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Abstract

Two elements in a group G are said to be in the same z-class or z-equivalent if their central-
izers are conjugate in (G. This is an equivalence relation on GG and provides a partition of
G into disjoint equivalence classes. The structure of centralizers and their conjugacy classes
provides important insight into the group structure. Although z-equivalence is a weaker
relation than conjugacy, it is interesting to note that there are infinite groups which have in-
finitely many conjugacy classes but fintely many z-classes. In fact, the finiteness of z-classes
in algebraic groups and Lie groups is an interesting problem. We have studied the structure
of z-classes for symmetric groups S, general linear groups GL,,(F) and general affine groups
G A, (F) and have proven that there are finitely many z-classes, for n > 5 in S,, and when
F has finitely many extensions, in the latter cases. We also investigate the idea that there
is a relation between the finiteness of z-classes and and the intuitive understanding of the

finiteness of “dynamical types” of transformations in geometry through group actions.
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Introduction

Let G be a group. Two elements x,y € G are said to be z-equivalent if their centralizers
Za(x), Z5(y) are conjugate in G. The problem of characterizing z-classes and explicitly
counting them has been studied for various groups. Since they require deep understanding
of the structures of conjugacy classes in addition to the structure of centralizers, these are
important problems to study, giving us great insight into the group structure. We further
note that the non-triviality of these strutures is what makes these problems interesting, and
in that spirit, we persevere to understand the conditions under which such structures occur.
The existence of instances where an infinite group has finitely many z-classes has been used
by Kulkarni to provide the rudimentary notion of “dynamical types” and their relation to
z-classes [SK07]. Expanding in this direction, the z-classes of real hyperbolic isometries have
been classified and counted by Gongopadhyay and Kulkarni [GK09a].

Another perspective on this problem was provided through Steinberg’s theorem [Ste74] that
proved the finiteness of z-classes in reductive algebraic groups over a field of good charac-
terstic, allowing one to explore the assumptions on a field F under which a group defined
over this field has finitely many z-classes. This has motivated further exploration of ideas of
finiteness of z-classes in various other groups.

Bhunia, Kaur and Singh have determined the number of z-classes in symmetric groups and
alternating groups and their relation to restricted partitions in [BKS17]. In the case of gen-
eral linear maps and affine maps, Kulkarni [Kul07] has shown the conditions the underlying
field must comply to for these groups to have finitely many z-classes. Using the fact that the
number of z-classes is invariant for a family of isoclinic groups, Kulkarni, Kitture and Jad-
hav [KKJ16] have obtained bounds for the number of z-classes in certain families of groups,
following which Dattatreya and Jadhav [DJ14] have determined the number of z-classes in
p-groups of order < p°. Gongopadhyay and Kulkarni [GK09b] have parametrized z-classes
in the group of isometries and determined that they are finite when the undelying field is

perfect and has finitely many extensions. |[Gonl3] provides a unified approach to the deter-
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mination of the conjugacy classes of centralizers in hyperbolic geometries. Gouraige [Gou06]
studied z-classes in central simple algebras, Singh [Sin08] in G, Bhunia [BS19] in unitary

groups and Bhunia and Singh [Bhul9] in upper triangular matrices .



Chapter 1
Definitions and Examples

Let G be a group. We begin by defining when two elements in G are in the same z-class
and show that z-equivalence is a weaker relation than conjugacy. We will also look at some

examples in this chapter.

1.1 Definitions

Given a group G, two elements g, g, € G are conjugate in G, if
3t € G such that tg;t™! = gs.

Proposition 1.1.1. Conjugacy is an equivalence relation.

Proof. Tt is symmetric due to the existence of inverses in G, reflexive as the identity belongs

to G and closure of GG ensures transitivity. O

For an element g € G, centralizer of g in G, denoted as Z5(g) is all those elements in G
that commute with g.
Za(g) ={r € G | zg = ga}.

For a group G, two elements g1, g are z-equivalent if their centralizers are conjugate subgroup
within G, i.e., if
3t € G such that tZ5(g1)t " = Z5(g2).

z-equivalence is an equivalence relation on GG and represents the conjugacy classes of cen-
tralizer subgroups of GG. These equivalence classes are called z-classes or centralizer classes.

The proof for equivalence is similar to the proof for Proposition [I.1.1]
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Proposition 1.1.2. If two elements are conjugates, then they are z-equivalent.

Proof. Given 3t € G such that g, = tgit~*, we need to show that 3 k € G such that
Z6(g2) = kZa(g1)k™

Let © € Z5(g2) = 292 = gox

= xtglt_l = tglt_lx

= t’lxtgl = gltflsct

=t ot € Zg(q1)

=z € tZq(q)t "

= Za(ge) CtZa(g)t™

Let y € ZG(91) = 1Y = Yg1

G(tyt ™) = tgit Myt = tygit ' = tyt Htgt ) = tyt ' ge
= tyt_l € Za(g9)
= tZa(g)t™" C Za(ge)

S Za(g2) = tZa(g)t™! u
However, the converse need not true. In fact, z-equivalence is a weaker relation than

conjugacy.

1.2 Examples

Example 1.2.1. Abelian group A = {as,...,a,}

There are n conjugacy clases in A:

{a1}, ..., {an}

ZA((ZZ-) =A VYa; € A

There is one z-class in A:

{A}



This example shows us that z-equivalence is a weaker relation. Further, since Abelian

groups have only one z-class, we focus on studying the z-classes of non-Abelian groups.

Example 1.2.2. S5 = {1,(12), (13), (23), (123), (132)}

There are three conjugacy classes in Ssz:

{1},{(12), (13), (23)}, {(123), (132)}

Zs,((12)) = {1, (12)}
Z5,((123)) = {1, (123), (132)}

There are three z-classes in Ss:

{1},{(12), (13), (23)}, {(123), (132)}

Remark. For the symmetric groups S3 and S4, the z-classes are same in number as the
number of conjugacy classes. However this is not true for n > 5. For n = 5, the elements
(12)(345) and (345) are z-equivalent but they are not conjugates. We will elaborate on this
in Chapter 2.

Example 1.2.3. Qg = {£1,+i,+j,+k | * = 2 = k* = —1,ij = —ji = k, jk = —kj =
i, ki =—ik = j}

There are five conjugacy classes in QQg:

{1}7 {_1}7 {:l:’L}, {:l:]}v {:l:k}

ZQS(_l) = QS

ZQs(:l:i) = {1, i}
Zqs (%)) = {1, 15}
Zo,(4k) = {41, 1}

There are four z-classes in Qg:
{1}, {=£i}, {+5} {£k}
Example 1.2.4. Dy, = (r,s|r" = s> = 1,rs = sr™!)
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The number of conjugacy classes and z-classes is dependent on whether n is odd or even.

The conjugacy classes in Dy, are as follows:

1. If n is odd, there are ”TH conjugacy classes.

e the identity element: {1},

n—1 ; ; . +3 s n—1
e 5= conjugacy classes of size 2: {r*'} fori=1,..., "5,

e all the reflections : {sr' | 0 <i<n—1}.

n+6

2. If n 1s even, there are = conjugacy classes.

e two conjugacy classes of size 1: {1},{r2},

n

o o — 1 conjugacy classes of size 2: {r=} fori=1,... 21,

e the reflections fall into two conjugacy classes: {sr* |0 < i < 2 — 1} and

2
{sr 1] 0<i< % -1}
The z-classes in Ds, are as follows:

1. Ifn 1is odd,

Zp, () ={r"|i=0,...,n—1}, foranyj=0,....,.n—1
Zp,, (sr7) = {1,517}, for anyj=0,...,n—1

There are three z-classes:

L, {r|j=1,....n—=1}{sr’ | j=0,...,n—1}

2. If n is even

Zp, (M) ={r"|i=0,...,n—1}, foranyj=0,....,n—1,j# %
ZD%(srj):{1,srj,rg,57’j+%}, forany j=0,...,n—1

(a) When n is divisible by 4

There are four z-classes:

{177"%},{7”j |j:1a7n_17]7é%}7
{sr? |j=0,.... 5} {sr¥ | j=0,....5}
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(b) When n is not divisible by 4

There are three z-classes:

{luT%}v{Tj |j:17“'7n_17j7é%}7{57ﬂj |j:07’n_1}






Chapter 2
Conjugacy classes of G Ly (IF)

The general linear group GL,(F) is the set of n x n invertible matrices together with the
operation of matrix multiplication. In this chapter, we will discuss conjugacy classes of any
matrix A € Mat,,(IF) and since GL,,(F) is a subset, the same will apply for GL,(F). Further,
we will discuss some results we had assumed in Section 4.3., as discussed in [BR02]

Two n x n matrices A and B are conjugates when they are similar, i.e,
3 invertible matrix P € Mat,, (F) such that PB = AP

Thus, similarity is the same as conjugacy in GL,(F). We will discuss various results that
will help us determine simple representatives in each conjugacy class.

We also know that, given a vector space V' over the field [F, we can associate a matrix to every
linear map 7' : V — V. Suppose V is n-dimensional, then it has a basis {vy, va, ..., v,}. We
can determine the action of 7" by expressing each T'(v;) as a linear combination of the basis
elements and the scalars associated with each of these actions help determine the matrix A
associated with this linear transformation.

Finally, if V is a vector space over a field F and if T': V' — V is linear, then a subspace W
of V' is said to be T-invariant it T(W) C W, i.e.,

ifeeW="Tx) eW

2.1 Primary Decomposition Theorem

Theorem 2.1.1. If T : V — V is linear, then for every polynomial p € F|x], the subspaces
Im p(T) and Ker p(T) are T-invariant.



Proof. For every polynomial p, we have T o p(T) = p(T) o T.

If = p(T)(y), then T(x) = (T op(T))(y) = p(T)[T(y)]. We can clearly see that Im p(T) is
T-invariant.

Now, if p(T")(x) = Oy, then T'(p(T)(x)) = T'(0y) = 0y = T(p(T)) € Ker p(T). O

Suppose V' is n-dimensional, T : V' — V is linear and the subspace W of V' is T-invariant.

Then T induces a linear mapping T

T:W—W
w— T(w) =T(w) e W

Choose a basis {wy, ..., w,} of W and extend it to the following basis of V,
{wy, ..., w1, Uy

Let us consider the matrix of T relative to this basis. Since W is T-invariant, T'(w;) € W
and so Vi,
T(wl) = /\ilwl + -+ )\irwr + OUl + -+ OUn_T

A B
0 C
where A is the r X r matrix that represents the mapping induced on W by T

ItV = @le Vi, where each V; is T-invariant and if B; is a basis of V; V ¢, then the matrix
relative to the basis B = Ule B, is of the block diagonal form

This matrix is of the form

Ay
Ay

Ay,
in which A; is the matrix representing the mapping induced on V; by T, so A; is of size dim

Vix dim Vj.

Theorem 2.1.2. [Primary Decomposition Theorem] Let V' be a non-zero finite-dimensional

vector space over a field F and let T : 'V — V be a linear map. Let the characteristic and
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mainimal polynomials of T' be
or = pipst DR, mr = s py

repectively, where pi(z), ... ,pp(x) are distinct irreducible polynomials in Flz]. Then each
subspace V; = Ker p?'(T) is T-invariant and V = @F_, V;.
Further, if T; : V; — V; is the linear mapping that is induced on V; by T then the characteristic

polynomial of T; is pf" and the minimal polynomial of T; is p5*.

Proof. If k =1, this is trivial.
Suppose k> 2. Fori=1,...,k let

g =mr/p; = [}
J#i

No irreducible factor exists such that it is common to each ¢i,...,q: and so there exist
ai,...,a € Flx] such that
arqy + axqz + - -+ agq =1

Let us write ¢;a; = t; V 7, we get,
Ga(T) +6(T) + -+ (1) = idy (2.1)

By definition of ¢;. we have that if i # j then my divides ¢;q;. As a consequence, ¢;(T)q;(T) =
0 for ¢ # 7 and
ti(T)t;(T) =0 for i # j (2.2)

By Equations and , we can see that ¢;(7T) is a projection and

k
V=@ Im t(T)
=1

By Theorem each of the subspaces Im t;(T) is T-invariant. We need to now show that
Im ¢,(T) = Ker p;*(T).

Since pi'q; = my = p“(T)q;(T) = mp(T) =0 = pi'(T)q:(T)a;(T) = 0 = Im ,(T) C Ker
;' (1)
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Now, for the reverse inclusion,

i#j
= Ker p{'(T) C ﬂ Ker t;(T)
JFi
C Z Ker ¢;(T)
J#i
= Ker (id,, — t;(T")) by Equation
= Im ¢,(7T")

For the induced mapping 7; : V; — V;, let m; be its minimal polynomial. If p{*(T) is the
zero map on V;, then pii(7;) is the zero map as well. Then mg,|p;" = mr,|mr and my, are
relatively prime. Let g € F[z| be a multiple of my, V i. Then ¢(T;) is the zero map on V;.
For every x = Zle v; € @le = V;, we have

k k

9(T)(x) =Y g(T)(vi) = Y 9(Ti)(vi) = Oy

i=1 =1

So, g(T') = 0 = mr|g. We can see that my is the least common multiple of myy, ..., my,.
Since these polynomials are relatively prime, mp = Hle my,. We know that m, = Hle %
and mq, |p;*. Given all these polynomials are monic, then my, = p;* fori =1,... k.

We can put together a basis for V' using the bases of subspaces V; and the matrix of T with

respect to such a basis is of the block diagonal form

Ay
Ay

From the theory of determinants
k
det (xI — M) = Hdet (xI — A;)
i=1

We see that cp = Hle cr,. We know that myg, = pi* and since my, and cr, have the same

zeros, then cr, = pi* some r; > e;. Therefore [Ji_, pi* = cr = [[_, p% from which it follows
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that r; =d; forv=1,... k. O
Corollary 2.1.3. dim V; = d; deg p;

Corollary 2.1.4. If all the eigenvalues of T' lie in F, such that

cr = (x — Al)dl(x — /\2>d2 (= )\k)d’“
mr = (x — X))z — X)) ... (x — A\)

then V; = (Ker T'— \;jidy )% is T-invariant, of dimension d; and V = @?:1 1%

A special case of the Primary Decomposition Theorem is when each of the irreducible

factors p; of my is linear and e; = 1, i.e.,
mr = (x—A)(x— X)) ...(x — )

In this case, T': V — V is said to be diagonalisable if there is a basis of V' consisting of
eigenvectors of T', equivalently, if there is a basis of V' with respect to which the matrix of

T is diagonal.

Theorem 2.1.5. Let V' be a non-zero finite-dimensional vector space and let T :'V — V be

linear. Then the following statements are equivalent:
1. the minimal polynomial my of T is a product of distinct linear factors
2. T is diagonalisable
Proof. Suppose
mr = (x—A)(x—X2)...(x — A\g)

where A, ..., A\, are distinct elements in F. By Theorem [2.1.2] V is the direct sum of T-
invariant subspaces V; = Ker (T — \;idy).

vV x € V;, we have (T — Nidy)(z) = 0y = T'(xz) = \z. Each \; is an eigenvalue of T', every
non-zero element of V; is an eigenvector of T associated with \;. We can then put together
bases of Vi, ..., V) to form a basis for V. Then V has a basis consisting of eigenvectors of T’
and T is diagonalisable.

Conversely, let Aj, ..., \; be distinct eigenvalues of T. The mapping p(T") where

p=(x—=X)(x—X)...(x— )

13



maps every basis vector to Oy and as a consequence, p(7") = 0. The minimal polynomial my

must divide p and thus coincides with p since every eigenvalue of T is a zero of mr. O]

Remark. Although we will not prove this, it is interesting to note that two diagonalisable

linear mappings f,g:V — V are simultaneously diagonalisable iff fog=go f.

2.2 Triangular Form

We will now look at a more general situation where the minimal polynomial of T factorises

as a product of linear factor that are not necessarily distinct, i.e.,

where each e; > 1. This is always true when the underlying field is algebraically closed.

By Corollary 2.1.4, we can write V as a direct sum of the T-invariant subspaces V; =
Ker (T — N\idy;)¢. Let T; : V; — V; be the linear mapping induced on V; by T" and consider
the mapping T; — \;idy, : V; — V;. Then (T;— \;idy; )¢ is the zero map on V; and so T; — A;idy,

is nilpotent.

Theorem 2.2.1. Let V be a non-zero finite-dimensional vector space and let T : V — V be

a nilpotent linear mapping. Then there is an ordered basis {v,...,v,} of V such that

T(Ul) = OV
T'(v9) € Span {v:1}
T(v3) € Span {vy,v2}

T(v,) € Span {vy,...,vn_1}

Proof. Since T is nilpotent, there is a positive integer m such that 7™ = 0. Let us assume
T # 0. Then there is a smallest positive integer k such that T% = 0. Then T% # 0 for
1 <4 < k—1. Since TF~1 # 0, there exists v € V such that 7% 1(v) # Oy. Let v; = T*(v).
Then T'(v) = Oy. If we proceed recursively, we will be able to find vy, ..., v, satisfying the
conditions. Now, consider the subspace W =Span{vy,...,v.} and let W # V.

There now are two possibilities depending on whether Im 7" C W or Im 7' ¢ W, which we
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need to consider to show that {vy,...,v.} is a basis.

In the first case, let v, 1 be any element of V\WW. In the latter case, since we have the chain
Oy} =ImT*CIm T*'C...CImT*CIm T

there is a positive integer j such that Im 77 ¢ W and Im 797 C W. Choose v,41 € Im TV
with v,41 ¢ W. Then {v1,...,v,41} is linearly independent, with T'(v,,1) € W. O

Corollary 2.2.2. IfT :V — V s nilpotent then there is an ordered basis of V with respect

to which the matriz of T' is upper triangular with all diagonal entries 0.

Mat T; = Mat g; + \;Mat idy,

Ai a2 aiz ... Q1n

0 /\z ass ... Qo

0 0 O CLn—l,n
0 0 A

Theorem 2.2.3 (Triangular Form). Let V' be a non-zero finite-dimensional vector space
over a field F and let T -V — V be a linear mapping whose characteristic and minimal

polynomials are

for distinct \i,... .\ € F and e; < d;. Then there is an ordered basis of V' with respect to

which the matrix of T is upper triangular; more specifically, is a block diagonal matrix

Ay
Ay

15



in which A; is a d; X d; upper triangular matriz

)\7; *
0 N\
0 0 Ai

in which the entries marked x are elements of .

Now, if T": V — V is linear and every eigenvalue of 7" lies in ' , which is the ground field
of V', then each induced mapping on the T; on the T-invariant subspace V; =Ker (T — \;idy )

can be written in the form 7; = g; + \;idy;, where g; is nilpotent.

Theorem 2.2.4 (Jordan Decomposition). Let V' be a non-zero finite-dimensional vector
space over a field F and let T : V' — V be a linear mapping all of whose eigenvalues belong to
F. Then there is a diagonalisable linear mapping 6 : V — V and a nilpotent linear mapping
n:V =V such that T =6 +n and 6 on =nod. Moreover, there are polynomials p,q € F|x]
such that 6 = p(T) and n = q(T). Furthermore, § and n are uniquely determined.

Proof. The minimal polynomial of T is my = Hle(:v — \)% where A\,..., A\, € F are
distinct. Further, V = @le Vi where V; =(Ker T' — \;idy )®.

Let 0 : V — V be given by § = Zle Aip; where p; : V. — V is the projection on V;
perpendicular to > ., V;. Then for every v; € V;, we have §(v;) = (Z?zl Aip;) (v3) = Ni(v;)
and V has a basis consisting of eigenvectors of § = ¢ is diagonalisable.

Let n =T —9. Then V v; € V,,

n(v;) =T (v;) — 0(v;) = (T — Nidy ) (vy)
= n%(v;) = (T — Nidy )% (v;) = Oy

For some r, Ker " contains a basis of V', so n” = 0 and hence 7 is nilpotent.

Since V = @le V;, every v € V can be uniquely written in the form v = vy + - - - + v, with

16



v; € V;. Since each Vj is T-invariant, we have

pilT'(v)] = pi[T(v1) + - + T(vg)] = T(v;) = Tlpi(v)]
=pol'=Top; V1

k k
5OT=Z/\ipiOT:Z)\iTOpi
i=1 i=1

k
ZTOZ)\ipi:To(s
i=1

Now, by Theorem [2.1.2] we know that p; = t;(T). Then by definition, we have § = p(T),
where p = 3% | \it;. Since n = T — 6,3 ¢ € Fz] such that 5 = ¢(T).

Suppose 0',7 : V' — V are diagonalisable and nilpotent respectively, with 7' = §' + 7' and
§ on’ =n'o0d’. Now, we have just shown that, there are polynomials p, ¢ such that § = p(T)
andn=q(T)=0dod=dod andnon=non.

d+n=06+n=0-0=n—n. Further, ¥ — n is nilpotent and can be represented by a
nilpotent matrix N. Also, §’,0 commute and there is a basis of V' consisting of eigenvectors
of both ¢ and §’. Then each such eigenvector is an eigenvector § — 0’ is represented by a
diagonal matrix D.

Now, N and D are similar and then the only possibility N =D =0=0—-90 =7 —n =
0=d=0andn=n". ]

2.3 Jordan Canonical Form

The aim now is to find better bases for the subspaces that appear as the direct summands
in the Primary Decomposition Theorem.

If the linear mapping 7' : V' — V is nilpotent then the smallest positive integer k such that
Tk =0 is called the index of T.

Theorem 2.3.1. If T :V — V s linear then, for every positive integer i,
1. Ker T" CKer T
2. if v € Ker T"™, then T'(x) € Ker T"

Proof. 1. If z € Ker T" then T'(z) = 0y = T""(z) = T[T (x)] = T(0y) = Oy
o.ox € Ker T
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2. If z € Ker T then T'[T(z)] = T (z) = 0y = T(z) € Ker T".

Theorem 2.3.2. Let V' be a non-zero vector space over a field F and let T :'V — V be a

linear mapping that is nilpotent of index k. Then there is the chain of distinct subspaces

{oy} C KerTC KerT?C---C KerTF'c KerTF=1V.

Proof. First Ker T # {0y}, otherwise we would have T%~!(x) = 0y V 2 which is a contra-
diction.

As a result of Theorem [2.3.1], we just need to show that
Ker T" # Ker T" fori=1,...,k—1

Suppose 34 € {1,...,k — 1} such that Ker 7% =Ker T*"! .
Then, V x € V, we have
Oy = TH(z) = T TF D ()]

where TF= (41 (z) € Ker T = Ker T" and so
OV — Ti[Tk—(H-l) (l’)] — Tk_l(x)

This leads to a contradiction. O

A square matrix of the form

A1 0 . 0 0
0 X 1. 0 0
00 X . 0 0
000 ... X1
000 ... 0 A

in which all the diagonal entries are A and all the entries immediately above the diagonal
entries are 1, and all other entries are 0 is called elementary Jordan matriz associated with

Ael.
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A matrix of the form

Ji
Ja

Jk

where each J; is an elementary Jordan matrix associated with A and all other entries are 0

is called a Jordan block matrix.

Theorem 2.3.3. Let V' be a non-zero finite-dimensional vector space over a field F and let
T :V — V be linear and nilpotent of index k. Then there is a basis of V' with respect to

which the matriz of T' is a Jordan block matrix associated with the eigenvalue 0.
Proof. For i =0,...,k, let W; = Ker T%. We have the following chain,
{OV}:WOCW1CW2C---CWk_1CWk:V

Now, choose a basis B; of W; and extend this to a basis B, = B; U T, of W5 where

Ty C Wo\Wj and so on. Then By, = By UTy, U ---UT} is a basis of V.

Let T}, = {x1,...,24}. Then Theorem[2.3.2]gives us alinearly independent subset {T'(z1), ..., T(z4)}
of Wy_1. This set is disjoint from W},_5. Consider the set

Bi o U{T(x1),...,T(zs)}
This is linearly independent in W;_; and can be extended to the following basis of W},_4
Bio U{T(x1),....T(z0)} U{vr,...,ys}
where y; € Wiy Wi_o ¥V i. We have replaced T;_; in the basis By by
Ty = {T(21), ., (@)} Uy, ys}
We can similarly repeat this argument to construct a basis of Wj_5 of the form
Bi_3 U {T2(x1), . ,T2(aca)} U{T(y1),....T(ys)} U{z1,..., 2}

where z; € Wy _o\W},_3 V i. We have replaced Tj,_».

Continuing in this way, we can replace the basis By of V by the basis described in the
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following array:

T - x1, el T,

Tp1~~  T(xy), ..., T(za), 1, e Ya,

Tio~  T%x1), ..., T*za), T(n), .. T(yp), 21, ..y 2y
By~ TFYNzy), ..., T"Yza), TF%(y), ..., T 2(ys), @ ...... . Q-

Take the first column from the bottom, then the second column from the bottom and so
on, to order this basis of V. This matrix of T relative to the ordered basis is a Jordan block

matrix associated with the eigenvalue 0. O

An assumption we make for Theorem is that T is nilpotent. We will now attempt
to extend the scope of this theorem to when T is not nilpotent. We will assume that all the

eigenvalues of T lie in F.

Theorem 2.3.4 (Jordan Form). Let V' be a non-zero finite-dimensional vector space over
a field F and let T :V — V be linear. If \1, ..., \x are the distinct eigenvalues of T and if
each \; belongs to F then there is an ordered basis of V' with respect to which the matriz of

T is a block diagonal matrix
Ji
Ja

Ji

wm which J; is a Jordan block matriz associated with \;.

The proof for this theorem is similar to the proof of Theorem [2.3.3]

2.4 Rational Canonical Form

Jordan forms can be used only when all the irreducible polynomials in the minimal poly-
nomials are linear, which happens when the eigenvalues belong to the underlying field F.
We know that this occurs when F is algebraically closed. We will now look for a canonical
representation for any general case.

The additive group V/W along with the operation of multiplication by scalars which makes

the natural surjection map linear becomes a vector space over I is called the quotient space
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of V by W. The natural surjection map is defined as follows:

r—x+ W

Theorem 2.4.1. Let V' be a finite-dimensional vector space and let W be a subspace of V.
Then the quotient space VW is also finite-dimensional. Moreover, if {v1, ..., vy} is a basis
of W and {z1+ W, ...,z + W} is a basis of V/W then {v1, ..., 0m,21,..., 2k} is a basis of
V.

Proof. Let {x1 + W,...,z, + W} be any linearly independent subset of V/W. Then the
set {z1,...,2,} of coset representatives is a linearly independent subset of V. Suppose

Zle >\Zl‘z = Ov. Then,

p

Ovyw = tw(0v) = hw(z X)) = > Niftw (i) = Z Ai(zi + W)

i=1

and so \; = 0 Vi = p <dim V. Then, every linearly independent subset of V/W has at
most dim V' elements. Hence V/W is of finite dimensions.

Suppose {vy,...,v,} is a basis of W and that {z; + W, ...,z + W} is a basis of V/W.
Consider the set B = {vy,...,Um,21,...,2,}. Applying fy to any linear combination of
elements of B, we see that it is linearly independent. Now for every x € V we have x + W &
V/W and so there exists scalars \; such that

k k
=1 1=1

= — Zle Xiz; € W. Then 3 p; such that x — Zle Nty = Y iy 05
As a consequence, z is a linear combination of the elements of B. Then, the linearly inde-

pendent set B is also a spanning set and therefore a basis of V. O

Theorem 2.4.2. Let V' be a finite-dimensional vector space and let T : V. — V be linear. If

W s an T-invariant subspace of V' then the prescription
THax+W)=T(x)+ W
defines a linear mapping T : V/W — V/W, the minimal polynomial of which divides the
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manimum polynomial of T

Proof. If t+W = y+W then . —y € W. Since W is T-invariant, T(x) —T'(y) = T'(z —y) €
W = T(x)+W =T(y)+W . The above prescription defines a mapping from V/W to itself.

TH(@+ W)+ (y+ W) =T"[(x +y) + W]
=T(x+y)+W
= [T'(2) +T(y)]+W
= [T(x) + W)+ [T(y) + W]
=T (x+W)+TH(y+W)

T Mz + W) =T [\x + W]
=T(\x)+ W
=T (x)+ W
= \T(z)+ W]
=TT (x+ W)

By induction we will show that
(1) = (1)

This is clearly true for n = 1. Now, suppose that (T)" = (T™)". Then for every x € W

(T Nz +W)=T" T+) (x + W)]

[T”(x)] +W
=T (2)+ W
(@) )

Then, for every polynomial p =" a, X", we have

m

P = ) = L) =)

=0 =
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in particular, p = my, we obtain my(T") = 0 = mp+|myp ]

The intersection of any family of T-invariant subspaces of V' is also an T-invariant sub-
space of V. We will denote the intersection of all the T-invariant subspaces that contain X

by Z%. In case X =z, Z% is simply Z,.

Theorem 2.4.3. Let V be a finite-dimensional vector space over a field F and letT : V — V

be linear. Then for every x € V,
Ze =A{p(T)(x)|p € Flz]}

Proof. The set W = {p(T)(z)|p € Flx]} is a subspace of V' that contains z. This subspace
is T-invariant.

Suppose now that U is a T-invariant subspace that contains x. Then T%(x) C U V k. U
also contains p(T")(x) for every polynomial p € F|z]. Thus W C U. Hence W is the smallest

T-invariant subspace that contains x and coincides with Z,. O

We will now construct a basis for the subspace Z,. Consider the sequence
x,T(x), T*(x),...,T"(z),...

of elements of Z,. Then there exists a smallest positive integer k such that T%(z) is a linear

combination of the elements that precede it
Tk<17> = )\01‘ + )\1T(ZL’) + .+ /\lek_l(ZE)

and {z,T(x),...,T**(z)} is then a linearly independent subset of Z,.
Writing a; = —\; for i =0, ...,k — 1 we deduce that the polynomial

k—1 k
My = ag + a1+ -+ ap_1T +z

is the monic polynomial of least degree such that m,(7T)(x) = 0y. We will call m, the

T -annihilator of x.

Theorem 2.4.4. Let V' be a finite-dimensional vector space and let T : V' — 'V be linear. If
x € V' has T-annihilator

k—1 k
My = Gg + a1+ -+ 4+ ap_1x +x
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then the set
B, ={z,T(z),...,T" "(x)}

1 a basis of Z, and therefore dim Z, = deq m,. Moreover, if T, : Z, — Z, is the induced

linear mapping on the T-invariant subspace Z, then the matrixz of T, relative to the ordered

basis B, 1s
0 00 0 —ao
1 00 0 -
Cn,=10 10 0 —as (2.3)
0 0O 1 —Ak—1

Finally, the minimal polynomial of T, is m,.

Proof. B, is linearly independent and T%(z) € Span B,.

By induction, we prove that T"(x) € Span B, for every n. Suppose that n > k and that
T 1(z) € Span By. Then T" (x) is a linear combination of x,T(x),...,T* *(z) and so
T"(x) is a linear combination of T'(x),T?(x),...,T*(z) = T™(x) € Span B, = p(T)(z) €
Span B, for every polynomial p. Thus Z, C Span B,. The reverse inclusion is trivial.

Now, B, is a basis of Z,. Now, since

T,(x) = T(x)
T,[T(2)] = T°(x)

T[T ()] = T*(2)
T[T (2)] = TH(2) = —apr — ay T(2) — -+ — ap_ T ()

The matrix of T}, relative to the basis B, is the matrix [2.3

Now, let the minimal polynomial of T} be
me = b() + blfL‘ —+ 4+ br_lTT_l(ZE) + TT(I’)

Then
Oy = mg, (T)(z) = box + 01T () + - + b T 1 (z) + T"(2)

We can see that T"(z) is a linear combination of z,T(x),...,T" ! (x) and k < r. But mr,

is the zero map on Z, and so m,(T}) is also a zero map. As a result, we have mp, divides
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my and sor < k. . r=k. = mp, =m,. ]

A subspace W of V is called T-cyclic if it is T-invariant and has a basis of the form
{z,T(z),...,T"(x)}. Such a basis is called a cyclic basis, and x is called a cyclic vector for
W.

Theorem [2.4.4] shows that x is a cyclic vector for the subspace Z, with cyclic basis B,. The
subspace Z, is called the T-cyclic subspace spanned by {x}. The matrix C,,, that we defined
in Theorem is called the companion matriz of the T-annihilator m,.

Theorem 2.4.5. Let W be an T-invariant subspace of V.. Then ¥ x € V both the T-
annihilator of T and the T -annihilator of x + W divide the minimal polynomial of T.

Proof. The proof is a consequence of Theorems [2.4.2| and [2.4.4] O

Theorem 2.4.6 (Cyclic Decomposition). Let V' be a non-zero vector space of finite dimen-
sion over a field F and let T : V — V be linear with minimal polynomial mr = p* where p is
wrreducible over F. Then there are T'-cyclic vectors xq, ..., x, and positive integers ny, ..., Ny
with each n; <t such that

: k
(1) V =@ Zo
(i1) the T-annihilator of z; is p™.

Proof. We will prove this by induction on dim V. When dim V' = 1, the result is trivial.
Suppose the result holds for all vector spaces of dimension less than n = dim V.

Since my = p', 3 z1(# 0) € V with p~(f)(z1) # Oy. Then m,, is the T-annihilator of
x1. Let W = Z, and TT : V/WW — V/W be the induced mapping. By Theorem , the

minimal polynomial of T'* divides my = p'.

k
=V/W = 2,.w
=2

where Zy, w, ..., Zy,+w are T*t-cyclic subspaces of V/W. Further, for 2 <1i < k, the T"-
annihilator of y; + W is p™, n; < t.

Now there exists a polynomial h such that
p(T)" (yi) = h(T)(1)

for some x1 € y; + W.
= Oy = p(T)"(y:) = p(T)" "™ W(T)(21)
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Now, as p' is the T-annihilator of xy, so p'|p~"h = h = p"iq for some polynomial g.
Let z; = y; — q(T)(z1). Then

vi=x;=q(T)(x1) e W=um €y, + W
The T*-annihilator of y; + W divides the T-annihilator of z;. But,
p(T)" (zi) = p(T)" [yi — q(T)(z1)] = p(T)" (y:) — M(T)(x1) = Oy

Clearly, p™ is the T-annihilator of x;.
Now, let deg p = d. Then deg p™ = dn;. Since p™ is the T-annihilator of z; and the
T*-annihilator of z; + W, by Theorem [2.4.2] there is a basisA; for Z,,

Ai = {xiv f(xz)v s 7fdni_1('ri)}

and a basis B; for Z, .w

By = {x; + W, T (x; + W), ..., (TH)" L (z; + W)}

Since
k k
VIW =P Zyow = P Zeoiw
i=2 i=2
Then |J}_, B; is a basis of V/W. Then, |J{_, A; is a basis of V = V = @®F_, Z,. O

Corollary 2.4.7. With the above notation, relative to the basis U,’f:l A; the matriz of f is of
the form

Ch
k 02
o

Corollary 2.4.8. dim V = (n1 +---+ny) deg p

We may assume that the T-cyclic vectors xq,...,x; are arranged in descending order,
ie.,
=np=2ng=---2n =1

Theorem 2.4.9. The integers ny,...,ng are uniquely determined by T .
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Proof. We know
dim Z,, = deg m,, = deg p" =dn; V1

Also, V j, the image of Z, under p(T)’ is the T-cyclic subspace Zp()i(z;)- As the T-

annihilator of x; is p™,

. 0 if j > n;
dim Zp(T)j(zi) N din; —j) ifj<mny

We can uniquely write every x € V as
T=v+- -+ v
where v; € Z,, So, every element of Im p(T)? can be written uniquely as
p(TY (x) = p(TY (v1) + -+ +p(T) (vy)

Now, if r € Z such that ny,...,n, > j and n,; < j, then

m p(T) =D Zprya
=1

i=1 ni>j

Then

dim Im p(T)"~' — dim Im p(T)’ = d( Z (n;—j+1)— Z(m — J))

n;>j—1 n;>j
= d({# of n; > j})
This determines the sequence

t=ny>ng>--->mnp>1

completely. O

When the minimal polynomial of T is of the form p', where p is irreducible then, the

polynomials p™, p"2, ... p™ determined uniquely by t = ny > ny > --- > ny, > 1 are called
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the elementary divisors of T
Let us apply the above results to the case when the characteristic and minimal polynomials

of a linear mapping f : V — V are
cr = p‘flng . .pg’“ and mp = pi'ps? .. .pi’“

where pq, ..., p. are distinct irreducible polynomials.
We know that by the Primary Decomposition Theorem, there is an ordered basis of V' with

respect to which the matrix of 7" is a block diagonal matrix
A
A

Ak

where each A; is the matrix representing the induced mapping 7; on V; = Ker p;(T)%. Now,
the minimal polynomial of T; is pj*. By Cyclic Decomposition Theorem, there is a basis of

V; with respect to which A; is the block diagonal matrix
Ci
Cia
Cit

where Cj; are the companion matrices associated with the elementary divisors of 7;. This
block diagonal form where each A; is a block diagonal of companion matrices is unique and

is called the rational canonical matrixz of T
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Chapter 3
Symmetric groups

In this chapter, we will compute and classify the conjugacy classes and z-classes of .S,,. We
will show that centralizers of symmetric groups are a product of generalized symmetric groups
and provide a brief introduction to wreath products. One can view generalized symmetric
products as a particular case of wreath products. For classification of z-classes, we will
be discussing the results from [BKS17]. By the end of this chapter, we would have gained

enough understanding to prove the following theorem.

Theorem 3.0.1. [BKS17] Suppose n > 3. Let v be a restricted partition of n — 2 in which
1 and 2 do not appear as its part. Let A\ = 1?v and p = 2'v be partitions of n obtained
by extending v. Then, the conjugacy classes of A and p belong to the same z-class in S,.

Further, the converse is also true.

Corollary 3.0.2. [BKS17] The number of z-classes in S, is p(n) — p(n — 2). Thus, the
number of z-classes in S, is equal to p(n) —p(n —2) +p(n —3) + p(n —4) — p(n — 5).

3.1 Conjugacy classes and centralizer of elements in 5,

We have followed Conrad’s notes [Conl| for this section.
To understand the conjugacy classes in S,, we begin by computing the conjugates of a

k-cycle.
Theorem 3.1.1. For any cycle (iyiy...ix) € S, and any o € S,

o(iviy...ix)o ' = (o(iy)o(ia) . ..o(ir)).
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Proof. Let m = o(iyiy...ix)o'. We need to show
e 7 sends o(i1) to o(is), o(iz) to a(i3),... and o(ix) to o(iy).
e 7 does not move any number other than o(iy),o(iz), ..., o (ix)

Forany r, 1 <r <k-—1,
m(o(iy)) = o(iriy...ix)o o (i) = o(iriz. .. i) (ir) = 0 (irs1)

For r =k,
w(o(iy)) = o(iyiz ... i) (ix) = o(i1)
Let a ¢ {i1,i2,...,ix}. We need to show that 7(a) = a.
Since a # o(i,), for any 1 <r <k = o7 (a) # 1,
= (iyig ... i) (0" (a)) = o7 (a)

. w(a) = oliyiy...ip)0 (a) = 00 (a) = a
[

This theorem shows that conjugate of any k-cycle is a cycle of the same length. We will

now prove that the converse is also true.
Theorem 3.1.2. All cycles of the same length in S,, are conjugate.

Proof. Let (a;...a;) and (by ...bg) be two k-cycles in S,,. We can choose o € S, to be a
bijection such that o(a;) = b;,1 < i < k and the complement of {as,...,ax} is arbitrarily
mapped to the complement of {by,...,b;}. By using Theorem|3.1.1} we see that conjugation

by o carries the first k-cycle to the second one. O]

All elements of S,, are not k-cycles, so we ensure that each pemutation is written as a
product of disjoint cycles arranged in ascending order of cycle length, including 1-cycles if
there are any fixed points. This length is called the cycle type of the permutation.

Eg: (123)(46) in Sg is (5)(46)(123) and has the cycle type (1,2,3).

The cycle type of a permutation in S, is just a set of positive integers that add up to n,
which is called a partition of n. Let us set notation clearly by defining a partition A of n as
A=A A where 1 < Ay < - < A\ <nye; >1Viand n = Z;lei)\i. There are 11
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partitions of 6.

6!, 1151, 2141 32 124! 1'2'3! 23 1331
1222, 142! 1°

Thus, the permutations of Sg have 11 cycle types and the cycle type (1,2,3) is denoted by
the partition \ = 112131,

Lemma 3.1.3. If m; and 7 are disjoint permutations in S, then omo™! and omo™"! are

disjoint permutations for any o € S,.

Proof. # i such that 7, (i) = i and my(i) = i. Suppose om0~ and omyo~! are not disjoint.

= 3 i such that omo (i) =i and omo (i) =i

= m(071(i)) = o (i) and mo (0" (i)) = o (4)

This is a contradiction. O]
Theorem 3.1.4. Two permutations in S, are conjugate iff they have the same cycle type.

Proof. Let m € S,, be written as a product of disjoint cycles. By Lemma , omo ! will be
a product of the o-conjugates of the disjoint cycles for 7 and these o-conjugates are disjoint
cycles with the same respective lengths.

-, omo~! has the same cycle type as m. Conversely, suppose the cycle type is (my,ma, ... ).

Then

T = (alag .. .aml)(am1+1 .. .&m1+m2) N

and
Ty = (blbg Ce bml>(bm1+1 . bm1+m2) .

where the cycles are disjoint. Now define a permutation o € S,, from m; to my as o(a;) = b;.
Then, by Theorem [3.1.2 om0t = . O

Since the conjugacy class of a permutation in .5, is determined by its cycle type, which
is a certain partition of n, the number of conjugacy classes in .5, is the number of partitions

of n. Let p(n) denote the number of partitions of n.
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6 7 8 9 10 11 12 13 14
1

1 2 3 4
1 2 3 5 1 15 22 30 42 56 77 101 135

p(n) |

We know that, the number of partitions of n is equal to the coefficient of 2™ in the product

I+z+..)(1+22+..)(1+23+...)..., the generating function for p(m) is

oo

1
=

i=1

Further, the size of the conjugacy class represented by the partition A = A7* ... A¢ (let us

henceforth call this element o) is
n!

—_——
Hi:l Ajei!

Let A = M ... \.“ be a partition of n, n; = Z;Zl Aje; and ng = 0. We can represent

(3.1)

the element of .S,, corresponding to A as a product of cycles. Now, we choose a representative

of the class denoted by o) =0y, ...0), ...0), Where

ON\, = (TLi_l + ]_,. N 7| +)\z) c. (ni_l + (67; — ]_))\Z + 1,. N g7 | +€Z)\zl
€

is a product of e; many disjoint cycles, each of length ;.

Now, let m € Zg, (o)) = To)y = 0aT = ToOAT L = 0.

By Theorem and Lemma|3.1.3] we know that moy\n™! = woy, 771 ... woy,m~!. Theorem
further tells us that 7o), 7~ must have the same cycle type as oy, V 1.

= 7TO')\Z,7T_1

= 0y, V i. But we can allow permutations between various e; disjoint cycles
which constitute oy, i.e., if we were to describe o, as (1...¢;) € S, where each element in

this permutation corresponding to a disjoint cycle of length A;, then
oyt = (r(1)...7w(e;)) = (1...¢)

. (i) = (i + k)mod e; (3.2)

We will describe the centralizer in more detail in Section [3.3] but we can compute the size
of Zgn (O’ >\).
We know that, for each g € G, its conjugacy class has the same size as the index of its

centralizer,

{zgz™'| z € G} =[G : Zalg)]
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9 10 11 12 13 14
4 5 6 9 10 13

In this case, G = S,, and since .S, is a finite group,

|Gl

Therefore, the size of the centralizer of the element represented by the partition A is

|25, (02)] = [[ e (3.3)
=1

3.2 Restricted partitions

Partitions are significant due to their one-one correspondence with conjugacy classes of the
symmetric groups S,,. The partitions which are obtained by putting some conditions are
called restricted partitions.

A partition of m is A = m{'...m¢ where 1 < m; < --- < m, < m, e >1Viand
m =Y., e;m;. This is also denoted as A = m or m{* ... m¢ = m.

Let p(m) be the number of partitions of m in which 1 and 2 do not appear as its part. Then,

p(m) ={A=m...m Fm | my > 3}

The generating function for p(m) is

Now,

p(m) = H 1 —13:1 - <1ix> (1 ij)ﬁ(m)

= (1 —2)(1 =2)p(m) = (1 —x — 2® + 2°)p(m) = p(m) — xp(m) — 2*p(m) + °p(m)

We have the formula to compute p(m) in terms of partition function p(m) is

p(m) = p(m) —p(m — 1) = p(m = 2) + p(m — 3)
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3.3 Wreath products

The theory for wreath products that we use can be found in [JK84]. Let G be a group and
H a subgroup of S,,. We denote by G" the set of all mappings from n = {1,...,n} into G:

G*:={flf:n—G}
For f € G™ and 7w € H, we define f, € G™ by
foi=for™!
The wreath product of G by H is a group defined by
GIH =G"xH={(f;m)| f:n—Gandw e H}
together with the composition map defined by
(f;m)(fs7) o= (f frimm)

The order is
|GUH| = |G|"|H]

If we define e € G™ by
e(i):=1g, i €En

and for f € G® the mapping f~! € G® by

then we obtain for the identity element in G ¢ H and for the inverse of (f;7) € G H:
Lour = (€3 1p7) and (f3m) ™" = (f 5770,

where

7:_11 = (fﬂ-—l)il = (f71>ﬂ.—1.
Let us define G*, called the base group of G H, which is a normal subgroup of G H as
G = {(f;1n)| f € G"}
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It is the direct product of n copies G; of GG, where

G = {(f;lH)|Vj7éz',f(j):10}%G

The subgroup
H :={(e;m)|lre H} 2 H

is a complement of G*, so we have
(i) GV H=G*-H',
(i) G* =1, G,

(i) G*NH ={lgu} ={(e;1p)}.

If G is a permutation group of finite degree, say G < S,,, then we obtain a permutation

representation ¢ of G H as follows:

v G H — S,
F5 () Lo i

(m(j) = )m + f(ﬂ(j))(i)> 1<i<m,1<j<n

Here, ¥[G4] acts on {1,...,m} C {1,...,mn} the same way G acts on {1,...,m}, and
the restriction of ¥[Gy] to {1,...,m} is just G. Similarly, ¥[Gs] acts on {m + 1,...,2m}
the same way G acts on m and so on. Also ¢[H’'| permutes the subsets {1,...,m},{m +
L....2m},....{(n—1)m+1,...,mn} in the same way as H acts on {1,...,n}.

Now if we consider C,, := ((1...m)) < S, then ¢[C,, 1 S,] is the centralizer of the

permutation
(L...om)(m+1,....2m)...((n—)m+1,...,nm) € Sy

as P[Cp, 1 S,] would permute both various elements in a disjoint cycle and elements across
disjoint cycles and we can see from Theorem and Eqns. and [3.3] This group
S(m,n) = C,, 1S, is called a generalised symmetric group. Here C,, is a cyclic group and
Sy is a symmetric group.

We can also see from Theorem [3.1.2] and Eqns. and that the centralizer of a general

element oy € S, is

Z5,(\) == Zs, (o) 2 [ Or 1 S, (3.4)
i=1
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3.4 z-classes in 5,

For n = 3 and 4, the conjugacy classes and z-classes are same. So, we may assume n > 5
in this section. Eqn. [3.4] gives the formula for the centralizer of an element o). Thus, the

center of Zg (0y) is

[Li-i(on) if AC £ 12

A= SO =N o) X Tlon) when A = 12

This is because C} 1 Sy = 59 = {e, (1,2)}. Therefore, it permutes representatives 1 and 2 as

a 2-cycle.
Lemma 3.4.1. Let A = M\ ...\ be a partition of n. Then Zg, (\) determines r uniquely.

Proof. The natural action of Zg, () = []i_; C\, 1 S, on the set {1,...,n} as a subgroup of
Sy and each Cy, 1 S,, permutes just the set {n;—1 +1,... ;7,21 + N} ... {ni_1 + (e; — DA\ +

1,...,n;_1+e;\;} and the elements within this set but not between cycles of different cycles.
Thus, we obtain the following orbits: {{1,...,n1},{n1+1,...,n2},...} and there are r such
orbits. ]

Lemma 3.4.2. Let A = \°' ...\, be a partition of n and \\** = 12. Let Z\ be the center
of Zs,(\). Then Zy determines the partition \ uniquely.

Proof. When we consider the action of Z, on the set {1,...,n}, Z) acts on each of the r
orbits obtained in and determines elements in all e; cycles of each o,,. Thus, the orbits

will be of size \; and each of them occurs e; times which determines the partition \. O

Proposition 3.4.3. Let A\ = M ...\ and u = o™ ... s be a partitions of n. Then
Zs, (M) is congugate to Zg, (1) iff

1. r=s,
2. for alli > 2, )\; and p; are > 3 and N and p;f,
3. M =12 and it = 21 or vice versa.

Proof. Suppose A = 12v and p = 2'v where v = ' ... /¥ is a partition of n —2 with v, > 2.
Then the representative elements of the conjugacy classes are 0, = (12)0, and o) = 0,

where o, has cycles of length > 2. Then, the centralizers for these two elements are the
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samne.
For the converse, let us choose representative elements o, and o, such that Zg, (o)) and
Zs, (0,) are conjugates. Lemma implies r = s. Now, let us take the center of both
these groups Zy and Z, and make them act on the set {1,...,n}. If A{* and pi' both are
not 12, then Lemma determine the partitions A and p. But, since A and u are different
partitions, the only possibility would be A\;°* = 12 and pu;/* = 2! or vice versa, which proves

our result. 0

This proves Theorem [3.0.1].
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Chapter 4

Dynamical types and z-classes in

groups

The aim of the chapter is to discuss the results published in the paper titled “Dynamical
types and conjugacy classes in groups” [SKO07]. In this paper, Kulkarni attempts to relate
“dynamical types” to z-classes, without explicitly defining them. We will similarly use our
understanding of “dynamical types”, which is derived from human perception. We know that
these “dynamical types” are associated with transformations in classical geometries. There
are infinitely many transformations, equipped with natural spatial and numerical invariants

and their “dynamical types” are finite in number.

4.1 The «a- and o- fibrations

Let G be a group acting on a set X. For x € X, let G(z) be the G-orbit of z and G, the

stabilizer subgroup of G at x.

G)={yeX|y=yg-z}
Go={9€Glg-z=u}

Since, G(z) = G(y) or G(z) N G(y) =0,V z,y € G we get the first partition

X =[] G

rzeX
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Ifye G(x)=>y=g-x, for some g € G and G, = gG,¢g~'. Thus, the conjugacy class [G,]
of the point-stabilizers in a G-orbit is well defined. Two elements z,y € X are in the same
orbit-class if G, ~ G, and we shall denote this equivalence relation x ~, y. Let R(x) be the

equivalence class of x with respect to ~,. We, thus, obtain the second partition of X.

X= |J R

GonGly

We will now provide a description of R(z) in two different ways.
Let F, be the set of fixed point of G,

F,={ye X| G, DG,},
and F) be the set of “generic” elements in X
F,={yeX|G,=G.}.
Let N, be the normalizer of G, in G,
N, = {9 € G| 9Gog™" = Gu}.
Finally, let W, be the Weyl group at z,
W, = N,/G,.

We now define a canonical free action of W, on G/G,. Let [n] denote the class of n € N, in
W,.

W, x G/Gy — G/G,
([n], 9Ga) = [n] @ (9Go) = gGon™"

Sincen € N, = n~'G, = G,n™! = g(G,n71) = g(n"'G,).
Proposition 4.1.1. This action is free, i.e.,

V' neN,, if[n] e (9G,) = gG, = n € G,
Proof. [n] e (9G,) = gn'G, = gG, = n'G, =G, =n"teq,
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=n € G,. O

Let us now define a second canonical free action of W, on FJ.
(i) gF, = F,.

Foo ={y € X| Gpay =y} ={y € X| gG.9™ 'y = y}
={yeX| Gy ly=gy ={ye X| g 'y € F,}

(ii) N, leaves F, invariant. Let n € N,, then

={y € X|nG.n" 'y =y}
={yeX|Gy=y}=F,

(iii) NV, leaves F) invariant.
Let y € ) = G, = G,.
For n € N, Gpy =nGynt =nGyn~t =G, = nkF, = F..

(iv) N, acts on F, via W,
For n € N, and [n], its class in W, [n]F, = nG,F, =nF,

(v) W, acts freely on F. If n € N,, y € F., and [n]y = ny =y, then n € G, = G,.

We will now discuss the main result here.

Theorem 4.1.2. |Kul07] Let G act on X. Consider the diagonal action of W, on G/G,x F.
Then the map

¢:G/G, x F\ — R(x)
(9Gz,y) — gy

i1s well-defined, and induces a bijection,
¢:{G/G, x F.}/W, — R(x)
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Proof. (i) ¢ is well defined.
Let g € G, y € F.. We need to show that gy € R(z).

Gy = 9Gyg ' = 9Gr9™" = gy ~, v = gy € R(x)

We also need to show that for g € G, u € G, and y € F., guy = gy and this is true
because G, = G, = uG,

(i) ¢ is surjective. Let y € R(x).
3 g € G such that G, = gG,g7 ' = G,.
So,y € Fy, =gF, = g lyeF..

0(9Gs97'y) =y =y € im (9)

(iii) ¢ is constant on the W, -orbits on G/G, x F.
Let [n] € W,.
o([n)gGa. [n]y) = ¢(gn~"'Gu,ny) = gy = $(9Ga, y)

So, we have an induced surjective map ¢.

(iv) ¢ is injective.
Let y,z € F. and we have ¢(gG.,y) = ¢(hG,, z) = gy = hz.
Letu=h"'g=z2=uy =G, =G, = Gy, = uGu~"t = uGu™"
u € Ny
So, [u] € W, and we have

[W](9Ga,y) = (gu ' Gy, uy) = (hGy, 2)

= (9G,,y) and (hG,, z) are in the same W, -orbits.

By projecting the second factor, the map ¢ induces the map
a: R(x) = FL/W,

whose “fiber” is G/G,. Now, G/G, = G(x) up to a natural equivalence of G-actions, so this
is just a representation of the orbit-class R(x) as the union of orbits. We can consider this

map « as a one-one parametrization of the orbits by F./W,. Further, W, acts freely on F..
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So F. /W, can be identified with a subset of F which picks up one point in each W, -orbit.
So, this map « provides a “numerical” invariant for elements in R(x).
Similarly, {G/G,}/W, = G/N,. So, ¢ induces a map

o: R(x) - G/N,

whose “fiber” is F!.. So, this map o provides a “spatial” invariant for elements in R(x).

4.2 The critical abelian subgroups and z-classes in a

group

We will now consider a particular action of an arbitrary group G, conjugation on itself.

Orbits in this case are the conjugacy classes of elements in G.
Point stabilizer, G, = {g € G| g-x = grg' = x}

This is exactly the centralizer Z¢(z). The fixed point set of Z¢(z) is the center of Z4(x),
denoted by S(z).

Sx)=F,={ke Z(x)|g-k=k=gkg ' =k VgeGy}

Let us consider the set S of all subgroups of G and the set A of all abelian subgroups of G

and the two canonical maps

p:S—>Aandyp: A= S (4.1)

where, ¢ associates a subgroup H to its center and v associates an abelian group A to its

centralizer.

im(¢ o) := A, and im(¢p 0 ¢) := S,
We will call the elements of A, the critical abelian subgroups of G.
Proposition 4.2.1. [SK07/

(i) The maps ¢ and ¢ restricted to S, and A, respectively are bijections onto A, and S,

respectively and they are inverses of each other.

(i1) Let A be a critical abelian subgroup of a group G. Let Z5(A) and Ng(A) be the cen-

tralizer and normalizer of A in G. Then the normalizer of Zg(A) in G equals N.
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Proof. (i) Let A be an abelian subgroup of G, Z5(A) be the centralizer of A and S be the
center of Z5(A). Z¢(A) consists of elements in G which commute with all elements
of A. Since A is abelian = A C Z5(A) and A C S. Further, the centralizer of S is
contained in the centralizer of A, i.e., Zg(A) C Z5(S) . Let g € Z5(A)

=ga=agVa€EA
= Vse S gs=sg
=g € Z5(9)

= Za(9) C Z¢(A)

We now show that if S is the center of Z5(A), then Z;(A) is the centralizer of S. Let
the centralizer of S be Z'.

Z'={g9€G|lgs=sgVseS}
Let z € Z'.

za=azVa€S=za=azVacA
:>Z€ZG(A):>ZIQZG(A)

Let g € Z5(A) = ga =ag ¥V a € A. Now for any s € S, sg = gs.

—SgeZ = Z4(A) C 7
" Zg(A) =7

By construction, S = ¢ o 1)(A), so S is a critical abelian subgroup of G.

A4z s

SLZG(A) LS

S =¢or(9).

Let H be a subgroup, S its center and Z;(A) be the centralizer of S.

H—2 s Yz

A ¢ S 4 Za(A)
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Zg(A) = o d(Za(A))

(i) If A is a critical abelian subgroup of G, then it is the center of Z5(A). Let Ng(A) be
the normalizer of A in G and N(Z) be the normalizer of Z5(A) in G. We need to show
Ng(A) = N(2).

Let n € N(Z) = nZg(A)n~"' = Z5(A)
If 4,, denotes conjugation by n, then i, leaves Z5(A) invariant. Let z € Z5(A) = Jy €
Zq(A) such that z =nyn™' = 2n=ny = n"lz =yn L

L' — nan~1z for any z € Zg(A)

z(nan™) = nyan~' = nayn~
= nan ' € A

=n € Ng(A) = N(Z) C Ng(A)
Let n € Ng(A), z € Z5(A) = nA = An, az = za
nzn~ ' = =n(aza )n!

= (nan~")(nzn"')(na"'n"t)
We know that, 3 b € A such that nan=! = b.

= nzn~ !t =b(nzn )b?

= (nzn Hb=bnzn ) Vbe A
nzn~t € Zg(A)

nzn~ ' C Zg(A) =n € N(2)
Ng(A) € N(2)

]

For an abelian subgroup A of G, let Z5(A), Ng(A) be the centralizer and normalizer of
A. Z5(A) is a normal subgroup of Ng(A). Let us now define Weyl group of A, W(A).

W(A) = Ng(A)/Z2a(A)

Weyl group of an abelian group A coincides with the Weyl group of the critical subgroup

canonically associated to A.
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Let H be the critical subgroup canonically associated to A.

A v Zo(A) ¢

We know that, N(Z4(H)) = Ng(H) by Theorem 4.2.1}

S(Za(A)) = H

W(H) = Ng(H)/Za(H) = No(Zc(H))/Za(H)
H is the center of Z¢(A), then Z¢(A) is the centralizer of H = Z¢(H) = Za(A)
Nea(H)/Zc(H) = N(Z¢(H))/Zc(H) = N(Zc(A))/Zc(A)
Since A is abelian, Zg(A) = A = W(H) = Ng(A)/Zc(A) = W(A).

Given z,y € G, x ~ y means that z,y are conjugates in G and x ~, y means that their
centralizers are conjugates in G. Let C'(z) and R(z) be the centralizer class of z in G and
conjugacy class of x in G respectively. Let Z(x) denote the centralizer of z, S(z) be the
center of Z(z) and N(x) be the normalizer of Z(x). Then W(z) = N(x)/Z(z) is the Weyl
group at x.

Let S'(x) ={y € S(x) | Z(y) = Z(z)} denote the “generic” elements of S(z).

W (z) acts freely on S’(x).

Let nZ(z) € W(x) and y € S'(z).

nZ(x)-y=nyn ' =y=ny=yn=n¢c Z(y) = Z(v)

Since n € Z(z) = nZ(z) € Z(x).
. nZ(x) is the identity.
Since W (x) acts freely on S’(z), we can consider S’(z)/W(z) as a subset of S'(x) which

picks up one point each in W (x)-orbit in S’(z). Using the terminology described in Section

[4.1] we have,

Rx)= |J cw= |J Cand
Z(y)=Z(z) S(y)=5(z)
G = UR(m)

Theorem allows us to construct two fibrations o and o, where « is the numerical
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invariant and o, the spatial invariant.
a: R(z) — S'(x)/W(z) and ¢ : R(z) — G/N(x)

Thus, z-classes in a group G are in a one-one correspondence with the conjugacy classes of
critical abelian subgroups associated to cyclic subgroups.

Let G be a group and H its normal subgroup. For z € H, let Cg(x) and Cy(z) be the
conjugacy classes of x, Rg(x), Ry(x) be the z-classes of x and Z5(x) and Zg(z) be the

centralizers of x.

(i) OG'(QS) CH
Let y € Ce(z) = 3 g € G such that gyg~! = .
For any p € G, py = pg~'zg=2pg'g=z2p=yc H

(i) Zy(x) = HN Zg(x)
Zy(x) ={y € H | yr = zy}. Clearly, Zg(z) C H and since H C G, y € Zg(x).
= Zy(z) € HN Zg(x).
Let ye HN Zg(x) =y € H and yx = 2y = y € Zy(x).

(i) Co(z) = G/Zg(x).
¢ G — CG<$)
g grg”"

Clearly, ¢ is surjective.
Now, kerp = {y € G | ¢(y) = =}.

O(y) =yzy ' =yz =2y =y € Zg(x)
G/Zq(x) = Ca(x)

We see that Cg(z) splits into H-conjugacy classes.
Finally, we can see that if x,y are two elements of H which are in the same z-class in G,

then they are in the same z-class in H and Rg(x) N H is contained in Ry(z).
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Let z,y are in the same z-class in G.

3 g € G such that Zg(z) = g2¢(y)g "
Zy(z) = HN Z¢(x) and Zy(y) = HN Z6(y)
= Zy(r) = gZ¢(x)g™"

x,y are in the same z-class in H.

Let g € Rg(x) N H = g € Rg(x) and g € H. g € Rg(x) = Zg(x) = hZg(g)h~! for some
h e @q.

Now, x, g are in the same z-class in G = z, g are in the same z-class in H.

= Rg(x) NHC RH(Z‘)

4.3 z-classes of semisimple linear operators

Let F be a field and V' a vector space over F. Let X = L(V'), which is the set of all linear
maps from V' to V. It contains G = GL(V), the subset which consists of the invertibe
elements of L(V'). Then X is an F-algebra and G is a group.

Let G act on X by conjugation. The G-orbit of A in X is called the similarity class of A. If
A € G, then its similarity class is precisely its conjugacy class of A in G.

For A € X, let Z5(A) be the set of all elements B in X which commute with A. Let
Z5(A) = Z6(A) N G. Z5(A) is an F-subalgebra of X and in case A € G, Z5(A) is the
centralizer of A. Let S(A) be the center of Z5(A) and S*(A) = S(A) NG. Using the defini-
tions in Section , we can say that S*(A) is the critical subgroup associated to the cyclic
subgroup generated by A.

An important invariant to study the dynamics of a linear operator A is the minimal polyno-
mial m4(z) (non-zero). We know that F[A] is a F-subalgebra of X consisting of operators
which can be written as polynomials in A. Thus, there is a canonical surjective homomor-

phism ¢ of the polynomial ring F[x] onto F[A].

Let us assume ker ¢ is non-zero. ker ¢ is, by definition, generated by ma(z). When V is

finite-dimensional, ker ¢ is automatically non-zero as X is finite-dimensional.
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Lemma 4.3.1. Let A : V. — V be an operator admitting a minimal polynomial m4(x) of
degree at least 1. Suppose that ma(x) is irreducible. Then either ma(x) is  and A is zero
or A is invertible.

In case A is invertible, V admits a structure of a vector space over a simple extension field
E of F with respect to which the action of A is equivalent to the scalar multiplication by a

primitive element of E over IF.

Proof. Let E =F/(ma(z)). Since ma(x) is irreducible, then E is a field. Further, F[A] = E.
Case 1: z divides ma(z). Then, ma(A) =A=0=A=0and E=F.

Case 2: z does not divide my(z).

Let a =2 mod ma(z) = o — 2z =0 mod mu(z), « € E = «is a root of my(z) in E.

= F(a) = Fla]/(ma(x)) = E

[E is a simple extension of F and « is a primitive element of E over F.

Since x does not divide m4(x) = 0 is not an eigenvalue of the operator A = A is invertible.

F(a) = F[A] and therefore, action of A is equivalent to scalar multiplication by a primitive

element of E over F. O

Lemma 4.3.2. Let A:V — V be an operator. Suppose f(x) € F[x] is a monic polynomial
such that f(A) = 0. Suppose f(x) = r(z)s(x) where ged (r(x), s(z)) = 1. Then ker r(A)=im
s(A), ker s(A)=im r(A) and V is a direct sum of ker r(A) and ker s(A).

Proof. By Euclidean algorithm, we know 3 a(x), b(z) € F[z] such that

)r(z) + (SU)S(I)Il

)r(A) +b(A)s(A) =

we have a(A)r(A )v+b(A) (A7 =0
)r

v (A)r
(A) = r(A) and s(A)b(A)s(A) = 5(A)

(A
eV,
Ja(A
)(a(A)r(A) = 1) = 0 and 5(A)(b(A)s(A) — 1) =0
)r(A) — I € Ker r(A) and b(A)s(A) — I € Ker 5(A)
)b(A) € Ker r(A) and r(A)a(A) € Ker s(A)

a(x
a(A
=7(A
=7(A
=a(A
=s(A (

im s(A) C Ker r(A) and im r(A) C Ker s(A)

4

Further, im s(A) +im r(A) =V and ker s(A) Nker r(4) =0
ker s(A) Cim r(A) and ker r(A) C im s(A)

im s(A) = ker r(A) and im r(A) = ker s(A)
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Now, n — dim(ker s(A)) + n — dim(ker 7(A)) =n
= dim(ker s(A)) + dim(ker r(A)) = n and ker s(A) Nker r(A4) = 0.
= V = ker s(A) @ ker r(A). O

A consequence of Lernma is that to study the dynamics of A with m4(z) # 0, we can
reduce the situation to when m(x) = p(x)? where p(z) is an irreducible monic polynomial
in F[z].

The only case we will consider in this chapter is d = 1 and p(z) # x.

Consider the extension field E = F[z]/(p(z)) and o = [z](v = 2 mod p(z)). Then in the
E-structure on V', the operator A is just the scalar multiplication by «. (By Lemma
= E = F[A]. Then, the centralizer Z(A) is the E-linear operators on V' and the center S(A)
is E. S*(A) =E* =E — {0} is in fact the critical subgroup in G associated to A.

Theorem 4.3.3. Let p(x) # x be a monic irreducible polynomial in F[x]. Let deg p(x) = m.

If V' is finite-dimensional, assume m divides dimV . Then
(i) There exists A in G such that mu(z) = p(x).
(i) An element B in G is conjugate to A iff mp(x) = p(z).

(i1i) An element B in G is z-equivalent to A, iff mp(x) is irreducible and the fields F[z]/(ma(z))

and F[z]/(mp(x)) are isomorphic over F.

Proof. (i) Let V be finite-dimensional and dim V' = n and n = ml
We need to choose subspaces V; such that dim V;=m. Then V = @izl V.
Let E = F[z]/(p(x)) and h; is F-isomorphism of vector spaces.

hi:E =V

m—1

Qo +a1x+ -+ ap_1T = (Ao, A1y - e vy Q1)

Let a = [z] and consider the operator p, : y — ay on E.
Now, when we define A : V — V such that A [y,= h; o jiq 0 h; "
= A |y, is equivalent to scalar multiplication by a. Also, since operators are similar,

the characteristic and minimal polynomials are the same.
= ma(z) = p(z)

(i) If B is conjugate to A, then mp(z) = ma(z) = p(z). Conversely, suppose B € G such
that mp(z) = p(z). We have F[B] 2 E and F[A] = E and 04,05 equip V as vector
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(iii)

spaces over E via F[A] and F[B].

Let {€},i € I be an E-basis of V' with respect to o.4.

Let E; = {¢e;, Aé;, ..., A7 '¢;}. Let V; be the F-span of F;.

Since A™ is a linear combination of I,..., A™ ! each V; is invariant under A and
U, Ei is an F-basis of V.

Similarly, let {f;-},j € J be an E-basis of V' with respect to op.

Let Fy = {f;, Bf;,...,B™'f;}. Then, Ujes Fj is also an F-basis of V.

Since cardinality of F-basis is well-defined, there exists a bijection between the index
sets [ and J. (in fact, we can take I = .J). Let

h:V =V
Aké s BFF,

= h is well defined, ma(x) = mp(x) = p(x) and h provides the required conjugacy
between A and B.

We know that, Z5(A) is E-linear maps of V', E = F[A] and S(A) = E which is a field.
Let B € G. By definition, A, B are z-equivalent iff Z%(A) and Z}(B) are conjugates.
Replacing B by a suitable conjugate , we can assume Z5(A) = Z5(B) = S*(4) =
S*(B).

We know that, S*(A) U {0} is closed under addition and is the field F[A]

= S5*(B) U {0} since S*(B)U {0} C S(B).

Also, B € S*(B) = S*(A) = B € F[A] = F[B| C F[A4]. In particular, F[B] is an
integral domain.

But if my(z) = ¢q(z), then F[B] = F[z]/(¢(x)) = ¢(z) must be irreducible and so F[B]
is a field.

Suppose, if possible that F[B] = E; # F[A]. Then V also has the structure of a vector
space over Ey. Then Zg(B) is isomorphic to E;-endomorphisms of V.

= S(B) must coincide with E; = S*(B) = E} C E*.

This contradicts S*(A) = S*(B) = E*.

I

Fla]/(ma(z)) = Fla]/ (mp(r))

]

We will now use this information to describe the z-classes of semi-simple elements in G.
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An operator A in G is called semisimple iff every A-invariant subspace of V' has an A-
invariant complement.

Consider V' to be finite-dimensional and let dim V' = n. Then, A is semisimple iff m(x)
factors into pairwise distinct irreducible factors.

Let ma(z) = [[;_, pi(z), where each p;(x) € F[z] is monic and irreducible.

Let V; = ker p;(A) and dim V; = n;. Then V =Q,_, V;,V; NV, = 0.

If W is an A-invariant subspace, then W = @,_, W N V.

Let xa(z) = [];_, pi(z)%, which is the characteristic polynomial, is a complete invariant of
the conjugacy class of A. Let xa(z) = [[_, pi(z)%.

Let deg pi(xz) =m; = n=>_,_ m;d; and let n; = m;d;.

Let A, = A |y,.

Zc(A) is canonically isomorphic to [[i_, Z¢(A4;). This is because if an element commutes
with V', it must commute with each individual V; and would therefore belong to Z4(A4;) and
vice versa.

Then, S(A) is canonically isomorphic to [[;_, S(A;).

Zo(A) = [ 26(A) and S7(A) = [T 57 (4A)
i=1

=1

Let E; = F[z]/(pi(z)) be the corresponding extension fields. Then, by Lemma[4.3.1] F[4;] =
E; equips V; with a structure of a vector space over E;. Let a; = [z] be the root of p;(z) in

E;. It is a primitive element of E; over F.

We, thus, have the following invariant attached to A.

(i) The partition of an integer n, m: n =Y., n,.

(ii) A decomposition D, of V using m: v = @@;_, V; where dim V; = n,.

(iii) Irreducible polynomials p;(x) in Flz|, deg p;(z) = m; and the corresponding extension

fields E; = Flz|/(p(x)) of F, so that m; divides n; where n; = d;m,.
(iv) A structure og, on V; as a vector space over E; which extends as a vector space over F.

(v) A primitive element «; of E; over F such that p;(x) is the irreducible polynomial of «;.

We assume p;(z)’s to be pairwise distinct.

We will denote this data as (m, Dy, er, 0y, @) and using this we can uniquely determine a

semisimple operator A : V' — V by setting A [y,: V; = V; to be the scalar multiplication by
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«; in the E; structure.

To understand the numerical and spatial invariants, we must determine N*(A), the normal-
izer of Z5(A). Z5(A;) acts irreducibly on V; because if B € Z}(A;), then it is conjugate of
A; and the minimal polynomial of B is the same. So an element in N*(A) must permute
Vi’s.

Let h: N*(A) — S, be the corresponding homomorphism and Ny (A) = ker h. An element
of Nf(A) leaves each V; invariant. This is because the kernel will consist of all those ele-
ments that do not permute V;’s, i.e., that take each V; to itself. Therefore, N;(A) normalizes
E; = F[A;].

Consider the homomorphism hy : Nf(A) — [[;_, Aut(E;/F). The kernel of h; is exactly

Z5(A). Through this we arrive at the following conclusion.

Proposition 4.3.4. [SKO07] Let V' be a vector space of dimension n over a field F, and
A:V =V a semisimple operator. Then the Weyl group W (A) is a finite group.

Theorem 4.3.5. [SK07/ Let V' be a vector space of dimension n over a field F. Then

(i) The semisimple operators on V are in the one-one correspondence with the symbols

(7, Dy Exy Oy i) as constructed above.

(i) The conjugacy classes of semisimple operators are in one-one correspondence with the
symbols (m, o). Equivalently they are in one-one correspondence with the monic poly-

nomials of degree n in Fx].

(111) The z-classes of semisimple operators are in one-one correspondence with the symbols

(7, €x).

Corollary 4.3.6. If there are only finitely many field extensions of degree < n of a given field
F then there are only finitely many z-classes of semisimple operators on an n-dimensional

vector space V.
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Chapter 5
z-classes of linear and affine maps

In this chapter, we will extend the theory of “dynamical types” we studied in Chapter 3 to
linear and affine maps and investigate their z-classes. This chapter is based on the results
of Kulkarni’s paper titled “Dynamics of linear and affine maps”. [Kul07] We had concluded
Chapter 3 with a theorem that showed given an n-dimensional vector space, if there are
finitely many simple extensions of atmost degree n over the underlying field, then there are
finitely many z-classes of the semisimple operators on V. The work we will do in this chapter
would result in an extension of this theorem to any linear and affine map.

From here on, F would refer to a field, V' to a vector space over F and p(x) to a monic
irreducible polynomial in Flz], unless explicitly mentioned. Further, L(V') is the set of all
linear maps from V' to V. The vector space A which is underlying V', has no distinguished
base-point and is called the affine space. An affine map of A is a map (A,v) : V — V of the
form (A,v)(x) = Az +v, A€ L(V) and x € V. So, A(V) is the set of all affine maps from
V to V. Let GL(V) and GA(V') be the subsets of L(V') and A(V') respectively, consisting
of invertible elements. They form groups and they act on L(V) and A(V) respectively by
conjugation. Then, the stabilizer subgroups at 7" in GL(V') and GA(V') are the centralizers
of T'in GL(V') and GA(V) respectively and we denote this by Z;(T") and Z7%(T") respectively.

5.1 Classical Theory for L(V)

Let T € L(V') and mr(z) be the minimal polynomial of 7. We know that F[T'] = F[z|/(m¢(x)).
Now, let mp(z) = [],_, pi(z)% such that p;(z) € Flz] and p;(z) are pairwise distinct.
The Primary Decomposition Theorem ({2.1.2)) provides a decomposition V = @._, V;, where
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V; = Ker p;(T)% are T-invariant subspaces.

Let x € Ker p(T)% and S € Z,(T) = ST =TS
pi(T)"(S(2)) = S(pi(T)" () = S(0) =0 = S(V;) TV,

This shows that the decomposition is invariant under Z (7).

Let T; =T |v.. Then mz,(z) = p;(x)%. We also have a canonical decomposition
2T =] 2.(T)
i=1

We have now reduced the problem to my(z) = p(z)¢, where p(x) € F[z].
Let us now consider the example where V = F[z]/(p(x)?). For u(z) € Flz], let [u(z)]
be the class of u(z) in F[z]/(p(z)?). Let T be the operator p, : [u(z)] — [ru(z)] and
Vi ={[f(z)p(z)"] | f(x) € F[z]}. We have the following flag of subspaces

0=VaCcVgaC---CcVicV=V

Suppose, W is a T-invariant subspace of V. If [f(x)p(z)'] € W = [g(z) f(z)p(x)] € W, V
g(x) € F[z]. Let 7 be the smallest non-negative integer such that for [f(z)p(z)"] € W, p(z)
does not divide f(z). Then [f(x)] is a unit in V = [p(z)'] € W = W = V;. This shows
that that V;’s are the only T-invariant subspaces. These V;’s do not have a complementary
T-invariant subspace and so, (V,T) is an indecomposable pair.

We will now show that the converse of this example is also true.

Theorem 5.1.1. Let (V,T) be a pair such that myp(z) = p(z)¢ where p(z) € Flx] and
deg p(x) = m. Then (V,T) is a direct sum of T-invariant indecomposable subspaces, each
dynamically equivalent to (Flx;)/(p(z:)%), pie,). Here d; < d, and d; = d for at least one i
and dim'V =m)_, d;

We have already proven the above theorem for the case d = 1 as a consequence of Lemma
4.3.21 The consequences of this proof were that Z;(7") is the set of linear operators which
are linear in E = F[z|/(p(z)). Thus, Z,(T) = Lg(V), Z;(T) = GLg(V) and the orbits of
Z5(T) are V and {0}. We will call the T-action dynamically semi-simple.
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5.2 Orbits of Z7(7T) and a Canonical Maximal Z;(T)-

Invariant Flag

Let T € L(V), mp(z) = p(z)¢, where p(z) in F[z] and deg p(z) = m. Then, E = F/(p(x)) is
a simple field extension of F and dimgF = m. We may assune d > 2. Let N = p(T) and V; =

ker N* i =0,1,...,d. Since N is nilpotent, we have a Z(T)-invariant flag of subspaces

Now, let T; be the operator induced by T on V;/V;_, fori = 1,2,...,d. Then my, (x) = p(x).
Then, V;/V;_; has a canonical E-structure. Then dimgV;/V;_; and consequently dimgV" are
divisible by m. Let dimpV = ml = n.

The aim now is to obtain a canonical, maximal Z;(7')-invariant refinement of this flag. We
shall introduce a double subscript notation V; ; for convenience, where V; = V; o. If we insert
k — 1 terms between V; and V;;; then V1 = V.

From the theory of elementary divisors, we know that for T, elementary divisors are of the
form p(x)%, i = 1,2,...,7r, where 1 < 1 < --- < s, = d are the exponents and o; is the

multiplicity of p(z)%. Then, for n =dim V =ml, l =", s,0;.
Lemma 5.2.1. 1. Fori >0, N =p(T) maps V; into V;_4

2. Fori > 1, the map induced by N on V;/V;_1 — V;_1/Vi_5 is injective.
Proof. 1. Let z € V; =Ker N*. We know that, p(T)(z) € Ker N'""! =V, _;.

2. Let x +V;_1. Then N(z + V;_q1) = p(T)(x + Vi_1) = p(T)z + Vi _s.
O]

Let (eq,...,ex) be elements in V; such that their images (€, ..., €;) form an E-basis of
Va/Va_1. Since, T (e;),1 < j <m — 1,1 < i < k are independent over F mod V,_; , they
are linearly independent over F. This is because if (€1,...,€;) are a basis, then they must
be non-zero. Since & = T%(e;) # 0 = e; ¢ Vy_1. Then, by T-invariance, T7(e;) € V; and as
T is a linear map, T7(e;) & Vy_1.

Let W, be the F-span of T7(e;). We can construct Vy = W& Vy_1. Here, V,;_; is T-invariant
but Wy is not. But our construction is 7T-invariant mod V1, so, we will call subspaces like

Wy, almost T-invariant subspace.

Now, by Lemmal(5.2.1, W, C V; = N(W,) C V1 and since N (W) = Vy/V,_1, then N maps

o7



Wy injectively into V;_1/Vy_o as a subspace which is complementary to V;_5. The subspace
Vi_o + N(Wy) is T-invariant and Z;,(T')-invariant subspace of V;_1. Now, if V;_o + N(W,)
is a proper subspace of V;_1, we will insert an additional subspace in the flag between V,;_o
and Vy_q.

Suppose Vo + N(W,) is a proper subspace of V;_1. In fact, (Vy_o + N(Wy))/Vy_o is an
E-subspace of V;_1/Vy_o. We will denote e; by eq; and k =dimgVy/Vy—1 by k4. Now, let
ki1 = dimgVy_1/Vi_o— dimg(Vy_o + N(Wy))/Vi_s.

If kg—y # 0, we will choose eg_1;,1 < i < kgq in V4_1/V4_o such that mod V,_o, they
form an E-basis of the subspace of V;_1/V;_s complementary to (Vy_s+ N(Wy))/Va_z. Then
T/ (eg-14),1 <j<m—1,1<4i<ky are linearly independent over F. Let W,_; be the F-
span of TV (€4—1,). Then W,_; is an almost T-invariant subspace of V;_;. Then N injectively
maps Wy_; to a subspace complementary to Vy_z + N2(Wy). If V3 + N(Wy_y) + N*(W,)
is a proper subspace, then we will insert it as an additional subspace in the flag between
Vi3 + N2(Wy) and Vy_o. In case Vy_5 + N(W,) is not a proper subspace of V;_; , then just
take Wy_; = 0.

If we proceed in this way, we obtain the following refined flag of non-increasing dimensions

0="VyC N"=YW,) € NTYW,) + N2 (Wa_y) C ...
NV Wy) + N2 (Way) + -+ N(Wa) + Wy =V, C
Vi+ N2 W) € Vi + NO2(Wy) + N3 (W) C ...
Vi4+ NT2Wy) + NO3Wy) + -+ NWa) + Wy =Vo C ...
Vi3 CVy g+ N*(Wy) C Vys+ N*(Wy)+NWy_y) C
Vg + N?*(Wa) + NWa1) + Wyg =Vy5 C
Vica + N(Wy) CVyg + NWy) +Wyy = Va1 C Vo + Wy CVy

Now, the sum @?;3 NI (W,) forms a T-invariant subspace dynamically equivalent to kg
copies of F[z]/(p(z)?). If W, = 0, then those terms do no occur. We know that F-span of
Ti(es1),- -, T (esn,),0 < j<m—1. Then,

N"T9(egy), ..., N"T(eqr,),0 < j <m—1,0<u<s—1is a basis of @7y N7(W,).

For a flag that has strictly increasing dimensions, let 1 < s; < --- < s, = d be integers such
that W, # 0. Let mo; =dim W, 1 <i<r, Vi =V,pand for 0 <¢ < s,_;41,1 < j <7, set

Vi’j =Vi+ Nsr_i(Wsr) + Nsril_i(wsrﬁ) +ooet NST_j+1_i(WSr—j+1)
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In order to avoid ambiguities, consider W! to be another choice of almost T-invariant sub-
space complementary to the subspace before V. in the refined flag. We can construct W in
the same way by starting with ¢}, e, ,,...,¢,, such that N“T7(e,,),..., N*T (¢}, ),0 <
j<m-—1,0<wu<s—1is the corresponding basis of @j;(l) NI(W!). If we define a F-linear
map that sends N*T7(e,,,) to N“T7(¢€,,,) and is identity on the remaining @z;g NI (W)
for t # s. This map is invertible, commutes with 7" and carries Wy into W.

For two successive terms V; ; and V; j11, we observe that Z}(T) is transitive on V; ;11 — V; ;

and we conclude this section by summarizing this result in the following theorem.

Theorem 5.2.2. Let T be in L(V), mr(z) = p(x)?, where p(x) € Flz]. Then V admits
a canonical, maximal Zp(T)-invariant flag. A complement of each term appearing in the
flag in its succeeding term is an orbit of Z;(T). In particular, the quotient of each term

appearing in the flag by its preceding term is an irreducible module over the group Zp(T)*.

5.3 Strongly Commuting Operators

Let T € L(V). An operator S € L(V) strongly commutes with T if S commutes with 7" and

leaves every T-invariant subspace of V' invariant.

Theorem 5.3.1. Let T' € L(V). An operator S € Z.(T) strongly commutes with T iff
S e F[T].

Proof. Let S € F[T]. Then, S = ag+a;T+axT?+. ... Tt is fairly obvious that SoT =T oS
and S also leaves every T-invariant subspace invariant.

Conversely, suppose S € Z1(T) strongly commutes with 7.

Case 1: Suppose (V,T) is dynamically equivalent to (F[z]/(p(x)%), u1.), where p(x) € F[z].
Let S € Z,(T) and S(1) = [f(x)]. Then S = f(T') and Z,(T") = F[T]

Case 2: my(x) = p(z)? € Fla]. Then V is a direct sum of T-invariant subspaces W; that
are dynamically equivalent to (F[z;]/(p(x;)%, u.). Let e;,1 < i < k be a T-module generator
in W;.

Now, say S [w,= q1(T') where ¢;(x) is a unique polynomial of degree at most dm. For
J > 2, let g;(z) be the polynomial of degree at most d;m, such that S [w,= ¢;(T)e; =
Sler +¢e;) = q1(T)es + ¢;(T)e; . Also, S(es +¢e;) = u(T)(er + e;) for some polynomial
u(z) of degree at most dm. It follows that (¢;(T) — w(T))er = —(¢;(T) — u(T))e;. As
Wy UW; =0= (q1(T) —u(T)) = (¢;(T) — uw(T)) = 0(mod p(x)%). So q:(T) = ¢;(T)(mod
p(z)%).
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Case 3: Consider the general case. If we consider the primary decomposition of V', then
S leaves each of those V;’s invariant. Now, when S [y,= ¢;(T) is determined uniquely mod
pi(x)™
mod my(x) which is congruent to ¢;(z) mod p;(z)%. O

. Then, by Chinese Remainder Theorem, there will exist a unique polynomial ¢(z)

5.4 “S 4+ N”-decomposition

Let T € L(V) and E be an extension of F. An E-structure on V is an F-algebra homomor-
phism og : E — L(V), which is injective and this enables us to look at V' as a vector space
over E. An E-structure o is said to be T-invariant if the image of og lies in Z.,(T).

We investigate when V' admits a T-invariant E-structure. For d = 1, T" induces a canonical
E-structure, F[T] = E and the inclusion map of F[T] in Z.(T) is a T-invariant flag. We
shall assume d > 2. Then V;/V;_; admits a canonical T-invariant E-structure as the minimal
polynomial of the induced operator is p(z). We will see if these canonical E-structures on

Vi/Vi_1’s can be lifted to a canonical E-structure on V', and by that we mean:

1. Each T-invariant subspace is an [E-subspace

2. Foreachi =1,...,d, the induced E-structure on V;/V;_; coincides with the one induced

by T.
For f(z) € Flz], let f'(x) be the formal derivative.

Theorem 5.4.1. Let T € L(V), mr(z) = p(x)?, where p(x) € F[z] and E = F[z]/(p(z)).

Then V' admits a T-invariant E-structure iff either d = 1 or p/(x) is not identically zero.

Proof. We will assume d > 2 and deg p(z) > 2. The proof for the omitted cases is trivial.

We know that (V,T') is dynamically equivalent to a direct sum of pairs of the form (F[z|/(p(x)¢), i)
where e < d and p,([u(z)]) — [zu(x)]. For y € F[z], let [y] denote its class in F[z]/(p(x)®).

We need to show that there exists a polynomial z = u(x) € F[z] such that the minimal
polynomial of the corresponding operator is p(z).

Now, p(z) and p/(x) are relatively prime and by Euclidean Algorithm 3 a(x),b(z) € F[z]

such that a(x)p(z) + b(x)p'(x) = 1. Let y = x — b(x)p(z). We can take e = —b(x)p(z) and

use the Taylor’s theorem to get



So, p(y)" = 0 for a suitable r < e. Then, y, has a minimal polynomial of the form p(z)" =
Flly]] = Flz]/(p(z)") and F[[y]] C F[[x]]. We can prove the existence of the aforementioned
polynomial by induction.

Conversely, suppose we have a pair (V,T), mr(z) = p(z)¢,d > 2, E = Flz]/(p(x)) and V
admits a T-invariant E-structure. Then 3 S € Z,(T) such that mg(z) = p(z) and in the
associated flag V5 is S-invariant. We need to prove that p'(z) #Z 0. By Taylor’s theorem,

p(s+u(T)) =p(S) =w(T)p'(S) +---=p(S) =0
But then

p(T)=p(S+T—8)=P(S+T)—Sp(S+T)++-=P(S+T)=0

This is a contradiction as mp(x) = p(z)%.

For uniqueness, let oy : E — Z.(T), 02 : E — Z.(T), be two canonical T-invariant E-
structures. Using a T-invariant subspace, we can reduce this to when (V,T') is dynamically
equivalent to (Flz]/(p(z)), pz). Then Z,(T) = F(T). Let a be a primitive element of E
over F, and o;(a) = S;, i = 1,2. Let S; = fi(T) where f;j(x) € F[z]. Using the induction
hypothesis in the first part completes this proof. O

Let T € L(V). A “S + N”-decomposition of T is a pair S, N such that
i) T=S+N
(ii) S is dynamically semi-simple
(iii) N is nilpotent
(iv) SN=NS

Theorem 5.4.2. Let T € L(V) and mr(z) = []_, pi(x)%, where p;(x)’s are monic irre-
ducible polynomials in Flx]. Then

1. T admits a “S + N 7-decomposition iff for each i, either d; =1 or else pi(x) £ 0
2. If it exists, a “S + N ”-decomposition is unique.

3. If mp(x) = p(x)?, p(x) € Flz], E = Flz]/(p(z)) and a “S + N 7- decomposition exists,
then S defines the canonical T-invariant E-structure on V. In particular, S strongly

commutes with T', and so S, and hence N, are polynomials in T
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Proof. By definition, S, N € Z.(T). This reduces the case to when my(z) = p(z)¢. Consider
d > 2. Let E = F[z]/(p(z)) and p'(xz) # 0. The previous theorem tells us that under this
condition, we have a polynomial f(z) € F[z] such that S = f(T') defines a canonical T-
invariant E-structure on V', particularly, mg(z) = p(z). S is dynamically semi-simple. Let
T;, S; be the operators induced by T, S on V; = Ker p(T)!, i = 0,1,...d. As S defines
a canonical T-invariant E-structure we have T; = S;. Then N = T — S is nilpotent and
T =S8+ Nisa “S+ N”-decomposition of 7.

Conversely, if T'= S5+ N is an “S 4+ N”-decomposition of T". Then the induced operators
on V; are commuting dynamically semi-simple operators. Then, their nilpotent difference N;
must be 0. = mz(z) = p(r) = mg,(x). Then mg(z) = p(x) = F[S] =2 E and S defines a
T-invariant E-structure on V. So pl(z) # 0. O

5.5 Affine Case

We will extend this theory to the affine case.

Let F be a field, V' be the vector space over this field. Let A be the underlying affine case
and 7' = (A,v) be an affine map such that z — Ax +v. Let S = (a,a), a € GL(V) be an
element of GA(V). Then,

S™t=(a', —ata) (5.1)
STS™! = (aAa™!, —adata+ av + a) (5.2)

Let Cr(V') and C4 (V') denote the orbit-spaces L(V)/GL(V) and A(V)/GA(V). For T € L(V)
and A(V) , let [T, and [T]4 denote its orbit in C (V) and C4(V'). The map (A4,v) — A is
a homomorphism [ : A(V) — L(V). The formula [5.2] shows that the map [(A4,v)]a — [4]
is a well-defined map [I] : C4(V') — Cp(V).

Lemma 5.5.1. Suppose S = (A,v) and T = (A, w) be in A(V) such that mu(x) = (x —1)".
Let s, t be the least non-negative integers < r satisfying (A—1)%(v) =0 and (A—1)*(w) = 0.
Then S and T are in the same GA(V)-orbit iff s = t.

Proof. Formula[5.2]shows us that (a, a) conjugates S into T iff &« € Zj(A) and w = (I—A)a+
av. Since my(X) = (z — 1)", we have reduced it to the problem we solved in the previous
section. Just set N =1 — A and consider the Z(A)-invariant refined flag. Without loss of
generality, let us assume s < ¢t. Further, let Vi, =V, andv e V; = Vi1 1 = a € Z}(A)
and w = (I — A)a+ av iff s =1t. O
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Theorem 5.5.2. [l] is a finite map, that is [[]7*([A]) has only finitely many elements. For
Ae L(V) , let ma(x) = (x — 1)"g(x) where g(1) # 0 be its minimal polynomial. Here r > 0
is an integer. Then [I]7Y([A]) has r + 1 elements.

Proof. Consider the case where r = 0. Then det (I — A) # 0. So, the equation Az +v =2z
has a unique solution in z. Let 7 = (I,z¢). Then 7(A,v)7~! = (A,0) = A. Any element in
[71(A) is conjugate to A. Then [I]~! has a unique element.

If r >0, then V=V, & V3 where V; = ker (A —I)" and Vo = Ker g(A). Let T' = (A, v).
Suppose, v = v1 + vy where v; € V;. Let x( be the solution in V5 of the equation Az + vy, = .
Such a solution exists as det (I — A) y,# 0. Let 7 = (I, ,), then 7(A,v)77! = (A, v1). We
have shown that any element (A,v) € [7'(A) is in the same GA(V)-orbit as (A4, v;) where
(A—=1)"(v1) = 0. Let s be the least non-negative integer such that (A — I)*(V}).
consequence of Lemma [5.5.1] [[]7*([A]) has 7 + 1 elements. O

Then, as a

We can now determine the centralizer of an affine map.
Theorem 5.5.3. Let T = (A,v) € A(V) and V; = Ker (A — 1)

1. If T has a fized point then Z4(T) is conjugate to

{(B,w) | B€ Z,(A), andw € V;}

2. Suppose T has no fized point, and my(x) = (x — 1)"g(x), g(1) # 0 is the minimal
polynomial of A. Let s < r be the least positive integer such that (A — I)*v = 0. Then
ZA(T) is congugate to

{(B,w) | B€ Z1(A),w € Vsr, (B — v = (A— w}

An element (B,w) in Z%(T) necessarily has eigenvalue 1 with multiplicity at least s.
Let T'= (A,v) in A(V) and S = (B,w) € Z4(T'). Then, ST =TS is equivalent to
1. BA=AB,B e Z(T)
2. Bv+w=Aw+v=(B-DNv=(A-Dw

Now, suppose T" has a fixed point. Then by conjugation by an element in GA(V) allows us
to take v = 0. Then, we take the flag associated with A.

ZA(T) = {(B,w) | B € Z,(A),w e V}}
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where V] = Ker (A —1I).
Now, suppose T has no fixed point. Then, by Theorem let us assume my(z) =

(x—1)"g(x),g(1) # 0 is the minimal polynomial of A and s is the least positive integer such
that (A — I)®v = 0. Then,

(A-I¥B-Dv=(B-DA-1)v=0=(A—1)"w

w € V41 where V; = Ker(A — I)'.

Conversely, if w € Voyq, Vo = Vi and v € Vo — Vo141 and (A — I)w € Vs. Then, 3
C € Z,(T) such that Cv = (A — I)w and these C’s are determined by the refined flag. For
each C, let B = C + I. These B’s are the (B,w)’s € Z4(T).

Further, (B,w) € Z4(T) it B € Zj(A). Then Bv € Vi, — Vi1 ,-1. Since (A —Hw €
Vs—1k-1 = Bv = v mod V,_q4_1. Then the linear map induced by B on V,/V,_;;_; has
eigenvalue 1. Then B has eigenvalue 1 and the N-images of the corresponding eigenvector

shows that the multiplicity of the eigenvaue 1 is at least s.

5.6 Parametrization Theorems

Theorem 5.6.1. [Kul07]

1. A GL(V)-orbit in its action on L(V') is parametrized by

(i) A primary partition ™ : n=Y"._ n;,n; = ml;

(i) The secondary partitions l; = 22:1 5i 0, where s;1 < 8;9 < -+ < Sy,
(111) An F-isomorphism class of pairs (E;, a;), where E; is a simple field extension of

F of degree m; with oy as its primitive element, fori=1,2,...,r.

2. A GA(V)-orbit in its action on A(V) is parametrized by the data (i), (ii), (ii1) given
above and with m(z) = (x — 1)%g(x),g(1) # 0

(iv) A non-negative integer s < u.
Theorem 5.6.2. [Kul07]

1. An element of L(V') is uniquely determined by: The data (i), (ii) , (iii) of Theorem
in particular the field extensions E; = Flx|/(pi(x)), and the primitive elements
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(iv) A decomposition D, : V = @._, Vi of V patterned on the primary partition .

(v) Flags F((ni, mi;{(si1,0i1), (Si2,0i2), -, (Sivi,0iri)}) of subspaces in Vi, pat-
terned on the secondary partitions.

(vi) Compatible E;-structures on the sub-quotients in the flag in each V.

2. An element T of A(V) is uniquely determined by the following data.
Case 1: (T has a fized point)
Choose a fized point as the origin. So, T may be identified with an element in L(V').
The data (i), ..., (vi) is independent of the choice of the fixed point. These data and
the affine subspace of fixed points determine T'.
Case 2: (T has no fized point)
Ezxpress T as (B, v) so that there ezists s, a least positive integer such that (I—B)*v = 0.

Then the invariants (i), ..., (vi) associated to B and v uniquely determine T'.

We will now provide the proof for the first part in Theorem [5.6.1| and the proof for the
second part and Theorem be along the same lines.
It is fairly obvious that we can independently read from a refined flag, the numerical data
about exponents and multiplicities in the elementary divisors. An element 7" € L(V) is

associated with
1. the minimal polynomial my(x) = []/_, pi(z)®
2. the primary partition dim V = Y"_, dim V; where V; = Ker p;(T)%

3. the secondary partitions with s;;’s being the exponents in the elementary divisors

pi(r)*’s and o} ;s being the multiplicities of p;(z)%’s.

Conversely, suppose we are given this data. Let V = @_,V; is an arbitrary decomposition
patterned over the primary partition. We can construct a flag in each V; with type given
by the pairs (s;;,0;;)’s. Let E; = Flz]/(p;(z)) and a = [z]. Now, after equiping the sub-
quotients in the flag in V; with a compatible family of E;-structures, we will take an arbitrary

Eo-basis (e, ..., ex) in the component V4 ; of the flag. Then
2 m;—1 m;—1
(e1,aeq,aeq, ..., Q™ ey, 69, eg, ..., ™ ey)

is an [F-basis of V4 ;. We can continue this process to all the components in the chain ending

in V}, and define the operator 7" on Vj having the minimal polynomial p(z). Now when we
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consider the component V; ; in the flag, we notice that by construction dim gV ,/V; is m;k
and it has an E;-structure. Choose (e}, ...,¢}) in Vi1 whose classes [¢]
[E;-basis. Then, if we define Tje;, 1 <j<m-—1,1<wu<kin Vi, so that their classes
modulo V; are [a?e,]. Now we define p(T)e} = e; in V1 and p(T)T7¢}, = TVe;, 1 < j < m;—1.

If we continue this process we will obtain a basis of V; and an operator T' € L(V;) which has

] modulo V; form an

the given secondary partition on V;. Taking the direct sum we obtain an operator 7" on V
having the minimal polynomial m(z) and the given primary and secondary partitions.

Now, suppose T,T" are two elements in L(V') having the same data.Then the dimension of
a primary component V; equals m;l;. Then by conjugating with an appropriate element of
GL(V), we can say that T, T’ have the same primary components. This reduces the case
to when mqy(x) = mqp/(x) = p(z)?. Then by our hypothesis T,7" have the same secondary
partitions. We can construct the flags and the bases e;, €}’s of V' for these flags. Then, the

an element g € GL(V), ge; — €} conjugates T" into 1.
Theorem 5.6.3. [Kul07]

1. A z-class in the GL(V)-action on L(V) is parametrized by

" = myl
i=1 Tbis Thi = T4b;

(i) A primary partition m: n =[]
(i1) The secondary partition l; = Z;’:l 5i;0;; where s;1 < 8;9 < -+ < S,

(111) Simple field extensions E;, 1 <i <r of F, [E; : F;] =m;

2. A z-class of (A,v) in the GA(V)-action on A(V) is parametrized by the data (i), (i1), (ii7)

in case my(x) does not have 1 as an eigenvalue. In case my(x) = (x — 1)"g(x),
g(1) #0, and u > 0, then the z-class of (A,v) is parametrized by the data (i), (it), (iii)
and

(iv) A non-negative integer s < u.
Let S, T be in the same z-class in L(V'). Then Z7(S) and Z}(T") are conjugate in GL(V).

Lemma 5.6.4. Let T be in L(V'). Then Z,(T) as an F-subalgebra of L(V') and Z5(T) as
a subgroup of GL(V') uniquely determine each other.

Proof. Z(T) uniquely determines Z;(7") as the multiplicative subgroup of units.
Conversely, let S be a non-invertible element in Z7(T'). Then mg(x) = ¥ f(x), with k > 0,
and f(0) # 0. Now if Vy = Ker S* and V; = Ker f(S5), then V =V, & V; is a T-invariant

decomposition. Let Jy; y; denote the operator which is identity on V4, and zero on V;. Then
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Jvovy € Zr(T) and S1 = S+ Jy, v, € Z5(T), Then Z.(T) is a linear span of Z; (7)) and the

operators Jy, v, correspond to all T-invariant decompositions V' = Vj @ Vj. O

Now we may assume that Z;(7T") and Z.(S) are conjugate in GL(V) by an element w.
We can replace S by uSu™!
Let C be the center of Z.(T'). By Frobenius’ bicommutant theorem, we have C' = F[S] =

F[T]. Although C' does not determine T', every element of C' leaves every T-invariant subspace

, 80 we can assume Z(S) = Z.(T).

invariant. Let p;(x) be the primes associated to T and V' = @V, the corresponding primary
decomposition. Let W be a T-invariant subspace of V; such that the pair (W, T [y ) is
dynamically equivalent tooo (F[z]/(pi(x)?), 1:). Then W; = Ker p;(z)?,0 < j < d are all
the T-invariant subspaces of W. As a subsapce of V' is T-invariant iff it is S-invariant, then
W;’s are also all the S-invariant subspaces of W. The mg;,, () will be of the form ¢(z)°.
Now, ¢(z) is such that the pair (W, T [w) is dynamically equivalent to (F[x]/(p;(x)¢), p.) for
some e. Then there is an operator A € Z.(T') which maps W onto U with the action of S.
This implies that V' = @V} is a primary decomposition with respect to S. We now have a well-
defined choice for the primary partition of n. When we restrict the action of Z.(T') = Z.(S)
to Vi, we see that the secondary partitions are well-defined invariants of Z,(T") = Z.(S).
Finally, a simple field extension of F[z| is a well-defined invariant of Z.(S) = Z,(T"). The
converse is fairly straightforward to prove. Using the results in Section 5, we can prove the
same for the affine case.

A consequence of Theorem [5.6.3| is the following theorem that describes the conditions

in which there are finitely many z-classes.

Theorem 5.6.5. [Kul07] Let V' be an n-dimensional vector space over a field F. Suppose F
has the property that there are only finitely many extensions of F of degree at most n. Then
there are finitely many z-classes of GL(V') and GA(V'), actions on L(V) and A(V).
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Summary and further

In this thesis, we have computed the z-classes of symmetric groups, general linear groups
and general affine groups. We observed that they have finitely-many z-classes and in case
of general linear groups and general affine groups, this happens when the underlying firld
has only finitely many extensions of each degree. We have also investigated the notion of
“dynamical types” and described the Weyl group at a point x. Using this theory, we have
also computed the z-classes of semisimple operators.

We could further use the theory of the generalised symmetric group to study the z-classes of
alternating groups. [BKS17]. We can also look at various subgroups of general linear group,
like, unitriangular matrices [Bhul9], semisimple matrices, symplectic matrices, unipotent
matrices etc.

In fact, there is a lot of recent literature in the conjugacy classes of unipotent and unitrian-

gular matrices. [Alp06] [VLAO3], to name a few.
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