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Abstract

In this project, I studied some of the interesting results about the topology of complex

projective varieties. The project is based on the paper of Klaus Lamotke, titled “The Topol-

ogy of Complex Projective Varieties After S. Lefschetz.” Starting with Lefschetz Pencils,

Dual Varieties this thesis covers deep results such as Lefschetz Hyperplane Section theorem,

Weak Lefschetz theorem, and Hard Lefschetz Theorem. Along the way, it gives the proof of

Lefschetz Hyperplane Section Theorem using Morse Theory, Picard-Lefschetz formula, and

Monodromy theorem. Towards the end, we study topology in a neighborhood of a singular

point on the complex hypersurfaces.
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Introduction

The topology of complex surfaces was introduced by Émile Picard(1897) and extended to

higher dimensions by Lefschetz (1924). During Lefschetz’s time, the knowledge of topol-

ogy was primitive, and Lefschetz’s often appeals to geometric intuition where one would

like to see more precise arguments. In [1], Klaus Lamotke presents Lefschetz’s study more

rigorously using the modern language of topology. Deligne and Katz (1973) have extended

Picard–Lefschetz theory to varieties over more general fields. The main goal of this project

is to study [1].

The required prerequisites in algebraic geometry can be found in the first two chapters

of Shafarevich’s book [5]. The main tool from differential topology is Ehresmann’s fibration

theorem. The prerequisites from algebraic topology the reader can refer to [2]. In chapter

1 we collect the prerequisites, most of the results are stated without proof. In chapter 2

we see Lefschetz’s Pencil and dual Varieties. Lefschetz results and Weak Lefschetz Theorem

are described in chapter 3, Equivalent statements of Hard Lefschetz Theorem are discussed

in chapter 4. The Picard-Lefschetz formulas and the Monodromy Theorem are discussed

in chapter 5 and chapter 6. The last chapter studies the topology in a neighborhood of a

singular point of complex hypersurface.
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Chapter 1

Preliminary Definitions and Tools

The main aim of this chapter is to introduce preliminary definitions and tools which will be

used through out the report. Most of the theorems presented in this chapter are without

proof. In the following section we introduce some basic properties of algebraic sets, then

we introduce complex manifolds and to the end of the chapter we state some tools from

Algebraic topology which will be useful in later chapters.

1.1 Affine and Projective Varieties

Let k be an algebraically closed field. We define affine n-space over k to be the set An =

{(a1, a2, . . . , an) | ai ∈ k}. Let A = k[x1, x2, . . . , xn] be the ring of polynomials in n-variables

over k. Let T ⊂ A, by zero set of T we mean Z(T ) = {P ∈ An | f(P ) = 0 for all f ∈ T}. We

define projective N -space over k to be the set PN = AN+1 \ {0}/ ∼ where (a0, a1, . . . , an) ∼
(λa0, λa1, . . . , λan) for all λ ∈ k, λ 6= 0. If T is any set of homogeneous polynomial in

S = k[x0, . . . , xN ] then the zero set of T is Z(T ) = {P ∈ PN | f(P ) = 0 for all f ∈ T}. The

dual projective space P̌N of PN is the set of hyperplanes in PN . If PN = P(V ) is a projective

space associated to vector space V then P̌N is the projective space associated to its dual

vector space V̌ .

Definition 1.1.1. A subset Y of An (respectively PN) is called algebraic set, if Y =

Z(T ) for some T ⊂ A (respectively T is subset of homogeneous polynomials of S). The
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set of all algebraic sets of An (respectively PN) form the closed sets of a topology on

An (respectively PN), called the Zariski topology.

Definition 1.1.2. Let X be a topological space, a nonempty subset Y of X is called irre-

ducible if it cannot be written as the union of two proper closed subsets of X.

We now define affine variety and projective variety.

Definition 1.1.3. An affine variety (respectively projective variety) is an irreducible

Zariski-closed subset of An (respectively PN) in the Zariski topology. An open subset of

affine variety (respectively projective variety) is called quasi− affine variety (respectively

quasi− projective variety.)

To each subset Y of An (respectively PN) we assign an ideal (respectively homogeneous

ideal) in A (respectlively S) called the ideal of Y given by I(Y ) = {f ∈ A | f(P ) =

0 for all P ∈ Y } (respectively {f ∈ S | f is homogeneous f(P ) = 0 for all P ∈ Y }). If Y

is an affine (respectively projective) algebraic set then the ring A(Y ) = A/I(Y ) (respectively

S(Y ) = S/I(Y )) is called the affine (respectively homogeneous) coordinate ring of Y.

Definition 1.1.4. If X is an algebraic set, we define the dimension of X to be dim X =

sup{n | Z0 ( Z1 ( . . . ( Zn, where each Zi is irreducible Zariski− closed subset of X}.

We make a note of the fact that if Y is affine algebraic set the dim (Y ) = dimA(Y ). And if

Y is a projective variety with homogeneous coordinate ring S(Y ) then dimY = dimS(Y )−1.

Having defined the objects in the category of varieties we now define the morphisms in

the category.

Definition 1.1.5. Let Y be an quasi affine variety in An. A function f : Y → k is regular at

point p ∈ Y is there is an open neighborhood U of p in Y such that f = g/h, where g, h ∈ A
such that h is nowhere zero on U.

Definition 1.1.6. Let Y be an quasi projective variety in PN . A function f : Y → k is

regular at point p ∈ Y if there is an open neighborhood U of p in Y such that f = g/h,

where g, h ∈ S are homogeneous polynomials of same degree such that h is nowhere zero on

U.
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A regular function is continuous, when k is identified with A1 with Zariski topology. We

now define the category of varieties. By a variety we mean affine, quasi-affine, projective, or

quasi-projective variety. We denote by O(Y ), the ring of regular functions on Y. If p ∈ Y we

define the local ring of p in Y, Op = {(U, f) | U is open neighborhood of p in Y and f ∈
O(U)}/ ∼ where (U, f) ∼ (V, g) if f = g on U ∩ V .

Definition 1.1.7. If X and Y are two varieties, a morphism ϕ : X → Y is a continuous

map such that for every open set V of Y if f ∈ O(V ) then f ◦ ϕ ∈ O(ϕ−1(V )).

Let X ⊂ AN and Y ⊂ Am be affine varieties. Then the product of X and Y in the

category of varieties is X×Y ⊂ An+m with the induced topology. The topology is not equal

to product topology on general. We have A(X × Y ) = A(X) ⊗k A(Y ) and dim(X × Y ) =

dim(X) + dim(Y ). To define the product of projective spaces Pr and Ps we define a map

ψ : Pr × Ps → PN sending (ao, . . . , ai, . . . , ar) × (b0, . . . , bj, . . . , bs) → (. . . , aibj, . . .) where

N = rs+ r + s. ψ is an embedding and image of ψ is a subvariety of PN . If X ⊂ Pr and Ps
are quasi-projective varieties then X×Y ⊂ Pr×Ps is product of X and Y where we identify

X × Y and Pr × Ps with image of ψ in PN . If X and Y are both projective then X × Y is

projective.

We quote the following results without proof, the reader is referred to ch 1 of [5]

Theorem 1.1.1. A subset X ⊂ Pn × Pm is Zariski-closed if and only if it is given by

a system of equations Gi(u0, . . . , un, v0, . . . , vm) = 0 (i = 1, . . . , t), homogeneous in each

system of variables vi and uj separately. Every Zariski-closed subset of Pn×Am is given by a

system of equations gi(u0, . . . , un, y1, . . . , ym) = 0(i = 1, 2, ..t), homogeneous in each variables

u0, . . . , un.

Theorem 1.1.2. The image of projective variety under a regular map is Zariski-closed.

Theorem 1.1.3. If X ⊂ PN is a quasiprojective irreducible n-dimensional variety and Y

is the zero set of m homogeneous polynomials on X and is not empty, then each of its

components is of dimension atleast n−m.

Theorem 1.1.4. If f : X → Y is a regular mapping of irreducible varieties, f(X) = Y,

dimX = n, dimY = m, then m ≤ n and

1. dimf−1(y) ≥ n−m for every point y ∈ Y ;
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2. there exists a non-empty open set U ⊂ Y such that dimf−1(y) = n−m for y ∈ U.

Theorem 1.1.5. If f : X → Y is a regular mapping of projective varieties, f(X) = Y, and

if Y is irreducible, and all the fibres f−1(y) are irreducible and are of the same dimension,

then X is irreducible.

We now define singular and nonsingular points on a variety.

Definition 1.1.8. Let Y ⊂ An be an affine variety, and let f1, . . . , ft ∈ A = K[x1, . . . , xn]

be the set of generators for the ideal of Y. Y is nonsingular at a point P ∈ Y if the rank of

the martix [(∂fi/∂xj)(P )] is n − r, where r is the dimension of Y. Y is nonsingular if it is

nonsingular at everypoint.

A noetherian local ring R with maximal ideal m and residue field k = A/m, is regular

local ring if dimkm/m
2 = dimA.

Theorem 1.1.6. Let Y ⊂ An be an affine variety. Let P ∈ Y be a point. Then Y is

nonsingular at P if and only if the local ring Op is a regular local ring.

Definition 1.1.9. Let Y be any variety. Y is nonsingular at a point P ∈ Y if the local ring

Op is a regular local ring. Y is nonsingular if it is nonsingular at every point. Y is singular

if it is not nonsingular.

Theorem 1.1.7. Let Y be a variety. Then the set of singular points of Y is a proper

Zariski-closed subset of Y.

The tangent space Θx at a point x ∈ X of a variety is defined as (mx/m
2
x)
∗, where mx is

the maximal ideal of the local ring Ox at x. Thus x ∈ X is non-singular if dimΘx = dimX.

Definition 1.1.10. Subvarieties Y1, . . . , Yr of a nonsingular variety X are transversal at a

point x ∈ ∩ri=1Yi if

codimΘX,x(∩ri=1ΘYi,x) =
r∑
i=1

codimX(Yi).

Remark. If subvarieties Y1, . . . , Yr of nonsingular varietyX are transversal at x then dimΘYi,x =

dimYi, and dimΘ(∩ri=1Yi,x) = dim ∩ri=1 Yi, i.e. x is nonsingular point of each Yi and ∩ri=1Yi.
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1.2 Some preliminaries about complex manifolds.

Definition 1.2.1. A function f : Cn → C, is holomorphic at a = (a1, . . . , an) ∈ Cn if f has

a power series expansion in some open neighborhood U of a given by

f(z) =
∞∑

k1,...,kn=0

ak1k2...kn(z1 − a1)k1 . . . (zn − an)kn .

In particular f is hohomorphic if it is holomorphic in each variable. A map F = (F1, . . . , Fm) :

V → Cm, V ⊂ Cn is holomorphic if each Fi is holomorphic.

Definition 1.2.2. A function F is a biholomorphic onW ⊂ Cn if there exists an holomorphic

inverse G : F (W )→ W.

Theorem 1.2.1. Inverse function theorem. Let U, V be open sets of Cn and f : U → V

a holomorphic function. Suppose that z0 ∈ U is such that detJC(f)(z0) 6= 0. Then there exists

an open subset U ′ containing z0 such that f |U ′ : U ′ → f(U ′) is a biholomorphism.

Proof. We give the sketch of proof. The real Jacobian of f has rank 2n, since detJR(f) =

|detJC(f)|2 6= 0. So by the real inverse function theorem, there is a local smooth inverse g.

g is the required holomorphic inverse.

Now let X be a topological manifold of dimension 2n. A local complex chart (U, z) on

X is an open subset U ⊂ X and an homeomorphism z : U → V := z(U) ⊂ Cn(≡ R2n). Two

complex charts (Ua, za), (Ub, zb) are compatible if the transition map zb ◦z−1
a : za(Ua∩Ub)→

zb(Ua∩Ub) is holomorphic. A holomorphic atlas of X is a collection A = {(Ua, Za)} of local

complex charts such that ∪aUa = X and such that all transition maps are biholomorphic. A

complex analytic structure on X is a maximal holomorphic atlas.

Definition 1.2.3. A complex manifold is a topological manifold together with a complex

analytic structure.

Definition 1.2.4. A function f : X → C on a complex manifold X is holomorphic if for all

complex charts (U,ϕ) the map f ◦ ϕ−1 : ϕ(U)→ C is holomorphic.

Definition 1.2.5. A map f : X → Y between complex manifolds is holomorphic if for all

complex charts (U,ϕ) of X and (V, ψ) of Y, ψ ◦ ϕ−1 is holomorphic.
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We now see that our main object of study is an smooth manifold which follows from the

following proposition.

Proposition 1.1. Let X ⊂ PN be a non-singular complex projective variety of dimension n,

then X is a complex manifold of dimension n in the usual topology.

Proof. Consider any affine open cover X = ∪Ui. We show that each Ui is a complex manifold,

which will follow from following lemma.

Lemma 1.2.2. If Y is a nonsingular affine complex variety of dimension d in AN . Then Y

is a complex manifold of dimension d and hence a smooth manifold of dimension 2d.

Proof. Let the ideal of X be generated by f1, f2, . . . , ft. Let p = (a, b) ∈ Y ⊂ AN , where

a ∈ Cd and b ∈ CN−d since p is non singular rank of the martix [(∂fi/∂xj)(p)] is k = N − d,

where d is the dimension of Y. WLOG we assume that det[(∂fi/∂xj)(p)]1≤i,j≤k 6= 0. Then

by implicit function theorem there exists open neighborhood U1 ∈ Cd containing a and

U2 ∈ Ck containing b and a holomorphic map g : U1 → U2 such that for (x1, x2) ∈ Cd × Ck

fi(x1, x2) = 0 for 1 ≤ i ≤ k if and only if x2 = g(x1). Now p ∈ U1 × U2 =: U Then

take the chart around p to be (U ∩ X,ϕ) where ϕ(x1, x2) = x1 be the projection on first

d coordinates.

Consider a holomorphic function f : U → C, U ⊂ Cn, 0 ∈ U. The point 0 is critical if

Df(0) = 0. It is non-degenerate if the Hessian matrix D2f(0) =
[

∂2f
∂xi∂xj

(0)
]

is non-singular.

Theorem 1.2.3. Morse lemma. If 0 is a non-degenerate critical point of the function f,

then there exists a holomorphic change of variables x = ϕ(y), y = (y1, .., yn), ϕ(0) = 0 such

that f(ϕ(y)) = f(0) + y2
1 + . . .+ y2

n.

1.3 Tools from algebraic topology.

We will be using singular homology with coefficients from a PID. In this section we will be

stating the results from algebraic topology without proof,(see [2] for proofs)

Theorem 1.3.1. Let f : (X,A)→ (Y,B) be a continuous mapping between pairs of compact

Euclidean neighborhood retracts (ENR), such that f : X \ A→ Y \B is a homeomorphism.
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Then f induces an isomorphism

f∗ : H∗(X,A)→ H∗(Y,B)

of the relative singular homology.

We will be frequently using the homology groups of CPn, here we state them.

Theorem 1.3.2. For coefficients in an PID, R, we have,

Hp(CPn) =

R, if p even, 0 ≤ p ≤ 2n

0, otherwise.

We now state the Universal coefficient theorem(UCT) for cohomology. Let G be a fixed

abelian group. Consider a free resolution F of a abelian group H given by chain 0 −→ F1
f1−→

F0
f0−→ H −→ 0, with Fi = 0, i > 1. Here F0 is a free abelian group with elements of H as the

generators and f0 is the surjective map taking each generator to itself, and F1 = ker(f0) and

f1 is inclusion. Take the dual cochain complex Hom(F,G) and denote the nth by Hn(F,G).

We define Ext(H,G) := H1(F,G).

Theorem 1.3.3. UCT If a chain complex C of free abelian groups has homology groups

Hn(C) for each n, there is a split exact sequence

0→ Ext(Hn−1C,G)→ Hn(C,G)
h−→ Hom(Hn(C), G)→ 0.

If H is a free abelian group we have Ext(H,G) = 0. So if Hn−1(C) is a free abelian group

then Hn(C,G) ≡ Hom(Hn(C), G).

Instead of applying Hom to F we apply ⊗ to 0 → F1 → F0 → 0, to get the chain

F ⊗ G: 0 → F1 ⊗ G → F0 ⊗ G → 0. We denote Hn(F ⊗ G) by Torn(F,G), and define

Tor(F,G) := Tor1(F,G)

Theorem 1.3.4. Künneth formula. For a free chain complex C(i.e. each Ci is free) and
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an arbitrary chain complex D, there is a natural short exact sequence

0→
⊕
p+q=n

Hp(C)⊗Hq(D)→ Hn(C ⊗D)→
⊕

p+q=n−1

Tor(Hp(C), Hq(D)→ 0.

and this sequence splits.

Theorem 1.3.5. The topological Künneth formula. If (X,A) and (Y,B) are CW pairs

and R is a principal ideal domain, then there are natural short exact sequences

0→
⊕
i

(Hi(X,A,R)⊗R Hn−i(Y,B;R))→ Hn(X × Y,A× Y ∪X ×B;R)→⊕
i

TorR(Hi(X,A;R), Hn−i−1(Y,B;R))→ 0.

Theorem 1.3.6. Poincare Duality If M is a compact R− orientable n−manifold with

fundamental class [M ] ∈ Hn(M ;R), then the map D : Hk(M,R) → Hn−k(M,R) defined by

D(α) = [M ] ∩ α is an isomorphism.

Theorem 1.3.7. Ehresmann’s fibration theorem Let f : E → B be a proper submersion

(i.e. the differential is a surjective linear map at all points of E). Then f is locally trivial

fibration.

Theorem 1.3.8. Let M be a closed connected orientable n-manifold with boundary, let

µ ∈ Hn(M) be the orientation. If coefficients from field are taken then the intersection form

〈, 〉 : Hk(M ;F )×Hn−k(M ;F )→ F is non-singular.

We now state some preliminaries results which will be used in proving Picard-Lefschetz

formula. Let f : A→ B be a continuous mapping and B∗ ⊂ B a subspace such that f fibres

E = f−1(B∗) locally trivially over B∗. Denote Fy = f−1(y) for y ∈ B Let w : I = [0, 1]→ B∗

be a path from a = w(0) to b = w(1). The induced bundle w∗E over I is trivial, that is

W : Fa × I → E ⊂ A

with the following properties:

1. f ◦W (x, t) = w(t) and W (x, 0) = x for x ∈ Fa, t ∈ I.

2. let t ∈ I, Wt : Fa → Fw(t) given by Wt(x) = W (x, t) is an homeomorphism

10



3. For any L with Fa ∪ Fb ⊂ L ⊂ A the lifting W is a mapping between pairs

W : Fa × (I, ∂I)→ (A,L).

The path w determines W upto homotopy relative to ∂I and L and determines W1 :

Fa ' Fb upto isotopy. Since the induced isomorphism in homology (W1)∗ depends only on

w, we denote

w∗ = (W1)∗ : H∗(Fa) ' H∗(Fb).

Definition 1.3.1. If w is closed, W1 is called a geometric monodromy and w∗ is called

algebraic monodromy along w.

Definition 1.3.2. Let i ∈ H1(I, ∂I) be a canonical generator. The map

τw : Hq(Fa)→ Hq+1(Fa × (i, ∂I))
W∗−−→ oHq+1(A,L)

τ(x) = x× i

is the extension along w.

We now list some properties of extensions

1. If f−1(image(w)) ⊂ L, then we have τw = 0.

2. Naturality. A commutative diagram

A A1

B B1

(Ψ)

f f1

ϕ

(1.3.1)

with ϕ(B∗) ⊂ B∗1 and ϕ(L) ⊂ L1 induces a commutative diagram

Hq(Fa) Hq(F1, ψ(a))

Hq+1(A,L) Hq+1(A1, L1)

(Ψa)∗

τw τψ◦w

Ψ∗

(1.3.2)
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3. ∂∗ : Hq+1(A,L)→ Hq(L) denotes the connecting homomorphism, then

(w∗(x))− x = (−1)q∂∗τw(x), x ∈ Hq(Fa).

4. Composition. If w is a path from a to b and v is a path from b to c and if Fa ∪Fb ∪Fc
then τv◦w = τv ◦ w∗ + τw and (v◦)∗ = v∗ ◦ w∗.

We will also be using relative version: Let A′ ⊂ A be a subspace, denote E ′ = E∩A′ and

F ′y = Fy∩A′. Assume that f fibres the pair (E,E ′) locally trivially over B∗ and F ′a is a strong

deformation retract of A′. Then W : (Fa, F
′
a)×(I, ∂I) = (Fa×I, Fa×∂I∪F ′a×I)→ (A,L∪A′)

and the relative extension is defined

τw : Hq(F, F
′
a)→ Hq+1((Fa, F

′
a)× (I, ∂I))

W∗−−→ Hq+1(A,L ∪ A′)

τ(x) = x× i

The list of properties mentioned above are also true for the relative case.
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Chapter 2

The modification of a projective

variety with respect to a pencil of

hyperplanes.

2.1 Pencil of hyperplanes and the Veronese embed-

ding.

Let PN denote N − dimensional complex projective space and P̌N be its dual projective

space. A line G in P̌N is called a pencil of hyperplanes in PN . We use the notation Hy ⊂ PN
if y ∈ P̌N . Hence a pencil is denoted by {Ht}t∈G . Let α and β represent two distinct points

in G, then we have G = {aα + bβ | (a, b) ∈ P1}. If p ∈ Hα ∩ Hβ, then it lies in every

hyperplane of the pencil. We define the axis of the pencil to be A = Hα ∩ Hβ = ∩t∈GHt.

Thus a pencil in PN consists of all hyperplanes which contain a fixed (N − 2)−dimensional

projective linear subspace A.

Let X ⊂ PN be a closed, irreducible, nonsingular variety of dimension n. We intersect

the variety by a pencil {Ht}t∈G of hyperplanes,

Xt = X ∩Ht, t ∈ G
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so that we have

X = ∪t∈GXt

is the union of hyperplane sections Xt. Let X ′ = X ∩ A. We observe that X \ X ′ can be

looked at as the fibration over G with fibres Xt \X ′. We modify X along X ′ to get a new

variety Y and a map f : Y → G such that the fibres f−1(t) are the whole of hyperplane

sections Xt. We define the modification

Y = {(x, t) ∈ X ×G | x ∈ Ht}. (2.1.1)

We observe that Y = Γ∩ (X ×G), where Γ = {(x, y) | (x, y) ∈ PN × P̌N and x ∈ Hy}. Γ

is called the universal hyperplane. To see Y is a variety it is enough to see Γ is a variety. Let

(z0, z1, . . . , zN) represent the coordinates of arbitrary point in CN+1 with respect to standard

basis, and let (w0, w1, . . . , wN) be the coordinates of the dual of CN+1 in the dual basis. Now,

let x = (a0, a1, . . . , aN) and y = (b0, b1, . . . , bN), we have,

(x, y) ∈ Γ iff x ∈ Hy

iff y(x) = 0

iff (
∑

biei∗)(
∑

aiei) = 0

iff
∑

biai = 0

iff (x, y) ∈ Z(z0w0 + z1w1 + . . .+ znwn = 0)

by 1.1.1 Γ is a variety.

We now have two projections

X
p←− Y

f−→ G. (2.1.2)

Let Y ′ := p−1(X ′) = X ′ ×G. The complement is mapped isomorphically

p : Y \ Y ′ ' X \X ′,

and each fibre of f is isomorphic to corresponding hyperplane section,

p : Yt = f−1(t) ' Xt, t ∈ G.

14



2.2 Veronese Embedding

We now study V eronese embedding of projective spaces. Originally Lefschetz studied more

general linear systems of hypersurfaces of X, and not just pencils {Xt}t∈G of hyperplane sec-

tions. Veronese embedding justifies that restricting to hyperplane sections does not diminish

any generality.

Let S = {xi10 . . . x
iN
N | i0 + i1 + . . .+ iN = d} be the set of monomials of degree d in N + 1

variables. The number of elements in S is equal to
(
N+d
d

)
. Thus the set of all homogeneous

polynomials of degree d is a vector space of dimension equal to |S|. Let M = |S|−1. Consider

PM whose homogeneous coordinates are represented by vi0...iN such that i0 + i1 + . . .+ iN =

d and ij ≥ 0. The Veronese embedding of degree d is defined to be vd : PN → PM by

(x0, . . . , xN) 7→ (. . . , vi0...,iN , . . .) where vi0...,iN = xi10 . . . , x
iN
N .

We now see that Vd(PN) = Z{vi0...,iNvj0...,jN−vk0...,kNvl0...lN = 0 | i0 +j0 = k0 + l0, . . . , iN +

jN = kN + LN} Clearly any element of Vd(PN) satisfies all the equation in the set. To

see the converse we first note that for any point in the zero set of equations atleast one

of the coordinate of the form v0...d...0 corresponding to the monomial udi is nonzero. Let

Ui be the set of points such that v0...d...0 6= 0. On Ui we define the inverse ϕi of vd by

ϕi(z) = (z1...d−1...0, . . . , z0...d...0, . . . , z0...d−1...1) these maps agree on the intersections because

vd is injective. Hence vd(PN) is defined by the equations above and vd is an isomorphic

embedding.

The importance of Veronese embedding is that if F =
∑
ai0...inx

i0
0 . . . x

iN
N determines a

degree d hypersurface H ⊂ PN , then vd(H) ⊂ vd(PN) ⊂ PM is the intersection of vd(PN)

with a corresponding hyperplane HF ⊂ PM . Thus the Veronese embedding allows to reduce

the study of problems concerning hypersurfaces to hyperplanes.

We have vd(F ) = V (PN) ∩ HF , the point x ∈ F is nonsingular if HF intersects vd(PN)

at vd(x) transversally. If X ⊂ PN is Zariski-closed and let x ∈ X ∩ F is non singular of

both X and F, then F intersects X at x transversally, then HF intersects vd(X) at v(x)

transversally.
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2.3 Duality Theorem

We now study the dual variety of a projective variety X. We allow X to have singular points.

We define the dual variety as X̌ ⊂ P̌N as the closure of set of all hyperplanes tangent to X.

An hyperplane H ⊂ PN is tangent to X if TxX ⊂ H for some nonsingular point x ∈ X. Thus

X̌ = {y ∈ P̌N | Hy is tangent to X}. If X is non-singular the set of hyperplanes tangent to

X is a closed set.

Theorem 2.3.1. The dual of X is closed irreducible subvariety of atmost dimension N − 1.

Proof. Define V ′X = {(x, y) ∈ PN× P̌N | x ∈ Xe and Hy is tangent to X at x} where Xe ⊂ X

is non-empty open subset of nonsingular points of X. Let π1 and π2 be first and second projec-

tions respectively. A typical fibre of first projection is π−1
1 (a) = {(a, y) |Hy is tangent to X at a}.

This fibre is isomorphic to P̌(Ta(PN)/TaX) and hence has dimension N −n− 1. By 1.1.5 V ′X
is irreducible and has dimension N−1. Thus the closure VX of V ′X also has dimension N−1.

The first projection maps VX onto X since projection is closed map 1.1.2. We observe that

X̌ = π2(VX), since projection is both continuous and closed hence π2(V ′X) = π2(V ′X). The

dimension of X̌ is atmost N − 1 by 1.1.4.

The set VX as in the proof above is called the tangent hyperplane bundle of X.

Lemma 2.3.2. Let X ⊂ PN be a be a closed irreducible variety of dimension n, and let H be

a hyperplane, x ∈ X ∩H then X intersects H at x transversally if and only if XH = X ∩H
is smooth at x.

Proof. We have Tx(XH) = Tx(X) ∩ Tx(H) and Tx(X) 6⊂ TxH since the intersection is

transversal. So we have dimTxXH = n − 1. Conversely assume X to be affine and let

I(Y ) = (f1, f2, . . . , ft) then the matrix [(∂fi/∂xj)(P )] has rank N − n, now since XH is

smooth at x the jacobian of XH has rank N − n + 1, which implies gradH is linearly in-

dependent of span ((∂fi/∂xj)(P )). We also have TxX = ∩TxZ(fi). If the intersection of X

and H were not transversal then ∩TxZ(fi) ⊂ TxH which implies gradH is in orthogonal

complement of TxX and hence is in the span of (∂fi/∂xj)(P ), a contradiction.

We now study the duality theorem which gives relation between tangent hyperplane
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bundle of X and X̌. Towards that we make some construction. Define

W = {(x, y) ∈ PN × P̌N | x ∈ X ∩Hy}. (2.3.1)

We observe that W = Γ ∩ (X × P̌N) where Γ is the universal hyperplane defined above

and hence W is a variety. Let p1 : W → X be first projection, a fibre of a point is p−1
1 (x) =

{(x, y) | x ∈ Hy}. Thus all fibres are irreducible and have same dimension equal toN−1. Thus

by 1.1.5 W is irreducible. By 1.1.4 there exist x ∈ X such that dimf−1(x) = dimW −dimX,
hence W has N + n− 1 dimensions. We observe that VX ⊂ W and π1 = p1 | VX . The open

set of simple points is We = p−1
1 (Xe). For a simple point (c, b) ∈ W the second projection p2

has maximal rank if and only if Hb intersects X at c transversally.

Since if p2 has maximal rank at (c, b) then p−1
2 (b) is smooth, which is isomorphic to Xb and

hence by the lemma above Hb intersects X at c transversally. Conversely we have Tc(Hb) =

T(c,b)(p
−1
2 (p2(c, b))) = kerTp2(c, b) has dimension n − 1 which implies p2 has maximal rank.

As a result V ′X is the set of simple points of W which are critical with respect to p2.

Theorem 2.3.3 (Duality Theorem). The tangent hyperplane bundle of X and X̌ coincide

VX = VX̌ and hence ˇ̌X = X.

Proof. Consider the set U = {(c, b) | c ∈ Xe, b ∈ X̌, (c, b) ∈ VX , π2 = p2 | VX has maximal rank (=

dimX̌)}. U is open and nonempty subset of VX . We prove U ⊂ VX̌ and irreducibility

of VX will imply that VX ⊂ VX̌ and since dimVX = dimVX̌ we will get VX = VX̌ . Let

(c, b) ∈ U then {c} ×c H ⊂ W where cH ⊂ P̌N is the hyperplane corresponding to c. Thus

T(c,b)({c} ×c H) ⊂ T(c,b)W which implies

Tp2(T(c,b)({c} ×c H)) ⊂ Tp2(T(c,b)W ).

Now since p2 maps {c} ×c H isomorphically onto cH we have Tp2(T(c,b){c} ×c H) = Tb(cH).

Since at (c, b), p2 has rank less than N it must be N − 1. We have

Tp2(Tc,bW ) = Tb(cH).
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We now observe that T(c,b)VX ⊂ T(c,b)W implies that

Tπ2(T(c,b)VX) ⊂ Tp2(T(c,b)W ) = Tb(cH)

and since π2 = p2 | VX has maximal rank = dimX̌ at (c, b), we have

TbX̌ = Tπ2(T(c,b)VX) ⊂ Tb(cH).

Hence cH is tangent to X̌ at b and thus we get (c, b) ∈ VX̌ .

We now see an application of Veronese embedding.

Proposition 2.1. All smooth hypersurfaces of PN which have same degree d is diffeomorphic

to one another.

Proof. Let X ⊂ PN be smooth, consider p2 : W \ p−1
2 (X̌) → P̌N \ X̌ is a proper mapping

which has a maximal rank = N everywhere. Therefore W \ p−1
2 (X̌) is locally trivial fibre

bundle over P̌N \ X̌ by Ehresmann’s fibration theorem. Since P̌ \ X̌ is path connected all

fibres (i.e. all transversal hyperplane sections Xy of X) are diffeomorphic to one another. If

this is applied to the Veronese variety X = v(PN) we get the desired result.

2.4 Lefschetz Pencil.

In this section we define special type of pencils called Lefschetz pencils and see their

existence. We fix X to be irreducible, nonsingular projective variety of dimension n. We

define class of X to be r if X̌ is a hypersurface of degree r > 0, and 0 if dimX̌ ≤ N − 2.

Definition 2.4.1. A Lefschetz pencil on X ⊂ PN is a pencil determined by a projective line

G ⊂ P̌N with the following properties

1. The axis A of the pencil intersects X transversally.

2. The modification Y of X along X ′ = X ∩ A is irreducible and non-singular.

3. The projection f : Y → G has r = class X critical values and the same number of

critical points each of which is non-degenerate.
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Proposition 2.2. Let b ∈ P̌N \ X̌ (i.e. Hb intersects X transversally). Let E be the (N − 1)-

dimensional space of all projective lines in P̌N through b. If class X = 0 the lines which do

not meet X̌ form a non-empty open subset of E. If class X = r > 0 the lines which avoid

the singular set of X̌ and intersect X̌ transversally form a non-empty open subset of E. For

a line G in this set the intersection G ∩ X̌ consists of r = class X many points.

Proof. We consider the projection p : X̌ → E with centre b, p(y) = line through b and y.

Now p(X̌) is a closed subset of E with dim p(X̌) ≤ dim X̌, since image of projective variety

under a morphism is closed. If class X = 0 the required open set is E \ p(X̌). If dimension

X̌ = N − 1 the subset C ⊂ X̌ consisting of singular points of X̌ and simple points y

of X̌ where p(y) is not transversal to X̌ is proper and closed, and since X̌ is irreducible

dim C ≤ N − 2. The required open set is E \ p(C).

We now prove the existence of Lefschetz pencil on X. By 2.2 there exists a projective

line G which intersects X̌ transversally and avoids the singular set (for class X = 0 this

means G ∩ X̌ = ∅.) We prove that the pencil {Ht}t∈G with axis A is a Lefschetz pencil in

the following propositions.

Remark. If class X > 0 and b ∈ G ∩ X̌ ⊂ X̌e, there is exactly one point c ∈ X such that

(c, b) ∈ V = VX = VX̌ , because V ′
X̌

is mapped isomorphically onto X̌e by π2. We have

Tb(cH) = (Tp2)(T(c,b)W ) = (Tπ2)(T(c,b)V ) = TbX̌ (2.4.1)

Proposition 2.3. The axis A intersects X transversally, and hence X ′ = X ∩ A and Y ′ =

p−1(X ′) are non-singular and have dimension n− 2 and n− 1 respectively.

Proof. We observe that Y ⊂ W where W is as defined above, and Y = p−1
2 (G) is modification

of X along X ′ and f = p2 | Y : Y → G. If class X = 0, G ∩ X̌ = ∅, and all hyperplanes of

the pencil {Ht}t∈G intersect X transversally and hence A intersects X transversally since if

TxX ⊂ TxA then TxX ⊂ TxHt for all hyperplanes Ht a contradiction, and if TxX ∩ TxA is

codimension one in TxX say TxX = (TxX∩TxA)+M then TxX is contained in the hyperplane

TxA+M. Now let class X > 0, now if A did not intersect X transversally, we get a hyperplane

Hb tangent to X at a point c ∈ A i.e. (c, b) ∈ V. Now c ∈ A ⊂ Hb dualizes to b ∈ G ⊂ cH.

Since G intersects X̌ transversally, cH also does, which means (c, b) 6∈ V a contradiction.
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Now since A intersects X transversally we have N − dim X ′ = codim X + codim A and

hence dim X ′ = n− 2 which implies dim Y ′ = n− 1.

Lemma 2.4.1. The projection p2 : W → P̌N is transversal to G, i.e if (c, b) ∈ W and b ∈ G
then TbP̌N = TbG+ (Tp2)(T(c,b)W ).

Proof. If p2 has rank N at (c, b), TbP̌N = (Tp2)(T(c,b)W ), else (c, b) ∈ V and hence TbX̌ =

(Tp2)(T(c,b)W ) by 2.4, and the lemma is proved since G intersects X̌ transversally.

Proposition 2.4. The modification Y of X along X ′ is irreducible and non-singular.

Proof. Since p2 is transversal to G, Y = p−1
2 (G) is a submanifold of W of dimension n, and

hence is nonsingular. Now since X is irreducible X \X ′ being open set of X is irreducible,

which implies Y \Y ′ being isomorphic to X\X ′ is irreducible. Y \ Y ′ is irreducible component

of Y, now any other irreducible component T of Y must be contained in Y ′ or else T =

T ∩ Y \ Y ′ ∪ T ∩ Y ′ would be reducible. Now since every irreducible component of Y has

dimension n and cannot be contained in Y ′.

Proposition 2.5. The projection f : Y → G has r = class X critical values, namely the

points of X̌ ∩G. There are same number of critical points.

Proof. Let (c, b) ∈ Y, we have (Tf)(T(c,b)Y ) = (Tp2)(T(c,b)W ) ∩ TbG. Now if b ∈ G \ X̌ then

(c, b) 6∈ V, and by 2.4 we have (Tp2)(T(c,b)W ) = TbP̌N and hence f maximal rank 1 at (c, b).

If b ∈ G ∩ X̌ then (c, b) ∈ V and again by 2.4 we have (Tp2)(T(c,b)W ) = TbX̌. And since

G ∩ X̌ transversally and hence (c, b) is critical point of f. By 2.4 there are no two critical

points in same fibre of f.

Proposition 2.6. Every critical point of f : Y → G is non-degenerate.

Proof. Let (c, b) ε V be a critical point of f. Choose projective coordinates of (x0 : . . . : xN) of

PN and dual coordinates (y0 : . . . yN) of P̌N so that b = (0 : . . . : 0 : 1) and c = (1 : 0 : . . . , 0)

and G is given by y1 = . . . = yN−1 = 0. The first projection fibres locally trivially with the

explicit trivialization over U = {x ε X | x0 6= 0} given by

U × P̌N−1 → p−1
1 (U),
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(x, z)→ (x, (−
N∑
i=1

xizi : x0z1 : . . . : x0zN))

where z = (z1 : . . . : zN) ∈ P̌N . Let (t1, t2, . . . , tn) be holomorphic coordinates around c in

X and ζ1 = z1
zN
, . . . , ζN−1 = zN−1

zN
be affine coordinates of PN−1 then w have holomorphic

coordinates of W in a neighborhood of (c, b) is (t1, . . . , tn, ζ1, . . . , ζN−1). So now we have

p2 = (g(t, ζ), ζ1, . . . , ζN−1) and f : Y → G is given by f(t) = g(t, 0). Now

Jac(p2) =


∂g
∂t1

· · · ∂g
∂tn

∗ ∗ ∗
0 · · · 0 1

· · · · · · · · · . . .

0 · · · 0 1



Now V is given by ∂g
∂t1

= ∂g
∂t2

= . . . = ∂g
∂tn

= 0. Therefore the Jacobian of the defining

equations together with the Jacobian of p2 must have rank N + n− 1 The big matrix

Jac(p2) =



∂2g
∂t21

· · · ∂2g
∂t1∂tn

∗ ∗ ∗
. . . . . . . . . . . . . . . . . .
∂2g

∂tn∂t1
. . . ∂2g

∂t2n
∗ ∗ ∗

0 . . . 0 ∗ ∗ ∗
0 · · · 0 1

· · · · · · · · · . . .

0 · · · 0 1


It has rank N+n−1 if and only if the rank of the hessian matrix of the second derivatives

of f has maximal rank n.
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Chapter 3

Lefschetz’s Theorems

In this chapter we will see Lefschetz results. The main results studied is Lefschetz’s famous

theorem on homology of hyperplane sections 3.2.1 and Weak Lefschetz Theorem 3.3.1

3.1 Main lemma.

We first prove two important lemmas 3.1.1 and 3.1.2.

Let p : Y → X be modification of X along X ′ as defined in 2.1.1. Since Y ′ = X ′ ×G we

have

Hq(Y
′) = Hq(X

′ ×G).

By Künneth formula 1.3.4 we have

Hq(X
′ ×G) ' Hq(X

′)⊗H0(G)⊕Hq−2(X ′)⊗H2(G)

and by and 1.3.2 we get

Hq(X
′ ×G) ' Hq(X

′)⊕Hq−2(X ′).

Using the inclusion Y ′ ⊂ Y there is a cannonical homomorphism κ : Hq−2(X ′)→ Hq(Y ).

Lemma 3.1.1. The sequence 0 → Hq−2(X ′)
κ−→ Hq(Y )

p∗−→ Hq(X) → 0 is split exact se-
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quence.

Proof. We first show that the sequence splits by by producing a right inverse of p∗. Let

x ∈ Hq(X) then we have x = u ∩ [X] where u ∈ H2n−q(X) is Poincaré dual of x. Then

we define the inverse s : Hq(X) → Hq(Y ) by s(x) = p∗(u) ∩ [Y ] ∈ Hq(Y ) and p(s(x)) =

p∗(p
∗(u)∩ [Y ]) = u∩p∗[Y ] = u∩ [X] = x. We use long exact sequences of (Y, Y ′) and (X,X ′),

by excision theorem 1.3.1 p′∗ is an isomorphism, exactness follows by diagram chasing.

Hq+1(Y ) Hq+1(Y, Y ′) Hq(X
′)⊕Hq−2(X ′) Hq(Y ) Hq(Y.Y

′)

Hq+1(X) Hq+1(X,X ′) Hq(X
′) Hq(X) Hq(X.X

′)

p∗

∂∗

p′∗ pr p∗ p′∗

∂∗

Let f : Y → G be a holomorphic mapping between an n-dimensional compact complex

manifold Y and a projective line G, so that f has r critical values and the same number of

critical points each of which is non-degenerate. Let x1, . . . , xr be the critical points of f and

t1, . . . , tr be the corresponding critical values. We decompose G into two closed hemisphere

D+ and D− such that all the critical values are in the interior of D+. We denote G = D+∪D−,
S1 = D+ ∩D−, Y+ = f−1(D+), Y− = f−1(D−), and Y0 = f−1(S1). Choose a point b ∈ S1.

Lemma 3.1.2. Main lemma

Hq(Y+, Yb) =

0 if q 6= n

free of rank r otherwise.

Proof. We identify D+ with closed unit in C by choosing suitable holomorphic coordinates

that b corresponds to 1. We now choose small disks Di with centre ti for each critical value

and radius ρ are chosen so that Di∩Dj = ∅ for i 6= j, and each Di, i = 1, 2, . . . r is contained

in D. See figure 3.1.2.

The lemma is proved in several steps

Step 1- Localization in the base space:

Let

Ti = f−1(Di) and Fi = f−1(ti + ρ).
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Figure 3.1: Isolating the critical points.
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We first localize in the base space to reduce the investigation of (Y+, Yb) locally to (Ti, Fi)

as follows: Let li be a smooth interval from b to ti + ρ. We denote

l =
r⋃
i=1

li and k = l

r⋃
i=1

Di.

We choose li to be disjoint from each other so that l can be contracted to b, and D+ can be

contracted to k.

claim 1. The fibre Yb is strong deformation retract of L = f−1(l) and K = f−1(k) is a strong

deformation retract Y+. Hence we get

H∗(Y+, Yb) ' H∗(Y+, L) ' H∗(K,L).

Proof. We use Ehresmann’s fibration theorem 1.3.7. The map f : Y+ \ f−1{t1, . . . , tr} →
D+ \ {t1, . . . , tr} is a C∞ locally trivial fibre bundle. Now by homotopy covering theorem,

the contraction of l to b can be lifted so that L deformation retracts to Yb. Similarly we lift

the contraction D+ \ {t1, . . . , tr} to l ∪
r⋃
i=1

(Di \ ti) so that L ∪
r⋃
i=1

(Ti \ f−1(ti)). Since ti are

the interior points of k the singular fibres can be filled in so that K is a deformation retract

of Y+.

claim 2.

H∗(Y+, Yb) ' H∗(K,L) '
r⊕
i=1

H∗(Ti, Fi).

Proof. We observe that K \ L = f−1(k) \ f−1(l) =
r⋃
i=1

Ti \
r⋃
i=1

Fi. Hence the inclusion

(
r⋃
i=1

Ti,

r⋃
i=1

Fi) ↪→ (K,L)

is an excision and by 1.3.1 the claim follows.

Step 2- Localization in the total space:

Let

T = Ti ∩B and F = Fi ∩B.

We now localize in the total space and reduce the investigation of (Ti, Fi) to (T, F )
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By morse lemma 1.2.3 we get a holomorphic coordinate chart (U, ψ = (z1, . . . , zn)) cen-

tered at xi such that

f(z) = ti + z2
1 + . . .+ z2

n.

Let ε be small enough so that

B = {z ∈ Cn | ||z|| < ε }

is subset of ψ(U). We denote ψ−1(B) again by B. We shrink radius ρ of Di so that ρ < ε 2

to get Di ⊂ f(B). see 3.1.2.

claim 3. H∗(T, F ) ' H∗(Ti, fi).

Proof. Let ∂B = {z ∈ B | ||z|| = ε }, and let T ′ = T ∩ ∂B and F ′ = F ∩ ∂B. We consider

(T, F ) (Ti, Fi)

(T, T ′ ∪ F ) (Ti, Ti \B ∪ Fi)

The bottom line is a excision because T \ (T ′ ∪ F ) = Ti \ (Ti \B ∪ Fi). Now Fi \ B̊ is

strong deformation retract of Ti \ B̊ and F ′ is strong deformation retract of T ′ because f has

maximal rank 2 of smooth manifolds on Ti \ B̊ and hence be Ehresmann’s fibration theorem

1.3.7 we have (Ti \ B̊, ∂T ) diffeomorphic to (Fi \ B̊, ∂F )×Di, and Di can be contracted to

ti + ρ. Thus the vertical lines have the same homology groups, completing the proof of the

claim.

Step 3- Explicit calculation:

We will now use explicit coordinate description to calculate the homology groups of the

pair (T, F ). We have

T = {z ∈ Cn | |z1|2 + . . .+ |zn|2 ≤ ε 2 and |z2
1 + . . .+ z2

n| ≤ ρ} (3.1.1)

F = {z ∈ T | |z2
1 + . . .+ z2

n| = ρ} (3.1.2)

27



claim 4. F is diffeomorphic to unit sphere bundle

Q = {(u, v) ∈ Rn × Rn | ||u|| = 1, ||v|| ≤ 1 and 〈u, v〉}.

Proof. We decompose each coordinate zj = xj + iyj and let x = (x1, . . . , xn) and y =

(y1, . . . , yn) and therefore

F = {(x, y) | ||x||2 − ||y||2ρ, 〈x, y〉 = 0}

now ρ+ 2||y||2 ≤ ε 2 implies that ||y|| ≤ ( ε 2−ρ
2

)1/2 = σ

The diffeomorphism is given by

F
ϕ−→ Q (3.1.3)

(x, y) 7→
( x

||x||
,
y

σ

)
(3.1.4)

and the inverse is given by

Q
ϕ−1

−−→ F (3.1.5)

(u, v) 7→ (
√

(σ2||v||2 + ρ)u, σv). (3.1.6)

We get

Hq−1(F ) =

0 if q 6= 1, 6= n

free of rank 1 otherwise.

claim 5.

Hq(T, F ) =

0 if q 6= n

free of rank 1 otherwise.

Proof. By 3.1.1, T is linearly contracted to the origin by the contraction H(z, t) = (1− t)z.
Hence the connecting homomorphism

∂∗ : Hq(T, F )→ Hq−1(F ) for q 6= 0.
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is an isomorphism.

Hn(T, F ) is generated by an orientation of real n-disk ∆ = {z ∈ T | all zj real}

This completes the proof of the main lemma.

Remark. We now give an explicit retraction R : T ′ → F ′. Let f(z) = ti + re2πiϕ, let

e−πiϕz = z′ so that f(z′) = r. Let

R′ : T ′ → Q, R′(z) = eπiϕ((x′/||x′||) + i(y′/||y′||)).

We define R to be composition of R′ and the diffeomorphism of Q and F ′.

3.2 Lefschetz’s Results

We now study many of the Lefschetz’s results using techniques from algebraic topology, and

the lemmas 3.1.1 and 3.1.2.

We observe that since f has no critical points in Y− we get

Y− = Xb ×D− and Y0 = Xb × S1

by 1.3.7 and hence (Y−, Y0) = Xb × (D−, S
1). Now since Y \ Y+ = Y− \ Y0 we have by 1.3.1

Hq(Y, Y+) ' Hq(Y−, Y0) = Hq(Xb ×D−, Xb × S1).

By 1.3.4 ⊕
i

Hi(Xb)⊗Hq−i(D−, S
1) ' Hq(Xb ×D−, Xb × S1).

Hp(D−, S
1) =

R if p = 2

0 otherwise.
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We get

Hq(Y, Y+) ' Hq−2(Xb). (3.2.1)

The homology sequence of the triple (Y, Y+, Yb)

· · · → Hq+1(Y+, Yb)→ Hq+1(Y, Yb)
L−→ Hq+1(Y, Y+)

τ−→ Hq(Y+, Yb)→ · · ·

becomes

· · · → Hq+1(Y+, Yb)→ Hq+1(Y, Yb)
L−→ Hq−1(Y, Y+)

τ−→ Hq(Y+, Yb)→ · · · (3.2.2)

Now by using 3.1.2 we get the isomorphism

L : Hq+1(Y, Yb) ' Hq−1(Xb), q 6= n− 1, n. (3.2.3)

and a five term sequence

0→ Hn+1(Y, Yb)
L−→ Hn−1(Yb)→ Hn(Y+, Yb)→ Hn(Y, Yb)→ Hn−2(Xb)→ 0 (3.2.4)

Proposition 3.1. If n > 1, the generic hyperplane section Xb (b 6∈ X̌) is non singular and

irreducible.

Proof. b 6∈ X̌, implies that Hb intersects X transversally and hence Xb is nonsingular. Now

using 3.2.3

H0(Y, Yb) = H−2(Xb) = 0, H1(Y, Yb) = 0

Thus H0(Yb) = H0(Y ) using the long exact sequence of the pair (Y, Yb). Thus H0(Yb) = 0

since Y is connected because it is irreducible and nonsingular by proposition 2.4. Thus Yb is

connected and hence irreducible.

Proposition 3.2. If r = class X,

e(Y ) = 2e(Xb) + (−1)nr
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and

e(X) = 2e(Xb)− e(X ′) + (−1)nr.

Proof. From 3.1.1 we get

e(Y ) = e(X) + e(X ′),

and from 3.2.2 we have

e(Y )− e(Yb) = e(Y, Yb) = e(Xb) + (−1)nr.

Thus

e(Y ) = 2e(Xb) + (−1)nr

and

e(X) = 2e(Xb)− e(X ′) + (−1)nr.

We now present the Lefschetz’s famous theorem on homology of hyperplane section.

Theorem 3.2.1. The inclusions Xb ↪→ X induces isomorphisms Hq(Xb) → Hq(X) if q <
1
2
dimXb = n− 1, which is equivalent to Hq(X,Xb) = 0 for q ≤ n− 1.

Proof. We use long exact sequence of the triple (Y, Y+ ∪Y ′, Yb ∪Y ′). Using excision 1.3.1 we

have

Hq(Y, Y+ ∪ Y ′) = Hq(Y, Y+ ∪ (X ′ ×D−))

' Hq(Y−, Y0 ∪X ′ ×D−)

using 1.3.7 = Hq(Xb ×D−, Xb × S1 ∪X ′ ×D−)

' Hq−2(Xb, X
′)⊗H2(D−, S

1)

' Hq−2(Xb, X
′).

Now consider the inclusions

(Y+, Yb) ↪→ (Y+, Yb ∪ Y ′+) ↪→ (Y+ ∪ Y ′, Yb ∪ Y ′).
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The first inclusion induces an isomorphism in homology since Yb = Xb × {b} is deformation

retract of Yb ∪ Y ′+ = Xb × {b} ∪ X ′ × D+. The second inclusion induces isomorphism in

homologies because of 1.3.1. Thus we have

H∗(Y+ ∪ Y ′, Yb ∪ Y ′) ' H∗(Y+, Yb) (3.2.5)

The long exact sequence of (Y, Y+ ∪ Y ′, Yb ∪ Y ′) is transformed into

· · · → Hq+2(Y+, Yb)
p∗−→ Hq+2(X,Xb)

L′−→ Hq(Xb, X
′)

τ ′−→ Hq+1(Y+, Yb)→ · · · . (3.2.6)

Now by using 3.1.2 we get the isomorphism

L′ : Hq+1(X,Xb) ' Hq−1(Xb, X
′), q 6= n− 1, n. (3.2.7)

and a five term sequence

0→ Hn+1(X,Xb)
L′−→ Hn−1(Xb, X

′)→ Hn(Y+, Yb)→ Hn(X,Xb)→ Hn−2(Xb, X
′)→ 0

(3.2.8)

We now use induction to complete the proof. The case n = 1 is obvious. We induct

from n − 1 to n. We observe that X ′ is a hyperplane in Xb, and hence apply the induction

hypothesis to the pair (Xb, X
′) to get Hq(Xb, X

′) = 0 for q ≤ n − 2. the isomorphism 3.2.7

proves the theorem.

Corollary 3.2.1.1. Hq(X,Xb) = 0 for q ≤ n − 1, n = dimX, i.e. The inclusion Xb ↪→ X

induces isomorphisms of cohomology groups in dimension strictly less than n − 1 and a

monomorphism of Hn−1. Also Hn(X,Xb;R) ' Hom(Hn(X,Xb), R) where R is the coefficient

ring.

Proof. We apply universal coefficient theorem 1.3.3 to theorem 3.2.1, to get the result

Hq(X,Xb) = 0 for q ≤ n− 1 and Hn(X,Xb;R) ' Hom(Hn(X,Xb)R).

The theorem 3.2.1 is generalised for hypersurfaces.

Corollary 3.2.1.2. Let X ⊂ PN be smooth irreducible n − dimensional variety. F ⊂ PN
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be hypesurface such that F intersects X transversally, then

Hq(X,X ∩ F ) = 0 for q ≤ n− 1.

A subset Y ⊂ PN if Y =
r⋂
i=1

Fi such that F1 is smooth and Fk intersects
k−1⋂
i=1

Fi transver-

sally and
k⋂
i=1

Fi are simple points of Fk. Y is (N − r)- dimensional variety. We use the

corollary above to get

Corollary 3.2.1.3. If Y ⊂ PN is an n − dimensional smooth complete intersection, then

Hq(PN , Y ) = 0 for q ≤ n. Equivalently Y ↪→ PN induces isomorphism at homology groups in

dimension strictly less than n and an epimorphism in dimension n.

Proof. We consider the long exact sequence of the triple (PN ,
r−1⋂
i=1

Fi,
r⋂
i=1

Fi) and use induction

on r.

3.3 Weak Lefschetz Theorem

Let ∂∗ : Hn(Y+, Yb)→ Hn−1(Yb) ' Hn−1(Xb), be connecting homomorphism. We define the

module of ”vanishing cycles” as

V = ∂∗(Hn(Y+, Yb)).

The long exact sequences of the pairs (Y+, Yb) and (X,Xb) form the following commutative

diagram

Hn(Y+, Yb) Hn−1(Yb) Hn−1(Y+) 0

Hn(X+, Xb) Hn−1(Xb) Hn−1(X) 0

∂∗

p1 p2 p3

∂∗ i∗

(3.3.1)

All vertical arrows are induced by the restriction of p : Y → X. p1 is surjective because

it occurs in the exact sequence 3.2.6 and Hn−2(Xb, X
′) = 0 according to 3.2.1 since X ′ is
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the hyperplane section of Xb. The middle one p2 is an isomophism. Hence the Five lemma

implies that p3 is also an isomorphism. From the above commutative diagram we have

V = kernel(i∗ : Hn−1(Xb)→ Hn−1(X)) = image(∂∗ : Hn(X,Xb)→ Hn−1(Xb)) (3.3.2)

and

rankV + rankHn−1(X) = rankHn−1(Xb) (3.3.3)

These observation have a cohomological counterpart

Hn(Y+, Yb) Hn−1(Yb) Hn−1(Y+) 0

Hn(X+, Xb) Hn−1(Xb) Hn−1(X) 0

δ∗

mono

δ∗ i∗

(3.3.4)

We define the module of ”invariant cocycles”.

I∗ :=kernel(δ∗ : Hn−1(Yb)→ Hn(Y+, Yb)) (3.3.5)

=kernel(δ∗ : Hn−1(Xb))→ Hn(X,Xb) (3.3.6)

=image(i∗ : Hn−1(X)→ Hn−1(Xb)) (3.3.7)

The module I of invariant cycles is defined to be the Poincaré dual of I∗

I := {u ∩ [Xb] | u ∈ I∗} ⊂ Hn−1(Xb). (3.3.8)

or equivalently

I = image(i1 : Hn+1(X)→ Hn−1(Xb)) (3.3.9)

where i1 = Di∗D−1 and D is the duality map. Since i∗ is injective, i1 is also injective so

that

rankI = rankHn+1(X) = rankHn−1(X) (3.3.10)

Theorem 3.3.1 (Weak Lefschetz Theorem). If coefficients in a field are taken rank I +
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rank V = rank Hn−1(Xb).

Proof. Since Hn−1(Y+, Yb) = 0 by 3.1.2 we have Hn(Y+, Yb) = Hom(Hn(Y+, Yb), R) by 1.3.3.

So we get I∗ = {u ∈ Hn−1(Yb) | 〈u, x〉 = 0 for every x ∈ V }. Here 〈−,−〉 denotes the

Kronecker pairing between cohomology and homology. By Poincaré duality the Kronecker

pairing becomes the intersection form

Hn−1(Xb)×Hn−1(Xb)→ R,

and thus

I = {y ∈ Hn−1(Xb) | 〈y, x〉 = 0 for every x ∈ V }. (3.3.11)

Since the coefficients are taken from a field this form is non-degenerate by 1.3.8, and hence

by 3.3.11 we get

rank I + rank V = rank Hn−1(Xb).
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Chapter 4

The Hard Lefschetz Theorem

4.1 Hard Lefschetz Theorem

In this chapter we discuss several equivalent statements of ”Hard Lefschetz Theorem” and

consequences of it.

Let [Xb] ∈ H2n−2(X) be the fundamental class of the hyperplane section Xb and let

u ∈ H2(X) be its Poincaré dual.

u ∩ [X] = [Xb].

Theorem 4.1.1. If field coefficients are chosen, the following statements are equivalent:

1. V ∩ I = 0

2. V ⊕ I = Hn−1(Xb)

3. i∗ : Hn−1(Xb)→ Hn−1(X) maps I isomorphically onto Hn−1(X).

4. Hn+1(X) ' Hn−1(X), x 7→ u ∩ x. is an isomorphism.

5. The restriction of the intersection form 〈−,−〉 from Hn−1(Xb) to V remains non-

degenerate.

6. The restriction of 〈−.−〉 to I remains non-degenerate.
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Proof.

1⇔ 2

by weak Lefschetz theorem 3.3.1.

2⇒ 3

since i∗ : Hn−1(Xb)→ Hn−1(X) is surjective (3.3.1) and V = ker(i∗) I ' Hn−1(X).

3⇔ 4

consider Hn+1(X)
i1−→ Hn−1(Xb)

i∗−→ Hn−1(X), now i1 is injective and I is image of i1 and

i∗ ◦ i1(x) = x 7→ u ∩ x, 4 follows from 3. Conversely if 4 is true I = image(i1) is mapped

isomorphically onto Hn−1(X) by i∗.

3⇒ 1

since i∗(V ) = 0.

2⇒ 5 and 2⇒ 6

by 2 and 3.3.11 〈−,−〉 on Hn−1(Xb) splits as direct sum of its restrictions to V and I,

〈−,−〉 = 〈−,−〉V ⊕ 〈−,−〉I .

Now since 〈−,−〉 is non-degenerate, the direct summands must also be non-degenerate.

5⇒ 1

Let z ∈ V ∩ I. Then 〈z, v〉 = 〈z, v〉V = 0 for every v ∈ V now 5 implies z = 0.

6⇒ 1

Let z ∈ V ∩ I. Then 〈c, z〉 = 〈c, z〉I = 0 for every c ∈ I now 6 implies z = 0.

We now state that the Hard Lefschetz Theorem is true without proof.

Theorem 4.1.2 (Hard Lefschetz Theorem). The statements 1− 6 in 4.1.1 are true if coef-

ficients from field of characteristic zero are chosen.

Let X = X0 ⊃ Xb = X1 ⊃ X ′ = X2 ⊃ X3 . . . ⊃ Xn ⊃ Xn+1 where we obtain Xq is

38



smooth generic hyperplane section of Xq−1. We denote the inclusions as

iq : Xq → X.

Let

I(Xq) ⊂ Hn−q(Xq)

be the module of invariant cycles for the pair

Xq ⊂ Xq−1

Using the hyperplane section theorem of Lefschetz we have the isomorphisms

i∗ : Hk(Xq)→ Hk(Xj), j ≤ q

for

n > k + q.

We then use duality to conclude that

i∗ : Hk(Xj)→ Hk(Xq), j ≤ q

for

n > k + q.

By 3 we deduce that

(iq)∗ : Hn−q(Xq)→ Hn−q(X) maps I(Xq) isomorphically onto Hn−q(X). (4.1.1)

We now observe that

I∗q = Image(i∗ : Hn−q(Xq−1)→ Hn−1(Xq))

and, by Lefschetz hyperplane section theorem we have the isomorphisms

Hn−q(X0)
i∗−→ Hn−q(X1)→ . . .

i∗−→ Hn−q(Xq−1).
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Now using Poincaré duality we obtain

i1 maps Hn+q(X) isomorphically onto I(Xq). (4.1.2)

Iterating 6 we obtain

The restriction of the intersection form Hn−q(X) to I(Xq) remains non− degenerate.
(4.1.3)

The isomorphism (iq)∗ : I(Xq)→ Hn−q(X) carries this form to a non-degenerate bilinear

form on Hn−q(Xq), and for odd n− q this a skew-symmetric form, and thus the degeneracy

assumption implies

dimHn−q(X) = dimHn+q(X) ∈ 2Z.

and thus we get the following result.

Corollary 4.1.2.1. The odd-dimensional Betti numbers of X are even.

Remark. Consider X = S3 × S1. Using Künneth formula we get b1(X) = 1 and hence is not

a complex projective variety by the corollary above.

The q-th power uq ∈ H2q(X) is Poincaré dual to the fundamental class [Xq] ∈ H2n−2q(X)

of Xq. Using 4.1.1 and 4.1.2 we obtain the following generalization of 4.

Corollary 4.1.2.2. Hn+q(X) ' Hn−q(X), x 7→ uq ∩ x. is an isomorphism for q = 1, . . . , n.

Definition 4.1.1. An element c ∈ Hn+q(X), 0 ≤ q ≤ n is called primitive if

uq+1 ∩ c = 0.

We denote Pn+q(X) ⊂ Hn+q(X) as the subspace consisting of primitive elements.

Definition 4.1.2. An element z ∈ Hn−q(X) is called effective if

u ∩ z = 0.

We denote En−q(X) ⊂ Hn+q(X) as the subspace consisting of effective elements.
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Note that c ∈ Hn+q(X) is primitive iff uq ∩ c ∈ Hn−q(X) is effective.

Theorem 4.1.3 (Primitive Decomposition.). Every element c ∈ Hn+q(X) decomposes uniquely

as c = c0 +u∩c1 +u2∩c2 + . . . where cj ∈ Hn+q+2j(X) are primitive elements. and every ele-

ment z ∈ Hn−q(X) decomposes uniquely as z = uq∩z0+uq+1∩z1+. . . where zj ∈ Hn+q+2j(X)

are primitive elements.

Proof. We note that uq ∩ c = z we get 4.1.2.2 as a consequence of the Primitive decomposi-

tion. Conversely, by induction starting with q = n. Clearly, a dimension count shows that

P2n(X) = H2n(X), P2n−1(X) = H2n−1(X) and c = c0 + u ∩ c1 + u2 ∩ c2 + . . . is trivial for

q = n, n−1 For the induction step it is sufficient to show that any element c ∈ Hn+q(X) can

be written uniquely as c = c0 + uc1, c1 ∈ Hn+q+2(X), c0 ∈ Pn+q(X). According to 4.1.2.2 we

have an unique z ∈ Hn+q+2(X) such that uq+2∩z = uq+1∩c so that c0 = c−u∩z ∈ Pn+q(X).

To prove the uniqueness, assume

0 = c0 + u ∩ c1, c0 ∈ Pn+q(X).

Then uq+1 ∩ (c0 + u∩ c1) and hence uq+2 ∩ c1 = 0 therefore, c1 = 0 which implies c0 = 0

This theorem shows that the homology of X is completely determined by its primitive

part. Moreover, the above proof implies

0 ≤ dimPn+q = bn+q − bn+q+2 = bn−q − bn−q−2

and hence

1 = b0 ≤ b2 ≤ . . . ≤ b2bn/2c.

These inequalities introduce additional topological conditions of complex projective Varieties.

For example, the sphere S4 cannot be an complex projective variety because b2(S4) = 0 <

b0(S4) = 1.
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4.2 Homotopy Version of Lefschetz Theorem of Hyper-

plane Section.

In this section we give a stronger version of Lefschetz theorem on homology of hyperplane

section (3.2.1). The proof presented here is as presented in [4]. Towards that we first give

some definitions.

Definition 4.2.1. A critical point p of a smooth real valued function f : M → R we define

a symmetric bilinear form f∗∗ on TpM by f∗∗(v, w) = ṽp(w̃(f)) where ṽ and w̃ are extensions

of v and w to vector fields.

Definition 4.2.2. The index of a bilinear form on a vector space V, is defined to be the

maximal dimension of the subspace of V on which H is negative definite.

We now state an important result in Morse theory without proof the reader is referred

to Theorem 3.5 in [4] for the proof

Theorem 4.2.1. Let f be a differentiable function on a manifold M with no degenerate

critical points, and if Ma = {x |f(x) ≤ a} is compact, then M has a homotopy type of a

CW-complex, with one cell of dimension r for each critical point of index r.

Theorem 4.2.2. (Lefschetz) Let X, Xb be as in theorem 3.2.1, then we have πr(X,Xb) = 0

for r < k.

Proof. We use the fact that some small neighborhood U of Xb can be deformed into Xb

within X. Consider the function f : X → R given by

f(x) =

0 if x ∈ Xb

1/||p− x||2 otherwise.

The critical points of f have index ≥ k and these points are non-degenerate critical points

with ε ≤ f ≤ ∞. Hence X has the homotopy type of f−1[0, ε] with finitely many cells of

dimension ≥ k attached. Choose ε small enough such that f−1[0, ε] ⊂ U. Every map from

(Ir, İr) into (X,Xb) is deformed into a map

(Ir, İr)→ (f−1[0, ε], Xb) ⊂ (U,Xb),
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since r < n and thus is deformed into Xb.

43



44



Chapter 5

The Picard-Lefschetz formulas

Let f : Y → G be as in chapter 3. Let G∗ = G \ {t1, . . . tr} where t1, . . . tr are singular

values of f : Y → G, we similarly remove the corresponding singular fibres from Y, to get

Y ∗ = Y \ f−1{t1, . . . , tr}. Now by Ehresmann’s fibration theorem f : Y ∗ → G∗ is a locally

trivial fibre bundle with typical fibre Yb ' Xb

Definition 5.0.1. The fundamental group π1(G∗, b) acts on the homology of Yb. This action

is called monodromy of f : Y → G.

Definition 5.0.2. An elementary path encircling a singular value tv is

wv = l−1
v .ωv.lv (5.0.1)

where if t is the local coordinate of G in a neighborhood of tv, we choose ρ > 0 small enough

so that the disk Dv with centre tv and radius ρ does not meet any tu 6= tv, lv is any path in

G∗ from b to tv + ρ and ωv(s) = tv + ρe2πis, 0 ≤ s ≤ 1.

See figure 5

We have π1(G∗, b) = 〈[w1], . . . , [wr] | [w1] · [w2] · · · [wr] = 1〉

We look at the action of elementary paths wi on Hq(Yb). Consider the following sequence

of homomorphisms induced by inclusions

Hn(T, F )
'−→ Hn(Ti, Fi) ↪−→ Hn(Y+, L)

'−→ Hn(Y+, Yb). (5.0.2)
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Figure 5.1: An elementary path around tv.

3.1.2 implies that an orientation of the disk ∆ determines a generator [∆] of Hn(T, F ).

The injective map 5.0.2 transforms [∆] into an element ∆i ∈ Hn(Y+, Yb). The generators

∆1, . . . ,∆r of Hn(Y+, Yb) are transformed by the connecting homomorphism into δ1, . . . δr ∈
Hn−1(Yb), i = 1, . . . r.

δi is called the vanishing cycle and ∆i is called the corresponding thimble, the geometric

boundary ∂∆ = Sn−1 ⊂ F ⊂ Fi is an embedded (n − 1) − sphere in Fi. Since f−1(li) is

trivially fibred there is an embedding

j : Fi × li → Y, j(Fi × li) = f−1(li), j(y, ti + ρ) = y and f ◦ j(y, r) = r for y ∈ Fi and r ∈ li
Then the thimble

Ci = ∆ ∪ j(Sn−1 × li)

represents ∆i.

The boundary of Ci is an embedded (n − 1)-sphere in Yb, which represents δi. As the

sphere ∂Ci is moved along the thimble from Yb following li into Fi = Yti+ρ and furthur into

the singular fibre Yti it vanishes at the critical point xi.

Theorem 5.0.1. The normal bundle of the vanishing cycle ∂Ci in Yb is isomorphic to the

tangent bundle of (n− 1)-sphere, The self-intersection number is

〈δi, δi =

0 if n even

(−1)(n−1)/2.2 if n odd.

Proof. F is a tubular neighborhood of Sn−1 in Fi, and Sn−1 lies in F as the zero section Q0

lies in the tangent bundle Q of the n− 1 sphere. The self-intersection number of Q0 in Q is

known to be 0 or 2 depending on whether n is odd or even. This number is calculated with

46



respect to the orientation of Q (first orientation of Q0 and then the corresponding orientation

of a fibre.) The orientation induced by complex structure of F on Q differs from the usual by

the factor (−1)(n−1)(n−2)/2. Thus the self intersection number of Sn−1 in Fi is (−1)(n−1)(n−2)/2

The orientation preserving diffeomorphism hi : Yb ' Fi, hi(y) = j(y, b), y ∈ Fi maps Sn−1

onto ∂Ci.

Let f : T → D = {t ∈ C | |t| ≤ ρ} (see 3.1.1) be f(z) = z2
1 + . . . z2

n, with D∗ = D \ 0,

typical fibre F. We have the relative extension (see 1.3.2) τω : Hn−1(F, F ′)→ Hn(T, F ) along

the path ω : I → D \ 0, given by ω(t) = ρe2πit.

Lemma 5.0.2. Suppose s = ∂∗[∆] = [Sn−1] ∈ Hn−1(F ), and c ∈ Hn−1(F, F ′) so that

〈c, s〉 = 1. Then τω(c) = −(−1)n(n−1)/2[∆].

Proof. Since Hn(T, F ) = 〈[∆]〉 we have τω(c) = γ[∆] with γ ∈ Z, we prove γ = −(−1)n(n−1)/2

Consider the following commutative diagram,

Hn(F × I, ∂(F × I)) Hn(T, T ′ ∪ F ) Hn(T, F )

Hn−1(∂(F × I)) Hn−1(T ′ ∪ F ) Hn−1(F ) Hn−1(Sn−1)

Hn−1(∂(Q× I)) Hn−1(Q0)

Hn−1(∂(C × I)) Hn−1(Q0)

W∗

'∂∗

'
inc∗

' ∂∗

W ∗

'

R∗
'

(Re)∗

'

'

g∗

g∗

' inc∗ =

We have

1. W : F × I → T given by W (x, t) = eπit.z

2. R : T ′ ∪ F → F, R|F = idF and R|′T is the retraction given in 3.1.2

3. Re = real part

4. Q is as in the proof of 3.1.2,Q0 = {(u, 0) ∈ Rn × Rn | ||u|| = 1} and Q′ = {(u, v) ∈
Q | ||v|| = 1}

5. g : ∂(Q× I) = Q′ × I ∪Q× ∂I → Q0, where g(u+ iv, t) = Re(eiπt(u+ iv))
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6. C = {e1 + iv| v ∈ Rn, v ⊥ e1} where e1 = (1, 0 . . . 0) ∈ Rn.

Start with c×i ∈ Hn(F, ∂(F×I)) the upper line of the diagram gives us τω(c) = γ ·[∆] The

isomorphisms of the right boundary convert this element into γ · [Q0]. Here Q0 is orientated

as the unit sphere of the canonically orientated Rn. The isomorphisms of the left boundary

applied to c× i followed by g∗ yield γ · [Q0].

claim 6. The orientation which c ∈ Hn−1(F, F ′) determines differs by a factor (−1)n(n−1)/2

from the orientation of the coordinate system (v2, . . . , vn) on C.

Consider a neighborhood of e1 in F. The coordinate system of F is (v2, . . . , vn, u2 . . . un),

where (u2, . . . un) is the positively oriented coordinate system of Q0. The orientation of

(v2, . . . , vn) differs from the orientation of c by the factor as the canonical orientation of F

differs the orientation of (v2, . . . , vn, u2 . . . un) since 〈c, s〉 = 1. The canonical orientation of

F is given by the complex coordinate system (u2 + iv2, . . . , un+ ivn) which yields a positively

orientated real system (u2, v2, . . . un, vn). The orientation due to (u2, v2, . . . un, vn) differs

from the one due to (v2, . . . vn, u2, . . . un) by the sign of the corresponding permutation by

(−1)1+2+3+...+n−1 = (−1)n(n−1)/2.

claim 7. The degree of g : ∂(C × I)→ Q0 is -1.

The only inverse image of the point −e2 ∈ Q0 is the point (e1 + ie2, 1/2) ∈ ∂C × I ⊂
∂(C × I). Therefore the local mapping degree of g at (e1 + ie2, 1/2) is γ. The orientation

of C is given by (v2, . . . , vn) followed by the canonical orientation of I determines an ori-

entation of C × I and hence of ∂(C × I). (v3, . . . vn, t) is positively orientated coordinate

system of ∂(C× I) in a neighborhood of (e1 + ie2, 1/2). The positively orientated coordinate

system (u1, u3, . . . , un) is chosen in the neighborhood of −e2 in Q0. In these coordinates

g(v3, . . . , vn, t) = (cosπt,−sinπt · v3, . . . ,−sinπt · vn). The Jacobian of g at (e1 + ie2, 1/2) is

negative, and hence the degree of g is −1.

Combining claim 1 and claim 2 we get γ = −(−1)n(n−1)/2.

Theorem 5.0.3. Let f : Tv → Dv be as in 3.1.2, D∗v = Dv \ Tv and tv + ρ be the base point.

The absolute extension along the path ωv is

τωv : Hn−1(Fv)→ Hn(Tv, Fv), τωv(x) = −(−1)n(n−1)/2〈x, s〉 · [∆].

Proof. Hn(Tv, Fv) is freely generated by [∆], and s = ∂∗[∆] ∈ Hn−1(Fv). Let r : (Fv, φ) ↪→
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(Fv, Fv \ B̊) be the inclusion. The relative extension τωv : Hn−1(Fv, Fv \ B̊) → Hn(Tv, Fv)

is also defined since Fv \ B̊ is strong deformation retract of Ti \ B̊ by the proof of 3. The

naturality of the extension 1.3 gives the following commutative diagram:

Hn−1(Fv) Hn−1(Fv, Fv \ B̊) Hn−1(F, F ′)

Hn(Tv, Fv) Hn(T, F )

r∗

τωv

exc∗
'

τωv τωv

'

Now x ∈ Hn−1(Fv) is transformed into 〈x, s〉 · c ∈ Hn−1(F, F ′). The result now follows by

using the previous lemma.

Theorem 5.0.4 (The PICARD-LEFSCHETZ FORMULA). If q 6= n−1 then π1(G∗, b) acts

trivially on Hq(Yb). For q = n− 1 the elementary path wi, acts by

(wi)∗(x) = x+ (−1)n(n+1)/2〈x, δi〉δi, x ∈ Hn−1(Yb).

Proof. Let f : Y+ → D+ with D∗+ = D+ \ {t1, . . . tr}. We prove that the extension along the

path wi is

τwi : Hn−1(Yb)→ Hn(Y+, Yb), τwi(x) = −(−1)n(n−1)/2〈x, δi〉 ·∆i. (5.0.3)

Hn−1(Yb) Hn−1(Fi)

Hn(Y+, Yb) Hn(Y+, L) Hn(Ti, Fi)

(li)∗

τωiτωi τωiτωi
'

The lowers triangles commute because the extension is natural by 1.3. τwi : Hn−1(Yb)→
Hn(Y+, L) is Twi = Tl−1

i ωili
= Tl−1

i
◦ωi∗◦li∗+Tli . Since li ⊂ L the first and the third summands

are 0. Therefore τwi = τωi ◦ li and hence the upper triangle also commutes. Using 1.3 we get

the Picard-Lefschetz formula.

49



50



Chapter 6

The Monodromy and Hard Lefschetz

Theorem.

6.1 Monodromy Theorem.

We now establish the connection between Hard Lefschetz theorem and monodromy. Let

f : Y → G be as in 2.1.2, where Y is the modification of the projective manifold X along

the axis of the pencil of hyperplanes {Ht}t∈G, and f(y) is the hyperplane Ht through y. Let

I ⊂ Hn−1(Yb) be the module of invariant cycles as defined in 3.3.8, the following result gives

the reason why this submodule is called invariant submodule.

Theorem 6.1.1. The module I ⊂ Hn−1(Yb) consists of the cycles which are invariant under

the action of π1(G∗, b).

Proof. Since π1(G∗, b) = 〈[w1], . . . , [wr] | [w1] · [w2] · · · [wr] = 1〉 where wi are elementary

paths. Now y ∈ Hn−1(Yb) is invariant under the action of pi1 iff

y = (wi)∗(y) = y ± 〈y, δi〉δi, 〈y, δi〉 for i = 1, . . . , r.

We also have by 3.3.11, I = {y ∈ Hn−1(Xb) | 〈y, x〉 = 0 for every x ∈ V }. Since δ1, . . . δr

generate V we have I = {y ∈ Hn−1(Xb) | 〈y, δi〉 = 0 for i = 1, . . . , r}.
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Theorem 6.1.2 (MONODROMY THEOREM). Let π = π1(G∗, b). For the homology with

coefficients from a field the following results are equivalent :

1. The Hard Lefschetz Theorem

2. V is a non-trivial simple π-module or V = 0

3. Hn−1(Yb) is a semi-simple π- module.

Proof.

2⇒ 3

I ∩ V ⊂ V is a π-invariant submodule of V. I ∩ V = 0 or I ∩ V = V since V is simple. But

since I acts non-trivially on V and trivially on I ∩ V we have I ∩ V = 0 and hence by 3.3.1

we have Hn−1(Yb) = V ⊕ I is a direct sum of simple and semi-simple π-module, and hence

is a semi-simple π-module.

3⇒ 1

We show 3⇒ 6. It suffices to show that the map I → I∨ given by z → 〈z,−〉, is epimorphic

where I∨ is the dual of the module I : Let ϕ ∈ I∨, since Hn−1(Yb) is semi-simple we have

I ⊕M = Hn−1(Yb) fro some π-invariant submodule M ⊂ Hn−1(Yb), so ϕ can be extended to

a linear form ψ on Hn−1(Yb) as follows:

ψ(x+ y) = ϕ(x), x ∈ I, y ∈M.

Since 〈−,−〉 is non-degenerate on Hn−1(Yb) there is unique z ∈ Hn−1(Yb) with 〈z, x + y〉 =

ϕ(x). Let α ∈ π, then 〈αz, x + y〉 = 〈z, α−1(x + y)〉 = ϕ(x), and hence z = αz for every

α ∈ π, i.e z ∈ I and ϕ(x) = 〈z, x〉 for every x ∈ I.

1⇒ 2

We show 5⇒ 2. By 5 V is generated by δ1, . . . δr. Let F 6= 0 be a π-invariant submodule of

V, and let x ∈ F be a non-zero element. There is δµ with 〈x, δµ〉 6= 0. By Picard-Lefschetz-
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formula we have (wµ)∗(x) = x ± 〈x, δµ〉δµ. Thus π acts non trivially on F and δµ ∈ F , but

then F, contains all of V by the following result.

Lemma 6.1.3. For any two vanishing cycles δν , δµ there is an α ∈ π such that α · δµ = ±δν .

Proof. The proof of the lemma is deferred to next section.

6.2 Zariski’s Theorem

Let G ⊂ PN be a projective line in general position with respect to a hypersurface X ⊂
PN . That is G avoids the singularities of X and intersects X transversally then G ∩ X =

{t1, . . . , tr} is finite and r =degree of X.

Theorem 6.2.1. The embedding G\X ↪→ PN\X induces an epimorphism of the fundamental

groups.

Proof. Choose a point b in G \X. All the lines through b form a subspace P̌N−1 of P̌N . Let

a ∈ P̌N−1 so that Ga = G. The point b in PN is blown up:

Q = {(x, z) ∈ PN × P̌N−1|x ∈ Gz}.

We have two projections

PN
p←− Q

f−→ P̌N−1.

Now,

p−1(b) = {b} × P̌N−1

and

p : Q \ p−1(b) ' PN \ {b}.

Let Y = p−1(X), p−1(b) ∩ Y = ∅ since b /∈ X. By 1.3.7 the second projection f : Q→ P̌N−1

fibres Q locally trivially with typical fibre G. Let C ⊂ P̌N−1 be the algebraic subset of set

of lines through b which are not in general position with X. The pair Q∗ = Q \ f−1(C),

Y ∗ = Y \ f−1(C) is locally trivially fibred by f over P̌N−1 \ C. Y ∗ is smooth and f |Y ∗ has a

maximal rank everywhere, and hence Q∗ \ Y ∗ is fibred locally trivially over P̌N−1 \ C with

typical fibre G \X. Consider the following commutative diagram, the upper line is the exact

53



homotopy sequence of this fibration, we show i∗ is epimorphic by showing that there exists

a β ∈ π1(Q∗ \ Y ∗, (b, a)) with f∗(β) = 1 for every α ∈ π1(PN \X)

π1(G \X, b) π1(Q∗ \ Y ∗, (b, a)) π1( ˇPN−1 \ C, a)

π1(Q \ Y, (b, a))

π1(PN \X, b).

i∗

f∗

j∗

p∗

We now prove that p∗ is epimorphic. Let b′ 6= b, every element in π1(PN \X, b′) is given by a

path which avoids b and such a path is uniquely lifted to Q\Y because p : Q\ (Y ∪p−1(b)) '
PN \ (X ∪ {b}). Similarly j∗ is epimorphic: since f−1(C) ∩ (Q \ Y ) is of real codimension

2every path in Q \ Y can homotopically be deformed avoiding f−1(C) and is contained in

Q∗ \ Y ∗. Consider an arbitrary counterimage of α, β′ ∈ π1(Q∗ \ Y ∗) but f(β′) 6= 1. There

is a path u in {b} × (P̌n−1 \ C) ⊂ Q∗ \ Y ∗ with f∗(β
′) = [f ◦ u]. Then β = β′[u]−1 is a

counterimage of α with f∗(β) = 1 since p ◦ j ◦ u is constant.

Let G0 and G1 be two lines in general position with respect to the hypersurface X, and

b ∈ G0 ∩G1, b /∈ X. Let v0 and v1 be elementary paths through b in G0 \X and G1 \X.

Theorem 6.2.2. If X is irreducible the homotopy classes of the elementary paths v0 and v1

are conjugates in π1(PN \X, b).

Proof. Let Z ⊂ X be the proper algebraic set containing of all points x such that the line

through x and b is not in general position. The points c0 ∈ G0 ∩ X and c1 ∈ G1 ∩ X be

such that v0 encircles c0 and v1 encircles c1. Let w be a path in X \ Z from c0 to c1, such

a path exists since X is irreducible. The line through b and w(t), 0 ≤ t ≤ 1 be denoted

by Gt, and Φt : C ' Gt \ {b} be isomorphisms so that C × [0, 1] → PN , (x, t) → Φt(z),

is continuous. Let Φ−1
t (w(t)) = w∗(t) Choose ρ small enough so that the disk Gt with

centre w(t) and radius ρ intersects X only in w(t). The homotopy H between the paths

ω0(s) = w∗(0) + ρ · e2πis and ω1(s) = w∗(1) + ρ · e2πis which encircle c0 and c1 respectively

once is H(t, s) = Φt(w
∗(t)+ρ ·e2πis). And hence v0 and v1 are conjugates in π1(PN \X, b).

54



We now give the proof of 6.1.3.

Proof. wµ and wν be elementary paths belonging to δµ and δν respectively. By 6.2.2, [wµ]

and [wν ] are conjugates in P̌N \ X̌, and since π1(G∗)→ P̌N \ X̌ is surjective there is a path

u in G∗ such that

[u] · [wµ][u]−1 = [wν ].

Let p2 : W \ p−1
2 (X̌) → P̌N \ X̌ be locally trivially fibre bundle as in 2.1. f ∗ : Y ∗ → G∗ is

fibre bundle and hence the action of π1(G∗) on Hn−1(Yb) factors through π1(P̌N \ X̌) and

thus

u∗ ◦ wµ∗ = wν∗ ◦ u∗.

Let x ∈ Hn−1(Yb) be arbitrary element, then by Picard-Lefschetz-formula,

〈x, δµ〉u∗(δµ) = 〈u∗(x), δv〉δv.

Since the intersection form is non degenerate by Poincaré duality, either δµ = 0 and

hence δν = 0 or there is x such that 〈x, δµ〉 6= 0 which is u∗(δµ) = c · δv. Now 〈u∗(x), δv〉δv =

〈u∗(x), u∗(δµ)〉u∗(δµ) = c2〈u∗(x), δv〉δv which implies c = ±1.
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Chapter 7

Singular points of Complex

hypersurfaces

In this chapter we give a brief study of singular points of complex hypersurfaces. We Let

f ∈ C[z1, . . . zn] be a non-constant polynomial, and let V ⊂ Cn+1 denote the zero set of f.

The aim of this chapter is to study the topology of V in neighborhood of some point z0.

7.1 Brauner’s Construction

Let V be hypersurface as above. Let K = V ∩ Sε where ε is small enough. Then the

topology of V with the disk bounded by Sε is closely related to the topology of K in the

sense that if Dε = {z | ||z− z0|| ≤ ε} and if z0 is a non-singular or an isolated singular point

of V then for small ε Dε ∩ V is homeomorphic to cone over K. By cone over K we mean,

Cone(K) = {tk + (1− t)z0 | k ∈ K0 ≤ t ≤ 1}.

Definition 7.1.1. Given a manifold M and a sub-manifold N we say that N can be knotted

in M if there exists an embedding of N in M which is not isotopic to N.

Proposition 7.1. Let z0 ∈ V be regular point of f then K = V ∩ Sε is an unknotted sphere

in Sε, for small enough ε.

Proof. The smooth function r(z) = ||z − z0||2 restricted to non-singular points of V has
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non-degenerate critical point at z0 and so r(z) = u2
1 + . . . u2

k in local coordinates u1, . . . uk.

Hence K is diffeomorphic to to sphere {(u1, . . . , uk)|u2
1 + . . . u2

k = ε2}

On the other hand if z0 is not a regular point of then the embedding can be knotted as

illustrated in the following example.

Proposition 7.2. Let f(z1, z2) = zp1 + zq2 be a polynomial with p, q ≥ 2 and co-prime, here

origin is the critical point of f. Then the intersection of V = f−1(0) with a sphere Sε centered

at the origin is a ”torus knot” of the type (p, q) in the 3-sphere.

Proof. By solving the equations zp1 + zq2 = 0 and |z1|2 + |z2|2 = 1, we observe that K =

{(ζeqiθ, ηe(piθ+πi)/q)| θ ∈ [0, 2π]} ⊂ T 2 = {(z1, z2) | |z1| = ζ, |z2| = η}. Hence K sweeps

around the torus p times in one coordinate and q times in other.

Torus knot of the type (2,3) is illustrated in 7.1

7.2 Fibration Theorem

We now state fibration theorem without proof (see [7] chapter 4 for the proof ) which is

useful in describing the topology of K.

Theorem 7.2.1. If z0 is any point of the complex hypersurface V = f−1(0) and if Sε is

sufficiently small sphere centered at z0 then the mapping Φ(z) = f(z)/|f(z)| from Sε \ K
to the unit circle is the projection map of a smooth locally trivially fibre bundle. Each fibre

Fθ = Φ−1(eiθ) ⊂ Sε\K.

Now by using Morse theory one can prove that each fibre Fθ is parallelizable and is ho-

motopic to a finite CW-complex of dimension n and K is n− 2 connected. For the proof of

these statements refer [7]

If we make the additional hypothesis that z0 is an isolated critical point of f we can give

a better description of of each fibre Fθ.
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Figure 7.1: Torus knot of type (2,3)
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Theorem 7.2.2. If z0 is an isolated critical point of f, then each fibre Fθ is homotopic to

Sn ∨ . . . ∨ Sn of n-spheres. Each fibre Fθ has the closure F̄θ = Fθ ∪K.

Proof. We have Hn(Fθ) is a free abelian group since Fθ is homotopic to finite CW-complex of

dimension n and torsion torsion elements would give rise to cohomology classes in dim n+1.

Now by Hurewicz theorem we have finitely many maps (Sn, basepoint) → (Fθ, basepoint)

representing the basis and combining these yeild an isomorphism of homology groups of

Sn ∨ . . . ∨ Sn → Fθ and using Whitehead’s theorem it is a homotopy equivalence.

Remark. Rank Hn(Fθ) is equal to middle Betti number of Fθ. ([7] see chapter 7.) Also each

fibre Fθ has the closure F̄θ = Fθ ∪K.

Theorem 7.2.3. The fibre Fθ has the homology of a point in dimension less than n, that is

when i < n.

Proof. By Alexander Duality H̃2n−i(F̄θ) ' H̃i(Sε \ F̄θ) which is zero if 2n− i > n.

Theorem 7.2.4. If the origin is an isolated critical point of f, then the fibres Fθ are not

contractible, and the manifold K = V ∩ Sε is not an unknotted sphere in Sε.

Proof. Since Fθ is homotopic to Sn∨. . .∨Sn and the number of sphere is greater than 0 hence

Fθ is not contractible. If K were topologically unknotted sphere in Sε then Sε \ K would

be homotopic to circle. We give the explicit homotopy, Let Sε = {(z1, z2, . . . , zn) ∈ Cn :

|z1|2 + |z2|2 + . . .+ |zn|2 = 1} let K = {(z1, z2, . . . , zn) ∈ Sε : |z1|2 + |z2|2 + . . .+ |zn−1|2 = 1}.
We define the deformation retract of Sε \K to {(z1, z2, . . . , zn) ∈ S : |zn|2 = 1} ⊂ Sε \K by

ft =
(1− t)(z1, z2, . . . , zn) + t(0, 0, . . . , 0, zn|zn|)

|(1− t)(z1, z2, . . . , zn) + t(0, 0, . . . , 0, zn|zn|)|

Now by the exact homotopy sequence

. . .→ πn+1(S1)→ πn(F0)→ πn(Sn \K)→ . . .

would lead us to a contradiction.

60



The next natural question to ask is if K is a topological sphere when the origin is an

isolated critical point. The following theorem gives the criterion to say if K is a topological

sphere.

Theorem 7.2.5. If n 6= 2 then K is homeomorphic to S2n−1 if and only if K is a homology

sphere.

Proof. We give sketch of proof, now if n ≥ 3, K is simple connected and the dimension of K

is greater than or equal to 5, and hence we can apply generalized Poincaré hypothesis ([8]).

Remark. The statement is not true for n = 2. Consider the complex polynomial f(z1, z2, z3) =

z2
1 + z3

2 + z5
3 . This 3-manifold is homology sphere, but π1(K) is isomorphic to SL(2,Z5).

Conclusion

In this project we first looked at the existence of Lefschetz Pencil on a non singular complex

projective variety. Along the way we encountered beautiful results like Lefschetz famous

theorem on Homology of Hyperplane section, and Weak Lefschetz Theorem. We then see

more intuitive and subtle Hard Lefschetz Theorem. We then viewed homotopy version of

Lefschetz Theorem using Morse Theory, this is originally suggested by R.Thom and worked

out by Andreotti-Frakel and Bott. We then saw Picard-Lefschetz Formula and Monodromy,

it is a complex analog of Morse theory that studies the topology of a real manifold by looking

at the critical points of a real function. At the end we saw the topology associated with

singular points of Complex Hypersurfaces.
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