
Approximate Kernels for Graph

Contraction Problems

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Spoorthy Gunda

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Soumen Maity and Saket Saurabh

c� Spoorthy Gunda 2019

All rights reserved

This thesis is dedicated to my friend.

Declaration

I hereby declare that the matter embodied in the report entitled Approximate Kernels for

Graph Contraction Problems are the results of the work carried out by me at the Institute

of Mathematical Sciences, Chennai under the supervision of Saket Saurabh and at Indian

Institute of Science Education and Research, Pune, under the supervision of Soumen Maity

and the same has not been submitted elsewhere for any other degree.

Spoorthy Gunda

Acknowledgements

I would like to express my great appreciation to Dr. Soumen Maity for his constant

support and guidance. I am thankful to him for introducing me to Prof. Saket Saurabh.

I would like to express my deep gratitude to Prof. Saket Saurabh for the opportunities

and exposure provided to me at The Institute of Mathematical Sciences, Chennai. I am very

thankful for the valuable suggestions and support during the project.

I thank Pratik Tale and Pallavi Jain for their time spent on the discussions. I am

especially thankful to Pratik Tale for his constant help and support during the project.

Finally, I wish to thank my family and friends for their emotional support and encour-

agement.

ix

x

Abstract

We study a few graph contraction problems Chordal Contraction, Clique Con-

traction and Split Contraction, from the viewpoint of Lossy Kernelization, which is

a recently introduced framework to study NP-hard problems. H-Contraction problem is

to find set of edges such that when contracted will give the graph H. We study approximate

kernel for the minimization version of these problems by including some parameters.

xi

xii

Contents

Abstract xi

1 Introduction 1

1.1 Scope of the thesis . 4

2 Preliminaries 5

2.1 Graph Theory . 5

2.2 Approximation Algorithms . 8

2.3 Parameterized complexity . 9

3 Lossy Kernelization 11

3.1 Parametrized Optimization Problem . 11

3.2 Approximate kernel . 12

3.3 Lower Bounds for Approximate Kernels . 14

4 Chordal Contraction 17

4.1 Introduction . 17

4.2 (No) Lossy Kernel for Chordal Contraction 18

5 Clique Contraction 23

xiii

5.1 Introduction . 23

5.2 Lossy kernel for Clique Contraction . 24

6 Split Contraction 31

6.1 Introduction . 31

6.2 Lossy Kernel for Split Contraction . 32

7 Conclusion 39

Bibliography 41

xiv

Chapter 1

Introduction

Graph editing problems have been extensively studied in the literature. Basic graph

editing operations include deleting vertices or edges, adding vertices or edges, and edge

contraction. Given a graph G, graph editing problems ask if the given graph can be edited

to get the desired property. Some of these problems can also be viewed as editing the graph

so that the graph will not contain any induced subgraphs that are isomorphic to a given set

of forbidden graphs. Many well-known problems can be viewed as graph editing problems.

One such example is the Vertex Cover problem, it can be viewed as deleting few vertices

such that the remaining graph is independent or deleting few vertices such that it does not

have any edges.

In recent years various graph editing problems with a restricted number of allowed edit

operations, like Chordal Editing [7, 11, 3], Split Editing [8], Cluster Editing [6]

were considered. When the editing is restricted to edge contraction, the problems are usually

known to be very hard compared to the other editing operation. The initial results on NP-

hardness of graph contraction problems were shown by Watanabe et al. [13, 12]. Recently

parameterized complexity of graph contraction problems have received a lot of attention.

In Parameterized Complexity, the input has a parameter along with the problem instance,

that captures the hardness of the problem. A central notion in this field is fixed parameter

tractable (FPT) problems. A parameterized problem ⇧ is said to be FPT if for a given

instance (I, k), there is an algorithm that decides whether or not it is a yes instance of

⇧ in time f(k)|I|O(1) where f is some computable function of k. Every parameterized

1

problem need not be fixed-parameter tractable for given parameter. The problems that are

not fixed-parameter tractable are said to be W-hard. The class of W-hard problem can be

further divided on the basis of hardness. The complexity classes are assumed to follow the

containment FPT (W[1] (W[2] ✓ . . . ✓ W[p] ✓ XP.

Kernelization is another import notion of Parameterized Complexity. Kernelization al-

gorithm for a parameterized problem ⇧ is an algorithm that given an instance (I, k) of Q

returns an equivalent instance (I 0, k0) of Q in polynomial time, such that |I 0|+ k  g(k), for

some computable function g. An important result of this theory is that a problem ⇧ is in

FPT if and only if it admits a kernelization algorithm. H-Contraction problem and F -free

contraction problem with a parameter k are defined as follows

H-Contraction Parameter: Solution size k

Input: A graph G and H and an integer k

Question: Does there exists k edges whose contraction results in the graph H?

F - Free Contraction Parameter: Solution size k

Input: A graph G, a family of graphs F and an integer k

Question: Does there exists k edges whose contraction results in a graph that does not

contain any induced subgraphs from H?

Cai and Guo [2] have shown that F -free contraction parameterized by solution size is W-

hard for all F that are three connected graphs except for complete graphs. Graph contraction

problems are known to be W-hard even if the forbidden set is finite and bounded. In Cl-

Free Contraction, problem the forbidden set is the cycle of length l, even for a fixed

l when parameterized by solution size it has been proved to be W-hard by Lokshtanov et

al. [9]. Following are a few of the results that are known on the parameterized complexity

of graph contraction problems. The Chordal Contraction problem is W[2]-hard when

parameterized by the size of the solution [9]. Clique Contraction parameterized by

the solution size can be solved in O(27k · k2k+5), but admits no polynomial kernel unless

NP ✓ CoNP/poly [2]. Split Contraction parameterized by the size of minimum vertex

cover `, does not have any algorithm with running time 2o(`
2)
· |I|O(1) under the standard

ETH hypothesis [1]. Split Contraction is W[1]-hard when parameterized by the size of

solution [1].

2

Lossy Kernelization is a new framework developed by Lokshtanov et al. [10] to study

NP-hard optimization problems. In Lossy Kernelization the question posed is di↵erent from

that of the question posed in Parameterized complexity. We look for optimization solution

instead of the existence of the solution. FPT-approximation algorithm for a parameterized

optimization problem with parameter k, is an algorithm that finds approximate solution in

time f(k)nO(1), where f is some computable function.

Approximate Kernelization is the main concept of Lossy Kernelization. A problem ⇧

with an input instance (I, k) is said to admit approximate kernel of size g(k), if there exists

a polynomial time running algorithm that outputs an instance (I 0, k0) with |I 0| + k0
 g(k)

such that c-approximate solution for (I 0, k0) can be lifted to b · c-approximate solution for

(I, k). One of the main results of this theory is the equivalence between FPT approximation

and approximate kernel.

Under the Lossy Kernelization set up, for input graph G, H-Contraction problem is

to find a minimum set of edges to be contracted so that the resulting graph is H. Formally

the minimization version of H-Contraction with parameter being the size of the solution

is defined as follows.

HC(G, k, F) =

8
<

:
1 if G/F is not isomorphic to H

min {|F |, k + 1} otherwise.

The optimum value of the solution is defined as OPTHC(G, k) = min
F✓E(G)

HC(G, k, F).

We consider that any solution of size greater than k is equally bad, so all the solutions of

size greater than k are given the value k + 1. But if there is a solution of size at most k, we

are interested in knowing the minimum value it can attain.

Our goal is to find ↵-approximate solution for graph contraction problems for some small

↵ � 1 with running time f(k) · nO(1), where n is the number of vertices in input graph. In

other words if |F ⇤
| is the value of the optimum solution we will try to find a solution of size

at most ↵|F ⇤
|. This can also be achieved by finding ↵-approximate kernels

3

1.1 Scope of the thesis

In Chapter 3, we formally define the framework of our study: Lossy Kernelization in

detail. In this thesis, we study a few graph contraction problems from Lossy Kernelization

point of view. In particular we study ↵-approximate kernels for Chordal Contraction,

Clique Contraction and Split Contraction problems.

In Chapter 4, we prove that Chordal Contraction parameterized by solution size

do not admit any polynomial size approximate kernel unless NP✓CoNP/Poly.

In Chapter 5, we show that Clique Contraction, parameterized by solution size

admits ↵-approximate kernel of polynomial size for every ↵ > 1.

In Chapter 6, we show that Split Contraction parameterized by solution size and

maximum independent size, admits approximate kernels of polynomial size.

4

Chapter 2

Preliminaries

2.1 Graph Theory

In this thesis, we consider only simple and undirected graphs with finite number of

vertices. Vertices of the graph G are represented by V (G) and edges by E(G). Two vertices

u and v are said to be adjacent if there exists an edge uv between them and the vertices u, v

are called the endpoints of the edge. The set of vertices that are adjacent to a vertex u are

called its neighbours and is represented by N(u). Let A be the set of vertices then N(A) is

union of neighbours of all the vertices in A.

A graph H is called a subgraph of a graph G, if V (H) ✓ V (G) and E(H) ✓ E(G). A

graph H is called an induced subgraph of graph G, if V (H) ✓ V (G) and E(H) is set of all

the edges of G whose both the endpoints are in V (H). For a set of vertices A ⇢ V (G) the

induced subgraph on A is represented by G[A]. A Spanning subgraph H is a subgraph with

V (H) = V (G).

A Path P is a graph with V (P) = {v1, v2,vn} and E(P) = {vivi+1; 1  i  n� 1}. A

graph G is called connected if there exists a path between any two vertices of G.

A Cycle C is a graph with V (C) = {v1, v2,vn} and E(C) = {vivi+1; 1  i  n� 1} [

{vnv1}. A graph which does not contain any cycle as a subgraph is called an acyclic graph.

A connected acyclic graph is called a tree. In a tree T , if |V (T)| = n then |E(T)| = n � 1.

A spanning tree of a graph G is a spanning subgraph that is connected and acyclic.

Complement of a graph G is G̃ such that V (G) = V (G̃), and two vertices are adjacent

5

in G̃ if and only if they are non-adjacent in G.

A clique is a simple graph such that there is an edge between every pair of vertices. A

set of vertices I is said to be independent if all the vertices of I are non-adjacent. A clique

is a complement of an independent graph and vice versa.

A Split graph G is a simple graph whose vertices can be partitioned into two sets such

that one set induces a clique and the other an independent set. A graph G is said to be split

graph if and only if G does not have C4, C5 or 2K2 as an induced subgraph. Here C4, C5

are cycles of length 4 and 5 respectively and a 2K2 is a graph on 4 vertices with two disjoint

edges. The set {C4, C5, 2K2} is called the forbidden set for a split graph. A clique is a split

graph with at most one vertex in the independent set.

Figure 2.1: Forbidden graphs of split graph and an example of a split graph.

A Chordal graph is a simple graph with no induced cycles of length at least 4. A chordal

graph has an induced cycle of length at most 3, so it is also called a triangulated graph. All

split graphs are chordal graphs but all chordal graphs are not split graphs.

Vertex Cover of a graph G is a set of vertices such that every edge of the graph is incident

on at least one vertex of this set. Let X be the vertex cover of a graph G, since every edge

has at least one endpoint in X, G \X is an independent set i.e., there is no edge with both

the endpoints in V (G) \X.

2.1.1 Contraction

Edge contraction is a basic operation on graphs, where the two endpoints of an edge e = uv

are replaced by a single vertex x, such that N(x) = N(u) [N(v). The resultant graph

6

obtained by contracting the edge e is represented by G/{e}. Let F be set of edges of G,

then G/F represents the graph obtained by contracting all the edges of F , iteratively in G.

We say that G can be contracted to a graph H, if there exists a set of edges F such that

G/F = H. Equivalently G can be contracted to a graph H, if there exists an onto function

' : V (G) ! V (H), with W (h) = {v 2 V (G) : '(v) = h} for all h 2 H such that

1. G[W (h)] is a connected graph for every h 2 H.

2. Two vertices h, h0
2 V (H) are adjacent if and only if there exists a vertex from W (h)

and W (h0) that are adjacent.

3. W = {W (h) 8 h 2 H} is a partition of V (G).

Refer to the Fig 2.2. W is said to be a H-witness structure of G and the sets W (h) are called

witness sets. The set of edges F is obtained by taking the union of the edges corresponding

to spanning trees of all the witness sets. We call the witness sets with more than one vertex

as big witness sets.

v1 v2

v3

v4
v5

v6

v7
v8

v9

v10

v11
v12

v13

(a) Input Graph

v1 v2

v3

v4
v5

v6

v7
v8

v9

v10

v11
v12

v13

(b) Graph Partition

t4

t5

t3

t1
t2

t6
t7

t8

(c) Resultant graph

Figure 2.2

Proposition 2.1.1. If a graph H can be obtained from a graph G by contracting at most k

edges, then for W a H-witness structure of G, the following conditions are satisfied

1. The total number of vertices in G that are contained in the big witness sets is bounded

by 2k.

2. For all h 2 H, |W (h)|  k + 1.

3. The number of big witness sets is not more than k.

7

2.2 Approximation Algorithms

NP is set of decision making problems, that can be solved in polynomial time. In other

words, for a problem ⇧ if there exists an algorithm to check if a string s is a correct solution

for ⇧ in polynomial time, then it is in NP .

Example 1 Given a subset of vertices of a graph G, in polynomial time it can be checked

if these vertices are independent.

Example 2 In set cover problem the input instance consists of a Universe U and a family

of subsets S, the goal is to find sets from S whose union will be U . In the decision version

along with the instance few sets are also given, and one can in polynomial time find if the

union of these sets is U and hence Set Cover problem is in NP.

A problem ⇧ is said to be NP-hard, if there exists a polynomial time reduction from

every problem of NP to ⇧. A problem is said to beNP-complete if it is in NP and NP-hard.

Example of NP-complete problem is Vertex Cover, Set Cover.

Approximation algorithms is framework to study NP-hard problems. In approximation

algorithms we try to find a solution for an optimization problem. But since most of these

problems are NP-hard, optimum solution cannot be found in polynomial time. So the goal

is to find a solution that is close to optimal solution in polynomial time. An optimization

problem can be a minimization or a maximization problem. Examples of optimization prob-

lems are finding a minimum vertex cover of a graph or finding a maximum independent set

of a graph. For an instance I of the problem ⇧, we denote the value of the optimum solution

by OPT⇧(I)

For every instance I of a minimization problem ⇧, if there exists an algorithm A that

outputs a solution with value A(I), such that
A(I)

OPT⇧(I)
 ↵A, then ↵A is called the ap-

proximate ratio of the algorithm A. The solution outputted by the algorithm is called

↵A-approximate solution. Observe that ↵A is always greater than or equal to 1.

In other words for a minimization problem the approximate ratio of a algorithm is defined

as

↵A = max
I

A(I)

OPT⇧(I)
.

Similarly for a maximization problem the approximate ratio of a algorithm is defined as

1

↵A

= max
I

A(I)

OPT⇧(I)
.

8

Vertex Cover: Given a graph G, we have to minimize |S| such that S ✓ V (G) and S

covers all the edges of G. We will give an algorithm that outputs a 2-approximate solution for

every graph G. For an input graph G, pick an edge arbitrarily and put both the endpoints of

this edge in a set X and delete these vertices from G, continue this process in the remaining

graph until there are no edges left. The set X will be a 2-approximate vertex cover of G.

The set X is a vertex cover of G as it covers all the edges of the graph. Since at least one

endpoint of each edge must be part of vertex cover we get OPT (G) �
|X|

2
, hence X is a

2-approximate solution for vertex cover.

This algorithm can be generalized to find approximate solutions for any vertex deletion

problem with bounded and finite forbidden set. Examples of one such problem is Split

Vertex Deletion.

A problem ⇧ is said to admit Polynomial time approximation scheme (PTAS), if

there exists a family of ↵-approximate algorithms for every ↵ > 1 such that the running

time is polynomial and can depend on ↵.

In approximation algorithms the goal is to come up with algorithms with e�cient running

time and to achieve good approximate ratio.

All problems need not have polynomial time ↵-approximate algorithm, for any constant

↵ > 1. Example for one such problem is Travelling Salesmen Problem [4].

2.3 Parameterized complexity

For the problems that do not admit a polynomial time algorithm, we introduce a parameter

and try to find an algorithms whose running time is polynomial in the instance size but

some function in the parameter. We formally define parameterized problem and also define

the notion of hardness in this section. For a more detailed explanation and concepts on

Parameterized Complexity refer to the book Parameterized Algorithms by Cygan et al. [5].

Definition 1. A parameterized problem is a language L ✓ ⌃⇤
⇥N , where ⌃ is a fixed, finite

alphabet. For an instance (x, k) 2 ⌃⇤
⇥N , k is the parameter.

Usually, structural property of the instance can be inferred from the parameter. Most

9

commonly used parameter is the size of the solution. Example for parameterized problem is

given a graph G, to check if the graph has a clique of size at least k.

Definition 2. A parameterized problem L ✓ ⌃⇤
⇥ N , is said to be fixed parameter

tractable (FPT), if there exists a an algorithm A that correctly decides whether a given in-

stance (x, k) 2 L, whose running time is f(k) · |(x, k)|c for a computable function f : N ! N,
and a constant c.

Definition 3. A parameterized problem L ✓ ⌃⇤
⇥N , is said to be slice-wise polynomial

(XP), if there exists a an algorithm A that correctly decides whether a given instance (x, k) 2

L, whose running is f(k) · |(x, k)|g(k) for a computable functions f : N ! N and g : N ! N.

Set of all fixed-parameter tractable problems are represented by FPT complexity class.

Similar to NP-completeness theory, there is also a lower bound theory for parameterized

algorithms. All problems need not be FPT. Parameterized reduction is defined in order to

obtain lower bounds for problems. There are di↵erent levels of hardness like W[1], W[2],...

in parameterized complexity. We assume that FPT (W[1] (W[2] ✓ . . . ✓ W[p] ✓ XP

which is stronger assumption than NP 6= P . We will see that Chordal Contraction

and Split Contraction when parameterized by solution size are W-hard.

Definition 4. For two parameterized problems A, B. A parameterized reduction is a

algorithms that outputs an instance (x0, k0) of B from an instance (x, k) of A such that

• the running time of the algorithm is f(k) · |x|O(1)
for some computable function f .

• (x, k) is yes instance of A if and only if (x0, k0) is yes instance of B.

• k0
 g(k) for some computable function g

Theorem 2.3.1. [5] If there is parameterized reduction from A to B and B is in FPT then

A is also in FPT.

Definition 5. A kernelization algorithm for a paremeterized problem ⇧ is an algorithm

that given an instance (x, k) of Q returns an equivalent instance (x0, k0) of Q in polynomial

time such that |x0
|+ k  g(k), for some computable function g.

Theorem 2.3.2. [5] A parameterized problem ⇧ is said to admit polynomial kernelization

if and only if ⇧ is fixed-parameter tractable.

10

Chapter 3

Lossy Kernelization

Lossy Kernelization is a new framework for studying NP-Hard problems. Similar to approxi-

mation algorithms this theory deals with optimization problems along with some parameter.

In Section 2.3, we have seen basics of Parameterized complexity theory, there the main con-

cept was Kernelization. Parameterized Complexity theory has paved a way to give more

insight on NP-hard problems. But the drawback of the theory was that kernelization do

not work well when combined with heuristics. In order to address this issue Lokshtanov et

al. [10], in their paper established a new framework of study called Approximate Kerneliza-

tion. Informally, approximate kernelization can be described as reducing an input instance

(I, k) to an instance (I 0, k0), such that for c,↵ > 1, a c-approximate solution for (I 0, k0) can

be lifted to c↵-approximate solution for (I, k). In this chapter we will look at some basics

of Approximate Kernelization. Definitions in this chapter are taken from the paper Lossy

Kernelization by Lokshtanov et al. [10].

3.1 Parametrized Optimization Problem

We will first define parameterized optimization problem formally.

Definition 6. A parameterized optimization problem ⇧ is a computable function

⇧ : ⌃⇤
⇥ N⇥ ⌃⇤

! R [{±1}.

11

With the instances of ⇧ being the pairs (I, k) 2 ⌃⇤
⇥ N and a solution to (I, k) is simply a

string s 2 ⌃⇤
such that |s|  |I|+ k.

For an instance (I, k) of the problem ⇧ value of the solution s is given by ⇧(I, k, s).

Optimum value for the instance is defined as OPT⇧(I, k) = max
s2⌃⇤

⇧(I, k, s) for a maximization

problem ⇧, and OPT⇧(I, k) = min
s2⌃⇤

⇧(I, k, s) for a minimization problem ⇧. Look at the

following example for how parameterized optimization version of Vertex Cover problem

with solution size as parameter can be defined

V C(G, k,X) =

(
1 if X is not a vertex cover of G

min{|X|, k + 1} otherwise.

Definition 7. A fixed parameter tractable ↵-approximation algorithm for a parameterized

optimization problem ⇧ is an algorithm A that takes an input instance (I, k) and outputs a

solution s in f(k) · |I|O(1)
time, such that if ⇧ is a minimization problem then ⇧(I, k, s) 

↵ ·OPT⇧(I, k) , and if ⇧ is a maximization problem then ↵ · ⇧(I, k, s) � OPT⇧(I, k).

3.2 Approximate kernel

Given an instance of the problem, one can preprocess the instance and transform it to some

smaller instance either by solving it partially or by deleting the obvious cases. We will try to

do some preprocessing for obtaining approximate solutions for NP-hard problem. Informally,

the smaller instance obtained by preprocessing is called kernel. One could apply some brute-

force techniques to get the solution for kernel and later lift it to get the solution for the

original one. We formally define the notion of approximate kernel in this section.

Definition 8. Let ↵ � 1 be a real number and ⇧ be a parameterized optimization problem.

An ↵-approximate polynomial-time preprocessing algorithm is a pair of polynomial-

time algorithms, namely a reduction algorithm and a solution lifting algorithm, such that the

following properties are satisfied

• Given an instance (I, k) of ⇧, the reduction algorithm outputs an instance (I 0, k0) of ⇧

called the reduced instance.

12

• Given the instances (I, k) and (I 0, k0) of ⇧, and a solution s0 to the reduced instance

(I 0, k0), the solution lifting algorithm outputs a solution s to (I, k) such that for a

parameterized minimization problem ⇧

⇧(I, k, s)

OPT(I, k)
 ↵ ·

⇧(I 0, k0, s0)

OPT(I 0, k0)
,

and for a parameterized maximization problem ⇧

↵ ·
⇧(I, k, s)

OPT(I, k)
�

⇧(I 0, k0, s0)

OPT(I 0, k0)
.

In the definition 8, solution lifting algorithm does not demand for an optimum solution

for the reduced instance, some c-approximate solution for the reduced instance will su�ce

and the algorithm will output c↵-approximate solution for the original instance.

Definition 9. An ↵-approximate kernel for a parameterized optimization problem ⇧,

and for ↵ � 1, is an ↵-approximate polynomial-time preprocessing algorithm, such that the

size of the reduced instance, |I 0|+ k0
is upper bounded by a computable function g : N ! N,

for all I 2 ⌃⇤.

If the size of the reduced instance is bounded by a polynomial function g, then we say

that the problem ⇧ admits a polynomial kernel.

In the next proposition we establish the equivalence between FPT approximation and ap-

proximate kernelization. This is one of the important result in Lossy kernelization.

Proposition 3.2.1. [10] For a paramemeterized optimization problem ⇧ and 8↵ � 1, ⇧ ad-

mits fixed parameter tractable ↵-approximation algorithm if and only ⇧ has an ↵-approximate

kernel.

Similar to the notion of PTAS for approximation we have the notion of PSAKS on

approximate kernelization defined as follows

Definition 10. A polynomial-size approximate kernelization scheme (PSAKS) for ⇧ is a

family of ↵-approximate polynomial kernelization algorithms for each ↵ > 1.

If a parameterized optimization problem ⇧ has ↵-approximate kernels for all ↵ > 1, then

we say that ⇧ admits PSAKS.

13

3.3 Lower Bounds for Approximate Kernels

Similar to notion of W-hardness in parameterized complexity, we will define lower bounds for

approximate kernelization, and show that few problems cannot have ↵-approximate kernel

of polynomial size. Alike to the notion of reduction to prove NP-hardness of a problem, we

will define the notion of ↵-approximate polynomial parameter transformation to prove the

lower bounds for approximate kernelization.

Definition 11. Let ↵ � 1 be a real number. Let ⇧ and ⇧0
be two parameterized optimization

problems. An ↵-approximate polynomial parameter transformation (↵-appt) A from ⇧ to

⇧0
is a pair of polynomial time algorithms, namely reduction algorithm RA and a solution

lifting algorithm. Given as input an instance (I, k) of ⇧ the reduction algorithm outputs an

instance (I 0, k0) of ⇧0
. The solution lifting algorithm takes as input an instance (I, k) of ⇧,

the output instance (I 0, k0) of ⇧0
, and a solution s0 to the instance I 0 and outputs a solution

s0 to (I, k) such that if ⇧ is minimization problem

⇧(I, k, s)

OPT⇧(I, k)
 ↵ ·

⇧0(I 0, k0, s0)

OPT⇧0(I 0, k0)

and if ⇧ is a maximization problem then

↵ ·
⇧(I, k, s)

OPT⇧(I, k)
�

⇧0(I 0, k0, s0)

OPT⇧0(I 0, k0)

In approximate kernelization, we reduce an instance to smaller instance of the same

problem. Similarly, compression is reducing the instance of one problem to smaller instance

of some other problem. We will now formally define approximate compression.

Definition 12. For parameterized optimization problems ⇧ and ⇧0
, an ↵-approximate com-

pression from ⇧ to ⇧0
is an ↵-appt from from ⇧ to ⇧0

such that the instance outputted by

reduction algorithm, |I 0| + k0
is upper bounded by a computable function g : N ! N, for all

I 2 ⌃⇤
.

If there is an ↵-appt from problem ⇧ to ⇧0, and if ⇧0 admits an ↵-approximate poly-

nomial kernel then ⇧ admits an ↵0-approximate polynomial compression for some ↵0 > 1.

Hence, if a problem ⇧ does not have ↵-approximate polynomial compression for any ↵ > 1,

one can find reduction from ⇧ to other problems in order to find the lower bounds.

14

In the paper [10], the authors have proved the lower bound results for finding the

Longest Paths in the graph parameterized by solution size and finding minimum set

cover parameterized by the universe size.

Set cover problem parameterized by universe size is defined as follows

SC/n((S, U), |U |, F) =

(
min{|F |, k + 1} if F is a set cover

1 otherwise

Theorem 3.3.1. [10] Set cover problem parameterized by universe size does not have ↵-

approximate compression of polynomial size for any ↵ � 1, unless NP ✓ coNP/Poly.

Like the hypothesis NP 6= P; NP 6= coNP/Poly is also a standard hypothesis.

15

16

Chapter 4

Chordal Contraction

In this chapter we formally define the parameterized optimization version of Chordal

Contraction and then prove the lower bound results for the problem.

4.1 Introduction

The Chordal Contraction problem is to minimize the number of edges in a given graph

G, such that the contraction of these edges will result in a chordal graph. The problem of

Chordal Contraction parameterized by solution size, is to check if there exists an edge

set of size at most k whose contraction will result in a chordal graph. Lokshtanov et al.

[9] proved that Chordal Contraction is W -hard when parameterized by solution size.

We study this problem in the lossy kernel set up. Formally the parameterized optimization

version of Chordal Contraction is defined as follows

CC(G, k, P) =

8
<

:
1 if G/P is not a chordal graph

min {|P |, k + 1} otherwise.

We show that the Chordal Contraction parameterized by solution size does not have

an ↵-approximate kernel of polynomial size. In order to get this lower bound result we

first define C4-Free Contraction problem and obtain lower bound results by showing

a polynomial time reduction from the parameterized optimization version of Set Cover

17

problem. Set Cover parameterized by the solution size does not have any ↵�approximate

compression of polynomial size under standard complexity theory hypothesis [10, Theorem

11].

4.2 (No) Lossy Kernel for Chordal Contraction

4.2.1 Lower Bound for C4-Free Contraction

If a graph H has no induced cycle of length 4, we say that H is C4-free graph. C4-Free

Contraction problem is to find minimum number of edges in given graph G, whose con-

traction will result in a graph H, such that H has no induced cycle of length 4. Formally

the parameterized optimization version of C4-Free Contraction is defined as follows.

FC(G, k, P) =

8
<

:
1 ifG/P is not a C4 free graph

min {|P |, k + 1} otherwise.

Theorem 4.2.1. There is a 1-approximate polynomial parameter transformation from Set

Cover parameterized by solution size to C4-Free Contraction parameterized by solution

size.

Refer to section 3.3 for the definition of approximate polynomial parameter transforma-

tion.

Proof. In order to prove this theorem we have to give a pair of polynomial time algorithms,

reduction algorithm and a solution lifting algorithm, such that the reduction algorithm takes

an instance ((S, U), k) of Set Cover and outputs an instance (G, k) of C4-Free Contrac-

tion problem and if P is the solution to the instance of C4-Free Contraction problem

the solution lifting algorithm should output a solution F for the Set Cover instance such

that

SC((S, U), k, F)

OPTSC((S, U), k)


FC(G, k, P)

OPTFC(G, k)
.

18

Reduction Algorithm: Let the instance of set cover be ((S, U), k) with U = {x1, x2,, xn}

and S = {S1, S2,, Sm}. Construct the instance (G, k) as follows. Add a special vertex g

and for every set Si 2 S add a corresponding vertex si, and for every element xi 2 U add

three vertices ai , bi and ci. Look at the Figure 4.1.

Add the edges as follows

1. Make the set of vertices {si : 1  i  m} into a clique.

2. For all 1  i  m, and for all 1  j  n add an edge from g to si, aj and bj .

3. For all 1  j  n, add an edge from cj to aj and bj .

4. If xj 2 Si then add an edge between si and cj .

Figure 4.1: Construction for the reduction to an instance of C4-free contraction.

Observation 4.3. All the induced C4 of the graph G are of the form {g, ai, ci, bi} ,{g, ai, ci, sj}

or {g, bi, ci, sj}.

Proof. Since G � {g} does not have any induced C4 every induced C4 must contain the

vertex g. Let T = {si 8 1  i } be the vertex set si 8 1  i  m, A = {ai 81  i  n} and

B = {bi 8 1  i  n} and C = {ci 8 1  i  n}.

19

Suppose that there exists two vertices from T in the the cycle. Let the two vertices be

si and sj, they cannot be adjacent in the cycle since g is adjacent to both of them and

hence does not form an induced C4 and they cannot be diagonally opposite because they are

adjacent. Therefore there can only exist at most one vertex form T in the induced C4

First consider the cycle that does not have any vertex from T then the neighbours of g

in the cycle will be from A and B. The vertices ai and bj have a common neighbour only

if i = j and no two vertices from A or B have common neighbours. Therefore, the only

possibility of a cycle is {g, ai, ci, bi}.

Now consider the cycle that has exactly one vertex from T say si, the neighbours of si

other than {g}[T are in C. Consider one such neighbour cj, the only common neighbours of

g and cj are aj and bj. Therefore the only possible cycles are {g, ai, ci, sj} and {g, bi, ci, sj}.

Solution Lifting Algorithm: Given a solution P of (G, k) the solution lifting algorithm

constructs a solution F for ((S, U), k) as follows. For the edges of the form gsi, and cjsi

add the set corresponding to si 2 S to F . If the edges are of the form gaj, gbj, ajcj, bjcj

add any set Si such that xj 2 Si. We will now argue that if G/P is C4-free then, F is a set

cover for (S, U). Suppose that there is an element xj that has not been covered by any set

in F , since the solution lifting algorithm would have added any set Si such that xj 2 Si this

implies P did not have any of the following edges gaj, gbj, ajcj, bjcj and edge xjsi for all

{i : xj 2 Si}. But if P did not have these edges in then the cycle gaicibi will be present in

G/P , contradicting that G/P was C4-free graph.

Corresponding to every edge in P we are adding one set to F so we obtain

SC((S, U), k, F) = FC(G, k, P) (4.1)

Given an optimum solution F ⇤ for ((S, U), k) for all Si 2 F ⇤ take the edges gsi in P .

Since F ⇤ covers all the elements of U , contracting P will make kill all the induced cycles as

ci becomes adjacent with g. Hence G/P will be a C4-free graph. Therefore we obtain the

following

|F ⇤
| = OPTSC((S, U), k) = |P | � OPTFC(G, k) (4.2)

Combining 4.1 and 4.2 we get

SC((S, U), k, F)

OPTSC((S, U), k)


FC(G, k, P)

OPTFC(G, k)
.

Hence this proves that that there is 1-approximate polynomial parameter transformation

20

from Set Cover to C4-Free Contraction.

Result:[10] For parameterized optimization problems A and B, if there is a ↵- approximate

polynomial parameter transformation from A to B for some ↵ � 1 such that A does not

admit approximate compression then B will also not admit any approximate compression.

Using this result, the following corollary is the consequence of Theorem 4.2.1.

Corollary 4.3.1. C4-Free Contraction problem parameterized by solution size does

not have any ↵-approximate compression of polynomial size for any ↵ > 1 unless NP ✓

coNP/Poly.

4.3.1 Lower Bound for Chordal Contraction

Theorem 4.3.2. Chordal Contraction parameterized by solution size does not have

any ↵-approximate compression of polynomial size for any ↵ > 1 unless NP ✓ coNP/Poly.

Proof. The same reduction algorithm and the solution lifting algorithm given to prove

4.2.1 will show 1-approximate polynomial parameter transformation from Set Cover to

Chordal Contraction. The solution for Chordal Contraction will be the same as

C4-Free Contraction, as the graph obtained after the contraction does not have any

induced cycles of length greater than 3.

Existence of ↵-approximate kernel of polynomial size for any ↵ > 1 for Chordal Con-

traction will also prove the existence of ↵-approximate compression of polynomial size for

some ↵ > 1 for Set Cover problem parameterized by solution size, which is a contradic-

tion. Hence for any ↵ > 1, Chordal Contractionparameterized by solution size does

not admit an ↵-approximate kernel of polynomial size.

Theorem 4.2.1 can be generalised to obtain lower bound results for Cl-Free Contrac-

tion for l � 4.

Theorem 4.3.3. For l � 4, Cl-Free Contraction problem parameterized by solution

size does not have any ↵-approximate kernel of polynomial size for any ↵ � 1

Proof. We give a 1-approximate polynomial parameter transformation from Set Cover

problem. The reduction algorithm is slight modification to the reduction algorithm men-

tioned in proof of 4.2.1. Instead of adding three vertices corresponding to every element xi

21

of universe add l � 1 vertices. Add edges between these l � 1 vertices and the vertex g to

form a cycle of length l. Make si adjacent to b
l

2c
th vertex from g in cycle, whenever the

corresponding element is in Si. This completes the reduction algorithm. The solution lifting

algorithm is same as before. For any edge in P which are not incident on b
l

2c
th vertex from

g, say ci, add edge cisj for any set Sj which contains xi

Hence, existence of a ↵-approximate kernel of polynomial size for any ↵ � 1 will show the

existence of ↵-approximate compression for set cover problem which is a contradiction.

22

Chapter 5

Clique Contraction

In this chapter we define the parameterized optimization version of Clique Contraction

problem and present a lossy kernel.

5.1 Introduction

In the Clique Contraction problem, given a graph G one has to find set of minimum

number of edges F , such that G/F is a clique. The problem of Clique Contraction

parameterized by solution size is defined as follows

Clique Contraction Parameter: k

Input: A graph G and an integer k

Question: Is G k-contractible to a clique?

Informally, the problem is to check if there exists F ✓ E(G) such that |F |  k and G/F

is a clique. Independent works of Lokshtanov et al. [9] and Cai and Guo [2], prove that

there is no polynomial kernel with solution size as parameter. In the paper by Lokshtanov

et al. [9], they have presented a kernel of size O(4kk) and Cai and Guo [2] have given a FPT

algorithm. We study this problem under Lossy kernel set up. Formally the parameterized

version of Clique Contraction is defined as follows

ClC(G, k, F) =

(
1 if G/F is not a clique

min{|F |, k + 1} otherwise

23

We prove that given a graph G on n vertices, an integer k and an approximation parameter

↵ > 1, there is a polynomial time running algorithm that outputs a graph G0 with O(kd+1)

vertices and an integer k0 such that for every c > 1, a c-approximate solution for (G0, k0) can

be lifted into a (c↵)-approximate solution for (G, k) in nO(1). Here d = d
1

p
↵�1e.

5.2 Lossy kernel for Clique Contraction

We consider that the input graph is connected, because if the graph is not connected it cannot

be contracted into a clique. Contracting the set of edges corresponding to the spanning tree

of a graph always gives a single vertex, which is also a clique. Clique Vertex Deletion

problem is to find the set of vertices in graph G, such that deleting the vertices will give a

clique. Recall that the complement of a graph G is represented by G̃.

Lemma 5.2.1. If G is k-contractible to a clique, then there exists a vertex cover of size at

most 2k for G̃.

Proof. Let F be the set of edges such that G/F is a clique and |F |  k. Consider G/F -

witness structure W of G and let the set of vertices from the big witness sets be X. From

Proposition 2.1.1, we can deduce that |X|  2k. Since G/F is a clique, any two vertices

from V (G) \X are adjacent. And so G̃ \X is an independent set, this implies that X is a

vertex cover of G̃ of size at most 2k.

Lemma 5.2.2. For a graph G and an integer k, if there does not exist set of vertices X

such that |X|  4k and G \X is a clique then OPTClC(G, k) = k + 1

Proof. A 2-approximate solution for vertex cover can be found in polynomial time (refer to

Section ??). For a given graph G, find 2-approximate vertex cover for G̃, let this be denoted

by X. Observe that X will also be a 2-approximate solution of Clique Vertex Deletion

for graph G. From the Lemma ?? if G is k-contractible to a clique, then there exists a

2-approximate solution X for Clique Vertex Deletion problem such that |X|  4k.

If there does not exist X such that |X|  4k and G\X is clique, it implies that G cannot be

contracted into clique using at most k edges. From the definition of optimization problem,

for any set of edges F if G/F is a clique then the maximum value of ClC(G, k, F) is k + 1,

since there is no F with |F |  k, OPTClC(G, k) will be k + 1.

24

In order to prove the main result of this chapter, we will need some preprocessing on the

input instance as the following.

For a given graph G, find 2-approximate vertex cover X for G̃. Let V (G) \X = Y , this

implies that G[Y] is a clique. For an ↵ > 1, let � =
p
↵, choose d such that, d = d

1
��1e.

If |X| > 4k return OPTClC(G, k) = k + 1(Lemma ??) and if |X|  4k then apply the

reduction algorithm RA mentioned below.

Reduction Algorithm RA:

Marking Scheme 1: For every A ✓ X |A|  d, mark a vertex u in Y , such that all the

vertices in A are adjacent to u. If there is more than one such vertex, then arbitrarily mark

one vertex.

Marking Scheme 2: For every subset A of X whose size is at most d, mark 2k+1 common

non-neighbours of A in Y . If the set has more than 2k + 1 non-neighbours in Y , arbitrarily

mark any 2k + 1 of them. If it has less than 2k + 1 non-neighbours then mark all of them.

Apply the Marking Schemes 1 and 2. Delete all the unmarked vertices of Y . Let Y 0
✓ Y

be the marked vertices and let G0 be graph induced on X [Y 0, then return (G0, k) as the

reduced instance.

Lemma 5.2.3. For an instance (G, k) of clique contraction problem, let (G0, k) be the in-

stance given by RA. There exists a solution lifting algorithm such that given G0, F 0
with G0/F 0

being a clique and |F 0
|  k, the output is F such that G/F is a clique and |F |  � · |F 0

|.

Proof. In order to prove this Lemma first we will give the solution lifting algorithm. Let

W
0 be G0/F 0-witness structure of G0. We give witness structure W of G from W

0.

Solution lifting Algorithm SA:

For every vertex y 2 Y \ Y 0 add singleton witness sets {y} to W
0 . If there is witness set of

size > d such that intersection with Y is empty, then add a vertex from Y . Now make F

the union of edges corresponding to spanning trees of all the witness sets in W .

The solution lifting algorithm SA added singleton witness sets, which do not contribute

to any edges. And when a vertex is added to the witness set, the number of edges will be

increased by one. Since whenever the algorithm SA added a vertex the size of the witness

set was at least d, we get |F | 
d+ 1

d
.|F 0

| = �.|F 0
|.

25

Now consider that G0/F 0 is clique then we will prove that G/F is a clique. The solution

lifting algorithm added single ton sets {y} for all y 2 Y \ Y 0 to W
0. Since G[Y] induces a

clique, every singleton witness set that has been added will be adjacent to all the witness

sets of W 0 whose intersection with Y is non-empty. And the witness sets in W with size > d

has a vertex from Y hence will induce a clique with newly added sets.

Consider that there is a witness set W (a) of size at most d that is not adjacent with a

newly added vertex say v, since v was unmarked and is a common non-neighbour of vertices

in W (a), by Marking Scheme 2 W (a) has 2k + 1 non-neighbours in Y 0. According to the

proposition 2.1.1, at least one of the 2k+1 vertices remains as a singleton set in G0/F 0. This

implies that G0/F 0 is not a clique, which is a contradiction. This proves that every witness

set of size at most d is also adjacent with every singleton set added. Hence we proved G/F

is a clique.

Lemma 5.2.4. For an instance (G, k) of clique contraction problem, let (G0, k) be the in-

stance given by RA. If OPTClC(G, k)  k then � ·OPTClC(G, k) � OPTClC(G0, k).

Proof. Let F be a set of at most k edges in G such that OPT (G, k) = ClC(G, k, F) and

W be a G/F -witness structure of G. Since we are working with minimization problem, to

prove the lemma it is su�cient to find a solution for G0 which is of size � · |F |. Recall that

(X, Y) is a partition of V (G) such that G�X = G[Y] is a clique. Set of vertices marked by

either of marking schemes is denoted by Y 0.

At each step, we construct graph G⇤ from G by deleting one or more vertices in Y \ Y 0.

We also construct a set of edges F ⇤ from F by replacing existing edges and/or adding extra

edges to F . At any intermediate state, we ensure that G⇤/F ⇤ is a clique and the number of

edges in F ⇤ is at most � · |F |.

To obtain G⇤ and F ⇤, we delete witness sets which are subsets of Y \ Y 0 (Condition (1))

and modify the ones which intersect with Y \ Y 0. Every witness set of later type intersects

with Y 0 or X or both. We partition these big witness sets in W into two groups depending

on whether they intersects X (Condition (2)) or not (Condition (3)). We modify witness

sets which satisfy least indexed condition. If there exist no witness set which satisfy either

of these three conditions then Y \ Y 0 is an empty set and the lemma is vacuously true.

26

Condition (1): If there exists a witness set W (t) in W which is a subset of Y \ Y 0.

Construct G⇤ from G by deleting witness sets W (t) in W . Let F ⇤ = F . Since a clique

graph is closed under vertex deletion, G⇤/F ⇤ is a clique. We repeat this process until there

exists a witness set which satisfy Condition (1).

At this stage we rename G⇤ to G and F ⇤ to F for notational convenience.

Condition (2): If there exists a witness set W (t) in W which contains vertices from Y \ Y 0

but does not intersects X.

Note that W (t) must intersects with Y 0. Let the unmarked vertex i.e., vertex from Y \Y 0

be y. Let W (a) be a witness set that contains a vertex from Y 0. To obtain W
⇤ merge the

witness sets W (t) and W (a) and delete the vertex y. The merging can be done as there is at

least one vertex from Y 0 in W (t) that is adjacent to W (a). W⇤ is a clique witness structure

because all the witness sets except for W (t) and W (a) are unchanged and W (a) was already

adjacent to these witness sets so even after merging this set with W (t) \ y the adjacency will

remain. The size of F ⇤ is same as that of F and G⇤/F ⇤ is a clique. We repeat this process

until there exist a witness set which satisfy Condition (2).

At this stage we rename G⇤ to G and F ⇤ to F for notational convenience.

Condition (3): If there exists a witness set W (t) in W which contains vertices from Y \ Y 0

and intersects X.

Let the vertex from Y \ Y 0 in W (t) be y. Partition W (t) \ {y} into sets W1,W2, . . . ,Wp

such that the number of vertices in Wi for 1  i  p � 1, is exactly d and the number of

vertices in Wp is at most d (Note that if the number of vertices is at most d then we have

p = 1). Since y is unmarked, by Marking Scheme 1, there is a marked vertex, say yi for

1  i  p, di↵erent from y that has been marked for each Wi. We assume that all vertices

in {y1, y2, . . . , yp} are di↵erent to obtain the upper bound.

We construct F ⇤ from F by following operation: Replace an edge xy in F by an edge xyi

for 1  i  p� 1 and for every i such that 1  i  p� 2 add an edge yiyi+1. We first argue

about the cardinality of F ⇤. Note that we have added an extra edge corresponding to Wi for

each 1  i  p� 1. These sets are of size d. We did not add an extra edge corresponding to

Wp whose cardinality may be smaller than d. This implies that we have added an extra edge

for d edges in F . Moreover, since Wi’s are pairwise disjoint, no edge in F can be part of two

27

sets of edges corresponding to which new edge has been added. Hence size of F ⇤ is at most
d+1
d
|F | = � · |F |. We now argue that if G⇤ is obtained from G by deleting y then G⇤/F ⇤

is a clique. For 1  i  p, let W (yi) be the witness set containing yi. Let Z be the union

of W (t) \ {y} and W (yi) for all 1  i  p. Let W⇤ be a witness structure of G⇤ obtained

from W by removing W (t),W (y1), . . . ,W (yt) and adding Z. Since all other witness sets

remains same and we only replaced or added edges incident on vertices in Z [{y}, union

of all spanning trees of witness sets in W
⇤ is contained in F ⇤. Any two witness sets in W

⇤

which are part of W are adjacent with each other. As Z contains W (y1), any witness set in

W
⇤ which is not contained in Z is adjacent with Z. Hence any two witness sets in W

⇤ are

adjacent with each other. This implies that G⇤/F ⇤ is a clique. We repeat this process until

there exists a witness set which satisfy Condition (3). We argue that |F ⇤
|  � · |F | even after

repeating this process. Consider a witness set W (t) in W which satisfy Condition (3) and

which has been replaced by set Z. If Z does not intersect Y \Y 0 then it does not satisfy any

condition and hence never been modified again. If it intersects Y \ Y 0 then it also intersects

Y 0 and hence satisfy Condition (2). This implies that any witness set in W is replaced by

this process at most once. In other words, if an edge xy in F which has been replaced with

edge xyi before adding extra edge yiyi+1 for some 1  i  p then edge xy is never considered

by the process again.

Any vertex in Y \ Y 0 must be part of some some witness set in W and any witness set in

W satisfies at least one of the conditions mentioned above. If there is no witness sets which

satisfy any condition then Y \ Y 0 is empty. This implies G⇤ = G0 and there exists a solution

F ⇤ of size � · |F |. This concludes the proof of this lemma.

Theorem 5.2.5. For any ↵ > 1, Clique Contraction parametrized by solution size

admits ↵-approximate kernel of with O(kd+1) vertices.

Proof. For an instance (G, k), and ↵ > 1, let � =
p
↵. We gave a reduction algorithm RA

that outputs an instance (G0, k) such that from the Lemma ?? we have

� ·OPTClC(G, k) � OPTClC(G
0, k). (5.1)

And from Lemma 5.2.3, given a solution F 0 for (G0, k), there is a solution lifting algorithm

SA that outputs a solution F for (G, k), such that

ClC(G, k, F) = |F |  � · |F 0
| = � ·ClC(G0, k, F 0) (5.2)

28

Combining 5.1 and 5.2 we get

ClC(G, k, F)

OPTClC(G, k)
 ↵ ·

ClC(G0, k, F 0)

OPTClC(G0, k)
.

From the marking schemes mentioned in RA, we get |G0
| =

P
1id

�
4k
i

�
· (2k + 2) = O(kd+1)

where d = d
1

(� � 1)
e. Hence we proved the existence of ↵-approximate kernel of polynomial

size for every ↵ > 1.

29

30

Chapter 6

Split Contraction

6.1 Introduction

Recall that a graph is called split graph if its vertices can be partitioned into two sets such

that one set induces a clique and the other an independent set. A graph is said to be a split

graph if it does not have any induced subgraphs that are isomorphic to C4, C5 or 2K2. In

split contraction, given a graph G one has to find minimum number of edges whose

contraction will result in split graph. In split contraction problem parameterized by so-

lution size k, one has to check if the given graph G is k-contractible to split graph. Formally

the parameterized problem is defined as follows.

Split Contraction Parameter: k

Input: A graph G and an integer k

Question: Is G k-contractible to a split graph?

Even though the forbidden set of split graph is finite, Split Contraction is known to be

W-hard. Saket et al.[1], proved that split contraction parameterized by solution size is

W [1]-hard and when the parameter is vertex cover it is FPT. We study the problem in lossy

kernel set up. Formally, the parameterized minimization of Split Contraction is defined

31

as follows

SC(G, k, F) =

(
1 if G/F is not a split graph

min{|F |, k + 1} otherwise

We will prove the existence of an approximate kernel for Split Contraction by taking two

di↵erent set of parameters. First set of parameters are the size of the maximum independent

set |I| and solution size k and second set of the parameters are size of the maximum clique

|C| and solution size k.

6.2 Lossy Kernel for Split Contraction

In this section we will see approximate kernels for Split Contraction for two di↵erent

pairs of parameter. Before proving these results we will look at few observations that are

crucial for the proofs.

For an instance (G, k) if |G|  k + 3 then we can return the same instance as kernel, so

for rest of this chapter we consider that size of the graph is at least k + 3. For a graph G,

Split Vertex Deletion problem is to find minimum set of vertices such that deletion of

these vertices from the graph will result in a split graph. Since the size of forbidden set of

split graph is upper bounded by 5, a 5-approximate solution for Split Vertex Deletion

can be easily found in polynomial time.

Observation 6.3. For a graph G, there exists an optimum solution for Split Contrac-

tion such that in the corresponding witness structure all the big witness sets will be in the

partition that induces clique.

Proof. Let F be a subset of edges such that G/F is a split graph and let W be a G/F -

witness structure of G. Let X, Y be the partition of vertices of G/F such that X induces

a clique and Y induces an independent set. Suppose there is a big witness set, say W (a),

corresponding to a vertex a 2 Y . We will construct a new witness structure W
⇤ by shifting

few vertices of W (a) to other witness sets. Since G is a connected graph there is at least

one vertex, say u 2 W (a), such that u is adjacent to a witness set, say W (b), for a vertex

b 2 X. There is a spanning tree T of W (a) that is rooted at the vertex u, such that the

edges of the trees are from F . Let f be a leaf vertex of T and p be its neighbour in T , then

32

(a) Split Graph with big witness set
W (a) = {u, p, f, v, w} on independent set side.

(b) Split Graph with big witness set
W ⇤(b) = {b, u, p, v, w}.

Figure 6.1: Modification of the witness structure so that big witness sets lie on the clique.

delete the edge fp from F and add the edge ub to F . Refer to the Figure 6.1. Note that the

number of edges in F ⇤ and F are the same. Let the witness corresponding to vertices a, b

in W
⇤ be W ⇤(a) and W ⇤(b) respectively. Now we will argue that the graph G/F ⇤ is also a

split graph. The witness sets W ⇤(b) and W ⇤(a) will still be part of clique and independent

sets respectively and other witness sets are not disturbed G⇤/F ⇤ be a split graph.

Lemma 6.3.1. If a graph G is k-contractible to a split graph then G has a solution for

Split Vertex Deletion of size at most 10k.

Proof. For the graph G, let F be the set of edges such that G/F is split graph and |F |  k

and let W be G/F -witness structure of G. If X is the union of all the vertices that are

part of big witness sets then from Proposition 2.1.1 we get |X|  2k. Note that X will be

solution for Split Vertex deletion of G because even after deleting these witness sets

the remaining graph will still induce a split graph. The existence of 2k size solution implies

there exists 5-approximate solution for Split Vertex Deletion of size at most 10k.

Lemma 6.3.2. For an instance (G, k) of Split Contraction, if a 5-approximate solution

for Split Vertex Deletion is not less than 10k then OptSC(G, k) = k + 1.

Proof. From the definition of Split contraction, the maximum possible value any

valid solution can have is k + 1. A graph always has a trivial solution of contracting all the

33

edges of spanning tree. Therefore there always exists a solution for Split contraction

of G whose value is k + 1. From Lemma 6.3.1 if 5-approximate solution for Split Vertex

Deletion is not less than 10k, then G is not k-contractible to split graph. Therefore the

value of the optimum solution will be k + 1

6.3.1 Parameterized by solution size and independent set size

Given an instance (G, k) of Split Contraction, we will first do some preprocessing on

the instance. Find 5-approximate solution of the instance for Split Vertex Deletion

then from Lemma 6.3.2, if the solution is greater than 10k return OptSC(G, k) = k + 1.

Let S be the 5-approximate solution of Split Vertex Deletion such that |S|  10k and

let G \ S = (X, Y) such that G[X] induces a clique and G[Y] induces an independent set.

For an ↵ > 1, set � =
p
↵ and d = d

1
��1e and apply the following reduction algorithm.

Reduction Algorithm SCRA:

Marking Scheme 3: For every A ✓ S [Y such that |A|  d, mark a vertex say x 2 X

such that A ✓ N(x) is connected. If there is more than one such vertex, then arbitrarily

mark one. If there does not exits such a vertex x then do not mark anything.

Marking Scheme 4: For every A ✓ S [Y such that |A|  d, mark 2k + 2 common non-

neighbours of A in X. If there are more than 2k + 2 common non-neighbours then mark

any 2k+ 2 of them, if the set has less than 2k+ 2 common non-neighbours then mark all of

them.

Let the vertices that have been marked by either of these two marking schemes be X 0. Delete

all the vertices fromX\X 0, and return (G0, k) as the reduced instance whereG0 = G\(X\X 0).

Lemma 6.3.3. For an instance (G, k) of Split Contraction problem, let (G0, k) be the

instance given by the reduction algorithm SCRA. There exists a solution lifting algorithm

such that given G0, F 0
with G0/F 0

is a split graph and |F 0
|  k, the output is F such that

G/F is a split graph and |F |  � · |F 0
|.

Proof. In order to prove this Lemma first we will give the solution lifting algorithm. Let

W
0 be G0/F 0-witness structure of G0. We give witness structure W of G from W

0.

34

Solution lifting Algorithm SCSA:

For every vertex x 2 X\X 0 add singleton witness sets {x} toW 0 . If there is witness set of size

greater than d such that the intersection with X is empty, then add one neighbouring vertex

from X 0 to that witness set. Now make F the union of edges corresponding to spanning

trees of all the witness sets in W .

The solution lifting algorithm SCSA added singleton witness sets, which do not con-

tribute to any edges. And when a vertex is added to the witness set, the number of edges

will be increased by one. Since whenever the algorithm SCSA added a vertex the size of the

witness set was at least d, we get |F | 
d+ 1

d
· F 0

| = � · |F 0
|.

Now consider that G0/F 0 is split graph then we will prove that G/F is a split graph.

Let (P,Q) be the partition of vertices in G0/F 0 such that P induces a clique and Q induces

independent set. From Lemma 6.3 we can assume that all the big witness sets correspond

to vertices from P alone, this implies that at most one vertex from X 0 can be in Q. In order

to prove that G/F is a split graph, it is enough to show that vertices in PU(X \X 0) induces

a clique in G/F .

The solution lifting algorithm SCSA made sure that every witness set of size greater than

d has a vertex from X 0. So every vertex in X \X 0 will be adjacent to every witness set of

size greater than d as G[X] induced a clique in G.

Now consider that there exists a witness set W (a) of size at most d in P such that it is

not adjacent with a vertex say x 2 X \X 0. This implies that W (a) has vertices only from

S [Y and Marking Scheme 4 has marked 2k + 2 common non-neighbours of W (a). From

Proposition 2.1.1 at least two of these marked vertices say v, w will remain as a singleton

witness set and at most one of the vertex say u can go to Q. This implies v is in P , but

this is a contradiction as we assumed that P induces a clique. Hence we proved that every

witness set of size at most d in P will be adjacent to every vertex x 2 X \X 0.

Lemma 6.3.4. For an instance (G, k) of Split Contraction problem, let (G0, k) be the

instance given by SCRA. If OPTSC(G, k)  k then � ·OPTSC(G, k) � OPTSC(G0, k).

Proof. Let F be a set of at most k edges in G such that OPT(G, k) = SC(G, k, F) and

W be a G/F -witness structure of G. Since we are working with minimization problem, to

prove the lemma it is su�cient to find a solution for G0 which is of size � · |F |. Recall that

(S,X, Y) is a partition of V (G) such that G�S = G[X [Y] is a split graph with X being a

clique and Y an independent set. Set of vertices marked by either of marking schemes was

35

denoted by X 0.

At each step, we construct graph G⇤ from G by deleting one or more vertices in X \X 0.

We also construct a set of edges F ⇤ from F by replacing existing edges and/or adding extra

edges to F . At any intermediate state, we ensure that G⇤/F ⇤ is a split graph and the number

of edges in F ⇤ is at most � · |F |.

To obtain G⇤ and F ⇤, we delete witness sets which are subsets of X \X 0 (Condition (1))

and modify the ones which intersect with X \X 0. Every witness set of later type intersects

with X 0 or Y [S or both. We partition these big witness sets inW into two groups depending

on whether they intersects X 0 (Condition (2)) or not (Condition (3)). We modify witness

sets which satisfy least indexed condition. If there exist no witness set which satisfy either

of these three conditions then X \X 0 is an empty set and the lemma is vacuously true.

Condition (1): If there exists a witness set W (t) in W which is a subset of X \X 0.

Construct G⇤ from G by deleting witness sets W (t) in W . Let F ⇤ = F . Since a split

graph is closed under vertex deletion, G⇤/F ⇤ is a split graph. We repeat this process until

there exists a witness set which satisfy Condition (1).

At this stage we rename G⇤ to G and F ⇤ to F for notational convenience.

Condition (2): If there exists a witness set W (t) in W which contains vertices from X \X 0

that does not intersects S [Y .

Note that W (t) must intersects with X 0. Let the vertex from X \X 0 in W (t) be x. Let

W (a) be a witness set on the clique side that contains vertices(vertex) from X 0. To obtain

W
⇤ merge the witness sets W (t) and W (a) and delete the vertex x. The merging can be done

as there is at least one vertex from X 0 in W (t) that is adjacent to W (a). W⇤ is a split graph

witness structure because all the witness sets except for W (t) and W (a) are unchanged and

W (a) was already adjacent to all the witness sets of clique, so even after merging this set

with W (t) \ {x} the adjacency with the clique vertices will remain. The size of F ⇤ is same

as that of F and G⇤/F ⇤ is a split graph. We repeat this process until there exist a witness

set which satisfy Condition (2).

At this stage we rename G⇤ to G and F ⇤ to F for notational convenience.

Condition (3): There exists a witness set W (t) in W which contains vertices from X \ X 0

36

and intersects S [Y .

Let the vertex from X \X 0 in W (t) be x. Partition W (t) \ {x} into sets W1,W2, . . . ,Wp

such that the number of vertices in Wi for 1  i  p � 1, is exactly d and the number of

vertices in Wp is at most d (Note that if the number of vertices is at most d then we have

p = 1). Since x is unmarked, there is a marked vertex, say xi for every 1  i  p, di↵erent

from x that has been marked for each Wi by Marking Scheme 3. We assume that all vertices

in {x1, x2, . . . , xp} are di↵erent to obtain the upper bound.

We construct F ⇤ from F by following operation: Replace an edge ux in F by an edge uxi

for every 1  i  p and for every i such that 1  i  p�1 add an edge xixi+1. We first argue

about the cardinality of F ⇤. Note that we have added an extra edge corresponding to Wi

for each 1  i  p� 1. These sets are of size d. We did not add an extra edge corresponding

to Wp whose cardinality might be smaller than d. This implies that we have added an extra

edge for d edges in F . Moreover, since Wi’s are pairwise disjoint, no edge in F can be part

of two sets of edges corresponding to which new edge has been added. Hence size of F ⇤ is

at most d+1
d
|F | = � · |F |.

We now argue that if G⇤ is obtained from G by deleting x then G⇤/F ⇤ is a split. For

1  i  p, let W (xi) be the witness set containing xi. Let Z be the union of W (t) \ {x} and

W (xi) for all 1  i  p. Let W⇤ be a witness structure of G⇤ obtained from W by removing

W (t),W (x1), . . . ,W (xp) and adding Z. Since all other witness sets remains same and we

only replaced or added edges incident on vertices in Z [{x}, union of all spanning trees of

witness sets in W
⇤ is contained in F ⇤. Witness sets that induced the independent set of the

split graph were una↵ected. If we prove that the witness set Z is adjacent to all the witness

sets that were inducing clique of the split graph then the proof will be done. Since Z has

the witness sets W (xi), Z will be adjacent to all the witness sets that were part of clique.

Hence we proved that G⇤/F ⇤ is a split graph.

We repeat this process until there exists a witness set which satisfy Condition (3). We argue

that |F ⇤
|  � · |F | even after repeating this process. Consider a witness set W (t) in W which

satisfy Condition (3) and which has been replaced by set Z. If Z does not intersect X \X 0

then it does not satisfy any condition and hence will never be modified again. If it intersects

X \ X 0 then it also intersects X 0 and hence satisfy Condition (2). This implies that any

witness set in W is replaced by this process at most once. In other words, if an edge xy in F

which has been replaced with edge uxi before adding extra edge xixi+1 for some 1  i  p

then edge ux is never considered by the process again.

37

Any vertex in X \X 0 must be part of some some witness set in W and any witness set in

W satisfies at least one of the conditions mentioned above. If there is no witness set which

satisfy any condition then X \X 0 is empty. This implies G⇤ = G0 and there exists a solution

F ⇤ of size � · |F |. This concludes the proof of the lemma.

Theorem 6.3.5. For any ↵ > 1, Split Contraction paramaterized by solution size k and

maximum independent set size I admits ↵-approximate kernel with O((k + |I|)d+1) vertices

where d = d
1

(��1)e.

Proof. For an instance (G, k), and ↵ > 1, let � =
p
↵. We gave a reduction algorithm

SCRA that outputs an instance (G0, k) such that from the Lemma 6.3.4 we have

�.OPTSC(G, k) � OPTSC(G
0, k). (6.1)

And from Lemma 6.3.3, given a solution F 0 for (G0, k), there is a solution lifting algorithm

SCSA that outputs a solution F for (G, k), such that

SC(G, k, F) = |F |  � · |F 0
| = � · SC(G0, k, F 0) (6.2)

Combining 6.1 and 6.2 we get

SC(G, k, F)

OPTSC(G, k)
 ↵ ·

SC(G0, k, F 0)

OPTSC(G0, k)
.

From the marking schemes mentioned in SCRA, we get |V (G0)|  |I|+10k+
P

1id

�
10k+|I|

i

�
·

(2k + 3) = O(kd+1) where d = d
1

(��1)e and |I| is the size of maximum independent set of G.

Hence we proved the existence of ↵-approximate kernel of polynomial size for every ↵ > 1.

38

Chapter 7

Conclusion

In this thesis we have proved that Clique Contraction parameterized by solution size

admits polynomial a approximate kernel, where as Chordal Contraction parameterized

by solution size do not admit any polynomial approximate kernel. We have also shown ap-

proximate kernels for Split Contraction when the parameters are maximum independent

size and solution size. One can try to find approximate kernel for Split Contraction pa-

rameterized by solution size alone. As clique graphs are contained in split graphs and split

graph are contained in chordal graphs. It will be very interesting if one can utilize the

structure of the graph, generalize the results of these problems to di↵erentiate all the graph

contraction problems that admit approximate kernel of polynomial size.

39

40

Bibliography

[1] Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split con-

traction: The untold story. In STACS, volume 66 of LIPIcs, pages 5:1–5:14, 2017.

[2] Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced

subgraphs. In Parameterized and Exact Computation: 8th International Symposium,

IPEC, pages 97–109. Springer International Publishing, 2013.

[3] Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,

75(1):118–137, 2016.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord Stein. Intro-

duction to Algorithms, 3rd Edition. MIT Press, 2009.

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer-Verlag, 2015.

[6] Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Micha l Pilipczuk, and Yngve Vil-

langer. Tight bounds for parameterized complexity of cluster editing with a small

number of clusters. Journal of Computer and System Sciences, 80(7):1430–1447, 2014.

[7] Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for

minimum fill-in. SIAM Journal on Computing, 42(6):2197–2216, 2013.

[8] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan,

Ashutosh Rai, and M. S. Ramanujan. Faster parameterized algorithms for deletion

to split graphs. Algorithmica, 71(4):989–1006, 2015.

[9] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating

small induced subgraphs by contracting edges. In IPEC, pages 243–254, 2013.

41

[10] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy ker-

nelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2017, pages 224–237, 2017.

[11] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–

768, 2010.

[12] Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden

graphs by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151–

153, 1981.

[13] Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the np-hardness of edge-

deletion and -contraction problems. Discrete Applied Mathematics, 6(1):63–78, 1983.

42

