into a zero matrix.and ER2 doesn’t
My 0 ]

change the block M,. so we got hy = B
[ 0 (M)~

Fourth Step: Now h3 = diag(1,1,....,p1,1,1,....,u~") will be converted into hy = Iy
where Iy is a 2] x 2] identity matrix: To prove this we just have to prove that hj3 is a

product of elementary matrices in Sp(2l, k).

earlier we defined the element w; (1) = Wy ()W, (—p ) _y(p) = Iy—ey—e_; 1+

—1
per— — [ ey

so now take , wy_(p)wr1(—=1) =y ()@ (—p ) (@)U (=1)P ()T (1) =
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(I + per—) (I —ptemy) (I 4+ pey—) (I — e ) (I +e—y) ([ —ep—) = Ty — ey — e_y— + peg +
p ey =diag(1,1,...,p, 1,1, ..u™t) = hy

50 wy,—i(—1) " wy () "Thy = Iy = ha.

So in this way we proved that elementary matrices of Sp(2l, k) will generate Sp(2[, k). O

5.4 Two Generation of Sp(2l, k)

Reference for the following theorem is [14, 3.11].

Theorem 5.4.1. Sp(2l, k) is generated by following two elements:

aj=Iy—e1—€en—e1_1—€ o stjer1+j teant+j e 1 1+ je_o o andr = Ty(1)T.
Where j is the generator of the multiplicative group k* of the finite field k such that j # 1.
Uy9(1) =1+e12—e_og_1 is an elementary matriz of Sp(2L, k) and ' = ey —e_1; —ea1 —

€ 2-1—€32—€_3_2 ... —€-1 — €1, —(1-1)-

Proof. To prove that {«;,r} will generate the group Sp(2l, k) we will prove that these two
elements will generate the elementary matrices of Sp(2l, k) and then from theorem 5.3.1,
we have that the elementary matrices of Sp(2[, k) will generate the group Sp(2l, k). So in
this way we will prove that {a;,r} will generate the group Sp(2, k). Now r = W ,(1)I' =

(121 +e12 — 672,71)(61,71 — €1 — €21 —€_2_1 €32 €3 92— ... —€-1 — 6—1,—(1—1)) =
I'—eig+eo = r=I—e1+e_21 . Now define r~t = €yl —€_12— €12 — €23 ... —
€10 —€,-1—€-1,-1—€.1-2 €23 ...~ €_(-1),—1 -

Now define P be the subgroup of Sp(2[, k) generated by «o; and r = P =< a;,r ><
Sp(2l, k) . Now let’s take p = rogril =l —e1+e o) Iy—e1—€a—€1-1—€_9_o9+
Jerit i eap i e e g o)rTt = (rdesn—jesite g 1—j leg 1 +esp—j ezt
e_s_o—je_s_o+es —jer)r = (r+((1—j)lean+eso+en)+(1—7")(e—z1+
eso))r P =1Iy+ (1 —j)(ea1 +eso+ern)+ (1 —7 H(e_a_1+es2))(er1—eyo—e1a—
€23 — ... = €11 —€,-1 €11 €12 €23 ... — 6—(1—1),—1) = Iy — €22 — €33 —
ego—e 33+ (j—1)era+jess+j ess+ (J—1l)eca1+j 'ea o +jes 3 = p=
Iy—esn—e33—e 9 o9—e_g3+(j—1)e1o+jesnt+j tess+(j—1)e_a_1+7 te_a o+je_3_s.

Let’s take commutator of p and «; ; [p, ;] = p‘lozj’lpaj = (Iy — €29 — €33 —€_9_9—
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ez 3+ —1)e1atj teantjesst+(j—1)e—o _1+je—o o+j te_5 3)(lay—e11—e20—€ 11—
€_9 9 +j_1€1,1 +jeaatje_1 +j_1€—2,—2)(121 —ego—e33—€_9 o—e_33+(j—1)eja+jesn+
J‘_1€3,3+(]’_1—1)672,71 +J‘_1€—2,72+]‘673,73)([2l—61,1—62,2—671,71—672,—24']'61,1 +j_1€2,2+
Jleci1tjeo o) =(Iy—e1—e33—e_1_1—€_3 3+j ter1+(1—j)eia+jess+ie1 1+
(j2=jle—a1+j tes 3)(Ju—€er1—esz—e_11—€3 3+jeri+(1—7eioa+itess+
._1 _ _ +< ._2_ ._1) B _ + . B _ ) — [ +<1_ .+ ._1_ ._2) _(1_ .+ ._1_ ._2) B B —
J 1,11 J )é—2,-1TJ)€E_-3_3 2 JTJ J “)€12 JTJ J “)€—2,-1
Iy + (=12 = 1)(erg —ea1) = Vio(( —1)(G72 = 1)).

So we have [p, ;] = ¥15((j—1)(j7%—1)), now as in the statement of the theorem we have

J#£1 = (-1 2-1)#0,let’ssay (j—1)(j72—1) = f # 0 then [p,a;] = ¥15(f) € P
where f # 0 and Wy 5(t) is a elementary matrix of Sp(2[, k).

Lemma 5.4.2. [14, 3.9] We have P =< ay,r > and V15(f) € P where f € k* where k*
is the multiplicative group of the finite field k. Then «; and Vqo(f) will generate the set
{U15(d); d € k} which will further imply that {¥15(d); d € k} C P.

Proof. Let’s take conjugate of Wy o(f) with «; , then ajllll,g(f)aj_l = [y —e11 — €22 —
€_1-1—€_g_o+jer +j_1€2,2 +j_1€—1,—1 +je_o _o)(Iy+ flerg—e—o_1)) (I —€11 — €22 —
e_11—€g o+ j e+ jesntie 114 lemo o) = In+j flers —e—a 1) = Wi2(5*f).
Now if we take aj\IiLQ(ij)aj_l it will be equal to ¥y (j*f) , in this way if we repeatedly
do this conjugation we will get that {U12(52f), W12(j*f), U12(5°f), ... W12(j% f)} C P so
if we take product of these elements that will also be in the subgroup P which means that

{U12(32;5%) )} C P.

So now let’s define the subset 2 of the finite field k as follows: 2 = {(3°,j%)f :
Ui5((>2,7%)f) € P} which means 2 = {j2f,j*f,...,(j* + j*)f,...} € k and j is the
generator of k* and j # 1. Now we can prove that 2 = k by using lemma 3.2.2 in chapter

3, which simply proves that {W¥»(d) : d € k} C P. O
Now let’s take F\Iflg(d)]_—‘il = (61,_1 — €110 — €21 — €21 €32 €32 ... —€11-1 —
6—1,—(1—1))(f2l+d(€1,2—6—2,—1))(€—Z,1—61,—1—61,2—6—1,—2—62,3—6—2,—3— ----- —61—1,1—6—@—1),—5) =

(T — degg + de_3 )T = Iy + degs —de_3_o = Iy + d(eaz — e_3_2) = Uy3(d) =
DUy 5(d)T™! = Wy3(d). Which simply says that ¥y3(d) € P. Now in the same way if we
calculate T'Wq3(d)I™! = W34(d). So just following this procedure we will get that for any
d€k; {Va3(d),Vs4(d),Vys(d),....., ¥,1,(d)} C P.
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Now let’s take d, u € k and calculate commutator of Uy 5(d) and Wy 3(u), [¥q2(d), ¥a3(u)]
= ‘111,2(d)_l‘112,3(11)_1‘1’1,2((1)‘1/2,3(“) = (Iy—d(ero—e_2_1))Iu—ulesz—e_3_2))(Iy+d(e12—
e_91)) Iy +u(ess —e_3_2)) = (Iyy —ueys +ue_3 _o —dey o+ duey s+ de_o 1) (Iy + uess —
ue_s _otdey ot+due; s—de_o 1) = Iy+(du)(e13—e_3_1) = Uy 3(du) = [V12(d), Va3(u)] =
Uy 3(du) and du will vary over all the elements of the field k£ so which says that for any
t € k;{¥,5(t)} € P. So in general let’s take 2 < i < [ — 1 then [¥y,(d),V,,;11(u)] =
Uy (d) 00 (w) 0 1 (d) Py 541 (u) = Uy ,49(du) which implies that {Uy,,,(t)} € P for
3<i+1 <1l = {U5(t),V14(t),..... ¥1,(t)} C P;Vt € k. Now in the same way if
we calculate for 3 < i <1 —1, [Wo;(d), ¥iir1(u)] = Woi(d) W01 (u) " Woi(d) V501 (u) =
I + (du)(egiv1 — e—(ir1),—2) = Vo1 (du) = {Wau(t), Was(t),...., Uou(t)} C P; Vt € k.

So in this way , we can do this calculation and we will get that {¥3,(t); 3 < i},
{Wai(t);4 < i}, ., {W_1,(t);1 — 1 < i} will contain in the group P. So it shows that
{U,;(t); i<yjtek}CP.

Now we have that ¥;_y,(d) € P ; solet’s take TW;_1 ()t = (e _;—€e_1;—€21—€ 91—
€32 —€.3_2— ... —€Li-1— 671,7(171))(121 + d(elfl,l - 671,(171)))(671,1 —€,-1— €12~ €12~
23— € 93— . — €11y — €_q_1)—1) = (D —dey 1y — dey )T ™! = Iy +dey—y — dej 1 =
Iy+d(er 1+ e—1) =¥ _4(d) ; so for any d € k; {\I/L_l(d)} C P.

Now take T'W; ;(d)T™! = (e1,; —€_1,— €21 — €91 — €30 — €3 9 — ..... — ey —
—(1- ))(-721+d(61 te1))(e—in —e—1 —e1p— €19 — €33 — €93 — ... — €11 —
e_(-1),-1) = (F—dez g—dey )TV = Iy —degy +de 1 o = Iy — d(eg; — €_1,2) =
Uyi(—d) = Wy (—d) € P. Now Wy;(d) is inverse of Wy (—d) = Vy,(d) € P. Now
[0y (I = (61,—1 —€_1y]— €] —€_g 1] — €32 — €3 9 — ... —e—1 — e—g—-1)) (Lo +
d(€2,1 - 6—1,—2))(6—1,1 — €1 — €2 — €12 — €3 — €23 ... — €—11 — 6—(l—1),—l) =

I+ d(esg — e 9 3) = U3a(d) = Ty (d)I"! = W3,(d). So as previously we did, in
the same way we will get that {V32(d), Uys(d),...., Vs —1(d)} C P. Now [¥34(d), Uyy(u)] =
‘113,2(d)_l\1’2,1(U)_1‘I’3,2(d)\1’2,1(U) = [y —d(ezo—e_9_3)) Iy —u(eas —e—1,-2)) (Lo +d(ez2 —
e_o-3)) (o +uleas —e_1,-2) = (Jor —ues +ue_1_o — degs + dues 1 +de_o _3)(Iy + ues; —
ue_y_o + deso + dues; — de_o_3) = Iy + (du)(esy —e_1_3) = V31(du) = V3;(du) € P
and du will vary over all the elements of the field k; so ¥3,(t) € P. Now as we previously
did , we will have {V, ;(¢); i > j; t € k} C P. We previously proved that {V, ;(t); i <
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JytekyC P = {V,;,(t); i#j,tek}CP

{W;(t); i #j; tek}CP

Now calculate T, (d)['™ = (61 —e 15— €21 —€ 9 1 — €32 — €3 9 — ..... — ey —
671,7(171))([21 + d(ez,l - 6—1,—5))(6—1,1 —€,-1 — €12 — €12 — €3 €23 ... — €11 —
e_-1),—1) = (D —de_11 +de_o )T = I+ d(e_12+e_21) = ¥_15(d), which implies that
U_15(d) € P. Now take DUy ;(d)T ™' = (e, y—e_1;—€a1—€ 9 1—€32—€ 3 _9—.c.—€ 11—
671,7(171))([2l+d(61,l—671,71))(64,1—61,71—61,2—671,72—62,3—672,73— ----- —6171,1—67(171),4)2

(F — d@zl — d617_1)]_171 = _[2l + d(€17_2 + 627_1) = \1117_2(d) — \1[17_2(d) e P.

Now let’s take T'W; _o(d)T™' = (e;, y—€e 11— €1 —€ 9 1 —€30—€ 3 _9— oo — €151 —
e_i,—-1))Latd(er,—otes 1)) (e—i1—€,—1—€12—€_1_2—€23—€_2 _3—.....—€_1 | —€_(1_1),—1) =
(' —dey o —des 1) = Iy +d(es,3+e3_2) = Vs _3(d). Now if we follow this procedure as
we did previously we will get that {Ws _3(d), V3 _4(d), Vs _5(d),....,¥;_1 4(d); d € k} C P.
Now take the commutator of Wy 5(d) and Wy _3(u); [U12(d), Us _3(u)] = Wy a(d) Wy _5(u)™?
Wy o(d)Ws, 3(u) = (I — d(era — e-2-1)) (T — ulez,—3 + €3 2))(Jor + d(e12 — €2 1)) (L2 +
u(es,—3 +e3 o)) = Iy + (du)(e1,—3 + e3-1) = V1 _3(du) so this says that ¥y _3(¢t) € P. Now
we can see [Vq3(d), Us _4(u)] = ¥y _4(du); in this way if we calculate [¥;5(d), U5 _4(u)] ,
(U 4(d), Uy _5(w)], ........ [ Wri—1(d), Wiog —i(u)] we will get that {Uy _4(t), Uy _5(t), ..., Uy _(2)
; t € k} C P. In the same way if we calculate for 3 < i <1 —1; [Uy;(d), V; _(i11)(u)] it
will be equal to Wy _;11y(du) = {Ws_4(t), Vs 5(t), ..., Vo 4(t);t € k} C P. Simi-
larly if we take [Vs3;(d), ¥; _41)(uw)] = W3 _41)(du) for 4 < i <1 —1. Then we get that
{Ws _5(t), Vs _g(t),....... W5 4(t);t € k} C P. Now just following this procedure we will get
that {¥; _;(d); i < j;d €k} CP.

Now let’s take conjugate of W_;o(d) with T ; TU_;o(d)T ' = (e3,y —e_1;— €21 — €91 —

€32 —€_3-2—..... —€-1— 6—17—(1—1))(121 +d(e—12+eo1))(e_i1—€—1—€12—€_1_9—€33—
€9 53— —e1y—€_q1)-1) = ([ —de_go—de_5 1)t = Iy +d(e_sz+e_32) =V_53(d).
Now in general let’s take 1 < i < 1 — 2, and evaluate TU_; ;. (d)T™! = (e;; —e_1; —
€21 —€-2-1—€32—€_3_2— ..... —epi—1 — e —q-1)) L+ d(e—jip1 +e—Gr1y:))(e—i1 — -1 —
€12 —€-1-2 — €23 —€_2_3— ... —em1g—e—gony,—1) = (' —de_(iy1),i41 — de—(i+2),i>r_1 =

I2l+d(€7(i+1)’(i+2)—|—€,(i+2)?(i+1)) = \Ilf(i+1),(i+2) (d) Which shows that {\11_273((1), \I’_374<d), ceeny
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U_goy(d)} € P. Now [U_;o(d), Uas(u)] = W_1o(d) ' Wos(u) W 1 o(d)¥as(u) = (I —
dle—12+e—21))(Iu —uleas —e—3_2)) oy + d(e_12 + e—21))(Iu + uless —e_3_2)) = (Iy —
ueystue_s _o—de_j o+due_y 3—de_o1)(ly+uess—ue_s _o+de_y s+due_y 3+de_s1) = Iy+
du(e_13+e_31) = V_13(du) = V_y3(t) € P. Now [V_;35(d), Us4(u)] = V_y4(du),....,
(W_1io1(d), Upqy(u)] = gy (du) = {W_14(t), V_15(t),..., ¥_1,(t);t € k} C P.

Now if we take [W_5,(d), ¥, ;41(u)] for 3 < i <[ —1; it will be equal to V_5 ;1 (du) ,
which states that {W_s,(t), U_s5(¢),..., U_y,(¢)} C P. We can repeat this procedure for
j=3,...,1 —1 and we will get that {\If,i,j(d);i <j;de€k}CP.

We earlier proved that ¥_;;(d), ¥;1(d) € P, now [W_1,(d), ¥;1(u)] = ¥_1,(d) 1 (u)™?
U_y(d)W1(u) = (Iy—d(e—1+e—11)) (Lo —ulegn —e—1,—1)) (Lo +d(e—1+e—i1)) (Tu+ule —
e_1-1)) = (Iu—ulegr—e—1—1)—de_y+due_y1—de_; 1) (Iy+u(e; s —e—1 ;) +de_y ;+due_1 1+
de_11) = Iy + (2du)e_17 = V_11(2du) = [V_1,(d),¥;1(u)] = V_;1(2du). Because du
vary over all the elements of the finite field k£ so we proved that for any ¢t € k, V_, 1(2t) € P.
To prove that {\11,171(15);15 € k} € P, we will prove the following lemma:

Lemma 5.4.3. If k is a finite field with characteristic not equal to 2 then the following map:
g:k—k

t— 2t

18 a byjective map.

Proof. k is a finite set so if i prove that ¢ is injective then that will imply it is surjective
which implies that g is bijective. So we will show that ¢ is injective,let’s take 1,5 € k
such that g(t1) = g(ts) = 2t; = 2ty = 2(t; —t3) = 0 and let’s say t; — o = t/
then 2t = 0 and ¢’ is arbitrary and field & has characteristic not equal to 2 which implies
=0 = t; —ty =0 = t; =ty which shows that ¢ is an injective map which further

implies that g is bijective,because k is a finite set. O]

So from lemma 5.4.3 if we have that U_;;(2t) € P = {WU_y;(¢);t' € k} C P. So now
let’s take 1 <4 <1 —1 and calculate TW_; ;(£)T™! = (e;,; —e_1; — €21 — €91 — €32 —
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€_3,—2 ... —€-1— 6—1,—(1—1))(]21 + te—i,i)(e—l,l —€,-1—€12—€_1-2—€3—€ 9 3 ... -
erm1g — e—go1y—1) = (D —te_(i41)) T = Iy + te_(ir1),i41 = ¥_(i11),41(t), and we proved
that U_y,(t) e P = {\11,272(15), U_335(t),....W_;;(t)} C P. So which shows that

We have that ¥_;,;(t) € P, so now take TWU_;; ()" =(e;_;—e_1;—€ea1 —€ 9 1 — €32 —
€_3,-2—..... —61,171—6—1,—(z—1))(1.21+t€4,z)(671,1—61,71—61,2—671,72—62,3—672,73— ----- —€-1,1—
e_-ny,—1) = (D +tey )L = Iy —te; 1 = Uy 4(—t) = U1 (t) = TV_,,()I ! =
U () = WU, 4(t)eP. Nowfor 1 <:<I[—1, TV, ;())[ = Vit —11)(t) =
{Ws _5(t), U3_3(t),.... 0 (t)} C P. We also proved that U3 _;(t) € P =

{U, ;(t);1<i<litek}CP

P =< a;,r >< Sp(2l, k) and we showed that all the elementary matrices of Sp(2[, k) defined
in the section 5.2,will contain in the subgroup P. But from theorem 5.3.1 the group Sp(2l, k)
is generated by the elementary matrices of Sp(2l, k) which shows that Sp(2l,k) < P =
P = Sp(2l, k).

P =<aj,r>= Sp(2l,k)

It proves the two generation of Sp(2l, k) i.e. Sp(2l, k) is generated by 2 elements {a;,r}. O
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