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Abstract

The main focus of this project was on the Bergman kernel and metric. After studying some

basic theory of several complex variables, various properties of Bergman kernel and metric

were studied. I calculated the Bergman kernel for many domains and attempted to calculate

it for some domains for which it was not known. Bell’s proof of Fe↵erman’s theorem using

the condition R was studied.

xi



xii



Contents

Abstract xi

1 D’Angelo’s finite type 3

1.1 Concept of finite type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Finite type of some domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Bergman kernel and metric 7

2.1 The Bergman kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Bergman kernel for a few standard domains . . . . . . . . . . . . . . . . 12

2.3 The Bergman kernel and minimum integrals . . . . . . . . . . . . . . . . . . 19

2.4 The Bergman projection operator . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Transformation formula for the Bergman kernel . . . . . . . . . . . . . . . . 21

2.6 The Bergman metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 The Bergman metric for a few standard domains . . . . . . . . . . . . . . . . 26

3 Bergman representative coordinates and Lu Qi-Keng problem 29

3.1 Bergman representative coordinates . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Lu Qi-Keng problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



4 Some more Bergman kernels 33

4.1 Punctured disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Generalized Hartog’s triangle in C
2 . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Generalized Hartog’s triangle in C
n . . . . . . . . . . . . . . . . . . . . . . . 38

5 Ramadanov’s theorem 40

5.1 Some versions of Ramadanov’s theorem . . . . . . . . . . . . . . . . . . . . . 40

6 Pinchuk’s Scaling method and Boundary behaviour of the Bergman kernel 44

6.1 Scaling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Boundary behaviour of the Bergman kernel . . . . . . . . . . . . . . . . . . . 49

7 Condition R and Bell’s proof of Fe↵erman’s theorem 51

7.1 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Proof of Fe↵erman’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Domains with Finite Dimensional Bergman Space 54

8.1 Reinhardt domains in C
2 with k-dimensional Bergman space . . . . . . . . . 54

xiv



Introduction

This project had several objectives. The first one was to learn some several complex variables

(SCV). This is a rich subject full of interesting mathematical phenomena. I learnt the basic

theory of SCV mainly from the introductory textbooks by R. M. Range [17] and S. G.

Krantz [12]. Some important topics of SCV were covered that were not directly related to

the Bergman kernel such as the concept of finite type.

After achieving a degree of comfort with the basics of SCV, I started working on the

Bergman kernel and metric. The Bergman space associated with a domain in C
n is the

set of square integrable holomorphic functions on the domain. It forms a Hilbert space

with the standard L
2 inner product and the evaluation maps are bounded linear function-

als. Using the Reisz representation theorem one obtains a reproducing kernel called the

Bergman kernel. It is a di�cult task to calculate this kernel for even simple domains such

as the unit ball. During this project, I studied the computation of the Bergman kernels

for many domains. Some of these computations were from recent research papers. I also

attempted to calculate for some new kernels and was successful in computing it for one

simple case (Hartog’s triangle in n-dimensions). Using the Bergman kernel, we can define a

Kähler metric called the Bergman metric. This metric is invariant under biholomorphisms.

Other important properties related to the Bergman kernel were studied including Bergman

representative coordinates and Ramadanov’s theorem. The Lu Qi-Keng problem is to find

out/characterize which domains have non-vanishing Bergman kernels. There are many in-

teresting results related to this problem. Another interesting paper was studied on domains

with finite dimensional Bergman spaces.

The scaling method is a powerful technique that reduces boundary problems pertaining

to strongly pseduconvex domains to interior problems pertaining to the unit ball. This

technique was used to study boundary behavior of Bergman kernel for strongly pseudoconvex

1



domains.

Apart from being studied in its own right, the Bergman kernel and metric have found

many deep applications in SCV. The most famous example is the central role it plays in

the proof of Fe↵erman’s theorem which states that biholomorphisms between two strongly

pseudoconvex domains extend smoothly up to the boundary. I studied a simplified version

of this proof due to Bell. He in fact, generalized the theorem to a wider class of domains. A

useful reference for Bergman theory is the book written by Krantz on the Bergman kernel

and metric [13].
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Chapter 1

D’Angelo’s finite type

We start by defining the notion of Levi pseudoconvexity and strong pseudoconvexity. These

notion are the complex analogues of convexity and strong convexity respectively.

Definition 1.0.1. Let D be a smooth bounded domain in C
n with defining function ⇢. D is

said to be Levi pseudoconvex if for every p 2 @D, we have

nX

j,k=1

@
2
⇢

@zj@z̄k
(p) tj t̄k � 0

for all t in the complex tangent space to the boundary of D at p.

Now for strong pseudoconvexity we demand a strict inequality for the Levi form.

Definition 1.0.2. Let D be a smooth bounded domain in C
n with defining function ⇢. D is

said to be strongly pseudoconvex if for every p 2 @D, we have

nX

j,k=1

@
2
⇢

@zj@z̄k
(p) tj t̄k > 0

for all t 6= 0 in the complex tangent space to the boundary of D at p.
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1.1 Concept of finite type

The concept of finite type is important in many sub areas of several complex variables,

not just Bergman theory. It was introduced by D’Angelo [9]. In this section we give two

equivalent definitions of finite type. We start by defining holomorphic curves and multiplicity

of a function at a point.

Definition 1.1.1. A holomorphic curve is a holomorphic function � : D ! C
n. A holomor-

phic curve is said to be non-singular if �0(0) 6= 0.

Definition 1.1.2. We denote the multiplicity of a function f at the point p by vp(f). We

will now define vp(f) in various scenarios.

1. Suppose U ⇢ C is a domain and that f : U ! C is holomorphic. Let p 2 U . Then we

define vp(f) to be the least positive integer k such that f (k) 6= 0.

2. Suppose U ⇢ C is a domain and that f : U ! C
m is holomorphic. Let p 2 U and fi

be the component functions of f . Then we define vp(f) to be min(vp(f1), ..., vp(fm)).

3. Suppose U ⇢ R
n is a domain and that f 2 C

1(U). Let p 2 U . Then we define vp(f)

to be the least positive integer k such that D↵
f(p) 6= 0 for some ↵ satisfying |↵| = k.

Before we define finite type, we need to define real hypersurfaces in C
n.

Definition 1.1.3. Let M ⇢ C
n. M is said to be a real hypersurface if there exists a real

valued smooth function ⇢ defined on a neighborhood of M such that ⇢�1(0) = M and r⇢ 6= 0

on M .

The function ⇢ is called a defining function for M . Examples of real hypersurfaces include

boundaries of smoothly bounded domains in C
n. Having defined these objects, we are ready

to define the finite type of a point on a hypersurface.

Definition 1.1.4. Let M be a real hypersurface in C
n and p 2 M . Let ⇢ be a defining

function for M . We say that p is a point of finite type if

�(M, p) = sup
�2Ep

⇢
v0(⇢ � �)
v0(�)

�
< 1

where Ep is the set of all non-constant, holomorphic curves � such that �(0) = p. Further if

p is a point of finite type, then the quantity �(M, p) is called the finite type of p.
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One can easily show that the quantity �(M, p) is independent of choice of defining

function. Also the finite type of a point is a bihomorphically invariant property. We can

define the finite type of a point in a purely geometric way. We give this alternative definition

in the following proposition.

Proposition 1.1.1. Suppose M ⇢ C
n is a hypersurface and p 2 M . Then

�(M, p) = sup
V 2Rp

sup

⇢
a 2 R

+ : lim
V 3z!p

dist(z,M)

|z � p|a exists

�

where Rp is the collection of one dimensional varieties passing through p.

Proof. Let �M denote the signed distance to M in a neighborhood of M . We can show that

this is a smooth defining function for M . We also have

v0(�M � �)
v0(�)

= sup

⇢
a 2 R

+ : lim
⇣!0

dist(�(⇣),M)

|�(⇣)� p|a exists

�
(1.1)

where � is a non-constant holomorphic curve such that �(0) = p. Taking supremum with �

varying over Ep on both sides completes the proof since we can identify Ep and Rp.

So we see the quantity �(M, p) measures the maximum degree of contact of holomorphic

curves with M at p. In the next section we will evaluate finite type for some examples.

1.2 Finite type of some domains

If a domain is smoothly bounded, then its boundary is a real hypersurface. If the finite type

of all boundary points is equal to k, then we say that the domain has finite type k.

Proposition 1.2.1. The unit ball Bn =
�
z 2 C

n :
P

i
|zi|2 < 1

 
has finite type 2.

Proof. Let M = @B
n and p 2 M . Suppose � is a non-constant holomorphic curve such that

�(0) = p. Let v0(�) = m. Taking the standard defining function for M , we have

(⇢ � �)(z) =
X

i

�i(z)�i(z)� 1 .

5



We di↵erentiate as follows:

 
@
2

@z@z̄

!m

(⇢ � �) =
X

i

|�(m)
i

(z)|2 . (1.2)

Since v0(�) = m, the above expression will be non-zero at the origin. This gives us v0(⇢��) 
2m. Hence

�
v0(⇢ � �)/v0(�)

�
 2 for all �. This tells us that �(M, p)  2. Next we will

show �(M, p) � 2. Now take �̃(z) = p + z · v, where v is a non-zero vector in the complex

tangent space to the boundary of the ball at p. Note that

@

@z

����
0

(⇢ � �) =
X

i

@⇢

@zi
(p)�0

i
(0) . (1.3)

Obviously v0(�̃) = 1 and since �̃0(0) is in the complex tangent space, the above equation

tells us that v0(⇢ ��) � 2. Hence this implies �(M, p) � 2. This proves the proposition.

Next example is strongly pseudoconvex domains.

Proposition 1.2.2. A strongly pseudoconvex domain has finite type 2.

Proof. LetD be a strongly pseudoconvex domain with global defining function ⇢ and suppose

p 2 @D. It is su�cient to consider only non-singular holomorphic curves. So v0(�) = 1. If

�
0(0) does not belong to the complex tangent space at p, then vp(⇢ � �) = 1 by (1.3). If

it does, then vp(⇢ � �) > 1. We will now show that in this case vp(⇢ � �) = 2, proving the

proposition. Observe that

@
2

@z@z̄
(⇢ � �) =

X

j,k

@
2
⇢

@zj@z̄k
�
0
i
(0)�0

j
(0) ,

hence by strong pseudoconvexity this will be positive. Hence proved.
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Chapter 2

The Bergman kernel and metric

2.1 The Bergman kernel function

Let D be a domain in C
n. Let

A
2(D) =

n
f 2 O(D) :

Z

D

|f |2dV < 1
o
.

So A
2(D) is the set of square integrable holomorphic functions on D and is also called the

Bergman space of D. Assume for the moment that A
2(D) is non trivial. We will shortly

prove that A
2(D) is a closed subspace of the Hilbert space L

2(D) with norm and inner

product given by

||f || =
⇣Z

D

|f |2dV
⌘1/2

and (f, g) =

Z

D

f(⇣)g(⇣)dV (⇣)

and hence it is a Hilbert space as well. Further A2(D) is a seperable Hilbert space so it will

have a countable orthonormal basis. If D is bounded, then the space A
2(D) will contain all

polynomials and hence it will be non trivial. It is also clear that the space of polynomials

will be infinite dimensional. This gives us the following remark.

Remark 2.1.1. For bounded domains, the Bergman space is an infinite dimensional Hilbert

space. So it will have a countably infinite orthonormal basis.
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Lemma 2.1.1. Suppose r > 0 and f 2 A
2(P (a, r)), then

|f(a)|  1

⇡n/2rn
||f ||P (a,r) .

Proof. From the Taylor expansion of f on P (a, r)

f(z) =
X

⌫2Nn

c⌫(z � a)⌫ ,

we have

||f ||P (a,r)
2 =

Z

P (a,r)

X

⌫,µ

c⌫cµ(z � a)⌫(z � a)
µ

dV (z) . (2.1)

Changing to polar coordinates and taking the integral inside we get

||f ||P (a,r)
2 =

X

⌫,µ

c⌫cµ

Z

[0,2⇡]n

Z

[0,r]n
⇢
⌫+µ+1

e
i✓(⌫�µ)

d⇢1...d⇢nd✓1...d✓n

=
X

⌫,µ

c⌫cµ

nY

k=1

Z
r

0

⇢
⌫k+µk+1
k

d⇢k

Z 2⇡

0

e
i✓k(⌫k�µk)d✓k

=
X

⌫

|c⌫ |2(2⇡)n
nY

k=1

r
2⌫k+2

2⌫k + 2
.

Therefore, by taking the ⌫ = 0 term of the summation we get

||f ||P (a,r)
2 � |f(a)|⇡n

r
2n (2.2)

and this finishes the proof.

Remark 2.1.2. Another way to obtain this inequality would be to use the Cauchy Integral

formula on polydiscs.

Remark 2.1.3. The above inequality shows A
2(Cn) = {0}.

Corollary 2.1.2. Let D be a domain in C
n and a 2 D. Then there exists a positive constant

C which depends only on n such that

|f(a)|  C�
�n

D
(a)||f ||D for all f 2 A

2(D).

Corollary 2.1.3. Let D be a domain in C
n and K ⇢ D is compact. Then there exists a

8



positive constant CK which depends only on K such that

|f |K = sup
z2K

|f(z)|  CK ||f ||D for all f 2 A
2(D).

Proof. Fix 0 < � < dist(K, @D). By the previous corollary, we have |f(z)|  C�
�n||f ||D for

all z 2 K. So if we put CK = C�
�n, we get the required result.

This corollary allows us to show that the Bergman space is a Hilbert space.

Lemma 2.1.4. Let D be a domain in C
n. Then A

2(D) is a closed subspace of L2(D) and

therefore is itself a Hilbert space.

Proof. Suppose we have a sequence fm in A
2(D) which converges to f in L

2(D). Let K ⇢ D

be compact, by Cauchy criterion and the previous corollary, we get |fl � fm|K  CK ||fl �
fm||  ✏ for su�ciently large l,m. So fm converges uniformly on compact subsets to f . This

implies f is holomorphic and hence belongs to A
2(D).

Now suppose we have a domain D in C
n such that A

2(D) is non trivial. Consider the

evaluation map ⌧a : A
2(D) ! C defined by ⌧a(f) = f(a). By Corollary 2.1.2, ⌧a is a

bounded linear functional on A
2(D). Therefore, by the Riesz representation theorem for

Hilbert spaces, we have a unique element K(., a) 2 A
2(D) such that

⌧a(f) = f(a) = (f,KD(., a)) for all f 2 A
2(D).

Definition 2.1.1. The function KD : D ⇥D ! C is called the Bergman kernel for D.

Lemma 2.1.5. KD(⇣, z) = KD(z, ⇣) for all z, ⇣ 2 D.

Proof. Since KD(., z) is in A
2(D), we have

KD(⇣, z) = (KD(., z), KD(., ⇣)) = (KD(., ⇣), KD(., z)) = KD(z, ⇣)

as required.

9



Therefore the Bergman kerenel is holomorphic in the first argument and conjugate holo-

morphic in the second. By Hartog’s separate analyticity theorem, we have the following

corollary.

Corollary 2.1.6. Let K 0
D
(⇣, z) = KD(⇣, z). Then K

0
D
(⇣, z) is a holomorphic function on

D ⇥D. Also KD 2 C
1(D ⇥D).

Corollary 2.1.7. Let D ⇢ C
n be a domain with A

2(D) 6= 0, then

f(z) =

Z

D

f(⇣)KD(⇣, z) dV (⇣) =

Z

D

KD(z, ⇣)f(⇣) dV (⇣) for all f 2 A
2(D), z 2 D.

This property is called the reproducing property of the Bergman kernel.

The Riesz representation theorem gives an isometry between the Hilbert space and its

dual space. Therefore we get ||KD(., a)|| = ||⌧a|| = sup
�
|f(a)| : f 2 A

2(D), ||f ||  1
 
,

where ||⌧a|| refers to the operator norm of ⌧a. Also

KD(z, z) =
�
KD(., z), KD(., z)

�
= ||KD(., z)||2.

We usually denote KD(z, z) by KD(z). This proves the following lemma.

Lemma 2.1.8. We have KD(z) = sup
�
|f(z)|2 : f 2 A

2(D), ||f ||  1
 
. Consequently if

D1 ⇢ D2 are domains in C
n. Then

KD2(z)  KD1(z) for all z 2 D1.

We can represent the Bergman kernel using an orthonormal basis (complete orthonormal

system) of A2(D). Let {�j}j2N be an orthonormal basis and f 2 A
2(D). Then we have

f =
1X

j=1

(f,�j)�j .

The convergence is in A
2(D), but using Corollary 2.1.3 we can easily show that the above

series converges uniformly on compact sets to f . Before we prove the representaion formula

for Bergman kernel we need the following lemma, which is a slight variant of Montel’s

theorem.

10



Lemma 2.1.9. Let D be a domain in C
n. Let {fj}j2N be a sequence of holomorphic functions

on D that converges pointwise to a function f on D. Suppose {fj}j2N is uniformly bounded

on every compact subset of D. Then fj ! f uniformly on compact subsets of D.

Proof. Assume to the contrary that fj does not converge uniformly to f on compact set K.

We can find an ✏ > 0 and a subsequence fji such that |fji(zi)� f(zi)| > ✏ for some zi 2 K.

Hence fji does not have a subsequence which converges uniformly to f on K. But because

fj ! f pointwise, by Montel’s theorem we will have a subsequence of fji which converges

uniformly to f on all compact sets. This is a contradiction. Hence proved.

Theorem 2.1.10. Let {�j}j2N be an orthonormal basis of A2(D). We then have the following

representation of the Bergman kernel:

KD(⇣, z) =
1X

j=1

�j(⇣)�j(z)

where the series converges absolutely and uniformly on compact subsets of D ⇥D.

Proof. Since KD(., z) 2 A
2(D) we have

KD(., z) =
1X

j=1

(KD(., z),�j)�j . (2.3)

By the reproducing property, we get

KD(⇣, z) =
1X

j=1

�j(⇣)�j(z) . (2.4)

By reordering {�j} we would still get convergence in (2.3) to KD(., z). Hence all rearrange-

ments of the series above converge to KD(⇣, z). Therefore the series converges absolutely.

Note that

KD(z, z) =
1X

j=1

|�j(z)|2. (2.5)

For the uniform convergence, let K ⇢ D be a compact set. Then by Hölder’s inequality on

11



N with the counting measure, we get

1X

j=1

|�j(⇣)||�j(z)| 
 1X

j=1

|�j(⇣)|2
!1/2 1X

j=1

|�j(z)|2
!1/2

= KD(⇣, ⇣)KD(z, z)  CK (2.6)

for all z, ⇣ in K, since KD(z, z) is a continuous function of z.

So let K
0
D
(⇣, z) = KD(⇣, z) and fn(⇣, z) =

P
n

j=1 �j(⇣)�j(z). These functions are holo-

morphic. We have seen that fn converges to K
0
D

pointwise, also fn is uniformly bounded

on compact subsets of D ⇥D by (2.6). Therefore by Lemma 2.1.9, fn ! K
0
D
uniformly on

compact subsets. The result follows easily from this.

Remark 2.1.4. For bounded domains, constant functions are square integrable and so at

a particular point not all the orthonormal basis elements can vanish. Hence K(z, z) > 0

throughout the domain.

2.2 The Bergman kernel for a few standard domains

2.2.1 Bergman kernel for the unit disc

The orthonormal basis representation formula is a useful tool to calculate the Bergman kernel

for some domains. We will first calculate the Bergman kernel for the unit disc in C, denoted

by D.

First we need to construct an orthogonal basis. Let n,m be nonzero integers. Consider

(zn, zm) =

Z

D

⇣
n
⇣mdV (⇣)

=

Z 1

0

Z 2⇡

0

r
n+m+1

e
i✓(n�m)

d✓dr

=

 Z 1

0

r
n+m+1

dr

! Z 2⇡

0

e
i✓(n�m)

d✓

!

=
1

n+m+ 2
�mn2⇡ .

(2.7)
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Note that the above calculation shows that ||zn|| =
p
⇡/(n+ 1). Let

�n(z) =

r
n+ 1

⇡
z
n
.

Then {�n}1n=0 forms an orthonormal system in A
2(D). Suppose f 2 A

2(D), then

f(z) =
1X

k=0

ckz
k
.

Here the partial sums converge to f uniformly on compact subsets of D. From this we can

deduce the above series converges in norm i.e in A
2(D). This implies {�n}1n=0 is a complete

orthonormal system in A
2(D). We may now apply the formula from Theorem 2.1.10 to get

KD(z, ⇣) =
1X

n=0

�n(z)�n(⇣) =
1X

n=0

n+ 1

⇡
z
n
⇣n =

1

⇡

1X

n=0

(n+ 1)(z⇣)n . (2.8)

Di↵erentiating 1/(1� z) = 1 + z + z
2 + ..., we get

1

(1� z)2
= 1 + 2z + 3z2 + ... =

1X

n=0

(n+ 1)zn

for |z| < 1. Therefore

KD(z, ⇣) =
1

⇡

1

(1� z⇣)2
. (2.9)

2.2.2 Bergman kernel for ellipsoid and unit ball in C
n

The next domain one would naturally consider would be the unit ball in C
n or the polydisc

D
n. We shall shortly prove that the Bergman kernel of a product domain will be the product

of the Bergman kernels. This will give us the Bergman kernel for Dn. Let us now calculate

the Bergman kernel for the unit ball. We will actually calculate the Bergman kernel for a

broader class of domains which includes the unit ball. The set

E =
n
z 2 C

n :
nX

i=1

|zi|2pi < 1
o

(2.10)
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where pi > 0 for all i is called a complex ellipsoid or egg-shaped domain. D’Angelo calculated

the Bergman kernel for ellipsoids in [7] and [8] and we now present his calculation.

Lemma 2.2.1. The set
�
z
↵
/||z↵||

 
↵2Nn forms a complete orthonormal system for A

2(E),

where E is a complex ellipsoid.

Proof. Let µ, ⌫ 2 N
n. Consider

(zµ, z⌫) =

Z

E

z
µ
z⌫dV (z) .

Now after making the change of variables zi = rie
i✓, where 0  ✓i < 2⇡ and r 2 E

0 = {r 2
R

n : ri > 0,
P

i
r
2pi
i

< 1}, we get

(zµ, z⌫) =

Z

E0

Z 2⇡

0

...

Z 2⇡

0

r
µ+⌫+1

e
i✓(µ�⌫)

d✓1...d✓ndV (r) = (2⇡)n�µ⌫

Z

E0
r
µ+⌫+1

dV (r) . (2.11)

Therefore
�
z
↵
/||z↵||

 
↵2Nn is a orthonormal system in A

2(E).

Let f 2 A
2(E). Because these domains are complete Reinhardt domains, the Taylor series

of f around the origin converges everywhere on E. So we can write f(z) =
P

↵2Nn c↵z
↵ for

all z 2 E. Any ordering of the series converges uniformly on compact subsets, thus we have

convergence in norm. This proves the completeness.

The next step would be to evaluate ||z↵||. For this purpose we will need some theory

about gamma and beta functions. The gamma function is defined as

� : (0,1) ! R, �(x) =

Z 1

0

e
�t
t
x�1

dt .

Note that by applying the change of variable t = s
2, we get

�(x) = 2

Z 1

0

e
�s

2
s
2x�1

ds . (2.12)

Below are few of the basic properties of the gamma function

�(x+ 1) = x�(x), �(1) = 1, �(n+ 1) = n! .

Now we define the beta function. Let R
m

+ = {x 2 R
m : xi > 0 8i}. The beta function is

14



defined on R
m

+ as

�(↵) =

Q
i
�(↵i)

�(|↵|) 8↵ 2 R
m

+ . (2.13)

Before we state the next proposition we need to define a few objects

B
m

+ = R
m

+ \B
m
, S

m�1
+ = R

m

+ \ S
m�1

where B
m and S

m�1 are the unit ball and unit sphere in R
m respectively.

Proposition 2.2.2. Suppose ↵ 2 R
m

+ . Then

Z

B
m
+

r
2↵�1

dV (r) =
�(↵)

2m|↵|

and Z

S
m�1
+

!
2↵�1

d�(!) =
�(↵)

2m�1
.

Proof. By (2.12), we get

nY

i=1

�(↵i) = 2m
Z

R
m
+

e
�||x||2

x
2↵�1

dV (x) .

Switching to spherical coordinates we get

nY

i=1

�(↵i) = 2m
Z 1

0

Z

S
m�1
+

e
�r

2
r
2|↵|�m

!
2↵�1

r
m�1

d�(!)dr

= 2m
 Z 1

0

e
�r

2
r
2|↵|�1

! Z

S
m�1
+

!
2↵�1

d�(!)

!

= 2m�1�(|↵|)
 Z

S
m�1
+

!
2↵�1

d�(!)

!
.

Hence Z

S
m�1
+

!
2↵�1

d�(!) =

Q
n

i=1 �(↵i)

2m�1�(|↵|) =
�(↵)

2m�1
. (2.14)
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Again using spherical coordinates, we have

Z

B
m
+

r
2↵�1

dV (r) =

Z 1

0

Z

S
+
m�1

r
2|↵|�m

!
2↵�1

r
m�1

d�(!)dr

=

 Z 1

0

r
2|↵|�1

dr

! Z

S
m�1
+

!
2↵�1

d�(!)

!
=

�(↵)

2m|↵|

(2.15)

which proves the proposition.

With these formulas we can calculate the norms of the monomials z↵ (↵ 2 N
n) in A

2(E).

Lemma 2.2.3. Let E = {z 2 C
n :
P

n

i=1 |zi|2pi < 1} and ↵ 2 N
n, then

||z↵||2
A2(E) =

⇡
n

Q
i
pi

�

⇣
↵+1
p

⌘

��↵+1
p

�� .

Proof. By (2.11), we have

(z↵, z↵) = (2⇡)n
Z

E0
r
2↵+1

dV (r) , (2.16)

where E
0 = {r 2 R

n

+ :
P

i
r
2pi
i

< 1}. Hence

||z↵||2 = (2⇡)n
Z

E0
r
2↵+1

dV (r)

= (2⇡)n
Z

E0
r
2↵1+1
1 ...r

2↵n+1
n

dr1..drn

=
(2⇡)nQ

i
pi

Z

E0
r
2↵1+1�(p1�1)
1 ...r

2↵n+1�(pn�1)
n

(p1r
p1�1
1 dr1)...(pnr

pn�1
n

drn) .

Now we make the substitution ti = r
pi
i

i.e ri = t

1
pi
i
. Also dti = pir

pi�1
i

dri. The integrals

transforms into

||z↵||2 = (2⇡)nQ
i
pi

Z

B
n
+

t
2↵+2�p

p dV (t) . (2.17)

We write (2↵ + 2� p)/p = 2� � 1. Solving for �, we get �i = (↵i + 1)/pi > 0. So

||z↵||2 = (2⇡)nQ
i
pi

Z

B
n
+

t
2��1

dV (t) =
(2⇡)nQ

i
pi

�(�)

2n|�| =
⇡
n

Q
i
pi

�

⇣
↵+1
p

⌘

��↵+1
p

�� (2.18)
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as required.

Using the orthonormal basis representation for the Bergman kernel, we get the following

proposition.

Proposition 2.2.4. For E = {z 2 C
n :
P

n

i=1 |zi|2pi < 1}, where pi > 0, we have

KE(z, ⇣) =
X

↵2Nn

Q
i
pi

⇡n

��↵+1
p

��

�

⇣
↵+1
p

⌘(z⇣)↵ .

Theorem 2.2.5. Denote the unit ball in C
n i.e. {z 2 C

n :
P

n

i=1 |zi|2 < 1} by B
n, then

KBn(z, ⇣) =
n!

⇡n

1

[1� (z, ⇣)]n+1
,

where (z, ⇣) is the Hermitian inner product of z and ⇣ in C
n.

Proof. The unit ball is a complex ellipsoid where pi = 1 for all i. Hence, we get

KBn(z, ⇣) =
X

↵2Nn

1

⇡n

|↵ + 1|
�(↵ + 1)

(z⇣)↵

=
1

⇡n

1X

m=0

X

|↵|=m

m+ n
Q

i �(↵i+1)
�(m+n)

(z⇣)↵

=
1

⇡n

1X

m=0

X

|↵|=m

(m+ n)!

↵!
(z⇣)↵

=
1

⇡n

1X

m=0

(m+ n)!

m!

X

|↵|=m

m!

↵!
(z⇣)↵

=
1

⇡n

1X

m=0

(m+ n)!

m!

 
nX

i=0

zi⇣i

!m

.

(2.19)

The last step uses the multinomial theorem. Note that the power series

1

1� u
= 1 + u+ u

2 + ...
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converges in D, and di↵erentiating n times we get

n!

(1� u)n+1
=

1X

m=0

(m+ n)!

m!
u
m
.

Again this equation holds in D. We have
��Pn

i=0 zi⇣i

�� ||z|| ||⇣|| < 1. Therefore

KBn(z, ⇣) =
n!

⇡n
⇥
1�

�P
n

i=0 zi⇣i

�⇤n+1 (2.20)

which proves the theorem.

2.2.3 Bergman kernel for product domains

Proposition 2.2.6. Let D1 and D2 be domains in C
n1 and C

n2 respectively. Then the

Bergman kernel for D = D1 ⇥D2 is given by

KD((z1, z2), (⇣1, ⇣2)) = KD1(z1, ⇣1)KD2(z2, ⇣2) .

Proof. Let G((z1, z2), (⇣1, ⇣2)) = KD1(z1, ⇣1)KD2(z2, ⇣2). Then G(., (a1, a2)) is an element of

A
2(D) by Hartog’s separate analyticity theorem and Tonelli’s theorem. For f 2 A

2(D), we

have
Z

D

f(⇣)G(⇣, a) dV⇣ =

Z

D1⇥D2

f(⇣1, ⇣2)G((⇣1, ⇣2), (a1, a2))dV⇣

=

Z

D2

Z

D1

f(⇣1, ⇣2)G((⇣1, ⇣2), (a1, a2))dV⇣1dV⇣2

=

Z

D2

KD2(⇣2, a2)

Z

D1

f(⇣1, ⇣2)KD1(⇣1, a1)dV⇣1dV⇣2

=

Z

D2

f(a1, ⇣2)KD2(⇣2, a2)dV⇣2

= f(a1, a2) .

(2.21)

The proposition clearly follows.
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Corollary 2.2.7. The Bergman kernel for the polydisc D
n is given by

KDn(z, ⇣) =
1

⇡n

nY

j=1

1

(1� zj⇣j)2
.

2.3 The Bergman kernel and minimum integrals

It is possible to define the Bergman kernel in an alternative way, using minimum integrals.

We however state it here as a property of the Bergman kernel. Consider the extremal

problem:

minimize ||�||2 =
Z

D

|�|2dV subject to � 2 A
2(D) and �(⇣) = 1.

Theorem 2.3.1. KD(., ⇣)/KD(⇣, ⇣) is the unique solution to the above extermal problem,

provided that the set S = {� 2 A
2(D) : �(⇣) = 1} is non empty or equivalently K(⇣, ⇣) > 0.

Proof. Let f 2 S and consider its orthnormal basis expansion

f =
1X

j=1

aj�j

where aj = (f,�j). Since f(⇣) = 1, we have
P1

j=1 aj�j(⇣) = 1. Also ||f ||2 =
P1

j=1 |aj|2.
Let KD(⇣, ⇣) =

P1
j=1 |�j(⇣)|2 = �. Note that � > 0. We now introduce new constants �j,

defined by aj =
�
�j + �j(⇣)

�
/�. Then

1 =
1X

j=1

 
�j + �j(⇣)

�

!
�j(⇣) =

 1X

j=1

�j�j(⇣)

!
+ 1 .

This gives us
1X

j=1

�j�j(⇣) = 0 . (2.22)

Using the above equation, we get

||f ||2 =
1X

j=1

|aj|2 =
X

j

 
�j + �j(⇣)

�

! 
�j + �j(⇣)

�

!
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=
1

�2

 
X

j

⇣
|�j|2 + |�j(⇣)|2

⌘!

=
1

�2

⇣
� +

X

j

|�j|2
⌘
.

So the unique solution to the extremal problem, call it  , is when �j = 0 for all j and

consequently aj = �j(⇣)/� for all j. So the solution is given by

 (z) =
X

j

�j(⇣)

�
�j(z) =

1

�

X

j

�j(z)�j(⇣) =
KD(z, ⇣)

KD(⇣, ⇣)
(2.23)

as claimed.

Note that the minimal norm is given by

�����

�����
KD(.⇣)

KD(⇣, ⇣)

�����

�����

2

=
1

KD(⇣, ⇣)
.

2.4 The Bergman projection operator

Since A
2(D) is a closed subspace of L2(D), we have L

2(D) = A
2(D)

L
A

2(D)?, i.e every

f 2 L
2(D) can be written in a unique way as f = f1+f2 where f1 2 A

2(D) and f2 2 A
2(D)?.

The map PD : L2(D) ! A
2(D) which sends f to f1 is called the Bergman projection operator.

Theorem 2.4.1. The Bergman projection operator PD : L2(D) ! A
2(D) is given by

PDf(z) =

Z

D

K(z, ⇣)f(⇣)dV⇣

for all f 2 L
2(D).

Proof. Let f 2 L
2(D). As discussed above we can write f = f1 + f2, where f1 2 A

2(D) and

f2 2 A
2(D)?. Using the fact that f2 ? K(., z), we get

PDf(z) = f1(z) = (f1, K(., z)) = (f1, K(., z)) + (f2, K(., z)) = (f,K(., z)) =

Z

D

K(z, ⇣)f(⇣)dV⇣ .
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2.5 Transformation formula for the Bergman kernel

The following theorem tells how the Bergman kernel transforms under biholomorphisms.

Later on this formula will be used to show that biholomorphisms are isometries of the

Bergman metric. We shall derive a similar transformation formula for proper holomorphic

maps in Chapter 4.

Theorem 2.5.1. Let D1, D2 be two domains in C
n and f : D1 ! D2 be a biholomorphism.

Then

KD1(z, ⇣) = det f 0(z) KD2(f(z), f(⇣)) det f 0(⇣)

for all z, ⇣ 2 D1. This formula is called the transformation formula for Bergman kernel.

Proof. It is a basic fact of several complex variables that

det JRf(z) = | det f 0(z)|2 . (2.24)

Therefore by the change of variables formula for integration we get

Z

D2

|h(w)|2dV (w) =

Z

D1

|h(f(z))|2| det JRf(z)|dV (z) =

Z

D2

|h(f(z))|2| det f 0(z)|2dVz .

(2.25)

So the function h 7! (h � f) det f 0 is an isometry from L
2(D2) to L

2(D1). Consequently we

have

det f 0(.)KD2(f(.), f(⇣))det f 0(⇣) 2 A
2(D1)

for all ⇣ 2 D1. Let g 2 A
2(D1). Then we have

⇣
g, det f 0(.)KD2(f(.), f(⇣))det f 0(⇣)

⌘
=

Z

D1

g(z)det f 0(z)KD2(f(z), f(⇣)) det f
0(⇣)dVz

= det f 0(⇣)

Z

D2

g(f�1(y))det f 0(f�1(y))KD2(y, f(⇣))| det(f�1)0(y)|2dVy

= det f 0(⇣)

Z

D2

g(f�1(y)) det(f�1)0(y)KD2(y, f(⇣))dVy

= det f 0(⇣)g(⇣) det(f�1)0(f(⇣))

= g(⇣) .

This proves the result.
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Proposition 2.5.2. Let D1, D2 be two domains in C
n and f : D1 ! D2 be a biholomorphism.

Let u(z) = det f 0(z). Then

PD1(u · (h � f)) = u · (PD2(h) � f)

for all h 2 L
2(D2).

Proof. Since h 2 L
2(D2), we have u · (h � f) 2 L

2(D1) by (2.25). By Theorem 2.4.1, we have

[PD1(u · (h � f))](z) =
Z

D1

KD1(z, ⇣)u(⇣)h(f(⇣))dV⇣

=

Z

D1

u(z)KD2(f(z), f(⇣))|u(⇣)|2h(f(⇣))dV⇣

= u(z)

Z

D2

KD2(f(z), y)h(y)dVy

= u(z)(PD2(h) � f)(z) .

2.6 The Bergman metric

Using the Bergman kernel we will give a metric on D i.e at every point p 2 D we will give

an inner product on Tp(D) = C
n. First we prove the following theorem.

Theorem 2.6.1. Let D be a bounded domain in C
n. Then logK(z) is a strictly plurisub-

harmonic function where K(z) = KD(z, z).

Proof. From Remark 2.1.4, we see that K(z) > 0 and we may take real logarithm of such a

number. We need to show

X

j,k

@
2 logK

@zj@z̄k
(p)tjtk > 0 for all p 2 D, for all t 2 C

n \ {0} . (2.26)

Using the chain rule for complex di↵erential operators, we have

@ logK

@z̄k
=

1

K

@K

@z̄k
.

22



Further

@
2 logK

@zj@z̄k
=

1

K

@
2
K

@zj@z̄k
+

 
� 1

K2

@K

@zj

!
@K

@z̄k

=
1

K2

 
K

@
2
K

@zj@z̄k
� @K

@zj

@K

@z̄k

!
.

(2.27)

Also

K =
X

µ

�µ�µ .

Due to Theorem 2.1.10 it is permissible to take the derivative operators inside. Therefore

we get
@K

@z̄k
=
X

µ

�µ

@�µ

@zk
and

@K

@zj
=
X

µ

@�µ

@zj
�µ (2.28)

and
@
2
K

@zj@z̄k
=
X

µ

@�µ

@zj

@�µ

@zk
. (2.29)

So combining (2.27), (2.28) and (2.29), we get

@
2 logK

@zj@z̄k
=

1

K2

" 
X

µ

|�µ|2
! 

X

µ

@�µ

@zj

@�µ

@zk

!
�
 
X

µ

@�µ

@zj
�µ

! 
X

µ

�µ

@�µ

@zk

!#
(2.30)

and so

X

j,k

@
2 logK

@zj@z̄k
tjtk =

1

K2

" 
X

µ

|�µ|2
! 

X

µ,j,k

@�µ

@zj
tj
@�µ

@zk
tk

!
�
 
X

µ,j

@�µ

@zj
tj�µ

! 
X

µ,k

�µ

@�µ

@zk
tk

!#
.

Let �0
µ
=
P

n

i=1

@�µ

@zi
ti. Then the above equation becomes

X

j,k

@
2 logK

@zj@z̄k
tjtk =

1

K2

" 
X

µ

|�µ|2
! 

X

µ

|�0
µ
|2
!

�

�����
X

µ

�µ�
0
µ

�����

2 #
. (2.31)

By Cauchy-Schwarz inequality the above expression is always non-negative. Suppose that

X

j,k

@
2 logK

@zj@z̄k
(p)tjtk = 0
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for some p 2 D and t 6= 0. Then the sequences �µ(p) and �
0
µ
(p, t) are linearly dependent.

We have already seen that the sequence �µ(p) is non-zero, now we will see that �0
µ
(p, t) is a

non-zero sequence. Let f =
P

aµ�µ be an element in A
2(D) and l(⇣) = p+ ⇣t is a function

defined in a neighborhood of 0 in the complex plane. Consider

@

@⇣

�����
⇣=0

(f � l) =
X

µ

aµ(�µ � l)0(0) =
X

µ

aµ�
0
µ
(p, t) . (2.32)

Let f(z) = (z � p, t). Note that f 2 A
2(D), also (f � l)(⇣) = ⇣|t|2. So if we choose such an

f , then

@

@⇣

�����
⇣=0

(f � l) = |t|2 6= 0 .

Therefore from (2.32), we get that �0
µ
(p, t) is a non zero sequence. Thus there exists non zero

complex number � such that �µ(p) = ��
0
µ
(p, t) for all µ. (2.32) implies f(p) = �(f � l)0(0)

for all f 2 A
2(D). Again put f(z) = (z � p, t) to get 0 = �|t|2. But both � and t are non

zero. So we get a contradiction. So logK is strictly plurisubharmonic.

Consider the matrix Hjk(p) = (@2 logK)/(@zj@z̄k)(p). This matrix is Hermitian (i.e

H
⇤ = H) and positive definite (i.e t

⇤
Ht > 0 for all t 6= 0) for all p 2 D. So we get an inner

product on Tp(D) = C
n for each point p 2 D given by

B
D

p
(u, v) =

X

j,k

@
2 logK

@zj@z̄k
(p)ujvk = v

⇤[H(p)]Tu . (2.33)

This is called the Bergman metric. The length of v 2 Tp(D) is given by

L
D

p
(v) =

q
BD

p
(v, v) . (2.34)

If � : [0, 1] ! D is a piece-wise smooth C
1 curve in D, then its length w.r.t the Bergman

metric is given by

l
D

B
(�) =

Z 1

0

L
D

�(t)(�
0(t)) dt . (2.35)

We define dD
B
(p1, p2) to be the infimum of lengths (w.r.t the Bergman metric) of all piece-wise

smooth C
1 curves joining p1 and p2. A geodesic is a path between two points of minimal

length. So d
D

B
(p1, p2) can be defined as length of geodesic. It can be shown that dD

B
(p1, p2)
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defines a topological metric on D.

Next we will use the transformation formula of the Bergman kernel to show that biholo-

morphisms are isometries of the Bergman metric.

Theorem 2.6.2. Let f : D1 ! D2 be a biholomorphisms between two bounded domains in

C
n. Then

B
D1
p

(u, v) = B
D2
f(p)(f

0(p)u, f 0(p)v)

So f is an isometry of the Bergman metric.

Proof. Let K1(z) = KD1(z, z) and K2(w) = KD2(w,w). By the transformation formula, we

get K1(z) = K2(f(z)) det f 0(z)det f 0(z) for all z 2 D1. Given any point p 2 D1, we can find

a neighborhood of p such that the following equation holds there:

logK1 = log(K2 � f) + log det f 0 + log det f 0 + C (2.36)

where log is an appropriately chosen holomorphic branch of the logarithm. Hence

@
2 logK1

@zj@z̄k
=
@
2 log(K2 � f)
@zj@z̄k

+
@
2 log det f 0

@zj@z̄k
+
@
2 log det f 0

@zj@z̄k
.

The last two terms will vanish leaving us with

@
2 logK1

@zj@z̄k
=
@
2 log(K2 � f)
@zj@z̄k

=
1

(K2 � f)2

 
(K2 � f) ·

@
2(K2 � f)
@zj@z̄k

� @(K2 � f)
@zj

· @(K2 � f)
@z̄k

!
.

(2.37)

The last equation comes the same way as (2.27) comes. Using chain rule, we get

@(K2 � f)
@z̄k

=
nX

i=1

⇣
@K2

@z̄i
� f
⌘
@f̄i

@z̄k
=

nX

i=1

⇣
@K2

@z̄i
� f
⌘
@fi

@zk
. (2.38)

Di↵erentiating with respect to zj, we get

@
2(K2 � f)
@zj@z̄k

=
nX

i=1

@

@zj

⇣
@K2

@z̄i
� f
⌘
@fi

@zk
=
X

i,l

⇣
@
2
K2

@zl@z̄i
� f
⌘
@fl

@zj

@fi

@zk
. (2.39)
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Lastly
@(K2 � f)

@zj
=

nX

l=1

⇣
@K2

@zl
� f
⌘
@fl

@zj
. (2.40)

Combining (2.37) to (2.40), observe that BD1
p

(u, v) is

1

[K2(f(p)]2

"
K2(f(p))

X

j,k,i,l

@
2
K2

@zl@z̄i

���
f(p)

@fl

@zj

���
p

uj

@fi

@zk

���
p

vk �
X

j,k,i,l

@K2

@zl

���
f(p)

@fl

@zj

���
p

uj

@K2

@z̄i

���
f(p)

@fi

@zk

���
p

vk

#

=
X

i,l

"
1

[K2(f(p)]2

 
K2(f(p))

@
2
K2

@zl@z̄i

���
f(p)

� @K2

@zl

���
f(p)

@K2

@z̄i

���
f(p)

!# 
X

j

@fl

@zj

���
p

uj

! 
X

k

@fi

@zk

���
p

vk

!
.

By (2.27), the above is equal to

X

i,l

@
2 logK2

@zl@z̄i
(f(p))[f 0(p)u]l[f 0(p)v]i = B

D2
f(p)(f

0(p)u, f 0(p)v)

which completes the proof.

Corollary 2.6.3. Let f : D1 ! D2 be a biholomorphisms between two bounded domains in

C
n. Then

d
D1
B
(p, q) = d

D2
B
(f(p), f(q))

for all p, q 2 D1.

Proof. Let � : [0, 1] ! D1 be a path. We have (f � �)0(t) = f
0(�(t))�0(t). By above theorem,

L
D1
�(t)(�

0(t)) = L
D2
f(�(t))((f � �)0(t)). This implies l

D1
B
(�) = l

D2
B
(f � �). So we get a length

(w.r.t Bergman metric) preserving bijection between paths in D1 and D2. This proves the

result.

2.7 The Bergman metric for a few standard domains

In this section, we will calculate the Bergman metric for the unit ball and for the upper half

plane H = {z 2 C : Im z > 0}.
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2.7.1 Bergman metric for the unit ball in C
n

Proposition 2.7.1. The Bergman metric for B
n is given by

B
B
n

p
(u, v) =

n+ 1

[1� (p, p)]2

"
(u, v)

⇥
1� (p, p)

⇤
+ (u, p)(p, v)

#

where p 2 B
n and u, v 2 C

n.

Proof. By Theorem 2.2.5, we get

K(z) =
n!

⇡n

1
�
1�

P
i
ziz̄i

�n+1 .

Di↵erentiating, we get

@K

@z̄k
=

(n+ 1)!

⇡n

zk�
1�

P
i
ziz̄i

�n+2 and
@K

@zj
=

(n+ 1)!

⇡n

z̄j�
1�

P
i
ziz̄i

�n+2 .

Also
@
2
K

@zj@z̄k
=

(n+ 1)!

⇡n

1
�
1�

P
i
ziz̄i

�n+2

"
�jk +

zkz̄j(n+ 2)�
1�

P
i
ziz̄i

�
#
.

The above equations together with (2.27) gives

@
2 logK

@zj@z̄k
=

n+ 1

1� (z, z)

"
�jk +

zkz̄j(n+ 2)

1� (z, z)

#
� (n+ 1)2zkz̄j

[1� (z, z)]2

=
(n+ 1)�jk
1� (z, z)

+
(n+ 1)zkz̄j
[1� (z, z)]2

=
n+ 1

[1� (z, z)]2

"
�jk

⇥
1� (z, z)

⇤
+ z̄jzk

#
.

(2.41)

Now we are ready to calculate the metric. Let u, v 2 C
n, then

B
B
n

p
(u, v) =

n+ 1

[1� (p, p)]2

"
X

j,k

�jk

⇥
1� (p, p)

⇤
uj v̄k +

X

j,k

uj p̄j v̄kpk

#

=
n+ 1

[1� (p, p)]2

"
(u, v)

⇥
1� (p, p)

⇤
+ (u, p)(p, v)

#
.

(2.42)
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Corollary 2.7.2. The Bergman metric for unit disc in C is given by

B
D

p
(u, v) =

2uv̄

(1� |p|2)2 .

2.7.2 The Bergman metric for H

Proposition 2.7.3. The Bergman metric for the upper half plane is given by

B
H

p
(u, v) =

uv̄

2(Im p)2

where p 2 H and u, v 2 C.

Proof. The map f : H ! D defined by

f(z) =
i� z

i+ z

is a biholomorphism and therefore by Theorem 2.6.2, we get

B
H

p
(u, v) = B

D

f(p)(f
0(p)u, f 0(p)v) =

2

(1� |f(p)|2)2f
0(p)u f 0(p)v

=
2

⇣
1�

���
i� p

i+ p

���
2⌘2

�����
�2i

(i+ p)2

�����

2

uv̄ =
uv̄

2(Im p)2
.

(2.43)

This proves the proposition.
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Chapter 3

Bergman representative coordinates

and Lu Qi-Keng problem

3.1 Bergman representative coordinates

The Bergman representative coordinates is a set of local holomorphic coordinates that we

define on bounded domains in C
n using the Bergman kernel. Let D be a bounded domain

in C
n with Bergman kernel given by K and let p be a point in D. Since K(p, p) > 0, there

exists a neighborhood Up of p such that K(z, w) 6= 0 for all z, w 2 Up. We define bj : Up ! C

as follows:

bj(z) =
@

@w̄j

���
p

log
K(z, w)

K(w,w)
. (3.1)

The above expression does not depend on which branch of the logarithm we choose. Using

the orthonormal basis expansion of the Bergman kernel, we get

bj(z) =
@

@w̄j

���
p

logK(z, w)� @

@w̄j

���
p

logK(w,w)

=
1

K(z, p)

 
@

@w̄j

���
p

K(z, w)

!
� 1

K(p, p)

 
@

@w̄j

���
p

K(w,w)

!

=
1

K(z, p)

 
X

µ

�µ(z)
@�µ

@wj

(p)

!
� 1

K(p, p)

 
X

µ

�µ(p)
@�µ

@wj

(p)

!
.

(3.2)
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This tells us that bj is holomorphic function on Up and further bj(p) = 0. Now we define

the function Bp(z) : Up ! C
n as Bp(z) = (b1(z), b2(z), ..., bn(z)). Note that Bp(p) = 0.

Di↵erentiating bj with respect to zk, we get

@bj

@zk
(p) =

@

@zk

���
p

"
1

K(z, p)

 
X

µ

�µ(z)
@�µ

@zj
(p)

!#

=
�1

K(p, p)2

 
@

@zk

���
p

X

µ

�µ(z)�µ(p)

! 
X

µ

�µ(p)
@�µ

@zj
(p)

!
+

1

K(p, p)

 
X

µ

@�µ

@zk
(p)

@�µ

@zj
(p)

!

=
1

K(p, p)

 
X

µ

@�µ

@zk
(p)

@�µ

@zj
(p)

!
� 1

K(p, p)2

 
X

µ

@�µ

@zk
(p)�µ(p)

! 
X

µ

�µ(p)
@�µ

@zj
(p)

!

=
@
2

@zk@z̄j

���
p

logK(z, z) .

(3.3)

The last equality is a consequence of (2.30). This shows that the matrix B
0
p
(p) is a positive

definite matrix and hence it will have positive determinant. By the inverse function theorem,

there is a neighborhood of p which we denote by Vp , such that the restriction of Bp to Vp

is a biholomorphism i.e. Bp : Vp ! Wp gives a set of coordinates around p where Wp is a

neighborhood of 0. This set of coordinates is called the Bergman coordinates centered at p.

The following theorem gives a very interesting property of these coordinates.

Theorem 3.1.1. Suppose D1, D2 are two bounded domains in C
n with p1 2 D1 and p2 2 D2.

Further suppose we have a biholomorphism f : D1 ! D2 such that f(p1) = p2. Then the

biholomorphic mapping f is linear when expressed in the Bergman representative coordinates

centered at p1 and p2 i.e. Bp2 � f �B�1
p1

is a linear map.

Proof. The map f̃ = Bp2 � f � B
�1
p1

is a map that takes points from Wp1 to Wp2 via the

domains Vp1 and Vp2 . Observe that the range and codomain Wp1 and Wp2 are neighborhoods

of 0 and clearly we have f̃(0) = 0. Now let z, w 2 Vp1 , we have

KD1(z, w)

KD1(w,w)
=

det f 0(z)KD2(f(z), f(w))det f 0(w)

det f 0(w)KD2(f(w), f(w))det f 0(w)
.

Taking log on both sides, we get

log
KD1(z, w)

KD1(w,w)
= logKD2(f(z), f(w))�logKD2(f(w), f(w))+log f 0(z)�log f 0(w)+C . (3.4)
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Now we will di↵erentiate both sides with respect to w̄j at p1. So

@

@w̄j

���
p1

log
KD1(z, w)

KD1(w,w)
=

@

@w̄j

���
p1

logKD2(f(z), f(w))�
@

@w̄j

���
p1

logKD2(f(w), f(w))

=

"
nX

k=1

 
@

@ȳk

���
f(p1)

logKD2(f(z), y)

!
@f̄k

@w̄j

(p1)

#
�
"

nX

k=1

 
@

@ȳk

���
f(p1)

logKD2(y, y)

!
@f̄k

@w̄j

(p1)

#

=
nX

k=1

@fk

@wj

(p1)

 
@

@ȳk

���
p2

log
KD2(f(z), y)

KD2(y, y)

!
. (3.5)

The above equation tells us that if z̃ 2 Wp1 , then

z̃ = [f 0(p)⇤](Bp2 � f �B�1
p1
)(z̃)

where f
0(p)⇤ is the Hermitian of the matrix f

0(p). Therefore we get

f̃(z̃) = [f 0(p)⇤]�1
z̃ (3.6)

for all z̃ in Wp1 . This proves that f̃ is linear.

3.2 Lu Qi-Keng problem

If we wish to define a global set of Bergman coordinates, then it is necessary that the

Bergman kernel does not vanish. This motivates the following definition.

Definition 3.2.1. A domain D ⇢ C
n is said to be a Lu Qi-Keng domain if KD(z, ⇣) 6= 0

for all z, ⇣ 2 D.

As a consequence of the transformation formula for Bergman kernel, we see that the

property of being a Lu Qi-Keng domain is invariant under biholomorphism. The problem

of finding/characterizing which domains are Lu Qi-Keng is called the Lu Qi-Keng problem.

From Corollary 2.2.7 and Theorem 2.2.5 we see that balls and polydiscs are Lu Qi-Keng

domains. The first examples of non Lu Qi-Keng domains were annuli in C. Suita and

Yamada proved in [18] that every bounded, non simply connected domain in C with smooth

boundary is non Lu Qi-Keng. This together with the Riemann mapping theorem implies a

smooth bounded domain in the complex plane is Lu Qi-Keng i↵ it is simply connected. Boas
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proved in [4] that this result cannot be generalized to higher dimensions by showing that for

each n > 2, there exists a smooth bounded domain in C
n which is strongly pseudoconvex,

contractible and whose Bergman kernel has zeroes. This was quite surprising as a domain

with so many nice properties was expected to be Lu Qi-Keng. Another result of Boas [5]

is that the set of Lu Qi-Keng, bounded domains of holomorphy is a nowhere dense subset

of bounded domains of holomorphy. This was again a most surprising result because it was

expected that the non Lu Qi-Keng domains would be sparser. It is not completely known

which complex ellipsoids are Lu Qi-Keng and it is a topic of current research. We shall give

some examples of non Lu Qi-Keng domains in C
2 in the next chapter.
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Chapter 4

Some more Bergman kernels

4.1 Punctured disc

Let D
⇤ denote the punctured unit disc in the complex plane i.e. D

⇤ = D \ {0}. We will

calculate the Bergman kernel for this domain.

Proposition 4.1.1. If f 2 A
2(D⇤), then f has a removable singularity at 0.

Proof. Since f is holomorphic on D
⇤, f has a Laurent series expansion f =

P
n2Z anz

n. Now

Z

D⇤
|f |2dV =

Z

D⇤

⇣X

n2Z

anz
n

⌘⇣X

n2Z

anz
n

⌘
dV =

Z

D⇤

X

m,n

amanz
m
z
n
dV =

X

m,n

aman

Z

D⇤
z
m
z
n
dV .

Using polar coordinates we can see that
R
D⇤ z

m
z
n
dV =

� R 1

0 r
n+m+1

dr
�
�mn2⇡. Therefore

Z

D⇤
|f |2dV =

X

n2Z

|an|22⇡
Z 1

0

r
2n+1

dr . (4.1)

However if n < 0, then
R 1

0 r
n+m+1 are all +1. Therefore an = 0 for all n < 0. So f has a

removable singularity at 0.
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Hence the Bergman spaces A2(D) and A
2(D⇤) can be canonically identified. Therefore

f(z) =

Z

D⇤
KD(z, ⇣)f(⇣)dV⇣ for every f 2 A

2(D⇤) and z 2 D
⇤.

From this we can deduce the following corollary.

Corollary 4.1.2. KD⇤(z, ⇣) = KD(z, ⇣) for all z, ⇣ 2 D
⇤.

4.2 Generalized Hartog’s triangle in C
2

The domain {(z1, z2) 2 C
2 : |z1| < |z2| < 1} is called the Hartog’s triangle. It is an important

and frequently studied domain. We also study some variations of this domain which we now

define.

Definition 4.2.1. Let � > 0. The generalized Hartog’s triangle in C
2 of exponent � is

defined as the domain H� = {(z1, z2) 2 C
2 : |z1|� < |z2| < 1}.

First we will calculate the Bergman kernel for the Hartog’s triangle i.e. H1 followed by

H1/m and Hm where m 2 N. These calculations are due to Edholm who recently calculated

the Bergman kernel for these cases [10]. One way to try to do this would be to imitate

the method we have used before to calculate the kernel for the disc, ball and ellipsoid i.e.

to construct an orthonormal basis of the Bergman space using monomials and then using

Theorem 2.1.10. Since H� is a connected Reinhardt domain, holomorphic functions would

have Laurent series expansions, allowing this method to work. But it is more straightforward

to use the transformation formula for the Bergman kernel for biholomorphic maps and for

proper holomorphic maps (to be proved soon) to calculate Bergman kernel for the cases we

are considering. We denote KH� by K� for the sake of the brevity.

Proposition 4.2.1. The Bergman kernel for the Hartog’s triangle is given by

K1(z, w) =
z2w̄2

⇡2(z2w̄2 � z1w̄1)2(1� z2w̄2)2
.

Proof. Let  : H1 ! D ⇥ D
⇤ be the map given by  (z1, z2) = (z1/z2, z2). This map is an

biholomorphism since it has an inverse which is given by �(u1, u2) = (u1u2, u2). So by the
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transformation formula we get

K1(z, w) = det 0(z)KD⇥D⇤( (z), (w))det 0(w)

=
1

z2
·KD

 
z1

z2
,
w1

w2

!
·KD⇤(z2, w2) ·

1

w̄2

=
1

⇡2

1

z2w̄2
· 1
⇣
1� z1w̄1

z2w̄2

⌘2 · 1

(1� z2w̄2)2

=
z2w̄2

⇡2(z2w̄2 � z1w̄1)2(1� z2w̄2)2
.

(4.2)

Proposition 4.2.2. The Bergman kernel for the generalized Hartog’s triangle H1/m (m 2 N)

is given by

K1/m(z, w) =
z
m

2 w̄
m

2

⇡2(zm2 w̄
m

2 � z1w̄1)2(1� z2w̄2)2
.

Proof. This family of domains is also biholomorphic to D⇥D
⇤. The biholomorphism is given

by  m : H1/m ! D⇥ D
⇤ where  m(z1, z2) =

�
(z1/zm2 ), z2

�
. To see that this map is indeed a

biholomorphism, we can easily check that �m(u1, u2) = (u1u
m

2 , u2) is an inverse for  m. So

using transformation formula we get

K1/m(z, w) = det 0
m
(z)KD⇥D⇤( m(z), m(w))det 0

m
(w)

=
1

z
m

2

·KD

 
z1

z
m

2

,
w1

w
m

2

!
·KD⇤(z2, w2) ·

1

w̄
m

2

=
z
m

2 w̄
m

2

⇡2(zm2 w̄
m

2 � z1w̄1)2(1� z2w̄2)2
.

(4.3)

We now prove Bell’s transformation rule [2] for the Bergman kernel for proper holomor-

phic mappings. We shall use the fact that any surjective proper holomorphic mapping is a

branched covering of finite order.

Theorem 4.2.3. Suppose D1, D2 are two bounded domains in C
n and that F : D1 ! D2

is a proper holomorphic mapping of D1 onto D2 of order m. Let �1,�2, ...,�m denote the m

local inverses to F , defined locally on D2 \ V where V = {F (z) : z 2 D1, detF 0(z) = 0}.
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Then
mX

k=1

KD1(z,�k(w)) det�0
k
(w) = detF 0(z)KD2(F (z), w)

for all z 2 D1 and for all w 2 D2 \ V .

Proof. Let u = detF 0 and Uk = det�0
k
. We start by proving the following claim.

Claim: P1(u · (h �F )) = u · ((P2h) �F ) for all h 2 L
2(D2) where Pi denotes the Bergman

projection operator corresponding to Di.

Note that we had the same result for biholomorphic mappings (Proposition 2.5.2). Since

F is a branched covering of order m, we have ||u · (h � F )||L2(D1) =
p
m ||h||L2(D2) for all

h 2 L
2(D2). So u · (h � F ) will be an element of L2(D1). The claim obviously holds if

h 2 A
2(D2). Therefore it is su�cient to prove the claim for h 2 A

2(D2)? i.e. we wish to

show P1(u · (h �F )) = 0 for every h 2 A
2(D)?. If g 2 C

1
0 (D2 \V ), then integrating by parts

we have
@g

@wj

2 A
2(D)?. We first prove for this class of functions. So let f 2 A

2(D1) and

consider

Z

D1

f(z)u(z)
⇣
@g

@wj

� F
⌘
(z) dVz

=

Z

D2

mX

k=1

f(�k(w))u(�k(w))
@g

@wj

(w) |Uk(w)|2dVw

=

Z

D2

mX

k=1

f(�k(w))Uk(w)
@g

@wj

(w)dVw .

(4.4)

By integration by parts this will be zero. So u ·
⇣
@g

@wj

� F
⌘
2 A

2(D1)? and therefore we get

P1

⇣
u ·
⇣
@g

@wj

� F
⌘⌘

= 0. Now let H be the span of
n
@g

@wj

: g 2 C
1
0 (D2 \ V ), 1  j  n

o
.

To finish the proof of the claim we will show that H is a dense subset of A2(D2)?. Suppose

h 2 A
2(D)? \H

?, then

Z

D2\V
h(w)

@g

@wj

(w) dVw = 0 for all g 2 C
1
0 (D2 \ V ), j = 1, 2, ..., n.

So h satisfies the Cauchy Riemann equations on D2 \ V in the sense of weak derivatives,

which implies that h is holomorphic on D2 \ V . As V is a complex variety, we have that h
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extends holomorphically to all of D, so h 2 A
2(D). Therefore h = 0, and so the orthogonal

complement of H in A
2(D)? is {0}. This proves H is dense in A

2(D2)?.

Let w 2 D2 \ V . We can find a C
1 positive function ✓w supported in D2 \ V which

is radially symmetric around w with
R
✓w = 1. For any function g 2 A

2(D2), we have

g(w) =
R
D2

g✓w by the mean value property of holomorphic functions. This implies P2✓w =

KD2(., w). Let z 2 D1. Now applying the claim to ✓w we get

u(z)KD2(F (z), w) = [u · (P2✓w � f)](z) = [P1(u · (✓w � F )](z)

=

Z

D1

KD1(z, ⇣) u(⇣) ✓w(F (⇣)) dV⇣

=

Z

D2

mX

k=1

KD1(z,�k(y)) u(�k(y)) ✓w(y) |Uk(y)|2 dVy

=

Z

D2

mX

k=1

KD1(z,�k(y))Uk(y) ✓w(y) dVy

=
mX

k=1

KD1(z,�k(w))Uk(w) .

(4.5)

The last equation again uses the mean value property of holomorphic functions. This proves

the theorem.

The above transformation formula is a useful tool in computing Bergman kernels. We

will use it to calculate the Bergman kernel for the Hartog’s triangle Hm.

Theorem 4.2.4. Let s = z1w̄1 and t = z2w̄2. The Bergman kernel for the generalized

Hartog’s triangle Hm (m 2 N) is given by

Km(z, w) =
pm(s)t2 + qm(s)t+ s

m
pm(s)

m⇡2(1� t)2(t� sm)2
,

where pm and qm are the polynomials

pm(s) =
mX

k=1

k(m� k)sk�1
,

qm(s) =
mX

k=1

(k2 + (m� k)2sm)sk�1
.

37



Proof. Let F : H1 ! Hm be the map defined by F (z1, z2) = (z1, zm2 ). This is a proper

holomorphic mapping of order m. The function u(z) = detF 0(z) = mz
m�1
2 never vanishes

and so local inverses of F can be defined at every point of Hm. Let (p1, p2) 2 Hm. Let us now

take a branch of log defined in a neighborhood of p2. The maps �k(w1, w2) = (w1, ⇣
k
w

1/m
2 )

where w1/m
2 = e

logw/m and ⇣ = e
2⇡i/m, define local inverses to F in a neighborhood of (p1, p2).

Note that Uk(w) = det�0
k
(w) = ⇣

k
w

1/m
2 /mw2, and so applying the transformation formula

from the previous theorem, we get

mz
m�1
2 Km

�
(z1, z

m

2 ), (w1, w2)
�
=

mX

k=1

K1

✓�
z1, z2

�
,
�
w1, ⇣

k
w

1/m
2

�◆
 
⇣kw

1/m
2

mw2

!
, (4.6)

which implies

Km

�
(z1, z

m

2 ), (w1, w2)
�
=

1

mz
m�1
2

mX

k=1

z2

�
⇣kw

1/m
2

�

⇡2

✓
z2

�
⇣kw

1/m
2

�
� z1w̄1

◆2✓
1� z2

�
⇣kw

1/m
2

�◆2�

 
⇣
k
w

1/m
2

mw2

!
.

(4.7)

This expression requires multiple pages of algebra to simplify and obtain the final result.

This simplification is omitted here and can be found in [10].

Corollary 4.2.5. If m � 2 is an integer, then Hm is not a Lu Qi-Keng domain.

Proof. We first consider the case m � 3. Let z =
�
0, i/

p
m� 1

�
and w =

�
0,�i/

p
m� 1

�
.

We can easily check that Km(z, w) = 0. For the case m = 2, let z =
�
i/
p
2, (

p
7 + i)/4

�
and

w =
�
�i/

p
2, (

p
7�i)/4

�
. We can again check by direct computation that K2(z, w) = 0.

4.3 Generalized Hartog’s triangle in C
n

The domain H = {(z1, ..., zn) 2 C
n : |z1| < |z2| < ... < |zn| < 1} is the generalization of the

Hartog’s triangle to higher dimensions. We now compute its Bergman kernel.

Proposition 4.3.1. The Bergman kernel for H is given by

KH(z, w) =
(z2w̄2)(z3w̄3)...(znw̄n)

⇡n(z2w̄2 � z1w̄1)2...(znw̄n � zn�1w̄n�1)2(1� znw̄n)2
.

38



Proof. Let  : H ! D⇥ D
⇤ ⇥ ...⇥ D

⇤ be the map given by

 (z1, ..., zn) =

✓
z1

z2
,
z2

z3
, ...,

zn�1

zn
, zn

◆
.

This is a biholomorphism since the map � : D⇥D
⇤ ⇥ ...⇥D

⇤ ! H given by �(u1, ..., un) =

(u1u2...un, u2u3...un, ..., un) is an inverse to the map  . Note that det 0(z) = 1/(z2z3...zn).

Applying the transformation formula for biholomorphisms, we get

KH(z, w) =
1

z2z3...zn
KD⇥D⇤⇥...⇥D⇤

  
z1

z2
,
z2

z3
, ...,

zn�1

zn
, zn

! 
w1

w2
,
w2

w3
, ...,

wn�1

wn

, wn

!!
1

w̄2w̄3...w̄n

=
1

⇡n(z2w̄2)(z3w̄3)...(znw̄n)

1
⇣
1� z1w̄1

z2w̄2

⌘2 · · · 1
⇣
1� zn�1w̄n�1

znw̄n

⌘2
1

(1� znw̄n)2

=
(z2w̄2)(z3w̄3)...(znw̄n)

⇡n(z2w̄2 � z1w̄1)2...(znw̄n � zn�1w̄n�1)2(1� znw̄n)2
.

This proves the result.
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Chapter 5

Ramadanov’s theorem

5.1 Some versions of Ramadanov’s theorem

Ramadanov’s theorem, roughly speaking, tells us that if we have a sequence of domains

D
j in C

n which converges in a certain sense to the domain D, then the Bergman kernels

KDj will also converge to KD. There are di↵erent versions of this theorem which deal with

di↵erent types of convergence of the domains. In this section we will look at two versions of

Ramadanov’s theorem. The first is the original form [16] given by Ramadanov himself.

Theorem 5.1.1. Let D
1 ⇢ D

2 ⇢ · · · be an increasing sequence of bounded domains in

C
n and let D = [1

j=1D
j. Suppose that D is also bounded. Then KDj ! KD uniformly on

compact subsets of D ⇥D.

We shall now prove a di↵erent version of Ramadanov’s theorem and modify the proof to

prove the original version. The following version appeared in [1].

Theorem 5.1.2. Let D be a domain in C
n which is star-convex with respect to the origin

and has non vanishing Bergman kernel along the diagonal. Suppose that Dj is a sequence of

domains in C
n all of which contain the origin and have non vanishing Bergman kernel along

the diagonal. Further suppose that the sequence Dj converges to D in the following way:

1. if K ⇢ D is compact, then K ⇢ D
j for j su�ciently large and
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2. for every ✏ > 0 there exists j✏ 2 N such that Dj ⇢ (1 + ✏) ·D for all j � j✏.

Then KDj ! KD uniformly on compact subsets of D ⇥D.

Proof. Let D0 ⇢⇢ D be a relatively compact subdomain of D. For su�ciently large j, we

have D0 ⇢ D
j. Therefore we have for z, w 2 D0 and j large

|KDj(z, w)| 
p

KDj(z)
p
KDj(w) 

p
KD0(z)

p
KD0(w) .

This tells us that KDj (j large) is uniformly bounded on compact subsets of D0 ⇥ D0. By

Montel’s theorem we get a subsequence KDjr which converges uniformly on compact subsets

of D0 ⇥ D0. By taking a compact exhaustion of D, we can get a subsequence which we

again denote by KDjr which converges uniformly on compact subsets of D ⇥ D. Call this

limit function as K1. Observe that K1(z, w) is holomorphic in z and anti holomorphic in

w. We will now show K1 = KD using the minimum integral property of Bergman kernel

from Theorem 2.3.1. Let w 2 D, note that for jr large, we have w 2 D
jr ⇢ 2D. It follows

that KDjr (w) � K2D > 0. This implies that K1(w) > 0. By Fatou’s lemma

Z

D0

�����
K1(z, w)

K1(w)

�����

2

dVz  lim inf
r!1

Z

D0

�����
KDjr (z, w)

KDjr (w)

�����

2

dVz

 lim inf
r!1

Z

Djr

�����
KDjr (z, w)

KDjr (w)

�����

2

dVz = lim inf
r!1

1

KDjr (w)
. (5.1)

We can find a further subsequence D
jrk such that Djrk ⇢

⇣
1 + 1

k

⌘
D. Therefore

K
D

jrk � K�
1+ 1

k

�
D
.

By (5.1), we get

Z

D0

�����
K1(z, w)

K1(w)

�����

2

dVz  lim inf
r!1

1

KDjr (w)
 lim inf

k!1

1

K
D

jrk (w)
 lim inf

k!1

1

K�
1+ 1

k

�
D
(w)

. (5.2)
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Let f 2 A
2(D) with f(w) = 1. For k large, define

gk :
⇣
1 +

1

k

⌘
D ! C , gk(z) =

f

 
z

1 + 1/k

!

f

 
w

1 + 1/k

! .

Note that gk(w) = 1 and

Z

(1+ 1
k )D

|gk(z)|2dVz =
(1 + 1/k)2n
���f
⇣

w

1 + 1/k

⌘���
2

Z

D

|f(⇣)|2dV⇣ .

Now by Theorem 2.3.1, we get

1

K�
1+ 1

k

�
D
(w)

 (1 + 1/k)2n
���f
⇣

w

1 + 1/k

⌘���
2

Z

D

|f(⇣)|2dV⇣ . (5.3)

Taking lim inf on both sides and plugging it back in (5.2), we get

Z

D0

�����
K1(z, w)

K1(w)

�����

2

dVz  lim inf
k!1

(1 + 1/k)2n
���f
⇣

w

1 + 1/k

⌘���
2

Z

D

|f(⇣)|2dV⇣ =

Z

D

|f(⇣)|2dV⇣ .

As D0 is an arbitrary relatively compact subdomain of D, we get

Z

D

�����
K1(z, w)

K1(w)

�����

2

dVz 
Z

D

|f(⇣)|2dV⇣ . (5.4)

Theorem 2.3.1 now implies K1 = KD. Now suppose z, w 2 D and KDj(z, w) does not

converge to KD(z, w), then there exists a subsequence KDjs (z, w) which converges but not

to KD(z, w). Using the above procedure we can find a subsequence of KDjs which converges

uniformly on compact subsets to KD, which is a contradiction. This implies KDj converges

pointwise toKD. Using 2.1.9, we getKDj ! KD uniformly on compact subsets ofD⇥D.

Proof of Theorem 5.1.1. We shall adapt the proof of the above theorem to prove this theo-

rem. We obtain (5.1) by reasoning just like in the above theorem. The next step is much
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simpler in this case. Note that Djr ⇢ D for all r. So we get

Z

D0

�����
K1(z, w)

K1(w)

�����

2

dVz  lim inf
r!1

1

KDjr (w)
 1

KD(w)
. (5.5)

But 1/KD(w) is the minimal squared norm of the elements in {f 2 A
2(D) : f(w) = 1}.

Therefore again by Theorem 2.3.1, we get K1 = KD. The rest of the proof is same as in

the above theorem.
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Chapter 6

Pinchuk’s Scaling method and

Boundary behaviour of the Bergman

kernel

Definition 6.0.1. The Siegel upper half-space (also called unbounded realization of unit ball)

in C
n is the domain

H1 = {(z0, zn) 2 C
n | 2Re zn < �|z0|2}

where z
0 = (z1, ..., zn�1) 2 C

n�1.

Consider the map

�(z0, zn) =

 p
2z0

1� zn
,
1 + zn

1� zn

!
(6.1)

defined on the Siegel upper half-space. This map is a biholomorphism onto the unit ball in

C
n. Note that it sends the point (00,�1) to the origin.

6.1 Scaling Method

Let D ⇢⇢ C
n be a smoothly bounded strictly pseudoconvex domain. Let p 2 @D. After

doing a change of coordinates around p we can shift p to the origin and get a global defining
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function for D of the form

r(z) = 2Re zn + |z0|2 + ✏(z)

where ✏(z) = o(|z0|2, |z1|). Suppose we have a sequence pj = (00,��j) where each �j is

positive and �j ! 0, i.e pj converges to p along the real normal to @D. For each j, consider

the change of coordinates

z
0 =
p
�jez0 and zn = �j ezn .

Note that this sends the point aj to (00,�1). Dropping the tildes, we get that a defining

function in the new coordinates is

r
0
j
(z) = 2�j Re zn + �j|z0|2 + ✏(

p
�jz

0
, �jzn) .

Dividing by �j, we get the equivalent defining function

rj(z) = 2Re zn + |z0|2 +
✏(
p
�jz

0
, �jzn)

�j
. (6.2)

The above defining function gives us a new domain Dj biholomorphic to D. Note that

rj converges uniformly on compact subsets of Cn to the defining function of H1. Since

the defining function of Dj converges uniformly on compact subsets of Cn to the defining

function of the H1, we can deduce that the domains Dj converge to the Siegel upper half

space in the local Hausdor↵ sense. Let us denote the maps corresponding to the change of

coordinates as {�j} i.e �j(z0, zn) =
�
z
0
/
p
�j, zn/�j

�
. Then by the transformation formula

we get KD(pj) = KDj(0,�1)��(n+1)
j

and so KD(pj)�
n+1
j

= KDj(0,�1). Thus the problem

of studying KD(pj) is reduced to the problem of studying KDj(0,�1). Obseverve that the

former is a boundary problem whereas the latter is an interior problem. So to summarize

what we have done, we constructed us a sequence of biholomorphisms {�j} on D such that

the sequence �j(D) = Dj converges to the Siegel upper half-space. This allowed us to

reduce a boundary problem to an interior problem. This procedure which is used to convert

boundary problems to interior problems is called the scaling method. The scaling method is

due to Pinchuk ([14],[15]).

In the above case, we only worked with sequences converging along the normal direction.

To carry out the scaling method for arbitrary sequences we first prove the following lemma

from [14].

Lemma 6.1.1. Let D ⇢⇢ C
n be a smoothly bounded strictly pseudoconvex domain with
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smooth global defining function ⇢, and p0 is an arbitrary point of @D. Then there are a

neighborhood U of p0 and a family of biholomorphic mappings {h⇣} from C
n to C

n, depending

continuously on ⇣ 2 @D \ U satisfying the following conditions:

1. h
⇣(⇣) = 0.

2. The defining function ⇢⇣ = ⇢ � (h⇣)�1 of the domain D
⇣ = h

⇣(D) has the form

⇢
⇣(z) = 2Re(zn +K

⇣(z)) +H
⇣(z) + ↵

⇣(z)

where

↵
⇣(z) = o(|z|2) , K

⇣(z) =
nX

j,k=1

ajk(⇣)zjzk , H
⇣(z) =

nX

j,k=1

bjk(⇣)zjzk

with K
⇣(z0, 0) ⌘ 0 and H

⇣(z0, 0) ⌘ |z0|2.

3. The mapping h
⇣ takes the real normal n⇣ to @D at the point ⇣ into the real normal

{z0 = Im zn = 0} to @D⇣ at the origin.

Proof. The gradient of ⇢ at ⇣ 2 @D given by

r⇢(⇣) = 2

 
@⇢

@z̄1
(⇣), ...,

@⇢

@z̄n
(⇣)

!

is perpendicular to T⇣(@D). Hence n⇣ = {z 2 C
n : z = ⇣ + tr⇢(⇣), t 2 R}. Without loss of

generality we may assume that

@⇢

@zj
(p0) = 0 for j = 1, 2, ..., n� 1 and

@⇢

@zn
(p0) 6= 0 (6.3)

For each ⇣ 2 @D \ U we will represent the mapping h
⇣ as a superposition of simpler map-

pings. We interpret ⇢⇣ and D
⇣ respectively as the function ⇢ and the domain D in the new

coordinates h⇣(z). Motivated by the equations

⇢(z) = 2Re

 
nX

j=1

@⇢

@zj
(⇣)(zj � ⇣j)

!
+ o(|z � ⇣|) (6.4)
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and

h
⇣(n⇣) = {z 2 C

n : z = t(00, 1), t 2 R} (6.5)

we make the following change of coordinates

z
⇤
j
=

@⇢

@z̄n
(⇣)(zj � ⇣j)�

@⇢

@z̄j
(⇣)(zn � ⇣n) for j = 1, ..., n� 1

z
⇤
n
=

nX

j=1

@⇢

@zj
(⇣)(zj � ⇣j) .

(6.6)

By (6.3) this transformation is an automorphism of Cn for all ⇣ in @D\U , if the neighbor-

hood U is su�cently small . Also it can be directly verified that ⇣ gets mapped to the origin,

the real normal to @D⇣ at the origin is the Re zn axis and (6.5) is satisfied i.e conditions 1

and 3 are satisfied. To satisfy the condition 2, we make some further transformations.

The domain D has the defining function

⇢(z) = 2Re
⇣
zn +

nX

j,k=1

ajk(⇣)zjzk
⌘
+H

⇣(z) + ↵
⇣(z) (6.7)

in the new coordinates (*s have been dropped). Let us again make a change of coordinates

z
⇤
j
= zj for j = 1, ..., n� 1 and z

⇤
n
= zn +

n�1X

j,k=1

ajk(⇣)zjzk

This is a biholomorphic change of coordinates because it has the inverse

zj = z
⇤
j
for j = 1, ..., n� 1 and zn = z

⇤
n
�

n�1X

j,k=1

ajk(⇣)z
⇤
j
z
⇤
k

Substituting we get the expression of the defining function is

⇢(z⇤) = 2Re
⇣
z
⇤
n
+

X

j=n or k=n

a
⇤
jk
(⇣)z⇤

j
z
⇤
k
+ higher order terms

⌘
+H

⇣(z) + ↵
⇣(z)

Dropping the *s we get that in these coordinates the domain D has the form as in (6.7)

with ajk(⇣) = 0 whenever j, k = 1, ..., n � 1. Also note that this transformation keeps the

Re zn axis fixed. It only remains to arrange H
⇣(z0, 0) ⌘ |z0|2. As D is strictly pseudoconvex
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and because the complex tangent space at ⇣ is given by zn = 0 in the present coordinates,

the form H
⇣(z0, 0) is positive definite on C

n�1. So it gives us an inner product on C
n�1

and we can use Gram-Schmidt process to get an orthonormal basis with respect to the form

H
⇣(z0, 0). Therefore we can find an complex linear transformation P⇣ of Cn which fixes the

zn axis and is such that P ⇤
⇣
�H⇣ � P⇣ acting on C

n�1 gives us the Euclidean inner product.

So if we make the change of coordinates P⇣z
⇤ = z, in the new coordinates H⇣(z0, 0) ⌘ |z0|2.

Also note that this transformation preserves the previously constructed properties. So with

the combination of all of these transformations we achieve 1, 2 and 3.

Now we have the tools to carry out scaling method for arbitrary convergence. As before

we let D ⇢⇢ C
n be a smoothly bounded strongly pseudoconvex domain and p 2 @D, further

we take a sequence {pj} in D which converges to p. Let ⇣j be the point on @D which is of

minimum distance from pj. Because D is smoothly bounded the existence of such a point

is guaranteed, further ⇣j converges to p. The above lemma supplies us with maps h⇣j which

we denote by h
j. By condition 3 of the lemma h

j(pj) = (00,��j) where �j is a sequence of

positive numbers that goes to 0. Just like in the case of normal convergence, we now apply

the transformations {�j}, where �j(z0, zn) =
�
z
0
/
p
�j, zn/�j

�
. We denote (�j �hj)(D) as Dj.

Note that pj is sent to (00,�1) by this transformation. Dj will have defining function

⇢
j(z) = 2Re

 
�jzn + 2�jzn

n�1X

µ=1

aµ,j

p
�jzµ + an,j(�jzn)

2

!
+H

j(
p
�jz

0
, �jzn) + ↵

j(
p
�jz

0
, �jzn)

(6.8)

where

↵
j(z) = o(|z|2) , H

j(z) =
nX

µ,⌫=1

bµ⌫,jzµz⌫ with H
j(z0, 0) ⌘ |z0|2 .

More explicitly

H
j(
p
�jz

0
, �jzn) = �j|z0|2 + 2Re

 
�jzn

n�1X

µ=1

bµ,j

p
�jzµ

!
+ bn,j�

2
j
|zn|2 .

If we divide ⇢j by �j, we still get a defining function for Dj(we continue to denote it by ⇢j).

So dividing, we get
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⇢
j(z) = 2Re

 
zn + 2

p
�jzn

n�1X

µ=1

aµ,jzµ + an,j�jz
2
n

!
+ |z0|2

+ 2Re

 
p
�j z̄n

n�1X

µ=1

bµ,jzµ

!
+ bn,j�j|zn|2 +

↵
j(
p
�jz

0
, �jzn)

�j
. (6.9)

The coe�cients and the function ↵j in above expression vary continuously on @D, hence the

above function converges to the defining function of H1 uniformly on compact subsets of Cn.

So we get a sequence of biholomorphisms  j = �j � hj from D to Dj where  j(pj) = (0,�1)

and Dj converges to the Siegel upper half space in the Hausdor↵ sense. This completes the

scaling method for arbitrary sequences.

Two applications of the scaling method will be discussed in this chapter, one will be a

proof of Wong-Rosay theorem and the other will the be boundary behaviour of the Bergman

kernel. The latter will be discussed in the next section. The Wong-Rosay theorem gives a

su�cient condition for a domain to biholomorphically equivalent to the unit ball. Pinchuk

gave a proof of the Wong-Rosay theorem using the scaling method in [15]. We close this

section by giving the statement of Wong-Rosay theorem.

Theorem 6.1.2. Let D ⇢⇢ C
n be a domain which has smooth boundary and is strictly

pseudoconvex near the point p 2 @D. Suppose there exists a point p0 2 D and a sequence �j

of automorphisms of D such that �j(p0) converges to p. Then D is biholomorphic to the the

unit ball Bn.

6.2 Boundary behaviour of the Bergman kernel

Suppose D ⇢⇢ C
n is a smoothly bounded strongly pseudoconvex domain and that p 2 @D.

Without loss of generality we may assume that p = 0 and that D has a global defining

function of the form

r(z) = 2Re zn + |z0|2 + ✏(z)

where ✏(z) = o(|z0|2, |z1|). Now let pj be a sequence in D that converges to p. Consider

the following question: what is the behavior of the sequence KD(pj)? We will answer this

question using the scaling method. By transformation formula we have

KD(pj) = KDj(0,�1)
�� det(�j � hj)

0(pj)
��2 = KDj(0,�1) ��(n+1)

j
| deth0

j
(pj)|2 . (6.10)
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It can be checked that h0
j
(pj) ! I. Moreover �D(pj)/�j ! 1 where �D(z) is the distance of

z to the boundary of D. Now from Ramadanov’s theorem it follows that

KD(pj)�D(pj)
n+1 ! KH1(0,�1) =

n!

⇡n2n+1
.

This gives us the following theorem.

Theorem 6.2.1. If D ⇢⇢ C
n is a smoothly bounded strongly pseudoconvex domain, then

KD(z) v �D(z)
�(n+1)

near the boundary of D, where �D(z) is the distance of z to the boundary of D.
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Chapter 7

Condition R and Bell’s proof of

Fe↵erman’s theorem

Using the Bergman kernel and metric, Fe↵erman proved that biholomorphisms between

two strongly pseudoconvex domains extend smoothly up to the boundary [11]. This was a

breakthrough work which had a big impact in the field. Bell and Ligocka defined a property

called condition R, using which they generalized Fe↵erman’s theorem and simplified its proof

[3]. In this chapter, we give a sketch of this proof and we refer the reader to [6] for more

details.

7.1 Sobolev spaces

In this section certain class of Sobolev spaces are defined and some of their properties are

stated.

Definition 7.1.1. Let s be a positive integer and D be a bounded domain in R
N , we define

the Sobolev space W
s(D) to be the space of all functions u in L

2(D) such that the weak

derivatives upto order s exist and D
↵
u 2 L

2(D) for all |↵|  s. W
s(D) forms a Hilbert

space with inner product given by

(u, v)s =
X

|↵|s

Z

D

D
↵
uD↵v .
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Consequently the norm is given by

||u||2
s
=
X

|↵|s

||D↵
u||2

L2(D) .

We denote the closure of C1
0 (D) in W

s(D) by W
s

0 (D). If D is a domain in C
n, then we

denote W s(D)\O(D) by H
s(D). Also H

1(D) is defined as C1(D)\O(D). The following

lemma is called Sobolev’s Embedding lemma.

Lemma 7.1.1. Suppose D is a smooth bounded domain in C
n. Then for s 2 N, we have

W
s+n(D) ⇢ C

s(D)

and

sup
|↵|s,⇠2D

|D↵
f(⇠)|  c ||f ||W s+n(D) for all f 2 W

s+n(D) .

As a corollary of above lemma we get C1(D) = \s2NW
s(D) and H

1(D) = \s2NH
s(D).

Lemma 7.1.2. For smoothly bounded domains D ⇢⇢ R
N , if f is in C

1(D) and vanishes

up to order s � 1 on the boundary (i.e D
↵
f(⇠) = 0 for |↵|  s� 1 and ⇠ 2 @D), then f 2

W
s

0 (D).

7.2 Proof of Fe↵erman’s theorem

Proposition 7.2.1. Let D be a smooth bounded domain in C
n. Let us denote KD by K and

PD by P for brevity. Then the following conditions are equivalent.

1. P maps C
1(D) into H

1(D).

2. For each s 2 N, there exists a non-negative integer m = m(s) such that P is bounded

from W
s+m

0 (D) to H
s(D).

3. For each multi-index ↵, there are constants c = c↵ and m = m↵, such that

sup
z2D

����
@
↵

@z↵
K(z, w)

����  cd(w)�m
,
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where d(w) is the distance from w to @D.

Definition 7.2.1. A smooth bounded domain is said to satisfy condition R if it satisfies any

of these equivalent criteria.

We skip the proof of this proposition. Condition R holds for bounded strongly pseudon-

convex domains. Before we get to the main theorem, we state one more lemma.

Lemma 7.2.2. Let f : D1 ! D2 be a biholomorphic map between two smooth bounded

pseudoconvex domains. Then for any s 2 N, there is an integer j = j(s) such that the

mapping � 7! det f 0 · (� � f) is bounded from W
s+j(s)
0 (D2) to W

s

0 (D1).

Theorem 7.2.3. Let D1 and D2 be two smooth bounded pseudoconvex domains in C
n (n � 2)

which satisfy condition R (in particular they are both strongly pseudoconvex). Suppose

f : D1 ! D2 is a biholomorphism, then f extends smoothly to the boundary.

Proof. Let s 2 N and u = det f 0. Since condition R holds on D1, there exists m(s) such

that P1 maps W
s+m(s)
0 (D1) boundedly into H

s(D1). We can show that there exists g 2
W

s+m(s)+j

0 (D2) such that P2g ⌘ 1, where j = j(s +m(s)) is chosen as per previous lemma.

Applying Proposition 2.5.2, we get u = P1

�
u · (g � f)

�
. But the previous lemma implies

u · (g � f) 2 W
s+m(s)
0 (D1). By condition R, we get u 2 H

s(D1). As s was arbitrary, by

Lemmma 7.1.1 we get u 2 C
1(D1). Similarly we can show det(f�1)0 2 C

1(D2). Therefore

the chain rule will imply that u does not vanish over D1.

We may choose gk 2 W
s+m(s)+j

0 (D2) such that P2gk is the k-th coordinate function on D2.

Repeating above arguments, we get u · fk = P1

�
u · (gk � f)

�
is in C

1(D1). We have already

seen that u 2 C
1(D1) and that u is non vanishing on D1. Hence we get fk 2 C

1(D1) for

k = 1, 2, ..., n. Thus f 2 C
1(D1). This proves the theorem.
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Chapter 8

Domains with Finite Dimensional

Bergman Space

Recall that bounded domains have infinite dimensional Bergman space as all polynomials are

square integrable. Also we have seen in Remark 2.1.3 that A2(Cn) = {0}. So it is natural to

ask do there exist domains in C
n which have finite dimensional non-trivial Bergman spaces.

The answer to this question was given by Wiegerinck in [19]. He showed that such domains

do not exist in the complex plane but do exist in C
n for n � 2.

8.1 Reinhardt domains in C
2
with k-dimensional Bergman

space

We will prove the following theorem from [19] in this section.

Theorem 8.1.1. For every k > 0 there exists a Reinhardt domain in C
2 with k-dimensional

Bergman space.

To prove this theorem we will explicitly construct required domains in several steps.

These constructions can be generalized to higher dimensions. We start by defining the

54



following domains

D1 =

⇢
(z, w) 2 C

2 : |w| < 1

|z| log |z| , |z| > e

�
,

D2 =

⇢
(z, w) 2 C

2 : |z| < 1

|w| log |w| , |w| > e

�
,

and let

D = D1 [D2 [
�
(z, w) 2 C

2 : |z| < 2e, |w| < 2e
 
.

Lemma 8.1.2. The only monomials contained in A
2(D) are those of the form az

k
w

k, where

a 2 C and k is a non-zero integer.

Proof. Observe that by use of polar coordinates we get

Z

D1

|z|2p|w|2qdV = (2⇡)2
Z 1

r1=e

Z 1
r1 log r1

r2=0

r
2p+1
1 r

2q+1
2 dr2 dr1

= 4⇡2

Z 1

e

r
2p�2q�1
1

(log r1)2q+2
dr1 . (8.1)

If p > q, then by applying l’Hôpital’s rule we can see the integrand goes to infinity and so

the integral cannot be finite. Note that

Z 1

e

1

x(log x)2
=

"
�1

log x

#1

e

= 1 .

If p  q, then the integrand in (8.1) will be dominated by 1/
�
r1(log r1)2

�
. The above

calculation tells us that in this case the integral in (8.1) will be finite. So we get azpwq 2
A

2(D1) i↵ p  q. Similarly if we integrate over D2, we will get az
p
w

q 2 A
2(D1) i↵ q  p.

Thus azpwq 2 A
2(D) i↵ q = p. This proves the lemma.

Next we enlarge D in the direction |z| = |w| to eliminate monomials of higher degree.

Let

Hm =

(
(z, w) : |z|+ |w| > 2,

���|z|� |w|
��� <

1

(|z|+ |w|)m

)
and Dk = D [H4k

for k 2 N. We will eventually show that Dk has k-dimensional Bergman space and this will
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prove the theorem. But first we need to prove the following lemma.

Lemma 8.1.3. The monomial zpwp will be contained in A
2(Dk) i↵ p < k.

Proof. Let B =

(
(r1, r2) : ri > 0, r1 + r2 > 2, |r1 � r2| <

1

(r1 + r2)4k

)
. Now consider

||zpwp||2
H4k

=

Z

H4k

|z|2p|w|2pdV = (2⇡)2
Z

B

r
2p+1
1 r

2p+1
2 dVr . (8.2)

We now make the change of variables r1 + r2 = t and r1 � r2 = s. More precisely, let

A =
�
(t, s) : t > 2, �1/t4k < s < 1/t4k

 
. The map g : B ! A defined by g(r1, r2) =

(r1 + r2, r1 � r2) and the map f : A ! B defined by f(t, s) =
�
(t + s)/2, (t � s)/2

�
are

di↵eomorphisms which are inverses of each other. Note that | det f 0| = 1/2. Now applying

the change of variable formula we get that ||zpwp||2 is equal to

4⇡2

Z

A

1

2

✓
t
2 � s

2

4

◆2p+1

dV =
2⇡2

42p+1

Z 1

t=2

Z 1/t4k

s=�1/t4k
(t2 � s

2)2p+1
ds dt . (8.3)

After expanding and simplifying using binomial theorem, we can show that this integral

converges i↵ p  k � 1 which proves the lemma.

We are now ready for the proof the theorem.

Proof of Theorem 8.1.1. As we have already mentioned we will prove that Dk has a k dimen-

sional Bergman space. Let f 2 A
2(Dk). As Dk is a connected Reinhardt domain, f has a

Laurent series expansion in Dk. Also since Dk contains the origin, it will have a power series

expansion allowing us to extend f to the smallest complete Reinhardt domain containing Dk

which is clearly C
2. So we have a power series

P
p,q

apqz
p
w

q which converges throughout C2

and agrees with f on Dk. Observe that this power series converges uniformly on compact

subsets of C2. Now

||f ||2
Dk

�
Z

Dk\B(0,R)

|f |2dV =
X

p,q

|apq|2
Z

Dk\B(0,R)

|z2pw2q| dV (8.4)

where B(0, R) denotes the ball of radius R around the origin. Letting R ! 1, the previous

lemmata gives us that apq = 0 unless p = q < k. Hence f =
P

k�1
j=0 ajz

j
w

j. So the monomials

{1, zw, ..., (zw)k�1} form a basis for A2(Dk). This proves the theorem.
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