
Intersection Theory in Algebraic
Geometry

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Abhishek Gupta

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

November, 2018

Supervisor: Dr. Vivek Mohan Mallick

c© Abhishek Gupta 2018

All rights reserved









This thesis is dedicated to my family, teachers and my friends









Acknowledgments

At first, I want to thank my supervisor Dr. Vivek Mohan Mallick to let me work under

his supervision. He has been a nice guide for pointing out my mistakes and being supportive

in the time of tense situation. It was a nice experience to explore the ideas of geometry into

terms of algebra.

Second, I would like to thank my TAC member Prof. Amit Hogadi being helpful to me

throughout my project and guiding me in the right direction.

Third, I would like to thank phd students to help me understanding the concepts and

problems throughout the project.

At last, I would like to thank to my family to keep me motivated.

ix



x



Abstract

In the algebraic geometry, we solve the geometrical problems using the algebraic technique,

mainly commutative algebra. Here I have included the basic discussion of Noetherian ring

and Hilbert basis theorem. After that I start by understanding some basic notations in

algebraic geometry such as varieties, morphism between varieties and its some properties.

Along this way, we study about the plane algebraic curve and look for the singularities and

its intersection multiplicities at intersection point that is given by Bézout’s theorem which

shows how it depends on degree of curves. Conveniently, we correlate it with the local ring

to acquire good understanding. Along this way, the last section brings us to presheaves

and sheaves with its some properties such as morphism defined between them, stalks and

universal property of sheafification. Here I will always be working over an algebraically

closed field.
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Introduction

My curiosity in this project was how to study geometry in the perspective of algebra. In the

algebraic geometry, there are many intuitive ideas to understand the properties of curves

in different spaces and their behaviour in perspective of locally and globally. The aim

to do project in algebraic geometry to get understanding of its applications in the area

of computational Mathematics. I was fascinated by affine space and its local behaviour

describing the geometry in terms of commutative algebra. First We have started reading

the basic portions such as Noetherian ring, Nullstellansatz theorem, Hilbert basis theorem

in algebraic geometry to understand the higher concept. After we define varieties in affine

and projective space and its applications which has been required further to prove other

theorems. Then we proceed to morphisms of varieties there we see how it relates to ring

homomorphism between k-algebras. We define rational maps and nonsingular varieties with

its properites. After that we study the plane algebraic curves and its singularities and

methods to find multiplicities of curve at point and study its local behaviour such as local

ring etc. Then we go through concept of intersection multiplicities between curves. We

introuduce singularities, multiplicities and the main part of whole picture, the intersection

number in global situation which we find out by Bézout’s theorem. The last chapter is about

sheaf and its morphism is used as application to define other properties. In the below, k is

assumed algebraically closed field.
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Chapter 1

Preliminaries

Proposition 1.0.1. Let R be a ring, then the following conditions are equivalent:

1. R satisfies the ascending chain conditions on ideals.

2. Every nonempty family of ideals in R has a maximal element.

3. Every ideal of R has finite generating set.

A ring R satisfying any of these conditions is called Noetherian ring.

Exercise 1. Let R be a ring with ideals I, J and K then prove that

1. I(J +K) = IJ + IK

2. I ∩ (J +K) ⊇ (I ∩ J) + (I ∩K)

3. If J ⊆ I then equality holds in (2).

Exercise 2. Assume R is a ring with an ideal I. Show that in the canonical projection map

given by π : R −→ R/I sending r to r + I, there is one to one correspondence between set

of ideals of R containing I and set of ideals of R/I.

Corollary 1.0.2. If R is a Noetherian ring with an ideal I then prove that R/I is also

Noetherian ring.
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Theorem 1.0.3. (Hilbert basis theorem) For a Noetherian ring R, R[X1, . . . , Xn] is also

Noetherian ring.

Proof. First, we prove it for one variable, say R[X1] by showing that every ideal I ∈ R[X1]

is finitely generated. Then by induction on number of variables, we prove R[X1, . . . , Xn] is

a Noetherian ring.

Theorem 1.0.4. Let A be an integral domain which is a finitely generated k-algebra where

k is a field then

1. The dimension of A is equal to the transcendence degree of the fraction field K(A) of

A over k.

2. If p is a prime ideal of A, then ht(p) + dim A/p = dim A
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Chapter 2

Affine and Projective Space

2.1 Affine Varieties

Here k is assumed algebraically closed field.

An affine space is a set of points with no distinguished point. For given a vector space

V , its associated affine space A is obtained by adding each v ∈ V with a fixed point p in A.

An affine n-space over k is denoted by An
k .

Definition 2.1.1. An subset of An
k is called an affine algebraic set if it defined as V (S) =

{p ∈ An
k | f(p) = 0 ∀f ∈ k[X1, . . . , Xn]} for a set S of polynomials in k[X1, ..., Xn].

Definition 2.1.2. An affine n-space over k is a topological space with Zariski topology

formed by algebraic sets satisfying axioms for closed set.

Remark 2.1.1. Let k[X1, . . . , Xn] be denoted by R. Assume S be set of polynomials in R

then V (S) = V (I) for some ideal I ⊆ R where S ⊆ I. Since R is a Noetherian ring so I is

generated by finitely many polynomials.

Remark 2.1.2. Every affine algebraic set is in one to one correspondence with radical ideal.

There is inclusion-reversing between them.

Definition 2.1.3. An affine algebraic set is called an affine variety if it can’t be written as

union of two nonempty proper affine algebraic sets. An open subset of affine variety is called

a quasi-affine variety.
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Theorem 2.1.1. An algebraic set V is an affine variety in An
k iff I(V ) is a prime ideal in

k[X1, . . . , Xn].

Remark 2.1.3. There is one to one correspondence between left side in An
k and right side in

R = k[X1, . . . , Xn]:

{Affine algebraic set} ←→ {Radical ideals in R}
{Affine V arieties} ←→ {Prime ideals in R}

{Points} ←→ {Maximal ideals in R}

There is inclusion reversing between them.

Proposition 2.1.2. Let F and G be two affine curves in k[X, Y ] s.t. they don’t have common

factor then V (F,G) = V (F ) ∩ V (G) is a finite set.

Proof. Given F and G don’t contain common components in k[X, Y ] ∼= k[X][Y ] then they

also are coprime to eachother in k(X)[Y ]. Since k(X)[Y ] is a Euclidean domain. It follows

that gcd(F,G) = 1, so there exists some C,D ∈ k(X) s.t. CF + DG = 1. To clear the

denominator part, choose H ∈ k[X] s.t. HC = C ′ and HD = D′ where C ′ and D′ ∈ k[X][Y ]

then we get C ′F + D′G = H. If p ∈ V (F,G) then H(p) = C ′(p)F (p) + D′(p)G(p) = 0.

Since H has only finite number of zeros which gives finitely many possible values for X

coordinate in V (F,G). Similarly it follows there can be only finitely many possible values

for Y coordinate in V (F,G). Thus V (F,G) is a finite set.

Theorem 2.1.3. Prove that all the maximal ideal in k[X1, . . . , Xn] are of the form 〈X1 −
p1, . . . , Xn − pn〉 for some p′is ∈ k.

Theorem 2.1.4. Every algebraic set V in An
k can be decomposed into finite union of affine

varieties uniquely up to order.

Proof. (Existence)

We prove it by contradiction. Suppose there is a set S of nonempty algebraic set of An
k

that can’t be written as a finite union of irreducible algebraic sets and S 6= ∅. Since An
k is

noetherian topological space, so ∃ a minimal element, say X0. Note that X0 is not irreducible

then it can be decomposed into X1∪X2 where X1 and X2 are nonempty algebraic set which

contradicts the minimality of S thus S = ∅.
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(Uniqueness)

LetX can be written into two decompositions, sayX = X1∪. . .∪Xn andX = Y1∪. . .∪Ym.

Consider Xi = X ∩ Xi = ∪mj=1(Yj ∩ Xi) since Xi is irreducible it implies Xi ⊆ Yj for some

j. Similarly, on the other hand Yj ⊆ Xk for some k it follows that Xi = Yj = Xk for i = k.

Removing Xi, Yj and continue the process on the rest and it will end finite times because

of n 6= m then on one side, no set will be remained and on the other side there will be left

nonempty set, which is not possible.

2.2 Dimension of Algebraic Set

Definition 2.2.1. The Krull dimension of a ring R is the length of maximal chain of prime

ideals in R. For any prime ideal P in R, its codimension or height is length of maximal chain

of prime ideals contained in P .

For example, {0} ⊂ 〈X1 − a1〉 ⊂ 〈X1 − a1, X2 − a2〉 ⊂ 〈X1 − a1, X2 − a2, X3 − a3〉 is a

maximal chain of prime ideals in k[X1, X2, X3] for any point (a1, a2, a3) ∈ k3 so its dimension

is 3.

Proposition 2.2.1. Let V be an algebraic set in An
k , then dimV is defined as dimension of

affine coordinate ring of V .

Proposition 2.2.2. Let V be a quasi-affine variety then dimV = dimV .

2.3 Projective Varieties

Definition 2.3.1. Assume V is a vector space over k then projectivization of V is the set of

all 1-dimensional linear subspaces of V . It is denoted by P(V ). If V = kn, then P(kn) = Pn−1
k

is called projective (n− 1)-space over k.

Pnk is also considered as set of equivalence classes of points (X0, . . . , Xn) in kn+1 denoted

as [X0 : · · · : Xn] with the equivalence relation {∼} such that (X0, . . . , Xn) ∼ (Y0, . . . , Yn)⇔
Xi = λYi for some λ ∈ k \ {0} ∀i. We call X0, . . . , Xn, the projective or homogeneous

co-ordinates of point [X0 : . . . : Xn] where Xi’s are not all zero.
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Pnk makes a topological space by defining Zariski topology, taking closed sets as projective

algebraic set.

Let Ui = {[X0 : . . . : Xi : . . . : Xn] ∈ Pnk | Xi 6= 0}. Since it is an open set in Pnk because

of being complement of zeros of Xi ∀ i = 0, . . . , n where each point in Ui can be represented

as [X0

Xi
: . . . : Xi−1

Xi
: 1 : Xi+1

Xi
: . . . : Xn

Xi
]

Define the map φi : Ui −→ An
k sending [X0

Xi
: . . . : 1 : . . . : Xn

Xi
] to (X0

Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . . , Xn

Xi
),

φi is well defined for each i and we can see it is a bijective. Pnk is covered by open sets U ′is

because if p ∈ Pn, the there is at least one Xi 6= 0 in p that implies p ∈ Ui. Hence projec-

tive space has an open covering by affine n-space and topology on Pnk is formed by glueing

topology on each set Ui which comes from by glueing topology on each set Ui which comes

from Zariski topology on affine n-space.

Let Hi be {[X0 : . . . : Xn] | Xi = 0} = Pnk\Ui. It is a hyperplane which shows isomorphism

with Pn−1
k via this map ψi : Hi −→ Pn−1

k sending [X0 : . . . : Xi−1 : 0 : Xi+1 : . . . : Xn] to

[X0 : . . . : Xi−1 : Xi+1 : . . . : Xn] thus Pnk = Ui ∪ Hi
∼= An

k ∪ Pn−1
k . In particular, we often

denote Hn+1 as H∞ and it s called the hyperplane at infinity.

For example, P1
k = A1

k∪P0
k = A1

k∪{∞} where A1
k is affine part of P1

k consists of [1 : x1] for

all x1 ∈ k and P0
k is infinite part of P1

k or called the points at infinity. Similarly, P2
k = A2

k∪P1
k

where P1
k is referred as line at infinity.

Definition 2.3.2. A subset X of Pnk is called projective algebraic set if it is zeros of some

finite set of homogeneous polynomials.

Proposition 2.3.1. The map defined above φi : Ui −→ An
k is a homeomorphism with induced

topology defined on Ui and Zariski topology on An
k

Proof. Since φi is bijective, we just need to show that image of closed set in Ui under φi is a

closed set. Let R = k[Y0, . . . , Yi−1, Yi+1, . . . , Yn] and Sh be set of all homogeneous polynomials

in k[X0, . . . , Xn].

We define a map αi : Sh −→ R takes f(X0, . . . , Xi, . . . , Xn) to f(Y0, . . . , Yi−1, 1, Yi+1, . . . , Yn)

and a map βi : R −→ Sh takes a polynomial f(Y0, . . . , Yi−1, Yi+1, . . . , Yn) of degree d to

Xi
df(X0

Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . . , Xn

Xi
).For any closed subset V ∈ Ui its projective closure V in Pn

is zeros of some finite set S in Sh. Let α(S) = S ′ then it is easy to see that φi(V ) = Z(S ′).
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Conversely, consider closed set W ∈ An(k), then W = Z(T ′) where T ′ ∈ R. Let β(T ′) =

T , then φi
−1(W ) = Z(β(T ′)) ∩ Ui is a closed set. Hence, φi, φi

−1 are closed maps, therefore

φi is homeomorphism.

Definition 2.3.3. Let R be k[X0, . . . , Xn] and for any subset Y ∈ Pnk , I(Y ) in R is generated

by {f ∈ R | f is homogeneous and f(p) 6= 0∀ p ∈ Y }

Definition 2.3.4. A projective variety is an irreducible algebraic set in Pnk with induced

topology.

Lemma 2.3.2. For an ideal I in k[X0, . . . , Xn], the following are equivalent:

1. I has a finite generating set of homogeneous polynomial.

2. For every f ∈ I, its all homogeneous component of f is in I.

An ideal satisfying any of these is called homogeneous ideal.

Proof. (i)⇒ (ii) Let I be {f1, . . . , fs} where f ′is are homogeneous. For any f ∈ {f1, . . . , fs},
express f = g1f1 + . . .+ gsfs with g′is in k[X0, . . . , Xn] then jth form of f can be written as

g1
j−deg(f1)f1 + . . .+ gs

j−deg(fs)fs which implies jth form of f belongs to I for all j ≥ 0.

(ii)⇐ (i) Since k[X0, . . . , Xn] is Noetherian, I has a finite generating set, say {f1, . . . , fs}.
Suppose each fi has deg di and fij be jth form for all j = 0, . . . , di. Since fi ∈ {fi0, . . . , fidi}
but from condition (2), {fi0, . . . , fidi} ⊆ I, similarly it follows for other f ′is. It implies

that I = {f1, . . . , fs} ⊆ {f10, . . . , f1d1 , . . . , fs0, . . . , fsds} ⊆ I. Thus, I can be generated by

forms.

Remark 2.3.1. Every projective algebraic set is in one to one correspondence with homo-

geneous radical ideal of S (polynomial ring) not equal to S+ =
⊕

d>0 Sd where Sd is set of

all homogeneous polynomials of degree d. There is inclusion-reversing between them.

Remark 2.3.2. Let F be a projective curve in k[X0, . . . , Xn], then its affine set of points is

given by VA(F (X0 = 1)), and we define affine part of F as Fh which is dehomogenization of

F under X0 = 1 and the points at infinity are given by VP(F (X0 = 0))

Remark 2.3.3. Let F be a projective curve in K[X0, . . . , Xn], then its projective closure is

defined as homogenization of F under X0, denoted by F h.
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Definition 2.3.5. A subset U of Pnk is called projective subspace if there exist a linear

subspace U ′ in kn+1 such that U = P(U ′). Moreover, U is zeros of set S of homogeneous

linear polynomials in k[X0, . . . , Xn] denoted as U = VP(S)(projective algebraic set) where

U ′ = VA(S)(affine algebraic set) and since U ′ is of finite dimension, implies that dimU =

dimU ′ − 1.

For example, let U ′ = VA(X0 − X1 − X2) in A3
k, then its projectivization U is P(U ′) =

VP(X0 −X1 −X2) ∈ P2
k.

2.4 Morphism between Varieties

Definition 2.4.1. For any quasi-affine variety V in An
k , a function f : V −→ k is called

a regular at a point p on V if there is an open neighborhood W around p on V and the

polynomials f1,f2 in k[X1, . . . , Xn] s.t. f2(W ) 6= 0 and f is in the quotient form f1
f2

on W .

Definition 2.4.2. For any quasi-projective variety V in Pnk , a function f : V −→ k is

called a regular at a point p on V if there is an open neighborhood W around p on V and

homogeneous polynomials f1, f2 in k[X0, . . . , Xn] of the same degree s.t. f2(W ) 6= 0 and f

is in the quotient form f1
f2

on W .

Definition 2.4.3. If V andW are varieties (affine, quasi-affine, projective or quasi-projective)

then a morphism of varieties φ : V −→ W is a continuous map s.t. for every open set U ⊆ W

and for every regular function f on U , the function f ◦ φ : φ−1(U) −→ k is regular.

Remark 2.4.1. Every morphism between two affine varieties φ : V −→ W induces a ring

homomorphism φ∗ : k[W ] −→ k[V ] called as pullback of φ.

Definition 2.4.4. A morphism between two varieties φ : V −→ W is called a isomorphism

if there is an inverse morphism ψ : W −→ V with ψ ◦ φ = idV and φ ◦ ψ = idW . An

isomorphism is a bijective and bicontinuous but a bijective and bicontinuous morphism need

not be an isomorphism.

Proposition 2.4.1. If V and W are affine varieties of An(k) and Am(k) respectively and a

k-algebra homomorphism ψ : k[W ] −→ k[V ] is given, then there exists a unique polynomial

map φ : V −→ W such that φ∗(pullback of φ) = ψ.

10



Proof. Assume k[V ] = k[X1, . . . , Xn]/I(V ) and k[W ] = k[Y1, . . . , Ym]/I(W ). Define ϕ :

k[Y1, . . . , Ym] −→ k[V ] and k-algebra homomorphism ψ : k[W ] −→ k[V ] satisfying ϕ(f) =

ψ(f+I(W )). Since ϕ is a k-algebra homomorphism because ϕ = ψ◦θ where θ : k[Y1, . . . , Ym] −→
k[W ]. Let ϕ(Yi) = ḡi for all i = 1, . . . ,m, then ϕ(Yi) = ψ(Yi + I(W )) = gi + I(V ). For any

polynomial f ,

ϕ(f) = ψ◦θ(f) = ψ(f+I(W )) = f(g1, . . . , gm)+I(V ) = f(ϕ(Y1), . . . , ϕ(Ym)) = ϕ(f(Y1, . . . , Ym))

Define a polynomial map φ : V −→ Am if ϕ is restricted to rangeW , we show that φ(V ) ⊆ W .

Let h ∈ I(W )

ϕ(h) = h(g1, . . . , gm) + I(V ) = ψ ◦ θ(h) = ψ(0) = 0 + I(V )

⇒ ϕ(h) = h(g1, . . . , gm) ∈ I(V )

⇒ h(g1(p), . . . , gm(p)) = 0 ∀p ⊆ V

⇒ (g1(p), . . . , gm(p)) ∈ W
⇒ φ(V ) ⊆ W

Thus φ is a polynomial map from V to W and

φ∗(f + I(W )) = f ◦ φ+ I(V )

= f(g1, . . . , gm) + I(V )

= ψ(f + I(W ))

⇒ φ∗ = ψ

Uniqueness follows easily, let φ1 and φ2 be two polynomial maps defined by φ1 = (g1, . . . , gm)

and φ2 = (h1, . . . , hm) where gi, hj ∈ k[V ]. So for any polynomial f ∈ k[W ]

ψf = φ∗1f = f ◦ φ1

ψf = φ∗2f = f ◦ φ2

⇒ f ◦ φ1 = f ◦ φ2

f(g1, . . . , gm) = f(h1, ..., hm)

Let f = Yi then Yi(g1, . . . , gm) = Yi(h1, . . . , hm)⇒ gi = hi ∀i⇒ φ1 = φ2

Theorem 2.4.2. If V is an affine variety in An
k and A(V ) is its affine coordinate ring then

11



1. O(V ) ∼= A(V )

2. There is one to one correspondence between points of V and maximal ideals of A(V ).

3. For each point p, Op,V ∼= A(V )mp and dimOp,V = dimV .

4. The Function field K(V ) of V is isomorphic to quotient field of A(V ) and hence

K(V )/k is a finitely generated field extension of transcendence degree equal to dimV .

Proof. We define a map α : k[X1, . . . , Xn] −→ O(V ). Since every polynomial in k[X1, . . . , Xn]

is regular on An
k and hence on V , then kerα = I(V ) therefore α′ : A(V ) −→ O(V ) is in-

jective homomorphism. In the map α, there is a one to one correspondence between ideal

containing I(V ) in k[X1, . . . , Xn] and ideal in A(V ), so there is a one to one correspondence

between maximal ideals containing I(V ) and maximal ideals in A(V ) which is again in one

to one correspondence with points of V , which proves (2).

For each point p in V , there is a natural map A(V )mp −→ Op,V and it is surjective by

definition. Since α′ is injective this implies it is injective. Thus A(V )mp
∼= Op,V . By this

isomorphism, dimOp,V =ht mp. By theorem 1.0.4(2), ht mp + dimA(V )/mp = dimV and

hence dimOp,V = dimV which proves (3).

Since K(A(V )) = K(A(V )mp) = K(Op,V ) for each point p ∈ V and K(Op,V ) = K(V ).

A(V ) is finitely generated k-algebra therefore K(V )/k is a finitely generated field extension.

By theorem 1.0.4(1), transcendence degree of K(V )/k = dimV . This proves (4).

To prove (1), since O(V ) ⊆ Op,V for each point p ∈ V ⇒ O(V ) ⊆ ∩p∈VOp,V .

from (3) O(V ) ⊆ ∩p∈VA(V )mp

from (2) A(V ) ⊆ O(V ) ⊆ ∩p∈VA(V )mp

Since A(V ) is an integral domain then A(V ) = ∩p∈VA(V )mp . Thus A(V ) ∼= O(V ).

Theorem 2.4.3. If V is an projective variety in Pnk and S(V ) is its homogeneous coordinate

ring then

1. O(V ) ∼= k

12



2. For each point p ∈ V,Op,V = S(V )(mV (p)) where mV (p) is a maximal ideals of S(V )

corresponding to p.

3. Function field K(V ) of V is isomorphic to localization S(V )((0)) of S(V ) at zero ideal.

Proof. In previous Ui ⊆ Pnk is open set defined as Xi 6= 0 for each i = 0, 1 . . . , n. Ui is

isomorphic to An
k via φi. Let φi(V ∩ Ui) be Vi where Vi is affine variety by the isomorphism

φi. We define a map θ : k[Y1, . . . , Yn] −→ k[X0, . . . , Xn](Xi) by sending f(Y1, . . . , Yn) to

f(X0

Xi
, . . . , Xn

Xi
) leaving out Xi/Xi. we claim that θ is an isomorphism. This can be simply

checked. Consider an ideal I(Vi) ⊂ k[Y1, . . . , Yn] which will go to I(Vi)S(Xi) the same as

I(V )S(Xi) via θ. So passing to the quotient we get θ′ : A(Vi) ∼= S(V )(Xi).

Let p ∈ V then we choose such i s.t. p ∈ Ui and let φi(p) = p′ then we know

A(Vi)(MVi
(p′))
∼= Op′,Vi where MVi(p

′) is a maximal ideal of A(Vi) corresponding to p′. Let Mp′

and mp be the maximal ideals of k[Y1, . . . , Yn] and k[X0, . . . , Xn] corresponding to p′ ∈ Vi
and p ∈ V respectively. Since θ(Mp′) = mpS(Xi)

θ′(Mp′/I(Vi)) = mp/I(V )S(V )(Xi)

θ′(MVi(p
′)) = mV (p)S(V )(Xi)

Now we know Xi does not belong to mV (p) and localization is transitive. so we get

A(Vi)(MVi
(p′))
∼= (S(V )(Xi))(θ′(MVi

(p′)))
∼= S(V )(mV (p)). This proves (2).

Since K(V ) ∼= K(V ∩ Ui) ∼= K(Vi) ∼= K(A(Vi)) and θ′ : A(Vi) ∼= S(V )(Xi). So we get

K(V ) = K(S(V )(Xi))
∼= S(V )((o)), which proves (3).

Let f be a regular function on Vi. Since φi : V ∩ Ui ∼= Vi for each i and V = ∪ni=0V ∩ Ui
then f is regular on Vi for each i. Since O(Vi) ∼= A(Vi) ∼= S(V )(Xi) so we deduce that there

exists qi s.t. Xqi
i f ∈ S(V ) for each i. This means Xqi

i f ∈ Sqi(V ) where Sqi(V ) consists of all

homogeneous polynomials of degree qi in S(V ). Put q ≥
∑

i qi then Sq(V ) spans as vector

space by monomials of degree q in X0, . . . , Xn and we can find at least one monomials in Xi

of degree≥ qi. So we get Sq(V )f ⊆ Sq(V )

since, Sq(V )f ⊆ Sq(V )

Sq(V )f 2 ⊆ Sq(V )
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by iterating, we have Sq(V )f r ⊆ Sq(V ) for all r > 0. For any i, Xq
i f

r ⊆ Sq(V ) for all

r > 0 ⇒ S(V )[f ] ⊂ X−qi S(V ) ⊂ K(S(V )). X−qi S(V ) is the S(Y )-module of K(S(Y ))

generated by Xq
i which implies that it is finitely generated. Since S(V ) is Noetherian.

S(V )[f ] is finitely generated as a module over S(V ). By the property of integral domain,

f is integral over S(V ) ⇒ there exists a monic polynomial with S(V ) coefficients which f

satisfies.

f t + a1f
t−1 + . . .+ at = 0 where ai ∈ S(V )

Since f ∈ S(V )(Xi) ⇒ deg(f) = 0. We can replace ai by their homogeneous components of

degree 0.

f t + a
(0)
1 f t−1 + . . .+ a

(0)
t = 0 where a

(0)
i ∈ S0(V )

⇒ f is algebraic over k. But k is algebraically closed field so f ∈ k . This proves (1).

Proposition 2.4.4. For any variety V and an affine variety W , there is a natural bijection

between

Morvar(V,W ) −→Mork−alg(A(W ),O(V ))

where Morvar(V,W ) is set of all morphisms of varieties and Mork−alg(A(W ),O(V )) is set

of all homomorphism of k-algebras.

Proof. (Injectivity):

α : Morvar(V,W ) −→Mork−alg(A(W ),O(V ))

φ : V → W 7−→φ∗ : A(W )→ O(V )

and φ∗ : A(W )→O(V )

f 7→φ ∗ f = f ◦ φ

Suppose α(φ1) = α(φ2)(i.e. φ∗1 = φ∗2) we need to show that φ1 = φ2. Define a map

V ⇒ W ↪→ An
k

14



given φ1(y) = (λ1, . . . , λn) and φ2(y) = (µ1, . . . , µn) for arbitrary y ∈ V .

α(φ1) = α(φ2)⇒φ∗1 = φ∗2

⇒φ∗1 ◦ f = φ∗2 ◦ f
⇒f ◦ φ1 = f ◦ φ2

⇒f ◦ (φ1(y)) = f ◦ (φ2(y)) ∀y ∈ V

Let A(An
k) be k[T1, . . . , Tn] and Ti ∈ A(W ) = O(W ) then from above,

Ti(φ1(y)) =Ti(φ2(y)) ∀ y ∈ V, ∀ i
λi =µi ∀ i

⇒ φ1(y) =φ2(y)

which proves injectivity of α.

(Surjectivity):

For any ζ ∈Mork−alg(A(W ),O(V )) we need to find φ ∈Morvar(V,W ) s.t. α(φ) = ζ

ζ : A(W ) −→ O(V )

Ti 7−→ fi ∀ i

then we can define a map

ψ : V −→An
k

y 7−→(f1(y), . . . , fn(y))

we claim, ψ maps into W . Take h ∈ I(W )⇒ h = 0 ∈ A(W )

ζ(h) =ζ(h(T1, . . . , . . . , Tn)) = 0

⇒h(f1, . . . , fn) = 0 in O(V )

⇒h(f1, . . . , fn)(y) = 0 ∀ y ∈ V
⇒h(f1(y), . . . , fn(y)) = 0 ∀ y ∈ V
⇒∀ y ∈ V, (f1(y), . . . , fn(y)) ∈ V (h)
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⇒ for every h ∈ I(W ), ψ(y) is zero of h for all y ∈ V ⇒ ψ(y) ∈ W Now what is left to

prove that ψ is a continuous map and induces ζ. It is easy to check that continuity of ψ and

ψ∗ = ζ and ψ∗ goes into O(V ).

Lemma 2.4.5. For any variety V and an affine variety W ⊆ An
k , a map of sets φ : V −→ W

is a morphism iff Ti ◦ φ is a regular function on V for each i where T1, . . . , Tn are the

coordinate functions on An
k .

Proposition 2.4.6. Let φ : V −→ W be morphism between affine varieties then φ is an

isomorphism iff φ∗ : A(W ) −→ A(V ) is an isomorphism. Moreover, (φ∗)−1 = (φ−1)∗.

Proof. (⇒) Let φ is an isomorphism. Then by definition 2.4.4, ∃ a inverse polynomial map

φ−1 : W −→ V such that φ◦φ−1 =idW and φ−1◦φ =idV . Since for any polynomial f ∈ k[W ],

there induced pullback (φ ◦ φ−1)∗(f) = f ◦ φ.φ−1 = (φ−1)∗(f ◦ φ) = ((φ−1)∗ ◦ φ∗)(f) that

is equal to idk[W ]. Similarly, (φ−1 ◦ φ)∗ = φ∗ ◦ (φ−1)∗ =idk[V ]. Thus, φ∗ is an isomorphism

because its inverse map is (φ−1)∗.

(⇐) if φ∗ is an isomorphism. Then again by definition, ∃ a inverse k-algebra homo-

morphism (φ∗)−1 : k[V ] −→ k[V ] such that φ∗ ◦ (φ∗)−1 =idk[V ] and (φ∗)−1 ◦ φ∗ =idk[W ].

From above proposition 2.4.1, ∃ a unique polynomial map ϕ : W −→ V for φ∗ such that

ϕ∗ = (φ∗)−1. It follows (φ ◦ ϕ)∗ = ϕ∗ ◦ φ∗ =idk[W ], Similarly, (ϕ ◦ φ)∗ =idk[V ]. Using again

proposition 2.4.1 we get (φ ◦ ϕ) =idW and (ϕ ◦ φ) =idV . Hence φ is an isomorphism and

φ−1 = ϕ.

Proposition 2.4.7. Let φ : V −→ W be a polynomial map between algebraic sets. If V is

irreducible, then closure φ(V ) is irreducible.

Definition 2.4.5. Let V and W be affine varieties, then a morphism φ : V −→ W is called

a dominant if φ(V ) is dense in W .

Theorem 2.4.8. If φ is a polynomial map between two affine varieties V ⊂ An(k) and

W ⊂ Am(k). Then

1. The pullback φ∗ : k[W ] −→ k[V ] is injective iff polynomial map φ is dominant.

2. The pullback φ∗ is surjective iff φ has a left inverse polynomial map.
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Proof. (1) (⇒) Assume φ is not a dominant map then it follows φ(V ) ( W , by inclusion

reversing I(W ) ( I(φ(V )) so there ∃ a polynomial function H in k[W ] s.t. H ∈ I(φ(V ))

but does not belong to I(W ).

Define a pullback φ∗ : k[W ] −→ k[V ] induced by φ, Choose H1 and H2 from I(φ(V ))

s.t. it does not belong to I(W ) and H1|k[W ] 6= H2|k[W ], that implies H1, H2 6= 0 in k[W ]

therefore φ∗H1 = H1 ◦ φ = 0 ⇔ H1 ◦ φ(x) = 0 where x ∈ V . Similarly, φ∗H2 = H2 ◦ φ =

0 ⇔ H2 ◦ φ(V ) = 0 so φ∗H1 = φ∗H2 = 0 but H1|k[W ] 6= H2|k[W ] so φ∗ is not injective that

contradicts the assumption of injectivity of φ∗.

(⇐) Suppose φ∗ is injective that means I(φ(V )) = I(W ) so W = Z(I(φ(V )) = φ(V )

thus φ(V ) is dense in W .

Remark 2.4.2. Relation between polynomial map between affine varieties and its pull back

is given below

1. Injectivity on polynomial map ; Surjectivity on k-algebra homomorphism

2. Injectivity on polynomial map ⇐ Surjectivity on k-algebra homomorphism

3. Surjectivity on polynomial map ⇒ Injectivity on k-algebra homomorphism

4. Surjectivity on polynomial map : Injectivity on k-algebra homomorphism

2.5 Rational Maps between Varieties

Definition 2.5.1. A rational map φ : V −→ W between varieties is an equivalence class of

pairs 〈V ′, φ|V ′〉 where V ′ is a nonempty open subset of V and φ|V ′ is a morphism from V ′ to

W where two pairs 〈V ′1 , φ|V ′1 〉 and 〈V ′2 , φ|V ′2 〉 are equivalent if φ|V ′1 = φ|V ′2 on V ′1 ∩ V ′2 .

Definition 2.5.2. A rational map φ : V −→ W between varieties is called dominant if

for some(and every hence) pair 〈V ′, φ|V ′〉, the image of φ|V ′ is dense in W where V ′ is a

nonempty open subset of V .

Notes 2.5.1. A rational map is not a map. We can’t always compose rational maps. How-

ever we can compose dominant rational maps, so we can define category of varieties with

dominant rational maps as morphisms.
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Definition 2.5.3. A rational map φ : V −→ W between varieties is called a birational map

if there exists an inverse rational map ψ : W −→ V s.t. their compositions φ ◦ ψ = idW

and ψ ◦ φ = idV as rational maps. And these varieties are called birationally equivalent or

birational.

Proposition 2.5.2. For any variety V there is a base for the topology consists of open affine

subsets.

Theorem 2.5.3. If V and W are any two varieties then there is a bijection between set of

dominants rational maps from V to W and set of k-algebra homomorphisms from K(W ) to

K(V ).

Proof. Let φ : V −→ W be a dominant rational map and 〈V ′, φ|V ′〉 represents φ. Assume

〈g,W ′〉 is a rational function in K(W ) where W ′ is open set in W and g is regular function

on W . Since φV ′(V
′) is dense in W that gives ⇒ φ−1

V ′ (W
′) as a nonempty open subset of

V and therefore by morphism of this map φV ′ : V ′ −→ W , (g ◦ φ)|V ′ is a regular function

on φ−1
V ′ (W

′). We get a rational function on V which gives a k-algebra homomorphism from

K(W ) to K(V ).

Conversely if we have a k-algebra homomorphism θ : K(W ) −→ K(V ). By proposition

2.5.1, W is a finite union of affine varieties. W.L.O.G. we may assume W as an affine variety

and we define generators for A(W ), say y1, . . . , yn. Then θ(y1), . . . , θ(yn) define a rational

functions on V . By definition, there exists an open set V ′′ in V s.t. for all i, θ(yi) is a regular

function on V ′′ which gives an injective k-algebra homomorphism. By proposition 2.4.4, this

corresponds to a morphism φ : V ′′ −→ W and it is dense. Hence we get a dominant rational

map from V to W .

Corollary 2.5.4. If V and W are any two varieties then the following are equivalent.

1. V and W are birational to each other.

2. There exist open subsets V ′ ⊆ V and W ′ ⊆ W s.t. V ′ ∼= W ′.

3. K(V ) ∼= K(W ) as k-algebras.

Proof. (1) ⇒ (2) Given V and W are birationally equivalent it implies that φ : V −→ W

and ψ : W −→ V are rational maps with φ ◦ ψ = idW and ψ ◦ φ = idV as rational maps.
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Assume 〈V ′, φ〉 represents φ and 〈W ′, ψ〉 represents ψ then ψ ◦ φ is the identity on φ−1(W ′)

as a rational map. Similarly we get identity map φ◦ψ on ψ−1(V ′) as a rational map. Now we

consider these open sets φ−1(ψ−1(V ′)) in V and ψ−1(φ−1(W ′)) in W which gives isomorphism

between these two open sets via φ and ψ.

(2) ⇒ (3) Given V ′ ∼= W ′ it implies that K(V ′) ∼= K(W ′) as k-algebra. Since K(V ′) ∼=
K(V ) and K(W ′) ∼= K(W ) which gives K(V ) ∼= K(W ) as k-algebra.

(3) ⇒ (1) By the theorem 2.5.2, we get two dominant rational maps from V to W and

from W to V which are inverse to eachother. This gives the required condition (1).

Proposition 2.5.5. Any variety V of dim r is birational to a hypersurface H in Pr+1
k .

Proof. Since we know this field extension K(V )/k is a finitely generated and k is an alge-

braically closed field that implies K(V )/k is also separably generated. Hence by definition

of separably generated, we can find transcendence basis for K(V )/k. Transcendence degree

of K(V )/k = dimV = r, say transcendence base is {x1, . . . xr} ⊂ K(V ). By theorem of

primitive element, we can find one element y ∈ k s.t. K(V ) = k(x1, . . . , xr, y) where y

generates k(V ) over k(x1, . . . , xr). We clear the denominators of quotient of polynomials in

coefficients from k(x1, . . . , xr). So after clearing the denominators what we get, y satisfies

irreducible polynomials f(T1, . . . , Tr, S) in r + 1 variables where T1, . . . , Tr, S are just vari-

ables. This polynomial defines a hypersurface in Ar+1
k . Thus function field of it is K(V ). If

two varieties have the same function field they are the birational equivalent which implies

that V is birational to hypersurface in Ar+1
k which again tells us V is birational to projective

closure of hypersurface in Ar+1
k and that projective closure is required hypersurface H in

Pr+1
k .

2.5.1 Blowing up of affine varieties at a point

Assume X1, . . . , Xn are the affine coordinates of An
k and Y1, . . . , Yn are the homogeneous

coordinates of Pn−1
k . First we define blowing up of An

k at point 0. It is a closed subset V of

An
k × Pn−1

k defined as

V = {(p× l) | p ∈ l} ⊆ An
k × Pn−1

k
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It is zeros of the equations {XiYj = XjYi | i, j = 1, . . . , n} and π : V −→ An
k obtained by

restricting the projection map from An
k × Pn−1

k onto An
k .

Propeties :

1. If Q ∈ An
k , Q 6= 0 then π−1(Q) = (Q×Q′) ⊂ V × Pn−1

k where Q′ is a equivalence class

of Q in Pn−1
k .

2. If Q = 0 ∈ An
k then π−1(0) = {0} × Pn−1

k ⊂ V × Pn−1
k .

3. The map π : V −→ An
k sends ((X1, . . . , Xn) × [y1, . . . , Yn]) to (X1, . . . , Xn) and it is

surjective. Since π−1(0) = {0} × Pn−1
k therefore π|V \π−1(0) : V \ π−1(0) ' An

k \ {0}.

4. V is irreducible.

Definition 2.5.4. Let W be affine variety of An
k containing the zero point, then blowing-up

of W at 0 is defined as projective closure of (π−1(W \ {0})) in π−1(W ) where π : V −→ An
k

described above.

2.6 Nonsingular Varieties

Definition 2.6.1. Let V be an affine variety and I(V ) = 〈f1, . . . , ft〉 then V is called

nonsingular at a point p ∈ V if rank of this matrix
(
∂fi
∂Xj

(p)
)

is n− dimV . V is nonsingular

if it is nonsingular at every point otherwise singular.

Remark 2.6.1. This definition of nonsingularity is independent of chosen different set of

generators of I(V ) and it is dependent on the embedding of V in affine space. Despite that

we can describe it intrinsically in terms of local ring.

Definition 2.6.2. A Noetherian local ring R is called a regular local ring if dimkm/m
2 =

dimR where m is maximal ideal of R and residue field k is R/m.

Theorem 2.6.1. For any affine variety V ⊆ An
k and a point p ∈ V , V is nonsingular at p

iff the local ring Op,V is a regular local ring.
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Proof. Let p be a point (λ1, . . . , λn) in V ⊆ An
k and Mp = 〈X1−λ1, . . . , Xn−λn〉 be maximal

ideal in k[X1, . . . , Xn]. We define a k-linear map

θ : k[X1, . . . , Xn] −→ kn

f(X1, . . . Xn) 7−→
(
∂f

∂X1

(p) . . .
∂f

∂Xn

(p)

)
θ is surjective because θ(Xi − λi) = (. . . , 1, . . .)(i.e. only ith position has 1 and in other

places, it is zero) and it is clear that ∀i θ(Xi − λi) forms a basis of kn. It is simple to check

that θ(M2
p ) = 0. We claim that ker(θ|Mp) = M2

p

Since M2
p ⊆ ker θ|Mp ⊆ ker θ. Consider f ∈ ker θ|Mp = ker θ ∩Mp then f =

∑n
i=1 gi(Xi −

λi). W.l.O.G. we choose jth coordinate
(
θ|Mp(f)

)
j

of θ|Mp(f)

(
θ|Mp(f)

)
j

=
n∑
i=1

(
∂gi
∂Xj

(p)

)
(Xi − λi)|p +

n∑
i=1

gi(p)
∂(Xi − λi)

∂Xj

|p

Since θ(f) = (0, . . . , 0) (
θ|Mp(f)

)
j

= 0 ∀j = 1, . . . , n

0 + gj(p) = 0 ∀j = 1, . . . , n

⇒ gj ∈Mp ∀j = 1, . . . , n

which implies that f ∈ M2
p and therefore ker θ|Mp ⊆ M2

p . Thus θ induces an isomorphism

θ′ : Mp/M
2
p
∼= kn

Since p ∈ V ⇒ I(V ) ⊆Mp ⇒ I(V ) +M2
p ⊆Mp ⇒

I(V )+M2
p

M2
p
⊆ Mp

M2
p
. We claim that rank of

this matrix
(
∂fi
∂Xj

(p)
)

is the same as dim θ(I(V )) which is the same as dim θ
(
I(V )+M2

p

M2
p

)
. Let

MV (p) be maximal ideal of A(V ) and mp = MV (p)Op,V be maximal ideal of Op,V . We get

Mp/M
2
p

(I(V ) +M2
p )/M2

p

∼= mp/m
2
p

dimkmp/m
2
p = dimk

(
Mp/M

2
p

)
− dim

(
(I(V ) +M2

p )/M2
p

)
= dimk(k

n)− rank
(
∂fi
∂Xj

(p)

)
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If V is nonsingular at p then rank
(
∂fi
∂Xj

(p)
)

= n− dimV

dimkmp/m
2
p = n− (n− dimV )

= dimV

= dimOp,V

⇒ Op,V is a regular local ring.

Conversely if Op,V is a regular local ring then

dimOp,V = dimkmp/m
2
p

dimV = dimkmp/m
2
p

dimV = n− rank
(
∂fi
∂Xj

(p)

)
which implies that rank

(
∂fi
∂Xj

(p)
)

= n− dimV , hence V is nonsingular at p.

Definition 2.6.3. For any variety V and a point p ∈ V , V is nonsingular at p if the local

ring Op,V is a regular local ring.

Theorem 2.6.2. For any variety V , set Sing V of singular points of V is a proper closed

subset of V .

Proof. First we will prove that Sing V is a closed subset. Since V can be covered by finite

no. of open sets (say V = ∪iVi). Sing V is closed in V iff (Sing V ) ∩ Vi is closed in Vi for

each i. Thus we just need to show that (Sing V ) ∩ Vi is closed in Vi. Since we know Vi

is affine and rank of jacobian matrix
(
∂fj
∂Xl

(p)
)
< n − r for each point p ∈ Sing Vi where

I(Vi) = 〈f1, . . . , fs〉 and dimVi = r then we take all the n − r × n − r minor of
(
∂fj
∂Xl

(p)
)

.

Since their determinants are zero it implies that all the n− r× n− r minor determinants of(
∂fj
∂Xl

(p)
)

vanish at p ∈ Sing Vi. Sing Vi is the algebraic set defined by the ideal generated

by I(Vi) together with all determinants of n− r×n− r submatrices or minors of the matrix(
∂fj
∂Xl

(p)
)

. Hence, Sing Vi is closed.

To prove properness, we use this prop V is birational to hypersurface H in Ar+1
k then

∃U(open) ⊂ V , ∃W (open) ⊂ H s.t. U ∼= W . Since H is irreducible and if set of smooth

points of H is nonempty then (we have just proved) it is open, irreducible and dense. It
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means W contains nonempty set of smooth points which implies under the isomorphism of

varieties, U contains nonempty collection of smooth points and therefore Sing V is a proper

subset. So we just need to show that H ⊂ Ar+1
k has a proper set of singular points. Let

H be defined by irreducible polynomial f(Y1, . . . , Yr+1) = 0. For any point p ∈ Sing H,
∂f
∂Yi

(p) = 0 ∀ i = 1, . . . , r + 1. If Sing H = H, then the function ∂f
∂Yi

vanish on H and hence
∂f
∂Yi
∈ I(H) for each i. But I(H) is principal ideal generated by f and ∂f

∂Yi
has degree lesser

than deg(f) for each i. So we must have ∂f
∂Yi

= 0 for each i. But in the characteristic 0 it is

already impossible to have ∂f
∂Yi

= 0 for each i. In the characteristic p > 0, ∂f
∂Yi

= 0 implies

that f is actually a polynomial in Y p
i ’s. Since k is algebraically closed field we can take pth

roots of all the coefficients and we get a polynomial g(Y1, . . . , Yr+1) s.t. f = gp. But that

contradicts the irreducibility of f .
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Chapter 3

Local Properties of Affine plane

Curves

3.1 Singular points and Tangent Lines

Here k is assumed algebraically closed field.

Definition 3.1.1. Let F be affine curve in k[X, Y ] and point p ∈ V (F ) then p is called

nonsingular point of curve F if either partial derivative FX(p) 6= 0 or FY (p) 6= 0. It is also

called simple point or regular point.

If curve has only simple points then the curve is called nonsingular curve. A point that

is not simple is called multiple point or singular point.

Definition 3.1.2. Let F be an affine curve in k[X, Y ] and p = (a, b) ∈ V (F ) be a simple

point. Then the tangent line to F at p is defined by FX(p).(X − a) + FY (p).(Y − b) = 0

3.2 Multiplicity of Affine Curves at Point

Definition 3.2.1. Let F ∈ k[X, Y ] be an affine curve. Write F = Fm + Fm+1 + ... + Fn

where each Fi is a form of degree i with Fm 6= 0. Then multiplicity of F at p = (0, 0) is

defined to be m and it is denoted by mp(F ).
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Theorem 3.2.1. For given an affine curve F ∈ k[X, Y ] and a point p in F , mp(F ) = 1 iff

p is a simple point of F .

For example, the point (0, 0) is singular with multiplicity 2 and simple in the below graph

(a) and (b) respectively.

(a) f(X,Y ) = Y 4 −X2 + Y 2 (b) f(X,Y ) = X4−2Y 3 +X2Y −X2 +
3X + Y

Remark 3.2.1. If p = (0, 0) is a simple point of F then the tangent line to F at P is the

form F1 of F .

Remark 3.2.2. If p is a nonzero point of F then mp(F ) = mp(F
T ) where T is translation

taking (0, 0) to p.

Theorem 3.2.2. For given an affine curve F in A2
k, the set of singular points in F is finite.

Theorem 3.2.3. Let F be an curve in A2
k and a point p ∈ F then

mp(F ) = dimk(M
n
p /M

n+1
p )

for large value n ∈ N, where Mp is a maximal ideal of Op(F )

Proof. Consider the sequence

0 −→Mp
n/Mp

n+1 φ−→ Op(F )/Mp
n+1 ψ−→ Op(F )/Mp

n −→ 0

As you can see ,it is exact sequence because Mp
n/Mp

n+1 ⊂ Op(F )/Mp
n+1 therefore φ is

injective and Mp
n+1 ⊂ Mp

n that implies that Op(F )/Mp
n+1 ⊃ Op(F )/Mp

n therefore ψ is

surjective.
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In this exact sequence, each of rings is finite dimensional vector space. Since the sequence

is exact, then

dimOp(F )/Mp
n+1 = dim Mp

n/Mp
n+1 + dim Op(F )/Mp

n

dimMn
p /M

n+1
p = dimOp(F )/Mp

n+1 − dimOp(F )/Mp
n

W.L.O.G. Let p be (0, 0) then the maximal ideal correspond to p is I = 〈X, Y 〉 by using

affine change of co-ordinate to p and F . Since Mp
n = InO(F ) and V (〈In, F 〉) = {p} then

dim[Op(F )/Mp
n] = dim[Op(A2

k)/〈In, F 〉Op(A2
k)] = dim[k[X, Y ]/〈In, F 〉].

So, we just need to compute dim k[X, Y ]/〈In, F 〉. Let m = mp(F ) then F ∈ Im.

If n ≥ m, then FH ∈ In whenever H ∈ In−m.

Define ϕ : k[X, Y ]/In−m −→ k[X, Y ]/In by sending A to FA.

Define ϕ́ : k[X, Y ]/In −→ k[X, Y ]/〈In, F 〉 by sending B to B mod F . It is easy to check

that the sequence

0 −→ k[X, Y ]/In−m
ϕ−→ k[X, Y ]/In

ϕ́−→ k[X, Y ]/〈In, F 〉 −→ 0

is exact because ϕ is injective and ϕ́ is surjective and ker ϕ́ =Imϕ. Thus

dimk([X, Y ]/〈In, F 〉) = dimk(k[X, Y ]/In)− dimk(k[X, Y ]/In−m)

=
n(n+ 1)

2
− (n−m)(n−m+ 1)

2
= nm− m(m+ 1)

2

if we see clearly, the second term −m(m+1)
2

does not have any relation with n, so just say it

some c

= nm+ c

= n.mp(F ) + c
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therefore

dim(Op(F )/Mp
n) = n.mp(F ) + c

dim(Op(F )/Mp
n+1) = (n+ 1).mp(F ) + c

Hence, dim(Mp
n/Mp

n+1) = mp(F ) with condition n ≥ mp(F ).

Lemma 3.2.4. Let F be affine curve in k[X, Y ] and p ∈ V (F ) with mp(F ) = m. Prove that

for 0 ≤ n < m, dimk(M
n
p /M

n+1
p ) = n+ 1 where M is a maximal ideal of Op(F ). Moreover,

if p is a simple point iff dimk(Mp/M
2
p ) = 1.

3.3 Intersection Multiplicities

Definition 3.3.1. Let F and G be curves in A2(k) and a point p ∈ A2(k) then intersection

multiplicity between the both curves at p is denoted by µp(F,G) that satisfies the following

properties :

1. If the curves F and G intersect properly at p then µp(F,G) is nonnegeative integer.

Otherwise the value is ∞ if they don’t.

2. If the curves F and G intersect transversally at p, thenµp(F,G) = 1.

3. The intersection multiplicity µp(F,G) = 0 iff either p doesn’t belong to F ∩ G or (F

or G) is a nonzero constant.

4. µp(F,G) = µq(F
T , GT ) after affine change of coordinate T on A2(k), F and G where

T (p) = q.

5. µp(F,G) = µp(G,F )

6. If F =
∏
i=1

Fi
ri and G =

∏
j=1

Gj
sj , then µp(F,G) =

∑
i,j

µp(Fi, Gj).ri.sj.

7. µp(F,G) = µp(F,G+ AF ) for any A ∈ k[X, Y ].

8. µp(F,G) ≥ mp(F ).mp(G), equality occurs if only if F and G have no common tangent

lines at p.
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Theorem 3.3.1. Let F and G be any given curves in k[X, Y ] and any point p ∈ A2
k, then

their is unique intersection multiplicity µp(F,G) satisfying above properties (1)− (7) that is

defined by this formula

µp(F,G) = dimk(Op(A2
k)/〈F,G〉Op(A2

k)).

Proof. (proof of existence):

(1)If F and G intersect properly at p then µp(F,G) = dim(Op(A2
k)/〈F,G〉) is finite

because dimk(k[X1, X2]/〈F,G〉) ≥ dimk(Op(A2
k)/〈F,G〉). By prop V (F,G) is finite because

there is no common component between F and G.

Suppose F and G have a common component A that implies that 〈F,G〉 ⊆ 〈A〉. Thus

dimkOp(A2
k)/〈F,G〉 ≥ dimOp/〈A〉. If we show that dimOp/〈A〉 is infinite then we are done.

Since

Op(An
k)/〈A〉 ∼= Op(A) ⊇ k[V (A)].

So, dimkOp(An
k)/〈A〉 ≥ dimk[V (A)]. Since V (A) is infinite therefore k[V (A)] is infinite

dimensional. Thus µp(F,G) =∞.

(2) If F and G intersect transversally at p it means that p is a simple point and the

tangent line to F at p is different from the tangent line to G at p then

dimk(Op(A2
k)/〈F,G〉) = dimkOp(V (〈F,G〉)) = 1

(3) Assume dimk(Op(A2
k)/〈F,G〉) = 0 ⇒ 〈F,G〉 = Op(A2

k) ⇒ CF + DG = 1 for some

C,D ∈ Op(A2
k) and it follows that either F (p) 6= 0 or G(p) 6= 0 so, p doesn’t belong to F ∩G

and vice versa. If F is nonzero constant then 〈F,G〉 = Op(A2
k). Thus dimk(Op(A2

k)〈F,G〉) =

0.

(4) Consider p = (a, b), q = (0, 0) and the affine change of co-ordinates T (X, Y ) =

(aX+b, cY +d). Since it is invertible, implies that T is an isomorphism and induces k-algebra

isomorphism T̃ : Op(A2
k) −→ Oq(A2

k). Thus dimk(Op(A2
k)〈F,G〉) = dimk(Oq(A2

k)〈F T , GT 〉).

(5) It is obvious.

(6) It’s enough to show that µp(F,GB) = µp(F,G) +µp(F,B) where F,G and B are any
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curves such that F and G have no common component through p then there exists a exact

sequence

0 −→ Op(A2
k)/〈F, b〉 −→ Op(A2

k)/〈F,GB〉 −→ Op(A2
k)/〈F,G〉 −→ 0

thus, we have

µp(F,GB) = µp(F,B) + µp(F,G)

(7) Since 〈F,G〉 = 〈F,G + AF 〉 for any A ∈ k[X, Y ] that follows µp(F,G) = µp(F,G +

AF ).

(8) Let mp(F ) = m, mp(G) = n we have to show that µp(F,G) ≥ mn Since we have

proved property (3), by applying this we may assume that p = (0, 0) and ideal I = 〈X, Y 〉
in k[X, Y ]. Consider a sequence of vector spaces

k[X, Y ]/In × k[X, Y ]/Im
φ−→ k[X, Y ]/Im+n ψ−→ k[X, Y ]/〈Im+n, F,G〉 −→ 0

where ψ is a natural map and it is surjective. We can easily check this sequence is exact by

sending (C̄, D̄) to CF +DG in φ. Then by prop

dimk k[X, Y ]/In + dimk k[X, Y ]/Im = dimk(k[X, Y ]/In × k[X, Y ]/Im)

= dim Imφ+ dim kerφ

≥ dim Imφ = dim kerψ

Since

dimk k[X, Y ]/Im+n = dim kerψ + dim Imψ

= dim kerψ + dimk k[X, Y ]/〈Im+n, F,G〉
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therefore

µp(F,G) = dimkO(A2
k)/〈F,G〉

≥ dimkOp(A2
k)/〈Im+n, F,G〉 = dimk k[X, Y ]/〈Im+n, F,G〉

≥ dimk k[X, Y ]/Im+n − dim kerψ

≥ dimk k[X, Y ]/Im+n − dimk k[X, Y ]/Im − dimk k[X, Y ]/In

≥ (m+ n)(m+ n− 1)

2
− m(m+ 1)

2
− n(n+ 1)

2

≥ mn

(proof of uniqueness)

See in Theorem 4.4 in [2].

Remark 3.3.1. When this equality µp(F,G) = mn follows iff two inequalities above hold

equality.

1. To hold first equality, Im+n ⊆ 〈F,G〉 (in Op(A2
k)).

2. To hold second equality, kerφ must be 0.

Lemma 3.3.2. Let F and G be affine curves in k[X, Y ] having no common tangents at point

p, then

Ir ⊆ 〈F,G〉Op(A2
k) for r ≥ m+ n− 1

where I is a maximal ideal in k[X, Y ] corresponding to p and mp(F ) = m, mp(G) = n

Proof. Let p be (0, 0) and I = 〈X, Y 〉. Assume U1, ..., Um and V1, ..., Vn are tangents of F

and G at p. Let Ui = Um if i > m and Vj = Vn if j > n. Define Aij = U1...Ui.V1...Vj ∀i, j ≥ 0

with A00 = 1. Since the set {Aij|i + j = r} forms a basis for the the forms of degree r in

k[X, Y ] because there are r+1 forms in this set and they are linearly independent. It implies

that Ir is generated by this set.

If we show that Aij ∈ 〈F,G〉Op for i + j = r ≥ m + n− 1 then Ir ⊆ 〈F,G〉Op. Assume

i+j ≥ m+n−1 then either i ≥ m or j ≥ n. W.l.O.G. say i ≥ m then Aij = Am0N where N

is a form of degree i+ j−m. Since Am0 = Fm so F = Am0 +F ′ where F ′ has degree at least

m+ 1. Then Aij = FN +F ′N where F ′N has degree at least i+ j+ 1 Now, if we show that
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F ′N ∈ 〈F,G〉Op then we are done. First we decompose F ′N into homogeneous components

F ′iN then we proceed through the same way since i > m. we can see F ′N ∈ 〈F,G〉 if for

large value of r, Ir ∈ 〈F,G〉Op

Is there any such r? To see that, let V (F,G) = {p, q1, ...qs}. Choose a polynomial h that

vanishes at p so hX and hY ∈ I(V (F,G)). Since h is unit in O for some M so 1
hM

(hX)M =

XM ∈ 〈F,G〉O. Similarly, Y m ∈ 〈F,G〉O, it implies that I2M ⊆ 〈XM , Y M〉 ⊆ 〈F,G〉O.

Lemma 3.3.3. The map above mentioned in Theorem

k[X, Y ]/In × k[X, Y ]/Im
φ−→ k[X, Y ]/Im+n

defined by φ(C̄, D̄) = CF +DG is one to one iff F and G have no common tangents at p.

Proof. (⇒)Assume that mp(F ) = m and mp(G) = n. Let φ be one to one. Suppose there is

a common tangent line to F and G at p, say it L then the form Fm = LF ′ and Gn = LG′. It

follows that φ(G′,−F ′) = G′F − FG′ has degree at least m+n which means φ(G′,−F ′) = 0,

so φ is not one to one which contradicts our assumption.

(⇐)If F and G have no common tangents at p. Define φ(C̄, D̄) = CF +DG. Write

C = Cr + Cr+1 + ... and D = Ds + Ds+1 + ... where Ci and Dj are forms of degree i and j,

then CF + DG = FmCr + GnDs + .... Suppose r < n and s < m. If φ(C̄, D̄) = 0, it means

CF+DG has at least degree m+n then FmCr = −GnDs. Since Fm and Gn have no common

factors, it implies Fm | Ds and Gn | Cr that means r ≥ n and s ≥ m, so kerφ = 0

Problem 3.3.4. If f = Y 2 −X2 −X3 and G = Y −X + XY 2 are affine curve in k[X, Y ]

find the µp(F,G) where p = (0, 0)
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Solution 3.3.5.

µp(F,G) = µp(F
(1), G) where F (1) = F −X2G

= µp(F
(2), G) , F (2) = F (1) −XG

= µp(F
(3), G) + µp(Y,G) , F (2) = Y.F (3)

= µp(F
(4), G) + µp(Y,G) , F (4) = F (3) −G

= µp(F
(5), G) + 2µp(Y,G) + µp(−X,G) , F (4) = −X.F (5)

= µp(F
(6), G) + 2µp(Y,G(X, 0)) + µp(−X,G(0, Y )) , F (6) = F (5) +G

= 0 + 2µp(Y,−X) + µp(−X, Y )

= 0 + 2 + 1 = 3
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Chapter 4

Local Properties of Projective Plane

Curves

4.1 Intersection Multiplicities between Curves

Definition 4.1.1. Let F and G be projective curves in k[X0, X1, X2] then at a point p =

[1 : X1 : X2] in affine part of P2
k, intersection multiplicity µP (F,G) is same as µp′ (Fh, Gh)

where Fh and Gh are dehomogenization of F and G respectively and p
′

= (X1, X2). If the

point p belong to infinite part of P2
k, then we choose another nonzero co-ordinate to set the

line at infinity and we continue with the same process above.

For example, let F = X2X0 +X2
1 and G = X1 +X2 be projective curve then at p = [0 : 1 :

−1], choose X2 = 0 be line at infinity and Fh(X0, X1, 1) = X0 +X2
1 and Gh(X0, X1, 1) = X1

then µp(F,G) = µ(0,1)(Fh, Gh) = 1

Lemma 4.1.1. Let F be homogeneous polynomial in k[X, Y, Z] of degree d, then X.∂F (X,Y,Z)
∂X

+

Y.∂F (X,Y,Z)
∂Y

+ Z.∂F (X,Y,Z)
∂Z

= d.F (X, Y, Z)

Proof. The outline of proof is that we decompose F and write it as
∑

i+j+k=d a(i,j,k)X
iY jZk as

given degF = d. Now, evaluate X ∂F
∂X

, Y ∂F
∂Y

and Z ∂F
∂Z

then sum it up which gives dF (X, Y, Z).
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Proposition 4.1.2. Let F be a projective curve in k[X, Y, Z] and a point p ∈ Vp(F ). Prove

that p is singular iff ∂F (p)
∂X

= ∂F (p)
∂Y

= ∂F (p)
∂Z

= 0. Moreover, if p is nonsingular, then tangent

to F at p is defined by X.∂F (p)
∂X

+ Y.∂F (p)
∂Y

+ Z.∂F (p)
∂Z

= 0

Proof. To prove it, we use Lemma 4.2.1.

Notes 4.1.3. In the case of affine space, for a point p ∈ A2
k if the conditions ∂F (p)

∂X
= ∂F (p)

∂Y
= 0

hold then to get singularity at that point, F (p) must be zero. But in the case of projective

space, if the above conditions hold then we need not to check explicitly that F (p) is zero or

not.

4.2 Bézout’s Theorem

Lemma 4.2.1. If F and G are two affine curve in k[X, Y ] of degree r and s respectively such

that there is no common component between leading terms Fr and Gs of F and G respectively

then any polynomial f in {F,G} of deg d can be expressed as CF + DG s.t. degC ≤ d− r
and degD ≤ d− s where C,D ∈ k[X, Y ]

Proof. Consider any polynomial f in {F,G} of deg d and write it as CF +DG with minimal

degC where C,D ∈ k[X, Y ]. Assume either degC > d− r or degD > d− s, this means the

leading terms of CF and DG must cancel. SO C ′F +D′G = 0 where C ′ and D′ are leading

terms of C and D respectively. Since Fr and Gs have no common component, it implies

that Fr | D′ and Gs | C ′. Thus D′ = HFr and C ′ = −HGs where H ∈ k[X, Y ]. Rewriting

f as (C + HG)F + (D − HF )G. This gives contradiction of minimality of degC because

deg(C +HG) < degC.

Lemma 4.2.2. If F and G are two affine curves in k[X, Y ] of degree r and s respectively

having no common components. Prove that

1. The dimension of k[X, Y ]/〈F,G〉 is at most r.s.

2. dim k[X, Y ]/〈F,G〉 = r.s if there is no common component between leading terms Fr

and Gs of F and G respectively.
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Proof. (i) Choose such d ≥ r+s, look at a sequence of vector subspace homomorphism given

as

k[X, Y ]≤d−r × k[X, Y ]≤d−s
φ−→ k[X, Y ]≤d

ψ−→ k[X, Y ]/〈F,G〉

defined by φ(C,D) = CF + DG and ψ is a quotient map where k[X, Y ]≤t means a vector

subspace of all polynomials in k[X, Y ] having degree at most t. Since we know, its dimension

is
(
t+2

2

)
. If φ(C,D) = CF +DG = 0⇒ CF = −DG but there is no common component be-

tween F and G, so F | D and G | C thus D = HF and C = −HG where H ∈ k[X, Y ]≤d−r−s

this means kerφ = H.(−G,F ) where H ∈ k[X, Y ]≤d−r−s. Since Imφ is in form of CF +DG

which maps to 0 under ψ. So, Imφ ⊂ kerψ −→ (i)

By theorem,

Imψ + dim kerψ = dim k[X, Y ]≤d

Imψ =

(
d+ 2

2

)
− dim kerψ

dim Imψ ≤
(
d+ 2

2

)
− dim Imφ (from(i))

By theorem,

dim Imφ+ dim kerφ =

(
d− r + 2

2

)
+

(
d− s+ 2

2

)

dim Imψ ≤
(
d+ 2

2

)
−
(
d− r + 2

2

)
−
(
d− s+ 2

2

)
+ dim kerψ

dim Imψ ≤
(
d+ 2

2

)
−
(
d− r + 2

2

)
−
(
d− s+ 2

2

)
+

(
d− r − s+ 2

2

)
dim Imψ ≤

(
d+ 2

2

)
−
(
d− r + 2

2

)
−
(
d− s+ 2

2

)
+

(
d− r − s+ 2

2

)
≤ rs+ 3(r + s− d)

≤ rs

as we have d ≥ r + s. Since this map k[X, Y ] −→ k[X, Y ]/〈F,G〉 is surjective. So, for large

value of d ≥ r + s, dim k[X, Y ]/〈F,G〉 = Imψ ≤ r.s.

(ii) In above, if we show that Imφ ⊃ kerψ then we are done and it follows from previous

Lemma 4.2.1.
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Corollary 4.2.3. (Bézout’s Theorem) If F and G are projective curve in k[X, Y, Z] with

no common components then
∑

p∈V (F,G)

µp(F,G) = degF. degG

Proof. Suppose F and G are projective curve in k[X, Y, Z]. Define F dh and Gdh are dehomog-

enization of F and G respectively. Since K is A.C.F. so we can find a point q in affine part of

P2
k which does not belong to V (F dh)∪ V (Gdh) (⇒ q 6= V (F )∪ V (G)). Since F and G have

no common component so V (F,G) is a finite set. We choose a line L passing through q s.t. it

does not intersect V (F,G). By projective co-ordinate transformation, we make L as line at

infinity, say Z = 0. It follows that deg(F dh) = deg(F ) and deg(Gdh) = deg(G) ⇒ V (F,G)

lies only in affine part of V (F ) and V (G). Since all points of V (F,G) are in affine part

⇒ V (F,G) ∼= V (F dh, Gdh) ⇒
∑

p∈V (F,G)

µp(F,G) =
∑

p∈V (F dh,Gdh)

µp(F
dh, Gdh). −→ (1)

As F dh and Gdh are homogeneous polynomials in k[X, Y ]. Hence they can be factorized

into linear components but there is no common points at infinity of F and G because of

taking such a line L. Thus by lemma 4.2.2, dim k[X, Y ]/〈F dh, Gdh〉 = degF dh. degGdh =

degF. degG. −→ (2).

from (1) and (2),

∑
p∈V (F dh,Gdh)

µp(F
dh, Gdh) = dim k[X, Y ]/〈F dh, Gdh〉

(⇒)
∑

p∈V (F,G)

µp(F,G) = degF. degG.

Hence it is proved.
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Chapter 5

Sheaves of Abelian Groups

5.1 Presheaf and Sheaf

Definition 5.1.1. (Presheaf) Let X be a topological space. A presheaf F on X is a

function such that for each open set U ∈ X, we have an abelian group F(U) that is called

section of F over U and for each inclusion map V ↪→ U of open sets V , U ⊂ X there is a

restriction map ρUV : F(U) −→ F(V ) s.t. it satisfying the following conditions:

1. F(∅) = 0

2. The restriction map ρUU is an identity map for each open set U ⊂ X.

3. If there is a chain of inclusion of open sets, say W ↪→ V ↪→ U then ρUW = ρVW .ρUV .

Definition 5.1.2. (Sheaf) A presheaf is a sheaf F if it satisfies the following conditions:

1. If for each open set U , there is a open cover {Ui} and s1, s2 ∈ F(U) such that

ρUUi
(s1) = ρUUi

(s2) for all Ui then s1 = s2

2. If for each open set U , there is a open cover {Ui} and for all i, a section si is given

such that ρUi,Ui∩Uj
(si) = ρUj ,Ui∩Uj

(sj) ∀i, j then there is a section s ∈ F(U) such that

ρUUi
(s) = si for all i.
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For example, let X be a topological space, say {a, b} with the discrete topology. A

presheaf F is defined as F(∅) = 0, F(X) = R3, F({a}) = F({b}) = R with the restriction

map as a projection map but it is not a sheaf.

Definition 5.1.3. (Using equalizer) A presheaf F is a sheaf iff for each open set U and

all covering {Ui} of U , the sequence of abelian groups, the sequence of abelian groups

0 −→ F(U)
α−→
∏
i

F(Ui)
β−→
∏
i,j

F(Ui ∩ Uj) −→ 0

s
α7−→ (ρUUi(s))i

(si)i
β7−→ (ρUi,Ui∩Uj

(si))− ρUj ,Ui∩Uj
(sj))i,j

is exact.

Definition 5.1.4. (Constant presheaf) A constant presheaf with a abelian group G is an

presheaf that assign G to each nonempty open subset of X and whose restriction maps are

idG.

For example, let X be {a, b} with the discrete topology and A = Z then a presheaf G
defined as G(∅) = 0, G(X) = G({a}) = G({b}) = Z with the restriction map as identity is a

constant presheaf.

Definition 5.1.5. (Constant sheaf) Suppose X is topological space and G is given an

abelian group with the discrete topology, then a constant sheaf is set of all continuous maps

from U into G. Moreover if U is connected then F(U) ∼= G.

For example, let X be {a, b} with the discrete topology and A = Z then a sheaf F defined

as F(∅) = 0, F(X) = Z⊕ Z, F({a}) = F({b}) = Z is a constant sheaf.

Definition 5.1.6. (Subpresheaf of presheaf) A subpresheaf of presheaf G is a presheaf

G ′ such that G ′(U) is a subgroup of G(U) and its restriction map is the restriction map of G
restricted to G ′(U)(ρ′UV = ρUV |G′(U)). In the above if G is a sheaf then G ′ is a subsheaf.

for example, every sheaf has zero sheaf as a subsheaf.

Remark 5.1.1. Let G and G ′ be subpresheaves of a presheaf F on X, then the both are

equal iff G = G ′ ∀U ⊂ X.

Remark 5.1.2. If G and G ′ are subsheaves of a sheaf F , then they are equal iff both have

the same stalks ∀ p ∈ X.
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5.2 Morphism of presheaves

Definition 5.2.1. Let F and G be presheaves on X then a morphism of presheaves ϕ :

F −→ G consists of a family of homomorphism of presheaves ϕU : F(U) −→ G(U) for each

open set U and if V ↪→ U then the following diagram commutes.

F(U)
ϕU //

ρUV

��

G(U)

ρ
′
UV
��

F(V ) ϕV

// G(V )

Definition 5.2.2. (Stalk) let F be a presheaf on X, then stalk of (F ) at a point p ∈ X
is a set of equivalence classes of pairs of the form (U, s) where U is a neighborhood of P

and s ∈ F(U) with the equivalence relation that is (U, s) ∼ (V, t) in Fp iff there is an open

neighborhood W containing p with W ⊆ U ∩ V such that ρUW (s) = ρVW (t)

Definition 5.2.3. (Using direct limit) If F is a presheaf on topological space X then

stalk Fp of F at p is defined as direct limit of F(U) where range is all open set U containing

p or Fp = lim
U3p
F(U).

By definition of direct limit, for each neighborhood U of p , there exists a canonical

morphism θU : F(U) −→ Fp s.t. θV .ρUV = θU where ρUV : F(U) −→ F(V ) whenever

p ∈ V ⊆ U .

Notes 5.2.1. If ϕ is a morphism of presheaves on X then it induces a morphism of presheaves

on the level of stalk. For any point p ∈ X,

ϕ : F −→ G

ϕp : Fp −→ Gp

where ϕp(U, s) = (U,ϕU(s)) and it is well defined (using Def 5.2.1).

Remark 5.2.1. If ϕ : F −→ G is a morphism of presheaves on X then

1. kerϕ is a presheaf defined by ker(ϕ(U)) for each open set U ∈ X.

2. Imϕ is a presheaf defined by Im(ϕ(U)) ∀ open set U ∈ X.
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3. Cokerϕ is a presheaf defined by Coker(ϕ(U)) = G(U)/ Im(ϕ(U)) for each open set

U ∈ X.

If in map ϕ, sheaves are given instead of presheaves then kerϕ is a sheaf.

Lemma 5.2.2. Consider a morphism of sheaves ϕ : F −→ G on a topological space X, then

the following are the equivalent :

1. ϕ is a monomorphism of sheaves of sets.

2. ϕU : F(U) −→ G(U) is injective for all open set U ⊂ X.

3. ϕp : Fp −→ Gp is injective for each point p ∈ X.

Lemma 5.2.3. Consider a morphism of sheaves ϕ : F −→ G on a topological space X, then

the following are the equivalent :

1. ϕ is epimorphism of sheaves of sets.

2. ϕp : Fp −→ Gp is surjective for each point p ∈ X.

Remark 5.2.2. If ϕ is epimorphism then for each open set U ∈ X the map ϕU need not be

surjective.

Remark 5.2.3. If ϕp is surjective on the level of stalks, then ϕU need not be surjective on

the each open set U in X.

Proposition 5.2.4. A morphism of sheaves ϕ : F −→ G on a topological space X is

isomorphism iff morphism of stalks ϕp : Fp −→ Gp is isomorphism for each point p ∈ X.(It

is not true for general presheaves.)

Proof. (⇒) It is clear. (⇐) Let ϕp be an isomorphism ∀ p ∈ X. To show ϕ is an isomorphism,

we just need to show that ϕ(U) is isomorphism ∀ open set U ∈ X. To see injectivity of

ϕ(U), we assume a section s ∈ F(U) such that ϕU(s) = 0. If s = 0 we are done. for

every point p ∈ U , image of (s, U) under ϕp is (ϕU(s), U) = (0, U). But ϕp is injective for

each point p ∈ U tha implies (s, U) ∼ (0, U) in Fp, so there exists a open set Vp ⊆ U s.t.

ρUVp(s) = ρUVp(0) = 0 for each point p ∈ U . It follows that {Vp} is covering of U , by the

sheaf condition (1) it implies that s = 0 on F(U).
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To show surjectivity of ϕ(U), we assume s ∈ G(U) and define sp is its germ in Gp for each

point p ∈ U . Due to surjectivity of ϕp, we can find section rp from Fp for each point p ∈ U
s.t.ϕp(rp) = sp. Write rp = (r(p), Up) where r(p) is a section of F(Up) for each p ∈ Up ⊂ U .

Since ϕUp(r(p)), ρUUp(s) ∈ G(Up) and they have the same germs at p. So we can proceed

by assuming ϕUp(r(p)) = ρ
′
UUp

(s) in G(Up). It follows that {Up} is covering of U . For

any two points p and q in U , consider two sections of F(Up ∩ Uq) which are ρUp,Up∩Uq(r(p))

and ρUq ,Up∩Uq(r(q)), sent by ϕUp∩Uq to ρU,Up∩Uq(s), Using the injectivity on ϕUp∩Uq , we get

ρUp,Up∩Uq(r(p)) = ρUq ,Up∩Uq(r(q)). By the sheaf condition (2), for each point p ∈ U there

exists a section r ∈ F(U) s.t. ρUVp(r) = r(p). Since ϕU(r), s ∈ G(U) from above for each p,

ρ′UUp
ϕU(r) = ϕUp(r(p)) = ρ′UUp

(s).

F(U)
ϕU //

ρUUp

��

G(U)

ρ
′
UUp
��

F(Up) ϕUp

// G(Up)

r
ϕU //

ρUUp

��

ϕU(r)

ρ
′
UUp
��

r(p) ϕUp

// ϕUp(r(p))

Again by the sheaf conditions (2), ρU(r) = s in G(U). ⇒ ∃ r ∈ F(U) s.t. ϕU(r) = s ∀
(open)U ⊂ X. ⇒ ϕU is surjective ∀ (open)U ⊂ X.

Lemma 5.2.5. Suppose ϕ : F −→ G is a morphism of sheaves, then it is epimorphism iff

there exists an open cover {Ui} of every open set U and for every section s ∈ G(U), ρ′UUi
(s)

lies in the image of ϕUi
for each i where ρ′UUi

: G(U) −→ G(Ui).

Lemma 5.2.6. Suppose G is a sheaf on a topological space X then for every open set U in

X, the map ψ : G(U) −→
∏
p∈U
Gp is injective.(It is not true for general presheaf.)

Proof. fix an open set U ,now choose such s, t from G(U) such that they maps to the same

element in G(U) −→ Gp for each p ∈ U . So (U, s) ∼ (U, t) in every stalk Gp for all point

p ∈ U that implies ∃ an open set Vp ⊆ U containing p such that ρUVp(s) = ρUVp(t) for each

p ∈ U then {Vp} makes an open cover of U . Thus by the sheaf condition (1), s = t, therefore

the map ψ is injective.

Definition 5.2.4. (Sheafification of presheaf) The sheafification of a presheaf F is the

sheaf F+ associated to F and for each open set U , F+ is defined as set of functions f :

U −→
∐
p∈U
Fp satisfying two conditions :
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1. For each p ∈ U , f(p) ∈ Fp

2. For each p ∈ U , there is open set V around p contained in U and a section g ∈ F(V )

such that ∀ q ∈ V , (V, g) = f(q).

Theorem 5.2.7. (Universal property of sheafification) Given a presheaf F , there

exists a sheaf F+ and a morphism ι : F −→ F+ with the property that for any sheaf G and

any morphism ψ : F −→ G there is a unique morphism ϕ : F+ −→ G such that ψ = ϕ ◦ ι.

Proof. See in proposition 13 in [8]
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