Conjugacy Classes of Centralizers in Groups

A Thesis

submitted to
Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme
by

Bhargavi Parthasarathy

IISER PUNE

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Dr. Anupam Kumar Singh
(C) Bhargavi Parthasarathy 2019

All rights reserved

Certificate

This is to certify that this dissertation entitled Conjugacy Classes of Centralizers in Groups towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Bhargavi Parthasarathy at Indian Institute of Science Education and Research under the supervision of Dr. Anupam Kumar Singh, Associate Professor, Department of Mathematics, during the academic year 2018-2019.

Dr. Anupam Kumar Singh

Committee:

Dr. Anupam Kumar Singh
Dr. Vivek Mohan Mallick

This thesis is dedicated to Amma, Appa and Ambreesh. Your existence makes life worthwhile.

Declaration

I hereby declare that the matter embodied in the report entitled Conjugacy Classes of Centralizers in Groups are the results of the work carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research, Pune, under the supervision of Dr. Anupam Kumar Singh and the same has not been submitted elsewhere for any other degree.

Bhargavi

Bhargavi Parthasarathy

Acknowledgments

First and foremost, I would like express my heartfelt gratitude to my supervisor, Dr. Anupam Kumar Singh, for being the mentor one could only wish for. It is under his able guidance and with his constant support that I was able to navigate my way through this project and bring it to fruition. He often had more belief in my capabilties that I did, whether it be by boosting my confidence when I'd be stuck or giving me the independence to make my mistakes and learn from them. At the end of a year of honest discussions, I can say I am more confident about my mathematical abilities than when I began this endeavour, and for that I will always be grateful.
I would also like to thank the expert on my Thesis Advisory Committee, Dr. Vivek Mohan Mallick for the valuable insight I gained through our discussions and whose patient and constant encouragment always bolstered me.

I am immensely thankful to Saikat for engaging me in insightful conversations and putting up with me and Uday for providing me with important feedback.
I would finally like to thank my friends and family, who put up with me through this ardous journey. I cannot imagine completing this without their unquestioning love and inspiring support. They've always been there, whether I needed them or not, standing in support and solidarity and I'm forever indebted.

Abstract

Two elements in a group G are said to be in the same z-class or z-equivalent if their centralizers are conjugate in G. This is an equivalence relation on G and provides a partition of G into disjoint equivalence classes. The structure of centralizers and their conjugacy classes provides important insight into the group structure. Although z-equivalence is a weaker relation than conjugacy, it is interesting to note that there are infinite groups which have infinitely many conjugacy classes but fintely many z-classes. In fact, the finiteness of z-classes in algebraic groups and Lie groups is an interesting problem. We have studied the structure of z-classes for symmetric groups S_{n}, general linear groups $G L_{n}(\mathbb{F})$ and general affine groups $G A_{n}(\mathbb{F})$ and have proven that there are finitely many z-classes, for $n \geq 5$ in S_{n} and when \mathbb{F} has finitely many extensions, in the latter cases. We also investigate the idea that there is a relation between the finiteness of z-classes and and the intuitive understanding of the finiteness of "dynamical types" of transformations in geometry through group actions.

Contents

Abstract xi
1 Definitions and Examples 3
1.1 Definitions 3
1.2 Examples 4
2 Conjugacy classes of $G L_{n}(\mathbb{F})$ 9
2.1 Primary Decomposition Theorem 9
2.2 Triangular Form 14
2.3 Jordan Canonical Form 17
2.4 Rational Canonical Form 20
3 Symmetric groups 29
3.1 Conjugacy classes and centralizer of elements in S_{n} 29
3.2 Restricted partitions 33
3.3 Wreath products 34
$3.4 z$-classes in S_{n} 36
4 Dynamical types and z-classes in groups 39
4.1 The α - and σ-fibrations 39
4.2 The critical abelian subgroups and z-classes in a group 43
$4.3 z$-classes of semisimple linear operators 48
5 z-classes of linear and affine maps 55
5.1 Classical Theory for $L(V)$ 55
5.2 Orbits of $\mathcal{Z}_{L}^{*}(T)$ and a Canonical Maximal $\mathcal{Z}_{L}(T)$-Invariant Flag 57
5.3 Strongly Commuting Operators 59
5.4 " $S+N$ "-decomposition 60
5.5 Affine Case 62
5.6 Parametrization Theorems 64

Introduction

Let G be a group. Two elements $x, y \in G$ are said to be z-equivalent if their centralizers $\mathcal{Z}_{G}(x), \mathcal{Z}_{G}(y)$ are conjugate in G. The problem of characterizing z-classes and explicitly counting them has been studied for various groups. Since they require deep understanding of the structures of conjugacy classes in addition to the structure of centralizers, these are important problems to study, giving us great insight into the group structure. We further note that the non-triviality of these strutures is what makes these problems interesting, and in that spirit, we persevere to understand the conditions under which such structures occur. The existence of instances where an infinite group has finitely many z-classes has been used by Kulkarni to provide the rudimentary notion of "dynamical types" and their relation to z-classes [SK07]. Expanding in this direction, the z-classes of real hyperbolic isometries have been classified and counted by Gongopadhyay and Kulkarni GK09a.
Another perspective on this problem was provided through Steinberg's theorem [Ste74] that proved the finiteness of z-classes in reductive algebraic groups over a field of good characterstic, allowing one to explore the assumptions on a field \mathbb{F} under which a group defined over this field has finitely many z-classes. This has motivated further exploration of ideas of finiteness of z-classes in various other groups.
Bhunia, Kaur and Singh have determined the number of z-classes in symmetric groups and alternating groups and their relation to restricted partitions in [BKS17. In the case of general linear maps and affine maps, Kulkarni Kul07 has shown the conditions the underlying field must comply to for these groups to have finitely many z-classes. Using the fact that the number of z-classes is invariant for a family of isoclinic groups, Kulkarni, Kitture and Jadhav [KKJ16] have obtained bounds for the number of z-classes in certain families of groups, following which Dattatreya and Jadhav [DJ14] have determined the number of z-classes in p-groups of order $\leq p^{5}$. Gongopadhyay and Kulkarni GK09b have parametrized z-classes in the group of isometries and determined that they are finite when the undelying field is perfect and has finitely many extensions. Gon13] provides a unified approach to the deter-
mination of the conjugacy classes of centralizers in hyperbolic geometries. Gouraige Gou06 studied z-classes in central simple algebras, Singh [Sin08] in G_{2}, Bhunia [BS19] in unitary groups and Bhunia and Singh Bhu19] in upper triangular matrices.

Chapter 1

Definitions and Examples

Let G be a group. We begin by defining when two elements in G are in the same z-class and show that z-equivalence is a weaker relation than conjugacy. We will also look at some examples in this chapter.

1.1 Definitions

Given a group G, two elements $g_{1}, g_{2} \in G$ are conjugate in G, if

$$
\exists t \in G \text { such that } t g_{1} t^{-1}=g_{2} .
$$

Proposition 1.1.1. Conjugacy is an equivalence relation.
Proof. It is symmetric due to the existence of inverses in G, reflexive as the identity belongs to G and closure of G ensures transitivity.

For an element $g \in G$, centralizer of g in G, denoted as $\mathcal{Z}_{G}(g)$ is all those elements in G that commute with g.

$$
\mathcal{Z}_{G}(g):=\{x \in G \mid x g=g x\} .
$$

For a group G, two elements g_{1}, g_{2} are z-equivalent if their centralizers are conjugate subgroup within G, i.e., if

$$
\exists t \in G \text { such that } t \mathcal{Z}_{G}\left(g_{1}\right) t^{-1}=\mathcal{Z}_{G}\left(g_{2}\right)
$$

z-equivalence is an equivalence relation on G and represents the conjugacy classes of centralizer subgroups of G. These equivalence classes are called z-classes or centralizer classes. The proof for equivalence is similar to the proof for Proposition 1.1.1.

Proposition 1.1.2. If two elements are conjugates, then they are z-equivalent.

Proof. Given $\exists t \in G$ such that $g_{2}=t g_{1} t^{-1}$, we need to show that $\exists k \in G$ such that

$$
\mathcal{Z}_{G}\left(g_{2}\right)=k \mathcal{Z}_{G}\left(g_{1}\right) k^{-1}
$$

Let $x \in \mathcal{Z}_{G}\left(g_{2}\right) \Rightarrow x g_{2}=g_{2} x$

$$
\begin{aligned}
& \Rightarrow x t g_{1} t^{-1}=t g_{1} t^{-1} x \\
& \Rightarrow t^{-1} x t g_{1}=g_{1} t^{-1} x t \\
& \Rightarrow t^{-1} x t \in \mathcal{Z}_{G}\left(g_{1}\right) \\
& \Rightarrow x \in t \mathcal{Z}_{G}\left(g_{1}\right) t^{-1} \\
& \Rightarrow \mathcal{Z}_{G}\left(g_{2}\right) \subseteq t \mathcal{Z}_{G}\left(g_{1}\right) t^{-1}
\end{aligned}
$$

Let $y \in \mathcal{Z}_{G}\left(g_{1}\right) \Rightarrow g_{1} y=y g_{1}$

$$
\begin{gathered}
g_{2}\left(t y t^{-1}\right)=t g_{1} t^{-1} t y t^{-1}=t y g_{1} t^{-1}=t y t^{-1}\left(t g_{1} t^{-1}\right)=t y t^{-1} g_{2} \\
\Rightarrow t y t^{-1} \in \mathcal{Z}_{G}\left(g_{2}\right) \\
\Rightarrow t \mathcal{Z}_{G}\left(g_{1}\right) t^{-1} \subseteq \mathcal{Z}_{G}\left(g_{2}\right)
\end{gathered}
$$

$\therefore \mathcal{Z}_{G}\left(g_{2}\right)=t \mathcal{Z}_{G}\left(g_{1}\right) t^{-1}$

However, the converse need not true. In fact, z-equivalence is a weaker relation than conjugacy.

1.2 Examples

Example 1.2.1. Abelian group $A=\left\{a_{1}, \ldots, a_{n}\right\}$
There are n conjugacy clases in A :

$$
\begin{gathered}
\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\} \\
\mathcal{Z}_{A}\left(a_{i}\right)=A \forall a_{i} \in A
\end{gathered}
$$

There is one z-class in A :

This example shows us that z-equivalence is a weaker relation. Further, since Abelian groups have only one z-class, we focus on studying the z-classes of non-Abelian groups.

Example 1.2.2. $S_{3}=\{1,(12),(13),(23),(123),(132)\}$
There are three conjugacy classes in S_{3} :

$$
\begin{aligned}
& \{1\},\{(12),(13),(23)\},\{(123),(132)\} \\
& \\
& \mathcal{Z}_{S_{3}}((12))=\{1,(12)\} \\
& \mathcal{Z}_{S_{3}}((123))=\{1,(123),(132)\}
\end{aligned}
$$

There are three z-classes in S_{3} :

$$
\{1\},\{(12),(13),(23)\},\{(123),(132)\}
$$

Remark. For the symmetric groups S_{3} and S_{4}, the z-classes are same in number as the number of conjugacy classes. However this is not true for $n \geq 5$. For $n=5$, the elements (12)(345) and (345) are z-equivalent but they are not conjugates. We will elaborate on this in Chapter 2.

Example 1.2.3. $Q_{8}=\left\{ \pm 1, \pm i, \pm j, \pm k \mid i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=\right.$ $i, k i=-i k=j\}$
There are five conjugacy classes in Q_{8} :

$$
\begin{aligned}
&\{1\},\{-1\},\{ \pm i\},\{ \pm j\},\{ \pm k\} \\
& \mathcal{Z}_{Q_{8}}(-1)=Q_{8} \\
& \mathcal{Z}_{Q_{8}}(\pm i)=\{ \pm 1, \pm i\} \\
& \mathcal{Z}_{Q_{8}}(\pm j)=\{ \pm 1, \pm j\} \\
& \mathcal{Z}_{Q_{8}}(\pm k)=\{ \pm 1, \pm k\}
\end{aligned}
$$

There are four z-classes in Q_{8} :

$$
\{ \pm 1\},\{ \pm i\},\{ \pm j\},\{ \pm k\}
$$

Example 1.2.4. $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$

The number of conjugacy classes and z-classes is dependent on whether n is odd or even. The conjugacy classes in $D_{2 n}$ are as follows:

1. If n is odd, there are $\frac{n+3}{2}$ conjugacy classes.

- the identity element: $\{1\}$,
- $\frac{n-1}{2}$ conjugacy classes of size 2: $\left\{r^{ \pm i}\right\}$ for $i=1, \ldots, \frac{n-1}{2}$,
- all the reflections : $\left\{s r^{i} \mid 0 \leq i \leq n-1\right\}$.

2. If n is even, there are $\frac{n+6}{2}$ conjugacy classes.

- two conjugacy classes of size 1 : $\{1\},\left\{r^{\frac{n}{2}}\right\}$,
- $\frac{n}{2}-1$ conjugacy classes of size 2: $\left\{r^{ \pm i}\right\}$ for $i=1, \ldots, \frac{n}{2}-1$,
- the reflections fall into two conjugacy classes: $\left\{s r^{2 i} \left\lvert\, 0 \leq i \leq \frac{n}{2}-1\right.\right\}$ and $\left\{s r^{2 i+1} \left\lvert\, 0 \leq i \leq \frac{n}{2}-1\right.\right\}$.

The z-classes in $D_{2 n}$ are as follows:

1. If n is odd,

$$
\begin{aligned}
& \mathcal{Z}_{D_{2 n}}\left(r^{j}\right)=\left\{r^{i} \mid i=0, \ldots, n-1\right\}, \text { for any } j=0, \ldots, n-1 \\
& \mathcal{Z}_{D_{2 n}}\left(s r^{j}\right)=\left\{1, s r^{j}\right\}, \text { for any } j=0, \ldots, n-1
\end{aligned}
$$

There are three z-classes:

$$
\{1\},\left\{r^{j} \mid j=1, \ldots, n-1\right\},\left\{s r^{j} \mid j=0, \ldots, n-1\right\}
$$

2. If n is even

$$
\begin{aligned}
& \mathcal{Z}_{D_{2 n}}\left(r^{\frac{n}{2}}\right)=D_{2 n} \\
& \mathcal{Z}_{D_{2 n}}\left(r^{j}\right)=\left\{r^{i} \mid i=0, \ldots, n-1\right\}, \text { for any } j=0, \ldots, n-1, j \neq \frac{n}{2} \\
& \mathcal{Z}_{D_{2 n}}\left(s r^{j}\right)=\left\{1, s r^{j}, r^{\frac{n}{2}}, s r^{j+\frac{n}{2}}\right\}, \text { for any } j=0, \ldots, n-1
\end{aligned}
$$

(a) When n is divisible by 4

There are four z-classes:

$$
\begin{aligned}
& \left\{1, r^{\frac{n}{2}}\right\},\left\{r^{j} \mid j=1, \ldots, n-1, j \neq \frac{n}{2}\right\} \\
& \left\{s r^{2 j} \mid j=0, \ldots, \frac{n}{2}\right\},\left\{s r^{2 j+1} \mid j=0, \ldots, \frac{n}{2}\right\}
\end{aligned}
$$

(b) When n is not divisible by 4

There are three z-classes:

$$
\left\{1, r^{\frac{n}{2}}\right\},\left\{r^{j} \mid j=1, \ldots, n-1, j \neq \frac{n}{2}\right\},\left\{s r^{j} \mid j=0, \ldots, n-1\right\}
$$

Chapter 2

Conjugacy classes of $G L_{n}(\mathbb{F})$

The general linear group $G L_{n}(\mathbb{F})$ is the set of $n \times n$ invertible matrices together with the operation of matrix multiplication. In this chapter, we will discuss conjugacy classes of any matrix $A \in \operatorname{Mat}_{n}(\mathbb{F})$ and since $G L_{n}(\mathbb{F})$ is a subset, the same will apply for $G L_{n}(\mathbb{F})$. Further, we will discuss some results we had assumed in Section 4.3., as discussed in BR02]
Two $n \times n$ matrices A and B are conjugates when they are similar, i.e,

$$
\exists \text { invertible matrix } P \in \operatorname{Mat}_{n}(\mathbb{F}) \text { such that } P B=A P
$$

Thus, similarity is the same as conjugacy in $G L_{n}(\mathbb{F})$. We will discuss various results that will help us determine simple representatives in each conjugacy class.
We also know that, given a vector space V over the field \mathbb{F}, we can associate a matrix to every linear map $T: V \rightarrow V$. Suppose V is n-dimensional, then it has a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We can determine the action of T by expressing each $T\left(v_{i}\right)$ as a linear combination of the basis elements and the scalars associated with each of these actions help determine the matrix A associated with this linear transformation.
Finally, if V is a vector space over a field \mathbb{F} and if $T: V \rightarrow V$ is linear, then a subspace W of V is said to be T-invariant if $T(W) \subseteq W$, i.e.,

$$
\text { if } x \in W \Rightarrow T(x) \in W
$$

2.1 Primary Decomposition Theorem

Theorem 2.1.1. If $T: V \rightarrow V$ is linear, then for every polynomial $p \in \mathbb{F}[x]$, the subspaces $\operatorname{Im} p(T)$ and $\operatorname{Ker} p(T)$ are T-invariant.

Proof. For every polynomial p, we have $T \circ p(T)=p(T) \circ T$.
If $x=p(T)(y)$, then $T(x)=(T \circ p(T))(y)=p(T)[T(y)]$. We can clearly see that $\operatorname{Im} p(T)$ is T-invariant.
Now, if $p(T)(x)=0_{V}$, then $T(p(T)(x))=T\left(0_{V}\right)=0_{V} \Rightarrow T(p(T)) \in \operatorname{Ker} p(T)$.

Suppose V is n-dimensional, $T: V \rightarrow V$ is linear and the subspace W of V is T-invariant. Then T induces a linear mapping \bar{T}

$$
\begin{aligned}
\bar{T}: W & \rightarrow W \\
w & \mapsto \bar{T}(w)=T(w) \in W
\end{aligned}
$$

Choose a basis $\left\{w_{1}, \ldots, w_{r}\right\}$ of W and extend it to the following basis of V,

$$
\left\{w_{1}, \ldots, w_{r}, v_{1}, \ldots, v_{n-r}\right\}
$$

Let us consider the matrix of T relative to this basis. Since W is T-invariant, $T\left(w_{i}\right) \in W$ and so $\forall i$,

$$
T\left(w_{i}\right)=\lambda_{i 1} w_{1}+\cdots+\lambda_{i r} w_{r}+0 v_{1}+\cdots+0 v_{n-r}
$$

This matrix is of the form

$$
\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right)
$$

where A is the $r \times r$ matrix that represents the mapping induced on W by T.
If $V=\bigoplus_{i=1}^{k} V_{k}$, where each V_{i} is T-invariant and if B_{i} is a basis of $V_{i} \forall i$, then the matrix relative to the basis $B=\bigcup_{i=1}^{k} B_{i}$ is of the block diagonal form

$$
\left(\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{k}
\end{array}\right)
$$

in which A_{i} is the matrix representing the mapping induced on V_{i} by T, so A_{i} is of size dim $V_{i} \times \operatorname{dim} V_{i}$.

Theorem 2.1.2. [Primary Decomposition Theorem] Let V be a non-zero finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be a linear map. Let the characteristic and
minimal polynomials of T be

$$
c_{T}=p_{1}^{d_{1}} p_{2}^{d_{2}} \ldots p_{k}^{d_{k}}, m_{T}=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{d_{k}}
$$

repectively, where $p_{1}(x), \ldots, p_{k}(x)$ are distinct irreducible polynomials in $\mathbb{F}[x]$. Then each subspace $V_{i}=\operatorname{Ker} p_{i}^{e_{i}}(T)$ is T-invariant and $V=\bigoplus_{i=1}^{k} V_{i}$.
Further, if $T_{i}: V_{i} \rightarrow V_{i}$ is the linear mapping that is induced on V_{i} by T then the characteristic polynomial of T_{i} is $p_{i}^{d_{i}}$ and the minimal polynomial of T_{i} is $p_{i}^{e_{i}}$.

Proof. If $k=1$, this is trivial.
Suppose $k \geq 2$. For $i=1, \ldots, k$ let

$$
q_{i}=m_{T} / p_{i}^{e_{i}}=\prod_{j \neq i} p_{j}^{e_{j}}
$$

No irreducible factor exists such that it is common to each q_{1}, \ldots, q_{k} and so there exist $a_{1}, \ldots, a_{k} \in \mathbb{F}[x]$ such that

$$
a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{k} q_{k}=1
$$

Let us write $q_{i} a_{i}=t_{i} \forall i$, we get,

$$
\begin{equation*}
t_{1}(T)+t_{2}(T)+\cdots+t_{k}(T)=\operatorname{id}_{V} \tag{2.1}
\end{equation*}
$$

By definition of q_{i}. we have that if $i \neq j$ then m_{T} divides $q_{i} q_{j}$. As a consequence, $q_{i}(T) q_{j}(T)=$ 0 for $i \neq j$ and

$$
\begin{equation*}
t_{i}(T) t_{j}(T)=0 \text { for } i \neq j \tag{2.2}
\end{equation*}
$$

By Equations 2.1 and 2.2, we can see that $t_{i}(T)$ is a projection and

$$
V=\bigoplus_{i=1}^{k} \operatorname{Im} t_{i}(T)
$$

By Theorem 2.3.1 each of the subspaces $\operatorname{Im} t_{i}(T)$ is T-invariant. We need to now show that $\operatorname{Im} t_{i}(T)=\operatorname{Ker} p_{i}^{e_{i}}(T)$.
Since $p_{i}^{e_{i}} q_{i}=m_{T} \Rightarrow p^{e_{i}}(T) q_{i}(T)=m_{T}(T)=0 \Rightarrow p_{i}^{e_{i}}(T) q_{i}(T) a_{i}(T)=0 \Rightarrow \operatorname{Im} t_{i}(T) \subseteq \operatorname{Ker}$ $p_{i}^{e_{i}}(T)$.

Now, for the reverse inclusion,

$$
\begin{aligned}
t_{j}(T)=a_{j}(T) q_{j}(T) & =a_{j}(T) \prod_{i \neq j} p_{i}^{e_{i}}(T) \forall j \\
\Rightarrow \operatorname{Ker} p_{i}^{e_{i}}(T) & \subseteq \bigcap_{j \neq i} \operatorname{Ker} t_{j}(T) \\
& \subseteq \sum_{j \neq i} \operatorname{Ker} t_{j}(T) \\
& =\operatorname{Ker}\left(\operatorname{id}_{V}-t_{i}(T)\right) \text { by Equation } 2.3 \\
& =\operatorname{Im} t_{i}(T)
\end{aligned}
$$

For the induced mapping $T_{i}: V_{i} \rightarrow V_{i}$, let m_{i} be its minimal polynomial. If $p_{i}^{e_{i}}(T)$ is the zero map on V_{i}, then $p_{i}^{e_{i}}\left(T_{i}\right)$ is the zero map as well. Then $m_{T_{i}}\left|p_{i}^{e_{i}} \Rightarrow m_{T_{i}}\right| m_{T}$ and $m_{T_{i}}$ are relatively prime. Let $g \in \mathbb{F}[x]$ be a multiple of $m_{T_{i}} \forall i$. Then $g\left(T_{i}\right)$ is the zero map on V_{i}. For every $x=\sum_{i=1}^{k} v_{i} \in \bigoplus_{i=1}^{k}=V_{i}$, we have

$$
g(T)(x)=\sum_{i=1}^{k} g(T)\left(v_{i}\right)=\sum_{i=1}^{k} g\left(T_{i}\right)\left(v_{i}\right)=0_{V}
$$

So, $g(T)=0 \Rightarrow m_{T} \mid g$. We can see that m_{T} is the least common multiple of $m_{T_{1}}, \ldots, m_{T_{k}}$. Since these polynomials are relatively prime, $m_{T}=\prod_{i=1}^{k} m_{T_{i}}$. We know that $m_{t}=\prod_{i=1}^{k} p_{i}^{e_{i}}$ and $m_{T_{i}} \mid p_{i}^{e_{i}}$. Given all these polynomials are monic, then $m_{T_{i}}=p_{i}^{e_{i}}$ for $i=1, \ldots, k$.
We can put together a basis for V using the bases of subspaces V_{i} and the matrix of T with respect to such a basis is of the block diagonal form

$$
M=\left(\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{k}
\end{array}\right)
$$

From the theory of determinants

$$
\operatorname{det}(x I-M)=\prod_{i=1}^{k} \operatorname{det}\left(x I-A_{i}\right)
$$

We see that $c_{T}=\prod_{i=1}^{k} c_{T_{i}}$. We know that $m_{T_{i}}=p_{i}^{e_{i}}$ and since $m_{T_{i}}$ and $c_{T_{i}}$ have the same zeros, then $c_{T_{i}}=p_{i}^{r_{i}}$ some $r_{i} \geq e_{i}$. Therefore $\prod_{i=1}^{k} p_{i}^{r_{i}}=c_{T}=\prod_{i=1}^{k} p_{i}^{d_{i}}$ from which it follows
that $r_{i}=d_{i}$ for $i=1, \ldots, k$.
Corollary 2.1.3. $\operatorname{dim} V_{i}=d_{i} \operatorname{deg} p_{i}$
Corollary 2.1.4. If all the eigenvalues of T lie in \mathbb{F}, such that

$$
\begin{aligned}
c_{T} & =\left(x-\lambda_{1}\right)^{d_{1}}\left(x-\lambda_{2}\right)^{d_{2}} \ldots\left(x-\lambda_{k}\right)^{d_{k}} \\
m_{T} & =\left(x-\lambda_{1}\right)^{e_{1}}\left(x-\lambda_{2}\right)^{e_{2}} \ldots\left(x-\lambda_{k}\right)^{e_{k}}
\end{aligned}
$$

then $V_{i}=\left(\operatorname{Ker} T-\lambda_{i} i d_{V}\right)^{e_{i}}$ is T-invariant, of dimension d_{i} and $V=\bigoplus_{i=1}^{k} V_{i}$
A special case of the Primary Decomposition Theorem is when each of the irreducible factors p_{i} of m_{T} is linear and $e_{i}=1$, i.e.,

$$
m_{T}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right)
$$

In this case, $T: V \rightarrow V$ is said to be diagonalisable if there is a basis of V consisting of eigenvectors of T, equivalently, if there is a basis of V with respect to which the matrix of T is diagonal.

Theorem 2.1.5. Let V be a non-zero finite-dimensional vector space and let $T: V \rightarrow V$ be linear. Then the following statements are equivalent:

1. the minimal polynomial m_{T} of T is a product of distinct linear factors
2. T is diagonalisable

Proof. Suppose

$$
m_{T}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are distinct elements in \mathbb{F}. By Theorem 2.1.2, V is the direct sum of T invariant subspaces $V_{i}=\operatorname{Ker}\left(T-\lambda_{i} \mathrm{id}_{V}\right)$.
$\forall x \in V_{i}$, we have $\left(T-\lambda_{i} \mathrm{id}_{V}\right)(x)=0_{V} \Rightarrow T(x)=\lambda_{i} x$. Each λ_{i} is an eigenvalue of T, every non-zero element of V_{i} is an eigenvector of T associated with λ_{i}. We can then put together bases of V_{1}, \ldots, V_{k} to form a basis for V. Then V has a basis consisting of eigenvectors of T and T is diagonalisable.
Conversely, let $\lambda_{1}, \ldots, \lambda_{k}$ be distinct eigenvalues of T. The mapping $p(T)$ where

$$
p=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right)
$$

maps every basis vector to 0_{V} and as a consequence, $p(T)=0$. The minimal polynomial m_{T} must divide p and thus coincides with p since every eigenvalue of T is a zero of m_{T}.

Remark. Although we will not prove this, it is interesting to note that two diagonalisable linear mappings $f, g: V \rightarrow V$ are simultaneously diagonalisable iff $f \circ g=g \circ f$.

2.2 Triangular Form

We will now look at a more general situation where the minimal polynomial of T factorises as a product of linear factor that are not necessarily distinct, i.e.,

$$
m_{T}=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{e_{i}}
$$

where each $e_{i} \geq 1$. This is always true when the underlying field is algebraically closed. By Corollary 2.1.4, we can write V as a direct sum of the T-invariant subspaces $V_{i}=$ Ker $\left(T-\lambda_{i} \mathrm{id}_{V_{i}}\right)^{e_{i}}$. Let $T_{i}: V_{i} \rightarrow V_{i}$ be the linear mapping induced on V_{i} by T and consider the mapping $T_{i}-\lambda_{i} \mathrm{id}_{V_{i}}: V_{i} \rightarrow V_{i}$. Then $\left(T_{i}-\lambda_{i} \operatorname{id}_{V_{i}}\right)^{e_{i}}$ is the zero map on V_{i} and so $T_{i}-\lambda_{i} \operatorname{id}_{V_{i}}$ is nilpotent.

Theorem 2.2.1. Let V be a non-zero finite-dimensional vector space and let $T: V \rightarrow V$ be a nilpotent linear mapping. Then there is an ordered basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that

$$
\begin{aligned}
& T\left(v_{1}\right)=0_{V} \\
& T\left(v_{2}\right) \in \operatorname{Span}\left\{v_{1}\right\} \\
& T\left(v_{3}\right) \in \operatorname{Span}\left\{v_{1}, v_{2}\right\} \\
& \quad \vdots \\
& T\left(v_{n}\right) \in \operatorname{Span}\left\{v_{1}, \ldots, v_{n-1}\right\}
\end{aligned}
$$

Proof. Since T is nilpotent, there is a positive integer m such that $T^{m}=0$. Let us assume $T \neq 0$. Then there is a smallest positive integer k such that $T^{k}=0$. Then $T^{i} \neq 0$ for $1 \leq i \leq k-1$. Since $T^{k-1} \neq 0$, there exists $v \in V$ such that $T^{k-1}(v) \neq 0_{V}$. Let $v_{1}=T^{k-1}(v)$. Then $T\left(v_{1}\right)=0_{V}$. If we proceed recursively, we will be able to find v_{1}, \ldots, v_{r} satisfying the conditions. Now, consider the subspace $W=\operatorname{Span}\left\{v_{1}, \ldots, v_{r}\right\}$ and let $W \neq V$.
There now are two possibilities depending on whether $\operatorname{Im} T \subseteq W$ or $\operatorname{Im} T \nsubseteq W$, which we
need to consider to show that $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis.
In the first case, let v_{r+1} be any element of $V \backslash W$. In the latter case, since we have the chain

$$
\left\{0_{V}\right\}=\operatorname{Im} T^{k} \subseteq \operatorname{Im} T^{k-1} \subseteq \cdots \subseteq \operatorname{Im} T^{2} \subseteq \operatorname{Im} T
$$

there is a positive integer j such that $\operatorname{Im} T^{j} \nsubseteq W$ and $\operatorname{Im} T^{j+1} \subseteq W$. Choose $v_{r+1} \in \operatorname{Im} T^{j}$ with $v_{r+1} \notin W$. Then $\left\{v_{1}, \ldots, v_{r+1}\right\}$ is linearly independent, with $T\left(v_{r+1}\right) \in W$.

Corollary 2.2.2. If $T: V \rightarrow V$ is nilpotent then there is an ordered basis of V with respect to which the matrix of T is upper triangular with all diagonal entries 0 .

Let $g_{i}=T_{i}-\lambda_{i} \mathrm{id}_{V_{i}}$. Then

$$
\begin{aligned}
\text { Mat } T_{i} & =\text { Mat } g_{i}+\lambda_{i} \text { Mat id }_{V_{i}} \\
& =\left(\begin{array}{ccccc}
\lambda_{i} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & \lambda_{i} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & a_{n-1, n} \\
0 & 0 & 0 & \ldots & \lambda_{i}
\end{array}\right)
\end{aligned}
$$

Theorem 2.2.3 (Triangular Form). Let V be a non-zero finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be a linear mapping whose characteristic and minimal polynomials are

$$
c_{T}=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{d_{i}}, m_{T}=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{e_{i}}
$$

for distinct $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ and $e_{i} \leq d_{i}$. Then there is an ordered basis of V with respect to which the matrix of T is upper triangular; more specifically, is a block diagonal matrix

$$
M=\left(\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{k}
\end{array}\right)
$$

in which A_{i} is a $d_{i} \times d_{i}$ upper triangular matrix

$$
\left(\begin{array}{cccc}
\lambda_{i} & \star & \ldots & \star \\
0 & \lambda_{i} & \ldots & \star \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \lambda_{i}
\end{array}\right)
$$

in which the entries marked \star are elements of \mathbb{F}.

Now, if $T: V \rightarrow V$ is linear and every eigenvalue of T lies in \mathbb{F}, which is the ground field of V, then each induced mapping on the T_{i} on the T-invariant subspace $V_{i}=\operatorname{Ker}\left(T-\lambda_{i} \mathrm{id}_{V}\right)^{e_{i}}$ can be written in the form $T_{i}=g_{i}+\lambda_{i} \mathrm{id}_{V_{i}}$, where g_{i} is nilpotent.

Theorem 2.2.4 (Jordan Decomposition). Let V be a non-zero finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be a linear mapping all of whose eigenvalues belong to \mathbb{F}. Then there is a diagonalisable linear mapping $\delta: V \rightarrow V$ and a nilpotent linear mapping $\eta: V \rightarrow V$ such that $T=\delta+\eta$ and $\delta \circ \eta=\eta \circ \delta$. Moreover, there are polynomials $p, q \in \mathbb{F}[x]$ such that $\delta=p(T)$ and $\eta=q(T)$. Furthermore, δ and η are uniquely determined.

Proof. The minimal polynomial of T is $m_{T}=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{e_{i}}$ where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ are distinct. Further, $V=\bigoplus_{i=1}^{k} V_{i}$ where $V_{i}=\left(\operatorname{Ker} T-\lambda_{i} \operatorname{id}_{V}\right)^{e_{i}}$.
Let $\delta: V \rightarrow V$ be given by $\delta=\sum_{i=1}^{k} \lambda_{i} p_{i}$ where $p_{i}: V \rightarrow V$ is the projection on V_{i} perpendicular to $\sum_{j \neq i} V_{j}$. Then for every $v_{i} \in V_{i}$, we have $\delta\left(v_{i}\right)=\left(\sum_{j=1}^{k} \lambda_{j} p_{j}\right)\left(v_{i}\right)=\lambda_{i}\left(v_{i}\right)$ and V has a basis consisting of eigenvectors of $\delta \Rightarrow \delta$ is diagonalisable.
Let $\eta=T-\delta$. Then $\forall v_{i} \in V_{i}$,

$$
\begin{aligned}
\eta\left(v_{i}\right) & =T\left(v_{i}\right)-\delta\left(v_{i}\right)=\left(T-\lambda_{i} \mathrm{id}_{V}\right)\left(v_{i}\right) \\
\Rightarrow \eta^{e_{i}}\left(v_{i}\right) & =\left(T-\lambda_{i} \mathrm{id}_{V}\right)^{e_{i}}\left(v_{i}\right)=0_{V}
\end{aligned}
$$

For some r, Ker η^{r} contains a basis of V, so $\eta^{r}=0$ and hence η is nilpotent.
Since $V=\bigoplus_{i=1}^{k} V_{i}$, every $v \in V$ can be uniquely written in the form $v=v_{1}+\cdots+v_{k}$ with
$v_{i} \in V_{i}$. Since each V_{i} is T-invariant, we have

$$
\begin{aligned}
p_{i}[T(v)] & =p_{i}\left[T\left(v_{1}\right)+\cdots+T\left(v_{k}\right)\right]=T\left(v_{i}\right)=T\left[p_{i}(v)\right] \\
\Rightarrow p_{i} \circ T & =T \circ p_{i} \forall i \\
\delta \circ T & =\sum_{i=1}^{k} \lambda_{i} p_{i} \circ T=\sum_{i=1}^{k} \lambda_{i} T \circ p_{i} \\
& =T \circ \sum_{i=1}^{k} \lambda_{i} p_{i}=T \circ \delta
\end{aligned}
$$

Now, by Theorem 2.1.2, we know that $p_{i}=t_{i}(T)$. Then by definition, we have $\delta=p(T)$, where $p=\sum_{i=1}^{k} \lambda_{i} t_{i}$. Since $\eta=T-\delta, \exists q \in \mathbb{F}[x]$ such that $\eta=q(T)$.
Suppose $\delta^{\prime}, \eta^{\prime}: V \rightarrow V$ are diagonalisable and nilpotent respectively, with $T=\delta^{\prime}+\eta^{\prime}$ and $\delta^{\prime} \circ \eta^{\prime}=\eta^{\prime} \circ \delta^{\prime}$. Now, we have just shown that, there are polynomials p, q such that $\delta=p(T)$ and $\eta=q(T) \Rightarrow \delta^{\prime} \circ \delta=\delta \circ \delta^{\prime}$ and $\eta^{\prime} \circ \eta=\eta \circ \eta^{\prime}$.
$\delta+\eta=\delta^{\prime}+\eta^{\prime} \Rightarrow \delta-\delta^{\prime}=\eta^{\prime}-\eta$. Further, $\eta^{\prime}-\eta$ is nilpotent and can be represented by a nilpotent matrix N. Also, δ^{\prime}, δ commute and there is a basis of V consisting of eigenvectors of both δ and δ^{\prime}. Then each such eigenvector is an eigenvector $\delta-\delta^{\prime}$ is represented by a diagonal matrix D.

Now, N and D are similar and then the only possibility $N=D=0 \Rightarrow \delta-\delta^{\prime}=\eta^{\prime}-\eta=$ $0 \Rightarrow \delta=\delta^{\prime}$ and $\eta=\eta^{\prime}$.

2.3 Jordan Canonical Form

The aim now is to find better bases for the subspaces that appear as the direct summands in the Primary Decomposition Theorem.

If the linear mapping $T: V \rightarrow V$ is nilpotent then the smallest positive integer k such that $T^{k}=0$ is called the index of T.

Theorem 2.3.1. If $T: V \rightarrow V$ is linear then, for every positive integer i,

1. $\operatorname{Ker} T^{i} \subseteq \operatorname{Ker} T^{i+1}$
2. if $x \in \operatorname{Ker} T^{i+1}$, then $T(x) \in \operatorname{Ker} T^{i}$

Proof. 1. If $x \in \operatorname{Ker} T^{i}$ then $T^{i}(x)=0_{V} \Rightarrow T^{i+1}(x)=T\left[T^{i}(x)\right]=T\left(0_{V}\right)=0_{V}$ $\therefore x \in \operatorname{Ker} T^{i+1}$
2. If $x \in \operatorname{Ker} T^{i+1}$ then $T^{i}[T(x)]=T^{i+1}(x)=0_{V} \Rightarrow T(x) \in \operatorname{Ker} T^{i}$.

Theorem 2.3.2. Let V be a non-zero vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be a linear mapping that is nilpotent of index k. Then there is the chain of distinct subspaces

$$
\left\{0_{V}\right\} \subset \operatorname{Ker} T \subset \operatorname{Ker} T^{2} \subset \cdots \subset \operatorname{Ker} T^{k-1} \subset \operatorname{Ker} T^{k}=V
$$

Proof. First Ker $T \neq\left\{0_{V}\right\}$, otherwise we would have $T^{k-1}(x)=0_{V} \forall x$ which is a contradiction.
As a result of Theorem 2.3.1, we just need to show that

$$
\text { Ker } T^{i} \neq \operatorname{Ker} T^{i+1} \text { for } i=1, \ldots, k-1
$$

Suppose $\exists i \in\{1, \ldots, k-1\}$ such that $\operatorname{Ker} T^{i}=\operatorname{Ker} T^{i+1}$.
Then, $\forall x \in V$, we have

$$
0_{V}=T^{k}(x)=T^{i+1}\left[T^{k-(i+1)}(x)\right]
$$

where $T^{k-(i+1)}(x) \in \operatorname{Ker} T^{i+1}=\operatorname{Ker} T^{i}$ and so

$$
0_{V}=T^{i}\left[T^{k-(i+1)}(x)\right]=T^{k-1}(x)
$$

This leads to a contradiction.

A square matrix of the form

$$
\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & 0 & 0 \\
0 & \lambda & 1 & \ldots & 0 & 0 \\
0 & 0 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

in which all the diagonal entries are λ and all the entries immediately above the diagonal entries are 1, and all other entries are 0 is called elementary Jordan matrix associated with $\lambda \in \mathbb{F}$.

A matrix of the form

$$
\left(\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

where each J_{i} is an elementary Jordan matrix associated with λ and all other entries are 0 is called a Jordan block matrix.

Theorem 2.3.3. Let V be a non-zero finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be linear and nilpotent of index k. Then there is a basis of V with respect to which the matrix of T is a Jordan block matrix associated with the eigenvalue 0.

Proof. For $i=0, \ldots, k$, let $W_{i}=\operatorname{Ker} T^{i}$. We have the following chain,

$$
\left\{0_{V}\right\}=W_{0} \subset W_{1} \subset W_{2} \subset \cdots \subset W_{k-1} \subset W_{k}=V
$$

Now, choose a basis B_{1} of W_{1} and extend this to a basis $B_{2}=B_{1} \cup T_{2}$ of W_{2} where $T_{2} \subseteq W_{2} \backslash W_{1}$ and so on. Then $B_{k}=B_{1} \cup T_{2} \cup \cdots \cup T_{k}$ is a basis of V.
Let $T_{k}=\left\{x_{1}, \ldots, x_{\alpha}\right\}$. Then Theorem 2.3 .2 gives us a linearly independent subset $\left\{T\left(x_{1}\right), \ldots, T\left(x_{\alpha}\right)\right\}$ of W_{k-1}. This set is disjoint from W_{k-2}. Consider the set

$$
B_{k-2} \cup\left\{T\left(x_{1}\right), \ldots, T\left(x_{\alpha}\right)\right\}
$$

This is linearly independent in W_{k-1} and can be extended to the following basis of W_{k-1}

$$
B_{k-2} \cup\left\{T\left(x_{1}\right), \ldots, T\left(x_{\alpha}\right)\right\} \cup\left\{y_{1}, \ldots, y_{\beta}\right\}
$$

where $y_{i} \in W_{k-1} W_{k-2} \forall i$. We have replaced T_{k-1} in the basis B_{k} by

$$
T_{k-1}^{*}=\left\{T\left(x_{1}\right), \ldots, T\left(x_{\alpha}\right)\right\} \cup\left\{y_{1}, \ldots, y_{\beta}\right\}
$$

We can similarly repeat this argument to construct a basis of W_{k-2} of the form

$$
B_{k-3} \cup\left\{T^{2}\left(x_{1}\right), \ldots, T^{2}\left(x_{\alpha}\right)\right\} \cup\left\{T\left(y_{1}\right), \ldots, T\left(y_{\beta}\right)\right\} \cup\left\{z_{1}, \ldots, z_{\gamma}\right\}
$$

where $z_{i} \in W_{k-2} \backslash W_{k-3} \forall i$. We have replaced T_{k-2}.
Continuing in this way, we can replace the basis B_{k} of V by the basis described in the
following array:

$T_{k}:$	x_{1},	\ldots,	x_{α},						
$T_{k-1} \rightsquigarrow$	$T\left(x_{1}\right)$,	\ldots,	$T\left(x_{\alpha}\right)$,	y_{1},	\ldots,	y_{β},			
$T_{k-2} \rightsquigarrow$	$T^{2}\left(x_{1}\right)$,	\ldots,	$T^{2}\left(x_{\alpha}\right)$,	$T\left(y_{1}\right)$,	\ldots,	$T\left(y_{\beta}\right)$,	z_{1},	\ldots,	z_{γ}
\vdots									
$B_{1} \rightsquigarrow$	$T^{k-1}\left(x_{1}\right)$,	\ldots,	$T^{k-1}\left(x_{\alpha}\right)$,	$T^{k-2}\left(y_{1}\right)$,	\ldots,	$T^{k-2}\left(y_{\beta}\right)$,	q_{1}	$\ldots \ldots$,	q_{ω}.

Take the first column from the bottom, then the second column from the bottom and so on, to order this basis of V. This matrix of T relative to the ordered basis is a Jordan block matrix associated with the eigenvalue 0 .

An assumption we make for Theorem 2.3 .3 is that T is nilpotent. We will now attempt to extend the scope of this theorem to when T is not nilpotent. We will assume that all the eigenvalues of T lie in \mathbb{F}.

Theorem 2.3.4 (Jordan Form). Let V be a non-zero finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be linear. If $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T and if each λ_{i} belongs to \mathbb{F} then there is an ordered basis of V with respect to which the matrix of T is a block diagonal matrix

$$
\left(\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

in which J_{i} is a Jordan block matrix associated with λ_{i}.

The proof for this theorem is similar to the proof of Theorem 2.3.3.

2.4 Rational Canonical Form

Jordan forms can be used only when all the irreducible polynomials in the minimal polynomials are linear, which happens when the eigenvalues belong to the underlying field \mathbb{F}. We know that this occurs when \mathbb{F} is algebraically closed. We will now look for a canonical representation for any general case.
The additive group V / W along with the operation of multiplication by scalars which makes the natural surjection map linear becomes a vector space over \mathbb{F} is called the quotient space
of V by W. The natural surjection map is defined as follows:

$$
\begin{aligned}
\natural_{W}: V & \rightarrow V / W \\
x & \mapsto x+W
\end{aligned}
$$

Theorem 2.4.1. Let V be a finite-dimensional vector space and let W be a subspace of V. Then the quotient space V / W is also finite-dimensional. Moreover, if $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis of W and $\left\{x_{1}+W, \ldots, x_{k}+W\right\}$ is a basis of V / W then $\left\{v_{1}, \ldots, v_{m}, x_{1}, \ldots, x_{k}\right\}$ is a basis of V.

Proof. Let $\left\{x_{1}+W, \ldots, x_{p}+W\right\}$ be any linearly independent subset of V / W. Then the set $\left\{x_{1}, \ldots, x_{p}\right\}$ of coset representatives is a linearly independent subset of V. Suppose $\sum_{i=1}^{p} \lambda_{i} x_{i}=0_{V}$. Then,

$$
0_{V / W}=\natural_{W}\left(0_{V}\right)=\natural_{W}\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right)=\sum_{i=1}^{p} \lambda_{i} \natural_{W}\left(x_{i}\right)=\sum_{i=1}^{p} \lambda_{i}\left(x_{i}+W\right)
$$

and so $\lambda_{i}=0 \forall i \Rightarrow p \leq \operatorname{dim} V$. Then, every linearly independent subset of V / W has at most $\operatorname{dim} V$ elements. Hence V / W is of finite dimensions.
Suppose $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis of W and that $\left\{x_{1}+W, \ldots, x_{k}+W\right\}$ is a basis of V / W. Consider the set $B=\left\{v_{1}, \ldots, v_{m}, x_{1}, \ldots, x_{k}\right\}$. Applying \hbar_{W} to any linear combination of elements of B, we see that it is linearly independent. Now for every $x \in V$ we have $x+W \in$ V / W and so there exists scalars λ_{i} such that

$$
x+W=\sum_{i=1}^{k} \lambda_{i}\left(x_{i}+W\right)=\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right)+W
$$

$\Rightarrow x-\sum_{i=1}^{k} \lambda_{i} x_{i} \in W$. Then $\exists \mu_{j}$ such that $x-\sum_{i=1}^{k} \lambda_{i} x_{i}=\sum_{i=1}^{m} \mu_{j} v_{j}$.
As a consequence, x is a linear combination of the elements of B. Then, the linearly independent set B is also a spanning set and therefore a basis of V.

Theorem 2.4.2. Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be linear. If W is an T-invariant subspace of V then the prescription

$$
T^{+}(x+W)=T(x)+W
$$

defines a linear mapping $T^{+}: V / W \rightarrow V / W$, the minimal polynomial of which divides the
minimum polynomial of T.

Proof. If $x+W=y+W$ then $x-y \in W$. Since W is T-invariant, $T(x)-T(y)=T(x-y) \in$ $W \Rightarrow T(x)+W=T(y)+W$. The above prescription defines a mapping from V / W to itself.

$$
\begin{aligned}
T^{+}[(x+W)+(y+W)] & =T^{+}[(x+y)+W] \\
& =T(x+y)+W \\
& =[T(x)+T(y)]+W \\
& =[T(x)+W)+[T(y)+W] \\
& =T^{+}(x+W)+T^{+}(y+W)
\end{aligned}
$$

$$
\begin{aligned}
T^{+}[\lambda(x+W)] & =T^{+}[\lambda x+W] \\
& =T(\lambda x)+W \\
& =\lambda T(x)+W \\
& =\lambda[T(x)+W] \\
& =\lambda T^{+}(x+W)
\end{aligned}
$$

By induction we will show that

$$
\left(T^{+}\right)^{n}=\left(T^{n}\right)^{+}
$$

This is clearly true for $n=1$. Now, suppose that $\left(T^{+}\right)^{n}=\left(T^{n}\right)^{+}$. Then for every $x \in W$

$$
\begin{aligned}
\left(T^{+}\right)^{n+1}(x+W) & =T^{+}\left[\left(T^{+}\right)^{n}(x+W)\right] \\
& =T^{+}\left[\left(T^{n}\right)^{+}(x+W)\right] \\
& =T^{+}\left[T^{n}(x)+W\right] \\
& =T\left[T^{n}(x)\right]+W \\
& =T^{n+1}(x)+W \\
& =\left(T^{n+1}\right)^{+}(x+W)
\end{aligned}
$$

Then, for every polynomial $p=\sum_{i=0}^{m} a_{i} X^{i}$, we have

$$
p\left(T^{+}\right)=\sum_{i=0}^{m} a_{i}\left(T^{+}\right)^{i}=\sum_{i=0}^{m} a_{i}\left(T^{i}\right)^{+}=[p(T)]^{+}
$$

in particular, $p=m_{T}$, we obtain $m_{T}\left(T^{+}\right)=0 \Rightarrow m_{T^{+}} \mid m_{T}$
The intersection of any family of T-invariant subspaces of V is also an T-invariant subspace of V. We will denote the intersection of all the T-invariant subspaces that contain X by Z_{X}^{T}. In case $X=x, Z_{X}^{T}$ is simply Z_{x}.

Theorem 2.4.3. Let V be a finite-dimensional vector space over a field \mathbb{F} and let $T: V \rightarrow V$ be linear. Then for every $x \in V$,

$$
Z_{x}=\{p(T)(x) \mid p \in \mathbb{F}[x]\}
$$

Proof. The set $W=\{p(T)(x) \mid p \in \mathbb{F}[x]\}$ is a subspace of V that contains x. This subspace is T-invariant.
Suppose now that U is a T-invariant subspace that contains x. Then $T^{k}(x) \subseteq U \forall k$. U also contains $p(T)(x)$ for every polynomial $p \in \mathbb{F}[x]$. Thus $W \subseteq U$. Hence W is the smallest T-invariant subspace that contains x and coincides with Z_{x}.

We will now construct a basis for the subspace Z_{x}. Consider the sequence

$$
x, T(x), T^{2}(x), \ldots, T^{r}(x), \ldots
$$

of elements of Z_{x}. Then there exists a smallest positive integer k such that $T^{k}(x)$ is a linear combination of the elements that precede it

$$
T^{k}(x)=\lambda_{0} x+\lambda_{1} T(x)+\cdots+\lambda_{k_{1}} T^{k-1}(x)
$$

and $\left\{x, T(x), \ldots, T^{k-t}(x)\right\}$ is then a linearly independent subset of Z_{x}. Writing $a_{i}=-\lambda_{i}$ for $i=0, \ldots, k-1$ we deduce that the polynomial

$$
m_{x}=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+x^{k}
$$

is the monic polynomial of least degree such that $m_{x}(T)(x)=0_{V}$. We will call m_{x} the T-annihilator of x.

Theorem 2.4.4. Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be linear. If $x \in V$ has T-annihilator

$$
m_{x}=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+x^{k}
$$

then the set

$$
B_{x}=\left\{x, T(x), \ldots, T^{k-1}(x)\right\}
$$

is a basis of Z_{x} and therefore dim $Z_{x}=\operatorname{deg} m_{x}$. Moreover, if $T_{x}: Z_{x} \rightarrow Z_{x}$ is the induced linear mapping on the T-invariant subspace Z_{x} then the matrix of T_{x} relative to the ordered basis B_{x} is

$$
C_{m_{x}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & -a_{0} \tag{2.3}\\
1 & 0 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & 0 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

Finally, the minimal polynomial of T_{x} is m_{x}.

Proof. B_{x} is linearly independent and $T^{k}(x) \in \operatorname{Span} B_{x}$.
By induction, we prove that $T^{n}(x) \in \operatorname{Span} B_{x}$ for every n. Suppose that $n>k$ and that $T^{n-1}(x) \in \operatorname{Span} B_{X}$. Then $T^{n-1}(x)$ is a linear combination of $x, T(x), \ldots, T^{k-1}(x)$ and so $T^{n}(x)$ is a linear combination of $T(x), T^{2}(x), \ldots, T^{k}(x) \Rightarrow T^{n}(x) \in \operatorname{Span} B_{x} \Rightarrow p(T)(x) \in$ Span B_{x} for every polynomial p. Thus $Z_{x} \subseteq$ Span B_{x}. The reverse inclusion is trivial.
Now, B_{x} is a basis of Z_{x}. Now, since

$$
\begin{aligned}
T_{x}(x) & =T(x) \\
T_{x}[T(x)] & =T^{2}(x) \\
& \vdots \\
T_{x}\left[T^{k-2}(x)\right] & =T^{k-1}(x) \\
T_{x}\left[T^{k-1}(x)\right] & =T^{k}(x)=-a_{0} x-a_{1} T(x)-\cdots-a_{k-1} T^{k-1}(x)
\end{aligned}
$$

The matrix of T_{x} relative to the basis B_{x} is the matrix 2.3.
Now, let the minimal polynomial of T_{x} be

$$
m_{T_{x}}=b_{0}+b_{1} x+\cdots+b_{r-1} T^{r-1}(x)+T^{r}(x)
$$

Then

$$
0_{V}=m_{T_{x}}(T)(x)=b_{0} x+b_{1} T(x)+\cdots+b_{r-1} T^{r-1}(x)+T^{r}(x)
$$

We can see that $T^{r}(x)$ is a linear combination of $x, T(x), \ldots, T^{r-1}(x)$ and $k \leq r$. But $m_{T_{x}}$ is the zero map on Z_{x} and so $m_{x}\left(T_{x}\right)$ is also a zero map. As a result, we have $m_{T_{x}}$ divides
m_{x} and so $r \leq k . \therefore r=k . \Rightarrow m_{T_{x}}=m_{x}$.
A subspace W of V is called T-cyclic if it is T-invariant and has a basis of the form $\left\{x, T(x), \ldots, T^{r}(x)\right\}$. Such a basis is called a cyclic basis, and x is called a cyclic vector for W.
Theorem 2.4.4 shows that x is a cyclic vector for the subspace Z_{x} with cyclic basis B_{x}. The subspace Z_{x} is called the T-cyclic subspace spanned by $\{x\}$. The matrix $C_{m_{x}}$ that we defined in Theorem 2.4.4 is called the companion matrix of the T-annihilator m_{x}.

Theorem 2.4.5. Let W be an T-invariant subspace of V. Then $\forall x \in V$ both the T annihilator of T and the T^{+}-annihilator of $x+W$ divide the minimal polynomial of T.

Proof. The proof is a consequence of Theorems 2.4.2 and 2.4.4.
Theorem 2.4.6 (Cyclic Decomposition). Let V be a non-zero vector space of finite dimension over a field \mathbb{F} and let $T: V \rightarrow V$ be linear with minimal polynomial $m_{T}=p^{t}$ where p is irreducible over \mathbb{F}. Then there are T-cyclic vectors x_{1}, \ldots, x_{k} and positive integers n_{1}, \ldots, n_{k} with each $n_{i} \leq t$ such that
(i) $V=\bigoplus_{i=1}^{k} Z_{x}$
(ii) the T-annihilator of x_{i} is $p^{n_{i}}$.

Proof. We will prove this by induction on $\operatorname{dim} V$. When $\operatorname{dim} V=1$, the result is trivial. Suppose the result holds for all vector spaces of dimension less than $n=\operatorname{dim} V$.
Since $m_{T}=p^{t}, \exists x_{1}(\neq 0) \in V$ with $p^{t-1}(f)\left(x_{1}\right) \neq 0_{V}$. Then $m_{x_{1}}$ is the T-annihilator of x_{1}. Let $W=Z_{x}$ and $T^{+}: V / W \rightarrow V / W$ be the induced mapping. By Theorem 2.4.2, the minimal polynomial of T^{+}divides $m_{T}=p^{t}$.

$$
\Rightarrow V / W=\bigoplus_{i=2}^{k} Z_{y_{i}+W}
$$

where $Z_{y_{2}+W}, \ldots, Z_{y_{k}+W}$ are T^{+}-cyclic subspaces of V / W. Further, for $2 \leq i \leq k$, the $T^{+}{ }_{-}$ annihilator of $y_{i}+W$ is $p^{n_{i}}, n_{i} \leq t$.
Now there exists a polynomial h such that

$$
p(T)^{n_{i}}\left(y_{i}\right)=h(T)\left(x_{1}\right)
$$

for some $x_{1} \in y_{1}+W$.

$$
\Rightarrow 0_{V}=p(T)^{t}\left(y_{i}\right)=p(T)^{t-n_{i}} h(T)\left(x_{1}\right)
$$

Now, as p^{t} is the T-annihilator of x_{1}, so $p^{t} \mid p^{t-n_{i}} h \Rightarrow h=p^{n_{i}} q$ for some polynomial q.
Let $x_{i}=y_{i}-q(T)\left(x_{1}\right)$. Then

$$
y_{i}=x_{i}=q(T)\left(x_{1}\right) \in W \Rightarrow x_{i} \in y_{i}+W
$$

The T^{+}-annihilator of $y_{i}+W$ divides the T-annihilator of x_{i}. But,

$$
p(T)^{n_{i}}\left(x_{i}\right)=p(T)^{n_{i}}\left[y_{i}-q(T)\left(x_{1}\right)\right]=p(T)^{n_{i}}\left(y_{i}\right)-h(T)\left(x_{1}\right)=0_{V}
$$

Clearly, $p^{n_{i}}$ is the T-annihilator of x_{i}.
Now, let $\operatorname{deg} p=d$. Then $\operatorname{deg} p^{n_{i}}=d n_{i}$. Since $p^{n_{i}}$ is the T-annihilator of x_{i} and the T^{+}-annihilator of $x_{i}+W$, by Theorem 2.4.2, there is a basis A_{i} for $Z_{x_{i}}$

$$
A_{i}=\left\{x_{i}, f\left(x_{i}\right), \ldots, f^{d n_{i}-1}\left(x_{i}\right)\right\}
$$

and a basis B_{i} for $Z_{x_{i}+W}$

$$
B_{i}=\left\{x_{i}+W, T^{+}\left(x_{i}+W\right), \ldots,\left(T^{+}\right)^{d n_{i}-1}\left(x_{i}+W\right)\right\}
$$

Since

$$
V / W=\bigoplus_{i=2}^{k} Z_{y_{i}+W}=\bigoplus_{i=2}^{k} Z_{x_{i}+W}
$$

Then $\bigcup_{i=2}^{k} B_{i}$ is a basis of V / W. Then, $\bigcup_{i=2}^{k} A_{i}$ is a basis of $V \Rightarrow V=\bigoplus_{i=1}^{k} Z_{x}$.
Corollary 2.4.7. With the above notation, relative to the basis $\bigcup_{i=1}^{k} A_{i}$ the matrix of f is of the form

$$
\bigoplus_{i=1}^{k} C_{i}=\left(\begin{array}{llll}
C_{1} & & & \\
& C_{2} & & \\
& & \ddots & \\
& & & C_{k}
\end{array}\right)
$$

Corollary 2.4.8. $\operatorname{dim} V=\left(n_{1}+\cdots+n_{k}\right) \operatorname{deg} p$
We may assume that the T-cyclic vectors x_{1}, \ldots, x_{k} are arranged in descending order, i.e.,

$$
t=n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1
$$

Theorem 2.4.9. The integers n_{1}, \ldots, n_{k} are uniquely determined by T.

Proof. We know

$$
\operatorname{dim} Z_{x_{i}}=\operatorname{deg} m_{x_{i}}=\operatorname{deg} p^{n_{i}}=d n_{i} \forall i
$$

Also, $\forall j$, the image of $Z_{x_{i}}$ under $p(T)^{j}$ is the T-cyclic subspace $Z_{p(T)^{j}\left(x_{i}\right)}$. As the T annihilator of x_{i} is $p^{n_{i}}$,

$$
\operatorname{dim} Z_{p(T)^{j}\left(x_{i}\right)}= \begin{cases}0 & \text { if } j \geq n_{i} \\ d\left(n_{i}-j\right) & \text { if } j<n_{i}\end{cases}
$$

We can uniquely write every $x \in V$ as

$$
x=v_{1}+\cdots+v_{k}
$$

where $v_{i} \in Z_{x_{i}}$ So, every element of $\operatorname{Im} p(T)^{j}$ can be written uniquely as

$$
p(T)^{j}(x)=p(T)^{j}\left(v_{1}\right)+\cdots+p(T)^{j}\left(v_{k}\right)
$$

Now, if $r \in \mathbb{Z}$ such that $n_{1}, \ldots, n_{r}>j$ and $n_{r+1} \leq j$, then

$$
\begin{gathered}
\operatorname{Im} p(T)^{j}=\bigoplus_{i=1}^{r} Z_{p(T)^{j}\left(x_{i}\right)} \\
\Rightarrow \operatorname{dim} \operatorname{Im} p(T)^{j}=d \sum_{i=1}^{r}\left(n_{i}-j\right)=d \sum_{n_{i}>j}\left(n_{i}-j\right)
\end{gathered}
$$

Then

$$
\begin{aligned}
\operatorname{dim} \operatorname{Im} p(T)^{j-1}-\operatorname{dim} \operatorname{Im} p(T)^{j} & =d\left(\sum_{n_{i}>j-1}\left(n_{i}-j+1\right)-\sum_{n_{i}>j}\left(n_{i}-j\right)\right) \\
& =d\left(\left\{\# \text { of } n_{i} \geq j\right\}\right)
\end{aligned}
$$

This determines the sequence

$$
t=n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1
$$

completely.
When the minimal polynomial of T is of the form p^{t}, where p is irreducible then, the polynomials $p^{n_{1}}, p^{n_{2}}, \ldots, p^{n_{t}}$ determined uniquely by $t=n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1$ are called
the elementary divisors of T.
Let us apply the above results to the case when the characteristic and minimal polynomials of a linear mapping $f: V \rightarrow V$ are

$$
c_{T}=p_{1}^{d_{1}} p_{2}^{d_{2}} \ldots p_{k}^{d_{k}} \text { and } m_{T}=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{d_{k}}
$$

where p_{1}, \ldots, p_{k} are distinct irreducible polynomials.
We know that by the Primary Decomposition Theorem, there is an ordered basis of V with respect to which the matrix of T is a block diagonal matrix

$$
\left(\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{k}
\end{array}\right)
$$

where each A_{i} is the matrix representing the induced mapping T_{i} on $V_{i}=\operatorname{Ker} p_{i}(T)^{e_{i}}$. Now, the minimal polynomial of T_{i} is $p_{i}^{e_{i}}$. By Cyclic Decomposition Theorem, there is a basis of V_{i} with respect to which A_{i} is the block diagonal matrix

$$
\left(\begin{array}{cccc}
C_{i 1} & & & \\
& C_{i 2} & & \\
& & \ddots & \\
& & & C_{i t}
\end{array}\right)
$$

where $C_{i j}$ are the companion matrices associated with the elementary divisors of T_{i}. This block diagonal form where each A_{i} is a block diagonal of companion matrices is unique and is called the rational canonical matrix of T.

Chapter 3

Symmetric groups

In this chapter, we will compute and classify the conjugacy classes and z-classes of S_{n}. We will show that centralizers of symmetric groups are a product of generalized symmetric groups and provide a brief introduction to wreath products. One can view generalized symmetric products as a particular case of wreath products. For classification of z-classes, we will be discussing the results from [BKS17]. By the end of this chapter, we would have gained enough understanding to prove the following theorem.

Theorem 3.0.1. BKS17 Suppose $n \geq 3$. Let ν be a restricted partition of $n-2$ in which 1 and 2 do not appear as its part. Let $\lambda=1^{2} \nu$ and $\mu=2^{1} \nu$ be partitions of n obtained by extending ν. Then, the conjugacy classes of λ and μ belong to the same z-class in S_{n}. Further, the converse is also true.

Corollary 3.0.2. BKS17 The number of z-classes in S_{n} is $p(n)-\tilde{p}(n-2)$. Thus, the number of z-classes in S_{n} is equal to $p(n)-p(n-2)+p(n-3)+p(n-4)-p(n-5)$.

3.1 Conjugacy classes and centralizer of elements in S_{n}

We have followed Conrad's notes Con for this section.
To understand the conjugacy classes in S_{n}, we begin by computing the conjugates of a k-cycle.

Theorem 3.1.1. For any cycle $\left(i_{1} i_{2} \ldots i_{k}\right) \in S_{n}$ and any $\sigma \in S_{n}$

$$
\sigma\left(i_{1} i_{2} \ldots i_{k}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{k}\right)\right)
$$

Proof. Let $\pi=\sigma\left(i_{1} i_{2} \ldots i_{k}\right) \sigma^{-1}$. We need to show

- π sends $\sigma\left(i_{1}\right)$ to $\sigma\left(i_{2}\right), \sigma\left(i_{2}\right)$ to $\sigma\left(i_{3}\right), \ldots$ and $\sigma\left(i_{k}\right)$ to $\sigma\left(i_{1}\right)$.
- π does not move any number other than $\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \ldots, \sigma\left(i_{k}\right)$

For any $r, 1 \leq r \leq k-1$,

$$
\pi\left(\sigma\left(i_{r}\right)\right)=\sigma\left(i_{1} i_{2} \ldots i_{k}\right) \sigma^{-1}\left(\sigma\left(i_{r}\right)\right)=\sigma\left(i_{1} i_{2} \ldots i_{k}\right)\left(i_{r}\right)=\sigma\left(i_{r+1}\right)
$$

For $r=k$,

$$
\pi\left(\sigma\left(i_{r}\right)\right)=\sigma\left(i_{1} i_{2} \ldots i_{k}\right)\left(i_{k}\right)=\sigma\left(i_{1}\right)
$$

Let $a \notin\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. We need to show that $\pi(a)=a$.
Since $a \neq \sigma\left(i_{r}\right)$, for any $1 \leq r \leq k \Rightarrow \sigma^{-1}(a) \neq i_{r}$
$\Rightarrow\left(i_{1} i_{2} \ldots i_{k}\right)\left(\sigma^{-1}(a)\right)=\sigma^{-1}(a)$

$$
\therefore \pi(a)=\sigma\left(i_{1} i_{2} \ldots i_{k}\right) \sigma^{-1}(a)=\sigma \sigma^{-1}(a)=a
$$

This theorem shows that conjugate of any k-cycle is a cycle of the same length. We will now prove that the converse is also true.

Theorem 3.1.2. All cycles of the same length in S_{n} are conjugate.

Proof. Let $\left(a_{1} \ldots a_{k}\right)$ and $\left(b_{1} \ldots b_{k}\right)$ be two k-cycles in S_{n}. We can choose $\sigma \in S_{n}$ to be a bijection such that $\sigma\left(a_{i}\right)=b_{i}, 1 \leq i \leq k$ and the complement of $\left\{a_{1}, \ldots, a_{k}\right\}$ is arbitrarily mapped to the complement of $\left\{b_{1}, \ldots, b_{k}\right\}$. By using Theorem 3.1.1, we see that conjugation by σ carries the first k-cycle to the second one.

All elements of S_{n} are not k-cycles, so we ensure that each pemutation is written as a product of disjoint cycles arranged in ascending order of cycle length, including 1-cycles if there are any fixed points. This length is called the cycle type of the permutation. Eg: (123)(46) in S_{6} is $(5)(46)(123)$ and has the cycle type $(1,2,3)$.
The cycle type of a permutation in S_{n} is just a set of positive integers that add up to n, which is called a partition of n. Let us set notation clearly by defining a partition λ of n as $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ where $1 \leq \lambda_{1}<\cdots<\lambda_{r} \leq n, e_{i} \geq 1 \forall i$ and $n=\sum_{i=1}^{r} e_{i} \lambda_{i}$. There are 11
partitions of 6 .

$$
\begin{gathered}
6^{1}, 1^{1} 5^{1}, 2^{1} 4^{1}, 3^{2}, 1^{2} 4^{1}, 1^{1} 2^{1} 3^{1}, 2^{3}, 1^{3} 3^{1} \\
1^{2} 2^{2}, 1^{4} 2^{1}, 1^{6}
\end{gathered}
$$

Thus, the permutations of S_{6} have 11 cycle types and the cycle type $(1,2,3)$ is denoted by the partition $\lambda=1^{1} 2^{1} 3^{1}$.

Lemma 3.1.3. If π_{1} and π_{2} are disjoint permutations in S_{n}, then $\sigma \pi_{1} \sigma^{-1}$ and $\sigma \pi_{2} \sigma^{-1}$ are disjoint permutations for any $\sigma \in S_{n}$.

Proof. $\nexists i$ such that $\pi_{1}(i)=i$ and $\pi_{2}(i)=i$. Suppose $\sigma \pi_{1} \sigma^{-1}$ and $\sigma \pi_{2} \sigma^{-1}$ are not disjoint.

$$
\begin{aligned}
& \Rightarrow \exists i \text { such that } \sigma \pi_{1} \sigma^{-1}(i)=i \text { and } \sigma \pi_{2} \sigma^{-1}(i)=i \\
& \Rightarrow \pi_{1}\left(\sigma^{-1}(i)\right)=\sigma^{-1}(i) \text { and } \pi_{2}\left(\sigma^{-1}(i)\right)=\sigma^{-1}(i)
\end{aligned}
$$

This is a contradiction.
Theorem 3.1.4. Two permutations in S_{n} are conjugate iff they have the same cycle type.
Proof. Let $\pi \in S_{n}$ be written as a product of disjoint cycles. By Lemma 3.1.3, $\sigma \pi \sigma^{-1}$ will be a product of the σ-conjugates of the disjoint cycles for π and these σ-conjugates are disjoint cycles with the same respective lengths.
$\therefore \sigma \pi \sigma^{-1}$ has the same cycle type as π. Conversely, suppose the cycle type is (m_{1}, m_{2}, \ldots). Then

$$
\pi_{1}=\left(a_{1} a_{2} \ldots a_{m_{1}}\right)\left(a_{m_{1}+1} \ldots a_{m_{1}+m_{2}}\right) \ldots
$$

and

$$
\pi_{2}=\left(b_{1} b_{2} \ldots b_{m_{1}}\right)\left(b_{m_{1}+1} \ldots b_{m_{1}+m_{2}}\right) \ldots
$$

where the cycles are disjoint. Now define a permutation $\sigma \in S_{n}$ from π_{1} to π_{2} as $\sigma\left(a_{i}\right)=b_{i}$. Then, by Theorem 3.1.2, $\sigma \pi_{1} \sigma^{-1}=\pi_{2}$.

Since the conjugacy class of a permutation in S_{n} is determined by its cycle type, which is a certain partition of n, the number of conjugacy classes in S_{n} is the number of partitions of n. Let $p(n)$ denote the number of partitions of n.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$p(n)$	1	2	3	5	7	11	15	22	30	42	56	77	101	135

We know that, the number of partitions of n is equal to the coefficient of x^{n} in the product $(1+x+\ldots)\left(1+x^{2}+\ldots\right)\left(1+x^{3}+\ldots\right) \ldots$, the generating function for $p(m)$ is

$$
\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}
$$

Further, the size of the conjugacy class represented by the partition $\lambda=\lambda_{1}^{e_{1}} \ldots \lambda_{r}^{e_{r}}$ (let us henceforth call this element σ_{λ}) is

$$
\begin{equation*}
\frac{n!}{\prod_{i=1}^{r} \lambda_{i}^{e_{i}} e_{i}!} \tag{3.1}
\end{equation*}
$$

Let $\lambda=\lambda_{1}{ }^{e_{1}} \ldots \lambda_{r}{ }^{e_{r}}$ be a partition of $n, n_{i}=\sum_{j=1}^{i} \lambda_{j} e_{j}$ and $n_{0}=0$. We can represent the element of S_{n} corresponding to λ as a product of cycles. Now, we choose a representative of the class denoted by $\sigma_{\lambda}=\sigma_{\lambda_{1}} \ldots \sigma_{\lambda_{i}} \ldots \sigma_{\lambda_{r}}$ where

$$
\sigma_{\lambda_{i}}=\underbrace{\left(n_{i-1}+1, \ldots, n_{i-1}+\lambda_{i}\right) \ldots\left(n_{i-1}+\left(e_{i}-1\right) \lambda_{i}+1, \ldots, n_{i-1}+e_{i} \lambda_{i}\right)}_{e_{i}}
$$

is a product of e_{i} many disjoint cycles, each of length λ_{i}.
Now, let $\pi \in \mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right) \Rightarrow \pi \sigma_{\lambda}=\sigma_{\lambda} \pi \Rightarrow \pi \sigma_{\lambda} \pi^{-1}=\sigma_{\lambda}$.
By Theorem 3.1.1 and Lemma 3.1.3, we know that $\pi \sigma_{\lambda} \pi^{-1}=\pi \sigma_{\lambda_{1}} \pi^{-1} \ldots \pi \sigma_{\lambda_{2}} \pi^{-1}$. Theorem 3.1.4 further tells us that $\pi \sigma_{\lambda_{i}} \pi^{-1}$ must have the same cycle type as $\sigma_{\lambda_{i}}, \forall i$.
$\Rightarrow \pi \sigma_{\lambda_{i}} \pi^{-1}=\sigma_{\lambda_{i}} \forall i$. But we can allow permutations between various e_{i} disjoint cycles which constitute $\sigma_{\lambda_{i}}$, i.e., if we were to describe $\sigma_{\lambda_{i}}$ as $\left(1 \ldots e_{i}\right) \in S_{e_{i}}$ where each element in this permutation corresponding to a disjoint cycle of length λ_{i}, then

$$
\begin{gather*}
\pi \sigma_{\lambda_{i}} \pi^{-1}=\left(\pi(1) \ldots \pi\left(e_{i}\right)\right)=\left(1 \ldots e_{i}\right) \\
\therefore \pi(i) \equiv(i+k) \bmod e_{i} \tag{3.2}
\end{gather*}
$$

We will describe the centralizer in more detail in Section 3.3, but we can compute the size of $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$.
We know that, for each $g \in G$, its conjugacy class has the same size as the index of its centralizer,

$$
\left|\left\{x g x^{-1} \mid x \in G\right\}\right|=\left[G: \mathcal{Z}_{G}(g)\right]
$$

$$
\begin{array}{l|llllllllllllll}
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline \tilde{p}(m) & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 9 & 10 & 13
\end{array}
$$

In this case, $G=S_{n}$ and since S_{n} is a finite group,

$$
\left[G: \mathcal{Z}_{G}(g)\right]=\frac{|G|}{\left|\mathcal{Z}_{G}(g)\right|}
$$

Therefore, the size of the centralizer of the element represented by the partition λ is

$$
\begin{equation*}
\left|\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)\right|=\prod_{i=1}^{r} \lambda_{i}^{e_{i}} e_{i}! \tag{3.3}
\end{equation*}
$$

3.2 Restricted partitions

Partitions are significant due to their one-one correspondence with conjugacy classes of the symmetric groups S_{m}. The partitions which are obtained by putting some conditions are called restricted partitions.
A partition of m is $\lambda=m_{1}^{e_{1}} \ldots m_{r}^{e_{r}}$ where $1 \leq m_{1}<\cdots<m_{r} \leq m, e_{i} \geq 1 \forall i$ and $m=\sum_{i=1}^{r} e_{i} m_{i}$. This is also denoted as $\lambda \vdash m$ or $m_{1}^{e_{1}} \ldots m_{r}^{e_{r}} \vdash m$.
Let $\tilde{p}(m)$ be the number of partitions of m in which 1 and 2 do not appear as its part. Then,

$$
\tilde{p}(m)=\left|\left\{\lambda=m_{1}^{e_{1}} \ldots m_{r}^{e_{r}} \vdash m \mid m_{1} \geq 3\right\}\right|
$$

The generating function for $\tilde{p}(m)$ is

$$
\prod_{i \geq 3} \frac{1}{1-x^{i}}
$$

Now,

$$
\begin{gathered}
p(m)=\prod_{i \geq 1} \frac{1}{1-x^{i}}=\left(\frac{1}{1-x}\right)\left(\frac{1}{1-x^{2}}\right) \tilde{p}(m) \\
\Rightarrow(1-x)\left(1-x^{2}\right) p(m)=\left(1-x-x^{2}+x^{3}\right) p(m)=p(m)-x p(m)-x^{2} p(m)+x^{3} p(m)
\end{gathered}
$$

We have the formula to compute $\tilde{p}(m)$ in terms of partition function $p(m)$ is

$$
\tilde{p}(m)=p(m)-p(m-1)-p(m-2)+p(m-3)
$$

3.3 Wreath products

The theory for wreath products that we use can be found in [JK84. Let G be a group and H a subgroup of S_{n}. We denote by G^{n} the set of all mappings from $\mathbf{n}=\{1, \ldots, n\}$ into G:

$$
G^{\mathbf{n}}:=\{f \mid f: \mathbf{n} \rightarrow G\}
$$

For $f \in G^{\mathbf{n}}$ and $\pi \in H$, we define $f_{\pi} \in G^{\mathbf{n}}$ by

$$
f_{\pi}:=f \circ \pi^{-1}
$$

The wreath product of G by H is a group defined by

$$
G \imath H:=G^{n} \times H=\{(f ; \pi) \mid f: \mathbf{n} \rightarrow G \text { and } \pi \in H\}
$$

together with the composition map defined by

$$
(f ; \pi)\left(f^{\prime} ; \pi^{\prime}\right):=\left(f f_{\pi}^{\prime} ; \pi \pi^{\prime}\right)
$$

The order is

$$
|G \imath H|=|G|^{n}|H|
$$

If we define $e \in G^{\mathbf{n}}$ by

$$
e(i):=1_{G}, \quad i \in \mathbf{n}
$$

and for $f \in G^{\mathbf{n}}$ the mapping $f^{-1} \in G^{\mathbf{n}}$ by

$$
f^{-1}(i):=f(i)^{-1}, i \in \mathbf{n}
$$

then we obtain for the identity element in $G \imath H$ and for the inverse of $(f ; \pi) \in G \imath H$:

$$
1_{G l H}=\left(e ; 1_{H}\right) \text { and }(f ; \pi)^{-1}=\left(f_{\pi^{-1}}^{-1} ; \pi^{-1}\right),
$$

where

$$
f_{\pi^{-1}}^{-1}:=\left(f_{\pi^{-1}}\right)^{-1}=\left(f^{-1}\right)_{\pi^{-1}}
$$

Let us define G^{*}, called the base group of $G \imath H$, which is a normal subgroup of $G \imath H$ as

$$
G^{*}:=\left\{\left(f ; 1_{H}\right) \mid f \in G^{\mathbf{n}}\right\}
$$

It is the direct product of n copies G_{i} of G, where

$$
G_{i}:=\left\{\left(f ; 1_{H}\right) \mid \forall j \neq i, f(j)=1_{G}\right\} \cong G
$$

The subgroup

$$
H^{\prime}:=\{(e ; \pi) \mid \pi \in H\} \cong H
$$

is a complement of G^{*}, so we have
(i) $G \imath H=G^{*} \cdot H^{\prime}$,
(ii) $G^{*}=\prod_{i} G_{i}$,
(iii) $G^{*} \cap H^{\prime}=\left\{1_{G l H}\right\}=\left\{\left(e ; 1_{H}\right)\right\}$.

If G is a permutation group of finite degree, say $G \leq S_{m}$, then we obtain a permutation representation ψ of $G \imath H$ as follows:

$$
\begin{aligned}
\psi: G\} H & \rightarrow S_{m n} \\
\quad(f ; \pi) & \mapsto\binom{(j-1) m+i}{(\pi(j)-1) m+f(\pi(j))(i)}_{1 \leq i \leq m, 1 \leq j \leq n}
\end{aligned}
$$

Here, $\psi\left[G_{1}\right]$ acts on $\{1, \ldots, m\} \subseteq\{1, \ldots, m n\}$ the same way G acts on $\{1, \ldots, m\}$, and the restriction of $\psi\left[G_{1}\right]$ to $\{1, \ldots, m\}$ is just G. Similarly, $\psi\left[G_{2}\right]$ acts on $\{m+1, \ldots, 2 m\}$ the same way G acts on \mathbf{m} and so on. Also $\psi\left[H^{\prime}\right]$ permutes the subsets $\{1, \ldots, m\},\{m+$ $1, \ldots, 2 m\}, \ldots,\{(n-1) m+1, \ldots, m n\}$ in the same way as H acts on $\{1, \ldots, n\}$.

Now if we consider $C_{m}:=\langle(1 \ldots m)\rangle \leq S_{m}$, then $\psi\left[C_{m} \backslash S_{n}\right]$ is the centralizer of the permutation

$$
(1, \ldots, m)(m+1, \ldots, 2 m) \ldots((n-1) m+1, \ldots, n m) \in S_{n m}
$$

as $\psi\left[C_{m} \backslash S_{n}\right]$ would permute both various elements in a disjoint cycle and elements across disjoint cycles and we can see from Theorem 3.1.1 and Eqns. 3.2 and 3.3. This group $S(m, n)=C_{m} 2 S_{n}$ is called a generalised symmetric group. Here C_{m} is a cyclic group and S_{n} is a symmetric group.
We can also see from Theorem 3.1 .2 and Eqns. 3.2 and 3.3 that the centralizer of a general element $\sigma_{\lambda} \in S_{n}$ is

$$
\begin{equation*}
\mathcal{Z}_{S_{n}}(\lambda):=\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right) \cong \prod_{i=1}^{r} C_{\lambda_{i}} 乙 S_{e_{i}} \tag{3.4}
\end{equation*}
$$

$3.4 z$-classes in S_{n}

For $n=3$ and 4 , the conjugacy classes and z-classes are same. So, we may assume $n \geq 5$ in this section. Eqn. 3.4 gives the formula for the centralizer of an element σ_{λ}. Thus, the center of $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ is

$$
Z_{\lambda}=\mathcal{Z}\left(\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)\right)= \begin{cases}\prod_{i=1}^{r}\left\langle\sigma_{\lambda_{i}}\right\rangle & \text { if } \lambda_{i}^{e_{i}} \neq 1^{2} \\ \langle(1,2)\rangle \times \prod_{i=2}^{r}\left\langle\sigma_{\lambda_{i}}\right\rangle & \text { when } \lambda_{i}^{e_{i}}=1^{2}\end{cases}
$$

This is because C_{1} 亿 $S_{2} \cong S_{2}=\{e,(1,2)\}$. Therefore, it permutes representatives 1 and 2 as a 2-cycle.

Lemma 3.4.1. Let $\lambda=\lambda_{1}{ }^{e_{1}} \ldots \lambda_{r}{ }^{e_{r}}$ be a partition of n. Then $\mathcal{Z}_{S_{n}}(\lambda)$ determines r uniquely.
Proof. The natural action of $\mathcal{Z}_{S_{n}}(\lambda)=\prod_{i=1}^{r} C_{\lambda_{i}}$ $2 S_{e_{i}}$ on the set $\{1, \ldots, n\}$ as a subgroup of S_{n} and each $C_{\lambda_{i}}$ 々 $S_{e_{i}}$ permutes just the set $\left\{n_{i-1}+1, \ldots, n_{i-1}+\lambda_{i}\right\} \ldots\left\{n_{i-1}+\left(e_{i}-1\right) \lambda_{i}+\right.$ $\left.1, \ldots, n_{i-1}+e_{i} \lambda_{i}\right\}$ and the elements within this set but not between cycles of different cycles. Thus, we obtain the following orbits: $\left\{\left\{1, \ldots, n_{1}\right\},\left\{n_{1}+1, \ldots, n_{2}\right\}, \ldots\right\}$ and there are r such orbits.

Lemma 3.4.2. Let $\lambda=\lambda_{1}{ }^{e_{1}} \ldots \lambda_{r}{ }^{e_{r}}$ be a partition of n and $\lambda_{1}{ }^{e_{1}}=1^{2}$. Let Z_{λ} be the center of $\mathcal{Z}_{S_{n}}(\lambda)$. Then Z_{λ} determines the partition λ uniquely.

Proof. When we consider the action of Z_{λ} on the set $\{1, \ldots, n\}, Z_{\lambda}$ acts on each of the r orbits obtained in 3.4.1 and determines elements in all e_{i} cycles of each $\sigma_{\lambda_{i}}$. Thus, the orbits will be of size λ_{i} and each of them occurs e_{i} times which determines the partition λ.

Proposition 3.4.3. Let $\lambda=\lambda_{1}{ }^{e_{1}} \ldots \lambda_{r}{ }^{e_{r}}$ and $\mu=\mu_{1}{ }^{f_{1}} \mu_{2}{ }^{f_{2}} \ldots \mu_{s}{ }^{f_{s}}$ be a partitions of n. Then $\mathcal{Z}_{S_{n}}(\lambda)$ is conjugate to $\mathcal{Z}_{S_{n}}(\mu)$ iff

1. $r=s$,
2. for all $i \geq 2, \lambda_{i}$ and μ_{i} are ≥ 3 and $\lambda_{i}{ }^{e_{i}}$ and $\mu_{i}{ }^{f_{i}}$,
3. $\lambda_{1}{ }^{e_{1}}=1^{2}$ and $\mu_{1}{ }^{f_{1}}=2^{1}$ or vice versa.

Proof. Suppose $\lambda=1^{2} \nu$ and $\mu=2^{1} \nu$ where $\nu=\nu_{1}^{l_{1}} \ldots \nu_{k}^{l_{k}}$ is a partition of $n-2$ with $\nu_{1}>2$. Then the representative elements of the conjugacy classes are $\sigma_{\mu}=(12) \sigma_{\nu}$ and $\sigma_{\lambda}=\sigma_{\nu}$, where σ_{μ} has cycles of length >2. Then, the centralizers for these two elements are the
same.
For the converse, let us choose representative elements σ_{λ} and σ_{μ} such that $\mathcal{Z}_{S_{n}}\left(\sigma_{\lambda}\right)$ and $\mathcal{Z}_{S_{n}}\left(\sigma_{\mu}\right)$ are conjugates. Lemma 3.4.1 implies $r=s$. Now, let us take the center of both these groups Z_{λ} and Z_{μ} and make them act on the set $\{1, \ldots, n\}$. If $\lambda_{1}^{e_{1}}$ and $\mu_{1}^{f_{1}}$ both are not 1^{2}, then Lemma 3.4 .2 determine the partitions λ and μ. But, since λ and μ are different partitions, the only possibility would be $\lambda_{1}{ }^{e_{1}}=1^{2}$ and $\mu_{1}{ }^{f_{1}}=2^{1}$ or vice versa, which proves our result.

This proves Theorem 3.0.1.

Chapter 4

Dynamical types and z-classes in groups

The aim of the chapter is to discuss the results published in the paper titled "Dynamical types and conjugacy classes in groups" [SK07]. In this paper, Kulkarni attempts to relate "dynamical types" to z-classes, without explicitly defining them. We will similarly use our understanding of "dynamical types", which is derived from human perception. We know that these "dynamical types" are associated with transformations in classical geometries. There are infinitely many transformations, equipped with natural spatial and numerical invariants and their "dynamical types" are finite in number.

4.1 The α - and σ - fibrations

Let G be a group acting on a set X. For $x \in X$, let $G(x)$ be the G-orbit of x and G_{x} the stabilizer subgroup of G at x.

$$
\begin{aligned}
G(x) & =\{y \in X \mid y=g \cdot x\} \\
G_{x} & =\{g \in G \mid g \cdot x=x\}
\end{aligned}
$$

Since, $G(x)=G(y)$ or $G(x) \cap G(y)=\emptyset, \forall x, y \in G$ we get the first partition

$$
X=\bigcup_{x \in X} G(x)
$$

If $y \in G(x) \Rightarrow y=g \cdot x$, for some $g \in G$ and $G_{y}=g G_{x} g^{-1}$. Thus, the conjugacy class [G_{x}] of the point-stabilizers in a G-orbit is well defined. Two elements $x, y \in X$ are in the same orbit-class if $G_{x} \sim G_{y}$ and we shall denote this equivalence relation $x \sim_{o} y$. Let $R(x)$ be the equivalence class of x with respect to \sim_{o}. We, thus, obtain the second partition of X .

$$
X=\bigcup_{G_{x} \sim G_{y}} R(x)
$$

We will now provide a description of $R(x)$ in two different ways.
Let F_{x} be the set of fixed point of G_{x}

$$
F_{x}=\left\{y \in X \mid G_{y} \supset G_{x}\right\}
$$

and F_{x}^{\prime} be the set of "generic" elements in X

$$
F_{x}^{\prime}=\left\{y \in X \mid G_{y}=G_{x}\right\} .
$$

Let N_{x} be the normalizer of G_{x} in G,

$$
N_{x}=\left\{g \in G \mid g G_{x} g^{-1}=G_{x}\right\} .
$$

Finally, let W_{x} be the Weyl group at x,

$$
W_{x}=N_{x} / G_{x}
$$

We now define a canonical free action of W_{x} on G / G_{x}. Let $[n]$ denote the class of $n \in N_{x}$ in W_{x}.

$$
\begin{aligned}
W_{x} \times G / G_{x} & \rightarrow G / G_{x} \\
\left([n], g G_{x}\right) & \mapsto[n] \bullet\left(g G_{x}\right)=g G_{x} n^{-1}
\end{aligned}
$$

Since $n \in N_{x} \Rightarrow n^{-1} G_{x}=G_{x} n^{-1} \Rightarrow g\left(G_{x} n^{-1}\right)=g\left(n^{-1} G_{x}\right)$.
Proposition 4.1.1. This action is free, i.e.,

$$
\forall n \in N_{x} \text {, if }[n] \bullet\left(g G_{x}\right)=g G_{x} \Rightarrow n \in G_{x}
$$

Proof. $[n] \bullet\left(g G_{x}\right)=g n^{-1} G_{x}=g G_{x} \Rightarrow n^{-1} G_{x}=G_{x} \Rightarrow n^{-1} \in G_{x}$
$\Rightarrow n \in G_{x}$.

Let us now define a second canonical free action of W_{x} on F_{x}^{\prime}.
(i) $g F_{x}=F_{g x}$.

$$
\begin{aligned}
F_{g x} & =\left\{y \in X \mid G_{g x} y=y\right\}=\left\{y \in X \mid g G_{x} g^{-1} y=y\right\} \\
& =\left\{y \in X \mid G_{x} g^{-1} y=g^{-1} y\right\}=\left\{y \in X \mid g^{-1} y \in F_{x}\right\} \\
& =g F_{x}
\end{aligned}
$$

(ii) N_{x} leaves F_{x} invariant. Let $n \in N_{x}$, then

$$
\begin{aligned}
n F_{x}=F_{n x} & =\left\{y \in X \mid G_{n x} y=y\right\} \\
& =\left\{y \in X \mid n G_{x} n^{-1} y=y\right\} \\
& =\left\{y \in X \mid G_{x} y=y\right\}=F_{x}
\end{aligned}
$$

(iii) N_{x} leaves F_{x}^{\prime} invariant.

Let $y \in F_{x}^{\prime} \Rightarrow G_{y}=G_{x}$.
For $n \in N_{x}, G_{n y}=n G_{y} n^{-1}=n G_{x} n^{-1}=G_{x} \Rightarrow n F_{x}^{\prime}=F_{x}^{\prime}$.
(iv) N_{x} acts on F_{x} via W_{x}

For $n \in N_{x}$ and $[n]$, its class in $W_{x},[n] F_{x}=n G_{x} F_{x}=n F_{x}$
(v) W_{x} acts freely on F_{x}^{\prime}. If $n \in N_{x}, y \in F_{x}^{\prime}$, and $[n] y=n y=y$, then $n \in G_{y}=G_{x}$.

We will now discuss the main result here.

Theorem 4.1.2. Kul07 Let G act on X. Consider the diagonal action of W_{x} on $G / G_{x} \times F_{x}^{\prime}$. Then the map

$$
\begin{aligned}
\phi: G / G_{x} \times F_{x}^{\prime} & \rightarrow R(x) \\
\left(g G_{x}, y\right) & \mapsto g y
\end{aligned}
$$

is well-defined, and induces a bijection,

$$
\bar{\phi}:\left\{G / G_{x} \times F_{x}^{\prime}\right\} / W_{x} \rightarrow R(x)
$$

Proof. (i) ϕ is well defined.
Let $g \in G, y \in F_{x}^{\prime}$. We need to show that $g y \in R(x)$.

$$
G_{g y}=g G_{y} g^{-1}=g G_{x} g^{-1} \Rightarrow g y \sim_{o} x \Rightarrow g y \in R(x)
$$

We also need to show that for $g \in G, u \in G_{x}$ and $y \in F_{x}^{\prime}, g u y=g y$ and this is true because $G_{y}=G_{x}=u G_{x}$
(ii) ϕ is surjective. Let $y \in R(x)$.
$\exists g \in G$ such that $G_{y}=g G_{x} g^{-1}=G_{g x}$.
So, $y \in F_{g x}^{\prime}=g F_{x}^{\prime} \Rightarrow g^{-1} y \in F_{x}^{\prime}$.

$$
\phi\left(g G_{x}, g^{-1} y\right)=y \Rightarrow y \in \operatorname{im}(\phi)
$$

(iii) ϕ is constant on the W_{x}-orbits on $G / G_{x} \times F_{x}^{\prime}$.

Let $[n] \in W_{x}$.

$$
\phi\left([n] g G_{x},[n] y\right)=\phi\left(g n^{-1} G_{x}, n y\right)=g y=\phi\left(g G_{x}, y\right)
$$

So, we have an induced surjective map $\bar{\phi}$.
(iv) $\bar{\phi}$ is injective.

Let $y, z \in F_{x}^{\prime}$ and we have $\phi\left(g G_{x}, y\right)=\phi\left(h G_{x}, z\right) \Rightarrow g y=h z$.
Let $u=h^{-1} g \Rightarrow z=u y \Rightarrow G_{z}=G_{x}=G_{u y}=u G_{y} u^{-1}=u G_{x} u^{-1}$
$u \in N_{x}$
So, $[u] \in W_{x}$ and we have

$$
[u]\left(g G_{x}, y\right)=\left(g u^{-1} G_{x}, u y\right)=\left(h G_{x}, z\right)
$$

$\Rightarrow\left(g G_{x}, y\right)$ and $\left(h G_{x}, z\right)$ are in the same W_{x}-orbits.

By projecting the second factor, the map $\bar{\phi}$ induces the map

$$
\alpha: R(x) \rightarrow F_{x}^{\prime} / W_{x}
$$

whose "fiber" is G / G_{x}. Now, $G / G_{x} \cong G(x)$ up to a natural equivalence of G-actions, so this is just a representation of the orbit-class $R(x)$ as the union of orbits. We can consider this $\operatorname{map} \alpha$ as a one-one parametrization of the orbits by F_{x}^{\prime} / W_{x}. Further, W_{x} acts freely on F_{x}^{\prime}.

So F_{x}^{\prime} / W_{x} can be identified with a subset of F_{x}^{\prime} which picks up one point in each W_{x}-orbit. So, this map α provides a "numerical" invariant for elements in $R(x)$.
Similarly, $\left\{G / G_{x}\right\} / W_{x} \cong G / N_{x}$. So, $\bar{\phi}$ induces a map

$$
\sigma: R(x) \rightarrow G / N_{x}
$$

whose "fiber" is F_{x}^{\prime}. So, this map σ provides a "spatial" invariant for elements in $R(x)$.

4.2 The critical abelian subgroups and z-classes in a group

We will now consider a particular action of an arbitrary group G, conjugation on itself. Orbits in this case are the conjugacy classes of elements in G.

$$
\text { Point stabilizer, } G_{x}=\left\{g \in G \mid g \cdot x=g x g^{-1}=x\right\}
$$

This is exactly the centralizer $\mathcal{Z}_{G}(x)$. The fixed point set of $\mathcal{Z}_{G}(x)$ is the center of $\mathcal{Z}_{G}(x)$, denoted by $S(x)$.

$$
S(x)=F_{x}=\left\{k \in \mathcal{Z}(x) \mid g \cdot k=k \Rightarrow g k g^{-1}=k \quad \forall g \in G\right\}
$$

Let us consider the set \mathcal{S} of all subgroups of G and the set \mathcal{A} of all abelian subgroups of G and the two canonical maps

$$
\begin{equation*}
\phi: \mathcal{S} \rightarrow \mathcal{A} \text { and } \psi: \mathcal{A} \rightarrow \mathcal{S} \tag{4.1}
\end{equation*}
$$

where, ϕ associates a subgroup H to its center and ψ associates an abelian group A to its centralizer.

$$
\operatorname{im}(\phi \circ \psi):=\mathcal{A}_{o} \text { and } \operatorname{im}(\psi \circ \phi):=\mathcal{S}_{o}
$$

We will call the elements of \mathcal{A}_{o} the critical abelian subgroups of G.
Proposition 4.2.1. SK07
(i) The maps ϕ and ψ restricted to \mathcal{S}_{o} and \mathcal{A}_{o} respectively are bijections onto \mathcal{A}_{o} and \mathcal{S}_{o} respectively and they are inverses of each other.
(ii) Let A be a critical abelian subgroup of a group G. Let $\mathcal{Z}_{G}(A)$ and $N_{G}(A)$ be the centralizer and normalizer of A in G. Then the normalizer of $\mathcal{Z}_{G}(A)$ in G equals N.

Proof. (i) Let A be an abelian subgroup of $G, \mathcal{Z}_{G}(A)$ be the centralizer of A and S be the center of $\mathcal{Z}_{G}(A) . \mathcal{Z}_{G}(A)$ consists of elements in G which commute with all elements of A. Since A is abelian $\Rightarrow A \subseteq \mathcal{Z}_{G}(A)$ and $A \subseteq S$. Further, the centralizer of S is contained in the centralizer of A, i.e., $\mathcal{Z}_{G}(A) \subseteq \mathcal{Z}_{G}(S)$. Let $g \in \mathcal{Z}_{G}(A)$

$$
\begin{aligned}
& \Rightarrow g a=a g \forall a \in A \\
& \Rightarrow \forall s \in S, g s=s g \\
& \Rightarrow g \in \mathcal{Z}_{G}(S) \\
& \Rightarrow \mathcal{Z}_{G}(S) \subseteq \mathcal{Z}_{G}(A)
\end{aligned}
$$

We now show that if S is the center of $\mathcal{Z}_{G}(A)$, then $\mathcal{Z}_{G}(A)$ is the centralizer of S. Let the centralizer of S be Z^{\prime}.

$$
Z^{\prime}=\{g \in G \mid g s=s g \forall s \in S\}
$$

Let $z \in Z^{\prime}$.

$$
\begin{aligned}
& z a=a z \forall a \in S \Rightarrow z a=a z \forall a \in A \\
& \Rightarrow z \in \mathcal{Z}_{G}(A) \Rightarrow Z^{\prime} \subseteq \mathcal{Z}_{G}(A)
\end{aligned}
$$

Let $g \in \mathcal{Z}_{G}(A) \Rightarrow g a=a g \forall a \in A$. Now for any $s \in S, s g=g s$.

$$
\begin{aligned}
& \Rightarrow g \in Z^{\prime} \Rightarrow \mathcal{Z}_{G}(A) \subseteq Z^{\prime} \\
& \therefore \mathcal{Z}_{G}(A)=Z^{\prime}
\end{aligned}
$$

By construction, $S=\phi \circ \psi(A)$, so S is a critical abelian subgroup of G.

$$
\begin{aligned}
& A \xrightarrow{\psi} \mathcal{Z}_{G}(A) \xrightarrow{\phi} S \\
& S \xrightarrow{\psi} \mathcal{Z}_{G}(A) \xrightarrow{\phi} S \\
& S=\phi \circ \psi(S) .
\end{aligned}
$$

Let H be a subgroup, S its center and $\mathcal{Z}_{G}(A)$ be the centralizer of S.

$$
\begin{aligned}
& H \xrightarrow{\phi} S \xrightarrow{\psi} \mathcal{Z}_{G}(A) \\
& Z \xrightarrow{\phi} S \xrightarrow{\psi} \mathcal{Z}_{G}(A)
\end{aligned}
$$

$\mathcal{Z}_{G}(A)=\psi \circ \phi\left(\mathcal{Z}_{G}(A)\right)$
(ii) If A is a critical abelian subgroup of G, then it is the center of $\mathcal{Z}_{G}(A)$. Let $N_{G}(A)$ be the normalizer of A in G and $N(\mathcal{Z})$ be the normalizer of $\mathcal{Z}_{G}(A)$ in G. We need to show $N_{G}(A)=N(\mathcal{Z})$.
Let $n \in N(\mathcal{Z}) \Rightarrow n \mathcal{Z}_{G}(A) n^{-1}=\mathcal{Z}_{G}(A)$
If i_{n} denotes conjugation by n, then i_{n} leaves $\mathcal{Z}_{G}(A)$ invariant. Let $z \in \mathcal{Z}_{G}(A) \Rightarrow \exists y \in$ $\mathcal{Z}_{G}(A)$ such that $z=n y n^{-1} \Rightarrow z n=n y \Rightarrow n^{-1} z=y n^{-1}$.

$$
\begin{aligned}
& z\left(n a n^{-1}\right)=n y a n^{-1}=n a y n^{-1}=n a n^{-1} z \text { for any } z \in \mathcal{Z}_{G}(A) \\
& \Rightarrow n a n^{-1} \in A \\
& \Rightarrow n \in N_{G}(A) \Rightarrow N(\mathcal{Z}) \subseteq N_{G}(A)
\end{aligned}
$$

Let $n \in N_{G}(A), z \in \mathcal{Z}_{G}(A) \Rightarrow n A=A n, a z=z a$

$$
\begin{aligned}
n z n^{-1}= & =n\left(a z a^{-1}\right) n^{-1} \\
& =\left(n a n^{-1}\right)\left(n z n^{-1}\right)\left(n a^{-1} n^{-1}\right)
\end{aligned}
$$

We know that, $\exists b \in A$ such that $n a n^{-1}=b$.

$$
\begin{aligned}
& \Rightarrow n z n^{-1}=b\left(n z n^{-1}\right) b^{-1} \\
& \Rightarrow\left(n z n^{-1}\right) b=b\left(n z n^{-1}\right) \forall b \in A \\
& n z n^{-1} \in \mathcal{Z}_{G}(A) \\
& n z n^{-1} \subseteq \mathcal{Z}_{G}(A) \Rightarrow n \in N(\mathcal{Z}) \\
& N_{G}(A) \subseteq N(\mathcal{Z})
\end{aligned}
$$

$$
\therefore N_{G}(A)=N(\mathcal{Z})
$$

For an abelian subgroup A of G, let $\mathcal{Z}_{G}(A), N_{G}(A)$ be the centralizer and normalizer of A. $\mathcal{Z}_{G}(A)$ is a normal subgroup of $N_{G}(A)$. Let us now define Weyl group of $A, W(A)$.

$$
W(A)=N_{G}(A) / \mathcal{Z}_{G}(A)
$$

Weyl group of an abelian group A coincides with the Weyl group of the critical subgroup canonically associated to A.

Let H be the critical subgroup canonically associated to A.

$$
A \xrightarrow{\psi} \mathcal{Z}_{G}(A) \xrightarrow{\phi} S\left(\mathcal{Z}_{G}(A)\right)=H
$$

We know that, $N\left(\mathcal{Z}_{G}(H)\right)=N_{G}(H)$ by Theorem 4.2.1.

$$
W(H)=N_{G}(H) / \mathcal{Z}_{G}(H)=N_{G}\left(\mathcal{Z}_{G}(H)\right) / \mathcal{Z}_{G}(H)
$$

H is the center of $\mathcal{Z}_{G}(A)$, then $\mathcal{Z}_{G}(A)$ is the centralizer of $H \Rightarrow \mathcal{Z}_{G}(H)=\mathcal{Z}_{G}(A)$

$$
N_{G}(H) / \mathcal{Z}_{G}(H)=N\left(\mathcal{Z}_{G}(H)\right) / \mathcal{Z}_{G}(H)=N\left(\mathcal{Z}_{G}(A)\right) / \mathcal{Z}_{G}(A)
$$

Since A is abelian, $\mathcal{Z}_{G}(A)=A \Rightarrow W(H)=N_{G}(A) / \mathcal{Z}_{G}(A)=W(A)$.

Given $x, y \in G, x \sim y$ means that x, y are conjugates in G and $x \sim_{o} y$ means that their centralizers are conjugates in G. Let $C(x)$ and $R(x)$ be the centralizer class of x in G and conjugacy class of x in G respectively. Let $\mathcal{Z}(x)$ denote the centralizer of $x, S(x)$ be the center of $\mathcal{Z}(x)$ and $N(x)$ be the normalizer of $\mathcal{Z}(x)$. Then $W(x)=N(x) / \mathcal{Z}(x)$ is the Weyl group at x.
Let $S^{\prime}(x)=\{y \in S(x) \mid \mathcal{Z}(y)=\mathcal{Z}(x)\}$ denote the "generic" elements of $S(x)$.
$W(x)$ acts freely on $S^{\prime}(x)$.
Let $n \mathcal{Z}(x) \in W(x)$ and $y \in S^{\prime}(x)$.

$$
n \mathcal{Z}(x) \cdot y=n y n^{-1}=y \Rightarrow n y=y n \Rightarrow n \in \mathcal{Z}(y)=\mathcal{Z}(x)
$$

Since $n \in \mathcal{Z}(x) \Rightarrow n \mathcal{Z}(x) \in \mathcal{Z}(x)$.
$\therefore n \mathcal{Z}(x)$ is the identity.
Since $W(x)$ acts freely on $S^{\prime}(x)$, we can consider $S^{\prime}(x) / W(x)$ as a subset of $S^{\prime}(x)$ which picks up one point each in $W(x)$-orbit in $S^{\prime}(x)$. Using the terminology described in Section 4.1, we have,

$$
\begin{aligned}
R(x) & =\bigcup_{\mathcal{Z}(y)=\mathcal{Z}(x)} C(y)=\bigcup_{S(y)=S(x)} C(y) \text { and } \\
G & =\bigcup_{x \in X} R(x)
\end{aligned}
$$

Theorem 4.1.2 allows us to construct two fibrations α and σ, where α is the numerical
invariant and σ, the spatial invariant.

$$
\alpha: R(x) \rightarrow S^{\prime}(x) / W(x) \text { and } \sigma: R(x) \rightarrow G / N(x)
$$

Thus, z-classes in a group G are in a one-one correspondence with the conjugacy classes of critical abelian subgroups associated to cyclic subgroups.
Let G be a group and H its normal subgroup. For $x \in H$, let $C_{G}(x)$ and $C_{H}(x)$ be the conjugacy classes of $x, R_{G}(x), R_{H}(x)$ be the z-classes of x and $\mathcal{Z}_{G}(x)$ and $\mathcal{Z}_{H}(x)$ be the centralizers of x.
(i) $C_{G}(x) \subset H$

Let $y \in C_{G}(x) \Rightarrow \exists g \in G$ such that $g y g^{-1}=x$.
For any $p \in G, p y=p g^{-1} x g=z p g^{-1} g=z p \Rightarrow y \in H$
(ii) $\mathcal{Z}_{H}(x)=H \cap \mathcal{Z}_{G}(x)$
$\mathcal{Z}_{H}(x)=\{y \in H \mid y x=x y\}$. Clearly, $\mathcal{Z}_{H}(x) \subseteq H$ and since $H \subseteq G, y \in \mathcal{Z}_{G}(x)$.
$\Rightarrow \mathcal{Z}_{H}(x) \subseteq H \cap \mathcal{Z}_{G}(x)$.
Let $y \in H \cap \mathcal{Z}_{G}(x) \Rightarrow y \in H$ and $y x=x y \Rightarrow y \in \mathcal{Z}_{H}(x)$.
(iii) $C_{G}(x) \cong G / \mathcal{Z}_{G}(x)$.

$$
\begin{aligned}
\phi: G & \rightarrow C_{G}(x) \\
g & \mapsto g x g^{-1}
\end{aligned}
$$

Clearly, ϕ is surjective.
Now, $\operatorname{ker} \phi=\{y \in G \mid \phi(y)=x\}$.

$$
\begin{aligned}
\phi(y)=y x y^{-1} \Rightarrow & y x=x y \Rightarrow y \in \mathcal{Z}_{G}(x) \\
& G / \mathcal{Z}_{G}(x) \cong C_{G}(x)
\end{aligned}
$$

We see that $C_{G}(x)$ splits into H-conjugacy classes.
Finally, we can see that if x, y are two elements of H which are in the same z-class in G, then they are in the same z-class in H and $R_{G}(x) \cap H$ is contained in $R_{H}(x)$.

Let x, y are in the same z-class in G.

$$
\begin{aligned}
& \exists g \in G \text { such that } \mathcal{Z}_{G}(x)=g \mathcal{Z}_{G}(y) g^{-1} \\
& \mathcal{Z}_{H}(x)=H \cap \mathcal{Z}_{G}(x) \text { and } \mathcal{Z}_{H}(y)=H \cap \mathcal{Z}_{G}(y) \\
& \Rightarrow \mathcal{Z}_{H}(x)=g \mathcal{Z}_{G}(x) g^{-1}
\end{aligned}
$$

x, y are in the same z-class in H.
Let $g \in R_{G}(x) \cap H \Rightarrow g \in R_{G}(x)$ and $g \in H . g \in R_{G}(x) \Rightarrow \mathcal{Z}_{G}(x)=h \mathcal{Z}_{G}(g) h^{-1}$ for some $h \in G$.
Now, x, g are in the same z-class in $\mathrm{G} \Rightarrow x, g$ are in the same z-class in H.
$\Rightarrow R_{G}(x) \cap H \subset R_{H}(x)$.

$4.3 z$-classes of semisimple linear operators

Let \mathbb{F} be a field and V a vector space over \mathbb{F}. Let $X=L(V)$, which is the set of all linear maps from V to V. It contains $G=G L(V)$, the subset which consists of the invertibe elements of $L(V)$. Then X is an \mathbb{F}-algebra and G is a group.
Let G act on X by conjugation. The G-orbit of A in X is called the similarity class of A. If $A \in G$, then its similarity class is precisely its conjugacy class of A in G.
For $A \in X$, let $\mathcal{Z}_{G}(A)$ be the set of all elements B in X which commute with A. Let $\mathcal{Z}_{G}^{*}(A)=\mathcal{Z}_{G}(A) \cap G . \mathcal{Z}_{G}(A)$ is an \mathbb{F}-subalgebra of X and in case $A \in G, \mathcal{Z}_{G}^{*}(A)$ is the centralizer of A. Let $S(A)$ be the center of $\mathcal{Z}_{G}(A)$ and $S^{*}(A)=S(A) \cap G$. Using the definitions in Section 4.2, we can say that $S^{*}(A)$ is the critical subgroup associated to the cyclic subgroup generated by A.
An important invariant to study the dynamics of a linear operator A is the minimal polynomial $m_{A}(x)$ (non-zero). We know that $\mathbb{F}[A]$ is a \mathbb{F}-subalgebra of X consisting of operators which can be written as polynomials in A. Thus, there is a canonical surjective homomorphism ϕ of the polynomial ring $\mathbb{F}[x]$ onto $\mathbb{F}[A]$.

$$
\begin{aligned}
\phi: \mathbb{F}[x] & \rightarrow \mathbb{F}[A] \\
p(x) & \mapsto p(A)
\end{aligned}
$$

Let us assume ker ϕ is non-zero. ker ϕ is, by definition, generated by $m_{A}(x)$. When V is finite-dimensional, ker ϕ is automatically non-zero as X is finite-dimensional.

Lemma 4.3.1. Let $A: V \rightarrow V$ be an operator admitting a minimal polynomial $m_{A}(x)$ of degree at least 1. Suppose that $m_{A}(x)$ is irreducible. Then either $m_{A}(x)$ is x and A is zero or A is invertible.
In case A is invertible, V admits a structure of a vector space over a simple extension field \mathbb{E} of \mathbb{F} with respect to which the action of A is equivalent to the scalar multiplication by a primitive element of \mathbb{E} over \mathbb{F}.

Proof. Let $\mathbb{E}=\mathbb{F} /\left(m_{A}(x)\right)$. Since $m_{A}(x)$ is irreducible, then \mathbb{E} is a field. Further, $\mathbb{F}[A] \cong \mathbb{E}$.
Case 1: x divides $m_{A}(x)$. Then, $m_{A}(A)=A=0 \Rightarrow A=0$ and $\mathbb{E} \cong \mathbb{F}$.
Case 2: x does not divide $m_{A}(x)$.
Let $\alpha \equiv x \bmod m_{A}(x) \Rightarrow \alpha-x \equiv 0 \bmod m_{A}(x), \alpha \in \mathbb{E} \Rightarrow \alpha$ is a root of $m_{A}(x)$ in \mathbb{E}.
$\Rightarrow \mathbb{F}(\alpha) \cong \mathbb{F}[x] /\left(m_{A}(x)\right)=\mathbb{E}$
\mathbb{E} is a simple extension of \mathbb{F} and α is a primitive element of \mathbb{E} over \mathbb{F}.
Since x does not divide $m_{A}(x) \Rightarrow 0$ is not an eigenvalue of the operator $A \Rightarrow A$ is invertible. $\mathbb{F}(\alpha) \cong \mathbb{F}[A]$ and therefore, action of A is equivalent to scalar multiplication by a primitive element of \mathbb{E} over \mathbb{F}.

Lemma 4.3.2. Let $A: V \rightarrow V$ be an operator. Suppose $f(x) \in \mathbb{F}[x]$ is a monic polynomial such that $f(A)=0$. Suppose $f(x)=r(x) s(x)$ where $\operatorname{gcd}(r(x), s(x))=1$. Then ker $r(A)=i m$ $s(A)$, $\operatorname{ker} s(A)=\operatorname{im} r(A)$ and V is a direct sum of $\operatorname{ker} r(A)$ and $\operatorname{ker} s(A)$.

Proof. By Euclidean algorithm, we know $\exists a(x), b(x) \in \mathbb{F}[x]$ such that

$$
\begin{aligned}
& a(x) r(x)+b(x) s(x)=1 \\
& a(A) r(A)+b(A) s(A)=I \\
\forall & \vec{v} \in V, \text { we have } a(A) r(A) \vec{v}+b(A) s(A) \vec{v}=\vec{v} \\
\Rightarrow & r(A) a(A) r(A)=r(A) \text { and } s(A) b(A) s(A)=s(A) \\
\Rightarrow & r(A)(a(A) r(A)-I)=0 \text { and } s(A)(b(A) s(A)-I)=0 \\
\Rightarrow & a(A) r(A)-I \in \operatorname{Ker} r(A) \text { and } b(A) s(A)-I \in \operatorname{Ker} s(A) \\
\Rightarrow & s(A) b(A) \in \operatorname{Ker} r(A) \text { and } r(A) a(A) \in \operatorname{Ker} s(A) \\
\Rightarrow & \operatorname{im} s(A) \subseteq \operatorname{Ker} r(A) \text { and } \operatorname{im} r(A) \subseteq \operatorname{Ker} s(A)
\end{aligned}
$$

Further, $\operatorname{im} s(A)+\operatorname{im} r(A)=V$ and ker $s(A) \cap \operatorname{ker} r(A)=0$
$\operatorname{ker} s(A) \subseteq \operatorname{im} r(A)$ and $\operatorname{ker} r(A) \subseteq \operatorname{im} s(A)$

$$
\operatorname{im} s(A)=\operatorname{ker} r(A) \text { and } \operatorname{im} r(A)=\operatorname{ker} s(A)
$$

Now, $n-\operatorname{dim}(\operatorname{ker} s(A))+n-\operatorname{dim}(\operatorname{ker} r(A))=n$
$\Rightarrow \operatorname{dim}(\operatorname{ker} s(A))+\operatorname{dim}(\operatorname{ker} r(A))=n$ and $\operatorname{ker} s(A) \cap \operatorname{ker} r(A)=0$.
$\Rightarrow V=\operatorname{ker} s(A) \oplus \operatorname{ker} r(A)$.
A consequence of Lemma 4.3 .2 is that to study the dynamics of A with $m_{A}(x) \neq 0$, we can reduce the situation to when $m_{A}(x)=p(x)^{d}$ where $p(x)$ is an irreducible monic polynomial in $\mathbb{F}[x]$.
The only case we will consider in this chapter is $d=1$ and $p(x) \neq x$.
Consider the extension field $\mathbb{E}=\mathbb{F}[x] /(p(x))$ and $\alpha=[x](\alpha \equiv x \bmod p(x))$. Then in the \mathbb{E}-structure on V, the operator A is just the scalar multiplication by α. (By Lemma 4.3.1) $\Rightarrow \mathbb{E}=\mathbb{F}[A]$. Then, the centralizer $\mathcal{Z}(A)$ is the \mathbb{E}-linear operators on V and the center $S(A)$ is $\mathbb{E} \cdot S^{*}(A)=\mathbb{E}^{*}=\mathbb{E}-\{0\}$ is in fact the critical subgroup in G associated to A.

Theorem 4.3.3. Let $p(x) \neq x$ be a monic irreducible polynomial in $\mathbb{F}[x]$. Let $\operatorname{deg} p(x)=m$. If V is finite-dimensional, assume m divides $\operatorname{dim} V$. Then
(i) There exists A in G such that $m_{A}(x)=p(x)$.
(ii) An element B in G is conjugate to A iff $m_{B}(x)=p(x)$.
(iii) An element B in G is z-equivalent to A, iff $m_{B}(x)$ is irreducible and the fields $\mathbb{F}[x] /\left(m_{A}(x)\right)$ and $\mathbb{F}[x] /\left(m_{B}(x)\right)$ are isomorphic over \mathbb{F}.

Proof. (i) Let V be finite-dimensional and $\operatorname{dim} V=n$ and $n=m l$
We need to choose subspaces V_{i} such that $\operatorname{dim} V_{i}=\mathrm{m}$. Then $V=\bigoplus_{i=1}^{l} V_{i}$.
Let $\mathbb{E}=\mathbb{F}[x] /(p(x))$ and h_{i} is \mathbb{F}-isomorphism of vector spaces.

$$
\begin{aligned}
h_{i}: \mathbb{E} & \rightarrow V_{i} \\
a_{o}+a_{1} x+\cdots+a_{m-1} x^{m-1} & \mapsto\left(a_{o}, a_{1}, \ldots, a_{m-1}\right)
\end{aligned}
$$

Let $\alpha=[x]$ and consider the operator $\mu_{\alpha}: y \mapsto \alpha y$ on \mathbb{E}.
Now, when we define $A: V \rightarrow V$ such that $A \upharpoonright_{V_{i}}=h_{i} \circ \mu_{\alpha} \circ h_{i}^{-1}$.
$\Rightarrow A \upharpoonright_{V_{i}}$ is equivalent to scalar multiplication by α. Also, since operators are similar, the characteristic and minimal polynomials are the same.
$\Rightarrow m_{A}(x)=p(x)$
(ii) If B is conjugate to A, then $m_{B}(x)=m_{A}(x)=p(x)$. Conversely, suppose $B \in G$ such that $m_{B}(x)=p(x)$. We have $\mathbb{F}[B] \cong \mathbb{E}$ and $\mathbb{F}[A] \cong \mathbb{E}$ and σ_{A}, σ_{B} equip V as vector
spaces over \mathbb{E} via $\mathbb{F}[A]$ and $\mathbb{F}[B]$.
Let $\{\vec{e}\}, i \in I$ be an \mathbb{E}-basis of V with respect to σ_{A}.
Let $E_{i}=\left\{\overrightarrow{e_{i}}, A \overrightarrow{e_{i}}, \ldots, A^{m-1} \overrightarrow{e_{i}}\right\}$. Let V_{i} be the \mathbb{F}-span of E_{i}.
Since A^{m} is a linear combination of I, \ldots, A^{m-1}, each V_{i} is invariant under A and $\bigcup_{i \in I} E_{i}$ is an \mathbb{F}-basis of V.
Similarly, let $\left\{\vec{f}_{j}\right\}, j \in J$ be an \mathbb{E}-basis of V with respect to σ_{B}.
Let $F_{j}=\left\{\vec{f}_{j}, B \vec{f}_{j}, \ldots, B^{m-1} \vec{f}_{j}\right\}$. Then, $\bigcup_{j \in J} F_{j}$ is also an \mathbb{F}-basis of V.
Since cardinality of \mathbb{F}-basis is well-defined, there exists a bijection between the index sets I and J. (in fact, we can take $I=J$). Let

$$
\begin{aligned}
& h: V \rightarrow V \\
& A^{k} \overrightarrow{e_{i}} \mapsto B^{k} \vec{f}_{i}
\end{aligned}
$$

$\Rightarrow h$ is well defined, $m_{A}(x)=m_{B}(x)=p(x)$ and h provides the required conjugacy between A and B.
(iii) We know that, $\mathcal{Z}_{G}(A)$ is \mathbb{E}-linear maps of $V, \mathbb{E}=\mathbb{F}[A]$ and $S(A)=\mathbb{E}$ which is a field. Let $B \in G$. By definition, A, B are z-equivalent iff $\mathcal{Z}_{G}^{*}(A)$ and $\mathcal{Z}_{G}^{*}(B)$ are conjugates. Replacing B by a suitable conjugate, we can assume $\mathcal{Z}_{G}^{*}(A)=\mathcal{Z}_{G}^{*}(B) \Rightarrow S^{*}(A)=$ $S^{*}(B)$.
We know that, $S^{*}(A) \cup\{0\}$ is closed under addition and is the field $\mathbb{F}[A]$
$\Rightarrow S^{*}(B) \cup\{0\}$ since $S^{*}(B) \cup\{0\} \subseteq S(B)$.
Also, $B \in S^{*}(B)=S^{*}(A) \Rightarrow B \in \mathbb{F}[A] \Rightarrow \mathbb{F}[B] \subseteq \mathbb{F}[A]$. In particular, $\mathbb{F}[B]$ is an integral domain.
But if $m_{b}(x)=q(x)$, then $\mathbb{F}[B] \cong \mathbb{F}[x] /(q(x)) \Rightarrow q(x)$ must be irreducible and so $\mathbb{F}[B]$ is a field.
Suppose, if possible that $\mathbb{F}[B]=\mathbb{E}_{1} \neq \mathbb{F}[A]$. Then V also has the structure of a vector space over \mathbb{E}_{1}. Then $\mathcal{Z}_{G}(B)$ is isomorphic to \mathbb{E}_{1}-endomorphisms of V.
$\Rightarrow S(B)$ must coincide with $\mathbb{E}_{1} \Rightarrow S^{*}(B)=\mathbb{E}_{1}^{*} \subseteq \mathbb{E}^{*}$.
This contradicts $S^{*}(A)=S^{*}(B)=\mathbb{E}^{*}$.

$$
\mathbb{F}[x] /\left(m_{A}(x)\right) \cong \mathbb{F}[x] /\left(m_{B}(x)\right)
$$

We will now use this information to describe the z-classes of semi-simple elements in G.

An operator A in G is called semisimple iff every A-invariant subspace of V has an A invariant complement.
Consider V to be finite-dimensional and let $\operatorname{dim} V=n$. Then, A is semisimple iff $m_{A}(x)$ factors into pairwise distinct irreducible factors.
Let $m_{A}(x)=\prod_{i=1}^{r} p_{i}(x)$, where each $p_{i}(x) \in \mathbb{F}[x]$ is monic and irreducible.
Let $V_{i}=\operatorname{ker} p_{i}(A)$ and $\operatorname{dim} V_{i}=n_{i}$. Then $V=\bigoplus_{i=1}^{r} V_{i}, V_{i} \cap V_{j}=\emptyset$.
If W is an A-invariant subspace, then $W=\bigoplus_{i=1}^{r} W \cap V_{i}$.
Let $\chi_{A}(x)=\prod_{i=1}^{r} p_{i}(x)^{d_{i}}$, which is the characteristic polynomial, is a complete invariant of the conjugacy class of A. Let $\chi_{A}(x)=\prod_{i=1}^{r} p_{i}(x)^{d_{i}}$.
Let $\operatorname{deg} p_{i}(x)=m_{i} \Rightarrow n=\sum_{i=1}^{r} m_{i} d_{i}$ and let $n_{i}=m_{i} d_{i}$.
Let $A_{i}=A \upharpoonright_{V_{i}}$.
$\mathcal{Z}_{G}(A)$ is canonically isomorphic to $\prod_{i=1}^{r} \mathcal{Z}_{G}\left(A_{i}\right)$. This is because if an element commutes with V, it must commute with each individual V_{i} and would therefore belong to $\mathcal{Z}_{G}\left(A_{i}\right)$ and vice versa.
Then, $S(A)$ is canonically isomorphic to $\prod_{i=1}^{r} S\left(A_{i}\right)$.

$$
\mathcal{Z}_{G}^{*}(A) \cong \prod_{i=1}^{r} \mathcal{Z}_{G}^{*}\left(A_{i}\right) \text { and } S^{*}(A) \cong \prod_{i=1}^{r} S^{*}\left(A_{i}\right)
$$

Let $\mathbb{E}_{i}=\mathbb{F}[x] /\left(p_{i}(x)\right)$ be the corresponding extension fields. Then, by Lemma 4.3.1, $\mathbb{F}\left[A_{i}\right] \cong$ \mathbb{E}_{i} equips V_{i} with a structure of a vector space over \mathbb{E}_{i}. Let $\alpha_{i}=[x]$ be the root of $p_{i}(x)$ in \mathbb{E}_{i}. It is a primitive element of \mathbb{E}_{i} over \mathbb{F}.

We, thus, have the following invariant attached to A.
(i) The partition of an integer $n, \pi: n=\sum_{i=1}^{r} n_{i}$.
(ii) A decomposition D_{π} of V using $\pi: v=\bigoplus_{i=1}^{r} V_{i}$ where $\operatorname{dim} V_{i}=n_{i}$.
(iii) Irreducible polynomials $p_{i}(x)$ in $\mathbb{F}[x], \operatorname{deg} p_{i}(x)=m_{i}$ and the corresponding extension fields $\mathbb{E}_{i}=\mathbb{F}[x] /(p(x))$ of \mathbb{F}, so that m_{i} divides n_{i} where $n_{i}=d_{i} m_{i}$.
(iv) A structure $\sigma_{\mathbb{E}_{i}}$ on V_{i} as a vector space over \mathbb{E}_{i} which extends as a vector space over \mathbb{F}.
(v) A primitive element α_{i} of \mathbb{E}_{i} over \mathbb{F} such that $p_{i}(x)$ is the irreducible polynomial of α_{i}. We assume $p_{i}(x)$'s to be pairwise distinct.

We will denote this data as ($\pi, D_{\pi}, \varepsilon_{\pi}, \sigma_{\pi}, \alpha_{\pi}$) and using this we can uniquely determine a semisimple operator $A: V \rightarrow V$ by setting $A \upharpoonright_{V_{i}}: V_{i} \rightarrow V_{i}$ to be the scalar multiplication by
α_{i} in the \mathbb{E}_{i} structure.
To understand the numerical and spatial invariants, we must determine $N^{*}(A)$, the normalizer of $\mathcal{Z}_{G}^{*}(A) . \mathcal{Z}_{G}^{*}\left(A_{i}\right)$ acts irreducibly on V_{i} because if $B \in \mathcal{Z}_{G}^{*}\left(A_{i}\right)$, then it is conjugate of A_{i} and the minimal polynomial of B is the same. So an element in $N^{*}(A)$ must permute V_{i} 's.
Let $h: N^{*}(A) \rightarrow S_{r}$ be the corresponding homomorphism and $N_{1}^{*}(A)=$ ker h. An element of $N_{1}^{*}(A)$ leaves each V_{i} invariant. This is because the kernel will consist of all those elements that do not permute V_{i} 's, i.e., that take each V_{i} to itself. Therefore, $N_{1}^{*}(A)$ normalizes $\mathbb{E}_{i}=\mathbb{F}\left[A_{i}\right]$.
Consider the homomorphism $h_{1}: N_{1}^{*}(A) \rightarrow \prod_{i=1}^{r} \operatorname{Aut}\left(\mathbb{E}_{i} / \mathbb{F}\right)$. The kernel of h_{1} is exactly $\mathcal{Z}_{G}^{*}(A)$. Through this we arrive at the following conclusion.

Proposition 4.3.4. SK07 Let V be a vector space of dimension n over a field \mathbb{F}, and $A: V \rightarrow V$ a semisimple operator. Then the Weyl group $W(A)$ is a finite group.

Theorem 4.3.5. SK07] Let V be a vector space of dimension n over a field \mathbb{F}. Then
(i) The semisimple operators on V are in the one-one correspondence with the symbols $\left(\pi, D_{\pi}, \varepsilon_{\pi}, \sigma_{\pi}, \alpha_{\pi}\right)$ as constructed above.
(ii) The conjugacy classes of semisimple operators are in one-one correspondence with the symbols $\left(\pi, \alpha_{\pi}\right)$. Equivalently they are in one-one correspondence with the monic polynomials of degree n in $\mathbb{F}[x]$.
(iii) The z-classes of semisimple operators are in one-one correspondence with the symbols $\left(\pi, \epsilon_{\pi}\right)$.

Corollary 4.3.6. If there are only finitely many field extensions of degree $\leq n$ of a given field \mathbb{F} then there are only finitely many z-classes of semisimple operators on an n-dimensional vector space V.

Chapter 5

z-classes of linear and affine maps

In this chapter, we will extend the theory of "dynamical types" we studied in Chapter 3 to linear and affine maps and investigate their z-classes. This chapter is based on the results of Kulkarni's paper titled "Dynamics of linear and affine maps". Kul07 We had concluded Chapter 3 with a theorem that showed given an n-dimensional vector space, if there are finitely many simple extensions of atmost degree n over the underlying field, then there are finitely many z-classes of the semisimple operators on V. The work we will do in this chapter would result in an extension of this theorem to any linear and affine map.
From here on, \mathbb{F} would refer to a field, V to a vector space over \mathbb{F} and $p(x)$ to a monic irreducible polynomial in $\mathbb{F}[x]$, unless explicitly mentioned. Further, $L(V)$ is the set of all linear maps from V to V. The vector space \mathbb{A} which is underlying V, has no distinguished base-point and is called the affine space. An affine map of \mathbb{A} is a map $(A, v): V \rightarrow V$ of the form $(A, v)(x)=A x+v, A \in L(V)$ and $x \in V$. So, $A(V)$ is the set of all affine maps from V to V. Let $G L(V)$ and $G A(V)$ be the subsets of $L(V)$ and $A(V)$ respectively, consisting of invertible elements. They form groups and they act on $L(V)$ and $A(V)$ respectively by conjugation. Then, the stabilizer subgroups at T in $G L(V)$ and $G A(V)$ are the centralizers of T in $G L(V)$ and $G A(V)$ respectively and we denote this by $\mathcal{Z}_{L}^{*}(T)$ and $\mathcal{Z}_{A}^{*}(T)$ respectively.

5.1 Classical Theory for $L(V)$

Let $T \in L(V)$ and $m_{T}(x)$ be the minimal polynomial of T. We know that $\mathbb{F}[T] \cong \mathbb{F}[x] /\left(m_{T}(x)\right)$. Now, let $m_{T}(x)=\prod_{i=1}^{r} p_{i}(x)^{d_{i}}$ such that $p_{i}(x) \in \mathbb{F}[x]$ and $p_{i}(x)$ are pairwise distinct. The Primary Decomposition Theorem (2.1.2) provides a decomposition $V=\bigoplus_{i=1}^{r} V_{i}$, where
$V_{i}=\operatorname{Ker} p_{i}(T)^{d_{i}}$ are T-invariant subspaces.

$$
\begin{gathered}
\text { Let } x \in \operatorname{Ker} p_{i}(T)^{d_{i}} \text { and } S \in \mathcal{Z}_{L}(T) \Rightarrow S T=T S \\
p_{i}(T)^{d_{i}}(S(x))=S\left(p_{i}(T)^{d_{i}}(x)\right)=S(0)=0 \Rightarrow S\left(V_{i}\right) \subseteq V_{i}
\end{gathered}
$$

This shows that the decomposition is invariant under $\mathcal{Z}_{L}(T)$.
Let $T_{i}=T \upharpoonright_{V_{i}}$. Then $m_{T_{i}}(x)=p_{i}(x)^{d_{i}}$. We also have a canonical decomposition

$$
\mathcal{Z}_{L}(T)=\prod_{i=1}^{r} \mathcal{Z}_{L}\left(T_{i}\right)
$$

We have now reduced the problem to $m_{T}(x)=p(x)^{d}$, where $p(x) \in \mathbb{F}[x]$.
Let us now consider the example where $V=\mathbb{F}[x] /\left(p(x)^{d}\right)$. For $u(x) \in \mathbb{F}[x]$, let $[u(x)]$ be the class of $u(x)$ in $\mathbb{F}[x] /\left(p(x)^{d}\right)$. Let T be the operator $\mu_{x}:[u(x)] \rightarrow[x u(x)]$ and $V_{i}=\left\{\left[f(x) p(x)^{i}\right] \mid f(x) \in \mathbb{F}[x]\right\}$. We have the following flag of subspaces

$$
0=V_{d} \subset V_{d-1} \subset \cdots \subset V_{1} \subset V_{0}=V
$$

Suppose, W is a T-invariant subspace of V. If $\left[f(x) p(x)^{i}\right] \in W \Rightarrow\left[g(x) f(x) p(x)^{i}\right] \in W, \forall$ $g(x) \in \mathbb{F}[x]$. Let i be the smallest non-negative integer such that for $\left[f(x) p(x)^{i}\right] \in W, p(x)$ does not divide $f(x)$. Then $[f(x)]$ is a unit in $V \Rightarrow\left[p(x)^{i}\right] \in W \Rightarrow W=V_{i}$. This shows that that V_{i} 's are the only T-invariant subspaces. These V_{i} 's do not have a complementary T-invariant subspace and so, (V, T) is an indecomposable pair.
We will now show that the converse of this example is also true.

Theorem 5.1.1. Let (V, T) be a pair such that $m_{T}(x)=p(x)^{d}$ where $p(x) \in \mathbb{F}[x]$ and deg $p(x)=m$. Then (V, T) is a direct sum of T-invariant indecomposable subspaces, each dynamically equivalent to $\left(\mathbb{F}\left[x_{i}\right] /\left(p\left(x_{i}\right)^{d_{i}}\right), \mu_{x_{i}}\right)$. Here $d_{i} \leq d$, and $d_{i}=d$ for at least one i and $\operatorname{dim} V=m \sum_{i} d_{i}$

We have already proven the above theorem for the case $d=1$ as a consequence of Lemma 4.3.2. The consequences of this proof were that $\mathcal{Z}_{L}(T)$ is the set of linear operators which are linear in $\mathbb{E}=\mathbb{F}[x] /(p(x))$. Thus, $\mathcal{Z}_{L}(T) \cong L_{\mathbb{E}}(V), \mathcal{Z}_{L}^{*}(T) \cong G L_{\mathbb{E}}(V)$ and the orbits of $\mathcal{Z}_{L}^{*}(T)$ are V and $\{0\}$. We will call the T-action dynamically semi-simple.

5.2 Orbits of $\mathcal{Z}_{L}^{*}(T)$ and a Canonical Maximal $\mathcal{Z}_{L}(T)$ Invariant Flag

Let $T \in L(V), m_{T}(x)=p(x)^{d}$, where $p(x)$ in $\mathbb{F}[x]$ and $\operatorname{deg} p(x)=m$. Then, $\mathbb{E}=\mathbb{F} /(p(x))$ is a simple field extension of \mathbb{F} and $\operatorname{dim}_{\mathbb{E}} \mathbb{F}=m$. We may assune $d \geq 2$. Let $N=p(T)$ and $V_{i}=$ ker $N^{i}, i=0,1, \ldots, d$. Since N is nilpotent, we have a $Z_{L}(T)$-invariant flag of subspaces

$$
0=V_{0} \subset V_{1} \subset \cdots \subset V_{d}=V
$$

Now, let \bar{T}_{i} be the operator induced by T on V_{i} / V_{i-1}, for $i=1,2, \ldots, d$. Then $m_{\bar{T}_{i}}(x)=p(x)$. Then, V_{i} / V_{i-1} has a canonical \mathbb{E}-structure. Then $\operatorname{dim}_{\mathbb{F}} V_{i} / V_{i-1}$ and consequently $\operatorname{dim}_{\mathbb{F}} V$ are divisible by m. Let $\operatorname{dim}_{\mathbb{F}} V=m l=n$.

The aim now is to obtain a canonical, maximal $\mathcal{Z}_{L}(T)$-invariant refinement of this flag. We shall introduce a double subscript notation $V_{i, j}$ for convenience, where $V_{i}=V_{i, 0}$. If we insert $k-1$ terms between V_{i} and V_{i+1} then $V_{i+1}=V_{i, k}$.
From the theory of elementary divisors, we know that for T, elementary divisors are of the form $p(x)^{s_{i}}, i=1,2, \ldots, r$, where $1 \leq s_{1}<\cdots<s_{r}=d$ are the exponents and σ_{i} is the multiplicity of $p(x)^{s_{i}}$. Then, for $n=\operatorname{dim} V=m l, l=\sum_{i=1}^{r} s_{i} \sigma_{i}$.

Lemma 5.2.1. 1. For $i>0, N=p(T)$ maps V_{i} into V_{i-1}
2. For $i>1$, the map induced by N on $V_{i} / V_{i-1} \rightarrow V_{i-1} / V_{i-2}$ is injective.

Proof. 1. Let $x \in V_{i}=\operatorname{Ker} N^{i}$. We know that, $p(T)(x) \in \operatorname{Ker} N^{i-1}=V_{i-1}$.
2. Let $x+V_{i-1}$. Then $N\left(x+V_{i-1}\right)=p(T)\left(x+V_{i-1}\right)=p(T) x+V_{i-2}$.

Let $\left(e_{1}, \ldots, e_{k}\right)$ be elements in V_{d} such that their images $\left(\overline{e_{1}}, \ldots, \overline{e_{k}}\right)$ form an \mathbb{E}-basis of V_{d} / V_{d-1}. Since, $T^{j}\left(e_{i}\right), 1 \leq j \leq m-1,1 \leq i \leq k$ are independent over $\mathbb{F} \bmod V_{d-1}$, they are linearly independent over \mathbb{F}. This is because if $\left(\overline{e_{1}}, \ldots, \overline{e_{k}}\right)$ are a basis, then they must be non-zero. Since $\bar{e}_{i}=\bar{T}^{d}\left(e_{i}\right) \neq 0 \Rightarrow e_{i} \notin V_{d-1}$. Then, by T-invariance, $T^{j}\left(e_{i}\right) \in V_{d}$ and as T is a linear map, $T^{j}\left(e_{i}\right) \notin V_{d-1}$.
Let W_{d} be the \mathbb{F}-span of $T^{j}\left(e_{i}\right)$. We can construct $V_{d}=W_{d} \oplus V_{d-1}$. Here, V_{d-1} is T-invariant but W_{d} is not. But our construction is T-invariant $\bmod V_{d-1}$, so, we will call subspaces like W_{d}, almost T-invariant subspace.
Now, by Lemma 5.2.1, $W_{d} \subseteq V_{d} \Rightarrow N\left(W_{d}\right) \subseteq V_{d-1}$ and since $N\left(W_{d}\right) \cong V_{d} / V_{d-1}$, then N maps
W_{d} injectively into V_{d-1} / V_{d-2} as a subspace which is complementary to V_{d-2}. The subspace $V_{d-2}+N\left(W_{d}\right)$ is T-invariant and $\mathcal{Z}_{L}(T)$-invariant subspace of V_{d-1}. Now, if $V_{d-2}+N\left(W_{d}\right)$ is a proper subspace of V_{d-1}, we will insert an additional subspace in the flag between V_{d-2} and V_{d-1}.
Suppose $V_{d-2}+N\left(W_{d}\right)$ is a proper subspace of V_{d-1}. In fact, $\left(V_{d-2}+N\left(W_{d}\right)\right) / V_{d-2}$ is an \mathbb{E}-subspace of V_{d-1} / V_{d-2}. We will denote e_{i} by $e_{d, i}$ and $k=\operatorname{dim}_{\mathbb{E}} V_{d} / V_{d-1}$ by k_{d}. Now, let $k_{d-1}=\operatorname{dim}_{\mathbb{E}} V_{d-1} / V_{d-2}-\operatorname{dim}_{\mathbb{E}}\left(V_{d-2}+N\left(W_{d}\right)\right) / V_{d-2}$.
If $k_{d-1} \neq 0$, we will choose $e_{d-1, i}, 1 \leq i \leq k_{d-1}$ in V_{d-1} / V_{d-2} such that mod V_{d-2}, they form an \mathbb{E}-basis of the subspace of V_{d-1} / V_{d-2} complementary to $\left(V_{d-2}+N\left(W_{d}\right)\right) / V_{d-2}$. Then $T^{j}\left(e_{d-1, i}\right), 1 \leq j \leq m-1,1 \leq i \leq k_{d-1}$ are linearly independent over \mathbb{F}. Let W_{d-1} be the \mathbb{F} span of $T^{j}\left(e_{d-1, i}\right)$. Then W_{d-1} is an almost T-invariant subspace of V_{d-1}. Then N injectively maps W_{d-1} to a subspace complementary to $V_{d-3}+N^{2}\left(W_{d}\right)$. If $V_{d-3}+N\left(W_{d-1}\right)+N^{2}\left(W_{d}\right)$ is a proper subspace, then we will insert it as an additional subspace in the flag between $V_{d-3}+N^{2}\left(W_{d}\right)$ and V_{d-2}. In case $V_{d-2}+N\left(W_{d}\right)$ is not a proper subspace of V_{d-1}, then just take $W_{d-1}=0$.
If we proceed in this way, we obtain the following refined flag of non-increasing dimensions

$$
\begin{gathered}
0=V_{0} \subset N^{d-1}\left(W_{d}\right) \subset N^{d-1}\left(W_{d}\right)+N^{d-2}\left(W_{d-1}\right) \subset \ldots \\
N^{d-1}\left(W_{d}\right)+N^{d-2}\left(W_{d-1}\right)+\cdots+N\left(W_{2}\right)+W_{1}=V_{1} \subset \\
V_{1}+N^{d-2}\left(W_{d}\right) \subset V_{1}+N^{d-2}\left(W_{d}\right)+N^{d-3}\left(W_{d-1}\right) \subset \ldots \\
V_{1}+N^{d-2}\left(W_{d}\right)+N^{d-3}\left(W_{d-1}\right)+\cdots+N\left(W_{3}\right)+W_{2}=V_{2} \subset \ldots \\
\cdots \cdots \\
V_{d-3} \subset V_{d-3}+N^{2}\left(W_{d}\right) \subset V_{d-3}+N^{2}\left(W_{d}\right)+N\left(W_{d-1}\right) \subset \\
V_{d-3}+N^{2}\left(W_{d}\right)+N\left(W_{d-1}\right)+W_{d-2}=V_{d-2} \subset \\
V_{d-2}+N\left(W_{d}\right) \subset V_{d-2}+N\left(W_{d}\right)+W_{d-1}=V_{d-1} \subset V_{d-1}+W_{d} \subset V_{d}
\end{gathered}
$$

Now, the sum $\bigoplus_{j=0}^{d-1} N^{j}\left(W_{d}\right)$ forms a T-invariant subspace dynamically equivalent to k_{d} copies of $\mathbb{F}[x] /\left(p(x)^{d}\right)$. If $W_{s}=0$, then those terms do no occur. We know that \mathbb{F}-span of $T^{j}\left(e_{s, 1}\right), \ldots, T^{j}\left(e_{s, k_{s}}\right), 0 \leq j \leq m-1$. Then, $N^{u} T^{j}\left(e_{s, 1}\right), \ldots, N^{u} T^{j}\left(e_{s, k_{s}}\right), 0 \leq j \leq m-1,0 \leq u \leq s-1$ is a basis of $\bigoplus_{j=0}^{s-1} N^{j}\left(W_{s}\right)$.
For a flag that has strictly increasing dimensions, let $1 \leq s_{1}<\cdots<s_{r}=d$ be integers such that $W_{s_{i}} \neq 0$. Let $m \sigma_{i}=\operatorname{dim} W_{s_{i}}, 1 \leq i \leq r, V_{i}=V_{i, 0}$ and for $0 \leq i \leq s_{r-j+1}, 1 \leq j \leq r$, set

$$
V_{i, j}=V_{i}+N^{s_{r}-i}\left(W_{s_{r}}\right)+N^{s_{r-1}-i}\left(W_{s_{r-1}}\right)+\cdots+N^{s_{r-j+1}-i}\left(W_{s_{r-j+1}}\right)
$$

In order to avoid ambiguities, consider W_{s}^{\prime} to be another choice of almost T-invariant subspace complementary to the subspace before V_{s+1} in the refined flag. We can construct W_{s}^{\prime} in the same way by starting with $e_{s, 1}^{\prime}, e_{s, 2}^{\prime}, \ldots, e_{s, k_{s}}^{\prime}$ such that $N^{u} T^{j}\left(e_{s, 1}^{\prime}\right), \ldots, N^{u} T^{j}\left(e_{s, k_{s}}^{\prime}\right), 0 \leq$ $j \leq m-1,0 \leq u \leq s-1$ is the corresponding basis of $\bigoplus_{j=0}^{s-1} N^{j}\left(W_{s}^{\prime}\right)$. If we define a \mathbb{F}-linear map that sends $N^{u} T^{j}\left(e_{s, m}\right)$ to $N^{u} T^{j}\left(e_{s, m}^{\prime}\right)$ and is identity on the remaining $\bigoplus_{j=0}^{t-1} N^{j}\left(W_{t}\right)$ for $t \neq s$. This map is invertible, commutes with T and carries W_{s} into W_{s}^{\prime}. For two successive terms $V_{i, j}$ and $V_{i, j+1}$, we observe that $Z_{L}^{*}(T)$ is transitive on $V_{i, j+1}-V_{i, j}$ and we conclude this section by summarizing this result in the following theorem.

Theorem 5.2.2. Let T be in $L(V), m_{T}(x)=p(x)^{d}$, where $p(x) \in \mathbb{F}[x]$. Then V admits a canonical, maximal $\mathcal{Z}_{L}(T)$-invariant flag. A complement of each term appearing in the flag in its succeeding term is an orbit of $\mathcal{Z}_{L}^{*}(T)$. In particular, the quotient of each term appearing in the flag by its preceding term is an irreducible module over the group $\mathcal{Z}_{L}(T)^{*}$.

5.3 Strongly Commuting Operators

Let $T \in L(V)$. An operator $S \in L(V)$ strongly commutes with T if S commutes with T and leaves every T-invariant subspace of V invariant.

Theorem 5.3.1. Let $T \in L(V)$. An operator $S \in \mathcal{Z}_{L}(T)$ strongly commutes with T iff $S \in \mathbb{F}[T]$.

Proof. Let $S \in \mathbb{F}[T]$. Then, $S=a_{0}+a_{1} T+a_{2} T^{2}+\ldots$. It is fairly obvious that $S \circ T=T \circ S$ and S also leaves every T-invariant subspace invariant.
Conversely, suppose $S \in \mathcal{Z}_{L}(T)$ strongly commutes with T.
Case 1: Suppose (V, T) is dynamically equivalent to $\left(\mathbb{F}[x] /\left(p(x)^{d}\right)\right.$, μ_{x}), where $p(x) \in \mathbb{F}[x]$. Let $S \in \mathcal{Z}_{L}(T)$ and $S(1)=[f(x)]$. Then $S=f(T)$ and $\mathcal{Z}_{L}(T)=\mathbb{F}[T]$
Case 2: $m_{T}(x)=p(x)^{d} \in \mathbb{F}[x]$. Then V is a direct sum of T-invariant subspaces W_{i} that are dynamically equivalent to $\left(\mathbb{F}\left[x_{i}\right] /\left(p\left(x_{i}\right)^{d_{i}}, \mu_{x}\right)\right.$. Let $e_{i}, 1 \leq i \leq k$ be a T-module generator in W_{i}.
Now, say $S \upharpoonright_{W_{1}}=q_{1}(T)$ where $q_{1}(x)$ is a unique polynomial of degree at most $d m$. For $j \geq 2$, let $q_{j}(x)$ be the polynomial of degree at most $d_{j} m$, such that $S \upharpoonright_{W_{j}}=q_{j}(T) e_{j} \Rightarrow$ $S\left(e_{1}+e_{j}\right)=q_{1}(T) e_{1}+q_{j}(T) e_{j}$. Also, $S\left(e_{1}+e_{j}\right)=u(T)\left(e_{1}+e_{j}\right)$ for some polynomial $u(x)$ of degree at most $d m$. It follows that $\left(q_{1}(T)-u(T)\right) e_{1}=-\left(q_{j}(T)-u(T)\right) e_{j}$. As $W_{1} \cup W_{j}=0 \Rightarrow\left(q_{1}(T)-u(T)\right) \equiv\left(q_{j}(T)-u(T)\right) \equiv 0\left(\bmod p(x)^{d_{j}}\right)$. So $q_{1}(T) \equiv q_{j}(T)(\bmod$ $\left.p(x)^{d_{j}}\right)$.

Case 3: Consider the general case. If we consider the primary decomposition of V, then S leaves each of those V_{i} 's invariant. Now, when $S \upharpoonright_{V_{i}}=q_{i}(T)$ is determined uniquely mod $p_{i}(x)^{d_{i}}$. Then, by Chinese Remainder Theorem, there will exist a unique polynomial $q(x)$ $\bmod m_{T}(x)$ which is congruent to $q_{i}(x) \bmod p_{i}(x)^{d_{i}}$.

5.4 " $S+N$ "-decomposition

Let $T \in L(V)$ and \mathbb{E} be an extension of \mathbb{F}. An \mathbb{E}-structure on V is an \mathbb{F}-algebra homomorphism $\sigma_{\mathbb{E}}: \mathbb{E} \rightarrow L(V)$, which is injective and this enables us to look at V as a vector space over \mathbb{E}. An \mathbb{E}-structure $\sigma_{\mathbb{E}}$ is said to be T-invariant if the image of $\sigma_{\mathbb{E}}$ lies in $\mathcal{Z}_{L}(T)$.
We investigate when V admits a T-invariant \mathbb{E}-structure. For $d=1, T$ induces a canonical \mathbb{E}-structure, $\mathbb{F}[T] \cong \mathbb{E}$ and the inclusion map of $\mathbb{F}[T]$ in $\mathcal{Z}_{L}(T)$ is a T-invariant flag. We shall assume $d \geq 2$. Then V_{i} / V_{i-1} admits a canonical T-invariant \mathbb{E}-structure as the minimal polynomial of the induced operator is $p(x)$. We will see if these canonical \mathbb{E}-structures on V_{i} / V_{i-1} 's can be lifted to a canonical \mathbb{E}-structure on V, and by that we mean:

1. Each T-invariant subspace is an \mathbb{E}-subspace
2. For each $i=1, \ldots, d$, the induced \mathbb{E}-structure on V_{i} / V_{i-1} coincides with the one induced by T.

For $f(x) \in \mathbb{F}[x]$, let $f^{\prime}(x)$ be the formal derivative.
Theorem 5.4.1. Let $T \in L(V), m_{T}(x)=p(x)^{d}$, where $p(x) \in \mathbb{F}[x]$ and $\mathbb{E}=\mathbb{F}[x] /(p(x))$. Then V admits a T-invariant \mathbb{E}-structure iff either $d=1$ or $p^{\prime}(x)$ is not identically zero.

Proof. We will assume $d \geq 2$ and $\operatorname{deg} p(x) \geq 2$. The proof for the omitted cases is trivial. We know that (V, T) is dynamically equivalent to a direct sum of pairs of the form $\left(\mathbb{F}[x] /\left(p(x)^{e}\right), \mu_{x}\right)$ where $e \leq d$ and $\mu_{x}([u(x)]) \mapsto[x u(x)]$. For $y \in \mathbb{F}[x]$, let $[y]$ denote its class in $\mathbb{F}[x] /\left(p(x)^{e}\right)$. We need to show that there exists a polynomial $z=u(x) \in \mathbb{F}[x]$ such that the minimal polynomial of the corresponding operator is $p(x)$.
Now, $p(x)$ and $p^{\prime}(x)$ are relatively prime and by Euclidean Algorithm $\exists a(x), b(x) \in \mathbb{F}[x]$ such that $a(x) p(x)+b(x) p^{\prime}(x)=1$. Let $y=x-b(x) p(x)$. We can take $\epsilon=-b(x) p(x)$ and use the Taylor's theorem to get

$$
\begin{array}{r}
p(y)=p(x+\epsilon)=p(x)+\epsilon p^{\prime}(x)+\frac{\epsilon^{2}}{2} p^{\prime \prime}(x)+\ldots \\
\equiv p(x)\left(1-b(x) p^{\prime}(x)\right)+\cdots \equiv p(x)(a(x) p(x))+\cdots \equiv 0\left(\bmod p(x)^{2}\right)
\end{array}
$$

So, $p(y)^{r}=0$ for a suitable $r<e$. Then, μ_{y} has a minimal polynomial of the form $p(x)^{r} \Rightarrow$ $\mathbb{F}[[y]]=\mathbb{F}[x] /\left(p(x)^{r}\right)$ and $\mathbb{F}[[y]] \subset \mathbb{F}[[x]]$. We can prove the existence of the aforementioned polynomial by induction.
Conversely, suppose we have a pair $(V, T), m_{T}(x)=p(x)^{d}, d \geq 2, \mathbb{E}=\mathbb{F}[x] /(p(x))$ and V admits a T-invariant \mathbb{E}-structure. Then $\exists S \in \mathcal{Z}_{L}(T)$ such that $m_{S}(x)=p(x)$ and in the associated flag V_{2} is S-invariant. We need to prove that $p^{\prime}(x) \not \equiv 0$. By Taylor's theorem,

$$
p(s+u(T))=p(S)=u(T) p^{\prime}(S)+\cdots=p(S)=0
$$

But then

$$
p(T)=p(S+T-S)=P(S+T)-S p^{\prime}(S+T)++\cdots=P(S+T)=0
$$

This is a contradiction as $m_{T}(x)=p(x)^{2}$.
For uniqueness, let $\sigma_{1}: \mathbb{E} \rightarrow \mathcal{Z}_{L}(T), \sigma_{2}: \mathbb{E} \rightarrow \mathcal{Z}_{L}(T)$, be two canonical T-invariant \mathbb{E} structures. Using a T-invariant subspace, we can reduce this to when (V, T) is dynamically equivalent to $\left(\mathbb{F}[x] /(p(x)), \mu_{x}\right)$. Then $\mathcal{Z}_{L}(T)=\mathbb{F}(T)$. Let α be a primitive element of \mathbb{E} over \mathbb{F}, and $\sigma_{i}(\alpha)=S_{i}, i=1,2$. Let $S_{i}=f_{i}(T)$ where $f_{i}(x) \in \mathbb{F}[x]$. Using the induction hypothesis in the first part completes this proof.

Let $T \in L(V)$. A " $S+N$ "-decomposition of T is a pair S, N such that
(i) $T=S+N$
(ii) S is dynamically semi-simple
(iii) N is nilpotent
(iv) $S N=N S$

Theorem 5.4.2. Let $T \in L(V)$ and $m_{T}(x)=\prod_{i=1}^{r} p_{i}(x)^{d_{i}}$, where $p_{i}(x)$'s are monic irreducible polynomials in $\mathbb{F}[x]$. Then

1. T admits a " $S+N$ "-decomposition iff for each i, either $d_{i}=1$ or else $p_{i}^{\prime}(x) \not \equiv 0$
2. If it exists, $a^{"} S+N$ "-decomposition is unique.
3. If $m_{T}(x)=p(x)^{d}$, $p(x) \in \mathbb{F}[x], \mathbb{E}=\mathbb{F}[x] /(p(x))$ and a " $S+N$ "- decomposition exists, then S defines the canonical T-invariant \mathbb{E}-structure on V. In particular, S strongly commutes with T, and so S, and hence N, are polynomials in T.

Proof. By definition, $S, N \in \mathcal{Z}_{L}(T)$. This reduces the case to when $m_{T}(x)=p(x)^{d}$. Consider $d \geq 2$. Let $\mathbb{E}=\mathbb{F}[x] /(p(x))$ and $p^{\prime}(x) \not \equiv 0$. The previous theorem tells us that under this condition, we have a polynomial $f(x) \in \mathbb{F}[x]$ such that $S=f(T)$ defines a canonical T invariant \mathbb{E}-structure on V, particularly, $m_{S}(x)=p(x)$. S is dynamically semi-simple. Let \bar{T}_{i}, \bar{S}_{i} be the operators induced by T, S on $V_{i}=\operatorname{Ker} p(T)^{i}, i=0,1, \ldots d$. As S defines a canonical T-invariant \mathbb{E}-structure we have $\bar{T}_{i}=\bar{S}_{i}$. Then $N=T-S$ is nilpotent and $T=S+N$ is a " $S+N$ "-decomposition of T.
Conversely, if $T=S+N$ is an " $S+N$ "-decomposition of T. Then the induced operators on V_{i} are commuting dynamically semi-simple operators. Then, their nilpotent difference N_{i} must be $0 . \Rightarrow m_{\bar{T}_{i}}(x)=p(x)=m_{\bar{S}_{i}}(x)$. Then $m_{S}(x)=p(x) \Rightarrow \mathbb{F}[S] \cong \mathbb{E}$ and S defines a T-invariant \mathbb{E}-structure on V. So $p_{i}^{\prime}(x) \not \equiv 0$.

5.5 Affine Case

We will extend this theory to the affine case.
Let \mathbb{F} be a field, V be the vector space over this field. Let \mathbb{A} be the underlying affine case and $T=(A, v)$ be an affine map such that $x \mapsto A x+v$. Let $S=(\alpha, a), \alpha \in G L(V)$ be an element of $G A(V)$. Then,

$$
\begin{align*}
S^{-1} & =\left(\alpha^{-1},-\alpha^{-1} a\right) \tag{5.1}\\
S T S^{-1} & =\left(\alpha A \alpha^{-1},-\alpha A \alpha^{-1} a+\alpha v+a\right) \tag{5.2}
\end{align*}
$$

Let $\mathcal{C}_{L}(V)$ and $\mathcal{C}_{A}(V)$ denote the orbit-spaces $L(V) / G L(V)$ and $A(V) / G A(V)$. For $T \in L(V)$ and $A(V)$, let $[T]_{L}$ and $[T]_{A}$ denote its orbit in $\mathcal{C}_{L}(V)$ and $\mathcal{C}_{A}(V)$. The map $(A, v) \mapsto A$ is a homomorphism $l: A(V) \rightarrow L(V)$. The formula 5.2 shows that the map $[(A, v)]_{A} \mapsto[A]_{L}$ is a well-defined map $[l]: \mathcal{C}_{A}(V) \rightarrow \mathcal{C}_{L}(V)$.

Lemma 5.5.1. Suppose $S=(A, v)$ and $T=(A, w)$ be in $A(V)$ such that $m_{A}(x)=(x-1)^{r}$. Let s, t be the least non-negative integers $\leq r$ satisfying $(A-I)^{s}(v)=0$ and $(A-I)^{t}(w)=0$. Then S and T are in the same $G A(V)$-orbit iff $s=t$.

Proof. Formula 5.2 shows us that (α, a) conjugates S into T iff $\alpha \in \mathcal{Z}_{L}^{*}(A)$ and $w=(I-A) a+$ αv. Since $m_{A}(X)=(x-1)^{r}$, we have reduced it to the problem we solved in the previous section. Just set $N=I-A$ and consider the $\mathcal{Z}_{L}(A)$-invariant refined flag. Without loss of generality, let us assume $s \leq t$. Further, let $V_{t}=V_{t-1, k}$ and $v \in V_{t}-V_{t-1, k-1} \Rightarrow \alpha \in \mathcal{Z}_{L}^{*}(A)$ and $w=(I-A) a+\alpha v$ iff $s=t$.

Theorem 5.5.2. $[l]$ is a finite map, that is $[l]^{-1}([A])$ has only finitely many elements. For $A \in L(V)$, let $m_{A}(x)=(x-1)^{r} g(x)$ where $g(1) \neq 0$ be its minimal polynomial. Here $r \geq 0$ is an integer. Then $[l]^{-1}([A])$ has $r+1$ elements.

Proof. Consider the case where $r=0$. Then $\operatorname{det}(I-A) \neq 0$. So, the equation $A x+v=x$ has a unique solution in x. Let $\tau=\left(I, x_{0}\right)$. Then $\tau(A, v) \tau^{-1}=(A, 0)=A$. Any element in $l^{-1}(A)$ is conjugate to A. Then $[l]^{-1}$ has a unique element.
If $r>0$, then $V=V_{1} \oplus V_{2}$ where $V_{1}=\operatorname{ker}(A-I)^{r}$ and $V_{2}=\operatorname{Ker} g(A)$. Let $T=(A, v)$. Suppose, $v=v_{1}+v_{2}$ where $v_{i} \in V_{i}$. Let x_{0} be the solution in V_{2} of the equation $A x+v_{2}=x$. Such a solution exists as $\operatorname{det}(I-A) \upharpoonright_{V_{2}} \neq 0$. Let $\tau=\left(I, x_{o}\right)$, then $\tau(A, v) \tau^{-1}=\left(A, v_{1}\right)$. We have shown that any element $(A, v) \in l^{-1}(A)$ is in the same $G A(V)$-orbit as $\left(A, v_{1}\right)$ where $(A-I)^{r}\left(v_{1}\right)=0$. Let s be the least non-negative integer such that $(A-I)^{s}\left(V_{1}\right)$. Then, as a consequence of Lemma 5.5.1, $[l]^{-1}([A])$ has $r+1$ elements.

We can now determine the centralizer of an affine map.
Theorem 5.5.3. Let $T=(A, v) \in A(V)$ and $V_{i}=\operatorname{Ker}(A-I)^{i}$

1. If T has a fixed point then $\mathcal{Z}_{A}(T)$ is conjugate to

$$
\left\{(B, w) \mid B \in \mathcal{Z}_{L}(A), \text { and } w \in V_{1}\right\}
$$

2. Suppose T has no fixed point, and $m_{A}(x)=(x-1)^{r} g(x), g(1) \neq 0$ is the minimal polynomial of A. Let $s \leq r$ be the least positive integer such that $(A-I)^{s} v=0$. Then $\mathcal{Z}_{A}(T)$ is conjugate to

$$
\left\{(B, w) \mid B \in \mathcal{Z}_{L}(A), w \in V_{s+1},(B-I) v=(A-I) w\right\}
$$

An element (B, w) in $\mathcal{Z}_{A}^{*}(T)$ necessarily has eigenvalue 1 with multiplicity at least s.
Let $T=(A, v)$ in $A(V)$ and $S=(B, w) \in \mathcal{Z}_{A}(T)$. Then, $S T=T S$ is equivalent to

1. $B A=A B, B \in Z_{L}(T)$
2. $B v+w=A w+v \Rightarrow(B-I) v=(A-I) w$

Now, suppose T has a fixed point. Then by conjugation by an element in $G A(V)$ allows us to take $v=0$. Then, we take the flag associated with A.

$$
\mathcal{Z}_{A}(T)=\left\{(B, w) \mid B \in \mathcal{Z}_{L}(A), w \in V_{1}\right\}
$$

where $V_{1}=\operatorname{Ker}(A-I)$.
Now, suppose T has no fixed point. Then, by Theorem 55.5.2, let us assume $m_{A}(x)=$ $(x-1)^{r} g(x), g(1) \neq 0$ is the minimal polynomial of A and s is the least positive integer such that $(A-I)^{s} v=0$. Then,

$$
(A-I)^{s}(B-I) v=(B-I)(A-I)^{s} v=0=(A-I)^{s+1} w
$$

$w \in V_{s+1}$ where $V_{i}=\operatorname{Ker}(A-I)^{i}$.
Conversely, if $w \in V_{s+1}, V_{s}=V_{s-1, k}$ and $v \in V_{s}-V_{s-1, k-1}$ and $(A-I) w \in V_{S}$. Then, \exists $C \in \mathcal{Z}_{L}(T)$ such that $C v=(A-I) w$ and these C 's are determined by the refined flag. For each C, let $B=C+I$. These B 's are the (B, w) 's $\in \mathcal{Z}_{A}(T)$.
Further, $(B, w) \in \mathcal{Z}_{A}^{*}(T)$ iff $B \in \mathcal{Z}_{L}^{*}(A)$. Then $B v \in V_{s}-V_{s-1, k-1}$. Since $(A-I) w \in$ $V_{s-1, k-1} \Rightarrow B v \equiv v \bmod V_{s-1, k-1}$. Then the linear map induced by B on $V_{s} / V_{s-1, k-1}$ has eigenvalue 1. Then B has eigenvalue 1 and the N-images of the corresponding eigenvector shows that the multiplicity of the eigenvaue 1 is at least s.

5.6 Parametrization Theorems

Theorem 5.6.1. Kul07

1. A $G L(V)$-orbit in its action on $L(V)$ is parametrized by
(i) A primary partition π : $n=\sum_{i=1}^{r} n_{i}, n_{i}=m_{i} l_{i}$
(ii) The secondary partitions $l_{i}=\sum_{j=1}^{r} s_{i, j} \sigma_{i, j}$, where $s_{i, 1}<s_{i, 2}<\cdots<s_{i, r_{i}}$
(iii) An \mathbb{F}-isomorphism class of pairs $\left(\mathbb{E}_{i}, \alpha_{i}\right)$, where \mathbb{E}_{i} is a simple field extension of \mathbb{F} of degree m_{i} with α_{i} as its primitive element, for $i=1,2, \ldots, r$.
2. A $G A(V)$-orbit in its action on $A(V)$ is parametrized by the data $(i),(i i),($ iii $)$ given above and with $m(x)=(x-1)^{u} g(x), g(1) \neq 0$
(iv) A non-negative integer $s \leq u$.

Theorem 5.6.2. Kul07

1. An element of $L(V)$ is uniquely determined by: The data (i), (ii), (iii) of Theorem 5.6.1, in particular the field extensions $\mathbb{E}_{i}=\mathbb{F}[x] /\left(p_{i}(x)\right)$, and the primitive elements α_{i}.
(iv) A decomposition $\mathcal{D}_{\pi}: V=\bigoplus_{i=1}^{r} V_{i}$ of V patterned on the primary partition π.
(v) Flags $\mathcal{F}\left(\left(n_{i}, m_{i} ;\left\{\left(s_{i, 1}, \sigma_{i, 1}\right),\left(s_{i, 2}, \sigma_{i, 2}\right), \ldots,\left(s_{i, r i}, \sigma_{i, r i}\right)\right\}\right)\right.$ of subspaces in V_{i}, patterned on the secondary partitions.
(vi) Compatible \mathbb{E}_{i}-structures on the sub-quotients in the flag in each V_{i}.
2. An element T of $A(V)$ is uniquely determined by the following data.

Case 1: (T has a fixed point)
Choose a fixed point as the origin. So, T may be identified with an element in $L(V)$. The data $(i), \ldots,(v i)$ is independent of the choice of the fixed point. These data and the affine subspace of fixed points determine T.
Case 2: (T has no fixed point)
Express T as (B, v) so that there exists s, a least positive integer such that $(I-B)^{s} v=0$. Then the invariants $(i), \ldots,(v i)$ associated to B and v uniquely determine T.

We will now provide the proof for the first part in Theorem 5.6.1 and the proof for the second part and Theorem 5.6.2 be along the same lines.
It is fairly obvious that we can independently read from a refined flag, the numerical data about exponents and multiplicities in the elementary divisors. An element $T \in L(V)$ is associated with

1. the minimal polynomial $m_{T}(x)=\prod_{i=1}^{r} p_{i}(x)^{d_{i}}$
2. the primary partition $\operatorname{dim} V=\sum_{i=1}^{r} \operatorname{dim} V_{i}$ where $V_{i}=\operatorname{Ker} p_{i}(T)^{d_{i}}$
3. the secondary partitions with $s_{i, j}$'s being the exponents in the elementary divisors $p_{i}(x)^{s_{i, j}}$'s and $\sigma_{i, j}^{\prime} s$ being the multiplicities of $p_{i}(x)^{s_{i, j}}$'s.

Conversely, suppose we are given this data. Let $V=\oplus_{i=1}^{r} V_{i}$ is an arbitrary decomposition patterned over the primary partition. We can construct a flag in each V_{i} with type given by the pairs $\left(s_{i, j}, \sigma_{i, j}\right)$'s. Let $\mathbb{E}_{i}=\mathbb{F}[x] /\left(p_{i}(x)\right)$ and $\alpha=[x]$. Now, after equiping the subquotients in the flag in V_{i} with a compatible family of E_{i}-structures, we will take an arbitrary $\mathbb{E}_{\text {ב-basis }}\left(e_{1}, \ldots, e_{k}\right)$ in the component $V_{0,1}$ of the flag. Then

$$
\left(e_{1}, \alpha e_{1}, \alpha^{2} e_{1}, \ldots, \alpha^{m_{i}-1} e_{1}, e_{2}, \alpha e_{2}, \ldots, \alpha^{m_{i}-1} e_{k}\right)
$$

is an \mathbb{F}-basis of $V_{0,1}$. We can continue this process to all the components in the chain ending in V_{1}, and define the operator T on V_{1} having the minimal polynomial $p(x)$. Now when we
consider the component $V_{1,1}$ in the flag, we notice that by construction $\operatorname{dim}{ }_{\mathbb{F}} V_{1,1} / V_{1}$ is $m_{i} k$ and it has an \mathbb{E}_{i}-structure. Choose $\left(e_{1}^{\prime}, \ldots, e_{k}^{\prime}\right)$ in $V_{1,1}$ whose classes $\left[e_{i}^{\prime}\right]$ modulo V_{1} form an \mathbb{E}_{i}-basis. Then, if we define $T^{j} e_{u}^{\prime}, 1 \leq j \leq m-1,1 \leq u \leq k$ in $V_{1,1}$ so that their classes modulo V_{1} are $\left[\alpha^{j} e_{u}\right]$. Now we define $p(T) e_{i}^{\prime}=e_{i}$ in $V_{0,1}$ and $p(T) T^{j} e_{i}^{\prime}=T^{j} e_{i}, 1 \leq j \leq m_{i}-1$. If we continue this process we will obtain a basis of V_{i} and an operator $T \in L\left(V_{i}\right)$ which has the given secondary partition on V_{i}. Taking the direct sum we obtain an operator T on V having the minimal polynomial $m(x)$ and the given primary and secondary partitions.
Now, suppose T, T^{\prime} are two elements in $L(V)$ having the same data. Then the dimension of a primary component V_{i} equals $m_{i} l_{i}$. Then by conjugating with an appropriate element of $G L(V)$, we can say that T, T^{\prime} have the same primary components. This reduces the case to when $m_{T}(x)=m_{T^{\prime}}(x)=p(x)^{d}$. Then by our hypothesis T, T^{\prime} have the same secondary partitions. We can construct the flags and the bases e_{j}, e_{j}^{\prime} 's of V for these flags. Then, the an element $g \in G L(V), g e_{i} \mapsto e_{i}^{\prime}$ conjugates T into T^{\prime}.

Theorem 5.6.3. Kul07

1. A z-class in the $G L(V)$-action on $L(V)$ is parametrized by
(i) A primary partition π : $n=\prod_{i=1}^{r} n_{i}, n_{i}=m_{i} l_{i}$
(ii) The secondary partition $l_{i}=\sum_{j=1}^{r_{i}} s_{i, j} \sigma_{i, j}$ where $s_{i, 1}<s_{i, 2}<\cdots<s_{i, r_{i}}$
(iii) Simple field extensions $\mathbb{E}_{i}, 1 \leq i \leq r$ of $\mathbb{F},\left[\mathbb{E}_{i}: \mathbb{F}_{i}\right]=m_{i}$
2. A z-class of (A, v) in the $G A(V)$-action on $A(V)$ is parametrized by the data $(i),(i i),(i i i)$ in case $m_{A}(x)$ does not have 1 as an eigenvalue. In case $m_{A}(x)=(x-1)^{u} g(x)$, $g(1) \neq 0$, and $u>0$, then the z-class of (A, v) is parametrized by the data (i), (ii), (iii) and
(iv) A non-negative integer $s \leq u$.

Let S, T be in the same z-class in $L(V)$. Then $\mathcal{Z}_{L}^{*}(S)$ and $\mathcal{Z}_{L}^{*}(T)$ are conjugate in $G L(V)$.
Lemma 5.6.4. Let T be in $L(V)$. Then $\mathcal{Z}_{L}(T)$ as an F-subalgebra of $L(V)$ and $\mathcal{Z}_{L}^{*}(T)$ as a subgroup of $G L(V)$ uniquely determine each other.

Proof. $\mathcal{Z}_{L}(T)$ uniquely determines $\mathcal{Z}_{L}^{*}(T)$ as the multiplicative subgroup of units.
Conversely, let S be a non-invertible element in $\mathcal{Z}_{L}(T)$. Then $m_{S}(x)=x^{k} f(x)$, with $k>0$, and $f(0) \neq 0$. Now if $V_{0}=\operatorname{Ker} S^{k}$ and $V_{1}=\operatorname{Ker} f(S)$, then $V=V_{0} \oplus V_{1}$ is a T-invariant decomposition. Let $J_{V_{0}, V_{1}}$ denote the operator which is identity on V_{0}, and zero on V_{1}. Then
$J_{V_{0}, V_{1}} \in Z_{L}(T)$ and $S_{1}=S+J_{V_{0}, V_{1}} \in \mathcal{Z}_{L}^{*}(T)$, Then $\mathcal{Z}_{L}(T)$ is a linear span of $\mathcal{Z}_{L}^{*}(T)$ and the operators $J_{V_{0}, V_{1}}$ correspond to all T-invariant decompositions $V=V_{0} \oplus V_{1}$.

Now we may assume that $\mathcal{Z}_{L}(T)$ and $\mathcal{Z}_{L}(S)$ are conjugate in $G L(V)$ by an element u. We can replace S by $u S u^{-1}$, so we can assume $\mathcal{Z}_{L}(S)=\mathcal{Z}_{L}(T)$.
Let C be the center of $\mathcal{Z}_{L}(T)$. By Frobenius' bicommutant theorem, we have $C=\mathbb{F}[S]=$ $\mathbb{F}[T]$. Although C does not determine T, every element of C leaves every T-invariant subspace invariant. Let $p_{i}(x)$ be the primes associated to T and $V=\oplus V_{i}$ the corresponding primary decomposition. Let W be a T-invariant subspace of V_{i} such that the pair $\left(W, T \upharpoonright_{W}\right)$ is dynamically equivalent tooo $\left(\mathbb{F}[x] /\left(p_{i}(x)^{d}\right), \mu_{x}\right)$. Then $W_{j}=\operatorname{Ker} p_{i}(x)^{j}, 0 \leq j \leq d$ are all the T-invariant subspaces of W. As a subsapce of V is T-invariant iff it is S-invariant, then W_{j} 's are also all the S-invariant subspaces of W. The $m_{S_{W}}(x)$ will be of the form $q(x)^{e}$. Now, $q(x)$ is such that the pair $\left(W, T \upharpoonright_{W}\right)$ is dynamically equivalent to $\left(\mathbb{F}[x] /\left(p_{i}(x)^{e}\right), \mu_{x}\right)$ for some e. Then there is an operator $A \in \mathcal{Z}_{L}(T)$ which maps W onto U with the action of S. This implies that $V=\oplus V_{i}$ is a primary decomposition with respect to S. We now have a welldefined choice for the primary partition of n. When we restrict the action of $\mathcal{Z}_{L}(T)=\mathcal{Z}_{L}(S)$ to V_{i}, we see that the secondary partitions are well-defined invariants of $\mathcal{Z}_{L}(T)=\mathcal{Z}_{L}(S)$. Finally, a simple field extension of $\mathbb{F}[x]$ is a well-defined invariant of $\mathcal{Z}_{L}(S)=\mathcal{Z}_{L}(T)$. The converse is fairly straightforward to prove. Using the results in Section 5, we can prove the same for the affine case.

A consequence of Theorem 5.6.3 is the following theorem that describes the conditions in which there are finitely many z-classes.

Theorem 5.6.5. Kul07 Let V be an n-dimensional vector space over a field \mathbb{F}. Suppose \mathbb{F} has the property that there are only finitely many extensions of \mathbb{F} of degree at most n. Then there are finitely many z-classes of $G L(V)$ and $G A(V)$, actions on $L(V)$ and $A(V)$.

Summary and further

In this thesis, we have computed the z-classes of symmetric groups, general linear groups and general affine groups. We observed that they have finitely-many z-classes and in case of general linear groups and general affine groups, this happens when the underlying firld has only finitely many extensions of each degree. We have also investigated the notion of "dynamical types" and described the Weyl group at a point x. Using this theory, we have also computed the z-classes of semisimple operators.
We could further use the theory of the generalised symmetric group to study the z-classes of alternating groups. BKS17. We can also look at various subgroups of general linear group, like, unitriangular matrices [Bhu19], semisimple matrices, symplectic matrices, unipotent matrices etc.
In fact, there is a lot of recent literature in the conjugacy classes of unipotent and unitriangular matrices. Alp06 VLA03, to name a few.

Bibliography

[Alp06] Jonathan L Alperin. Unipotent conjugacy in general linear groups. Communications in Algebra, 34(3):889-891, 2006.
[Bhu19] Sushil Bhunia. Conjugacy classes of centralizers in the group of upper triangular matrices. Journal of Algebra and Its Applications, 2019.
[BKS17] Sushil Bhunia, Dilpreet Kaur, and Anupam Singh. z-classes and rational conjugacy classes in alternating groups. Journal of the Ramanujan Mathematical Society, 2017.
[BR02] T.S. Blyth and E.F. Robertson. Further Linear Algebra. Springer Undergraduate Mathematics Series. Springer London, 2002.
[BS19] Sushil Bhunia and Anupam Singh. Conjugacy classes of centralizers in unitary groups. Journal of Group Theory, 22(2):231-251, 2019.
[Con] Keith Conrad. Conjugation in a group.
[DJ14] Rahul Dattatraya and Vikas Jadhav. z-classes in p-groups of order $\leq p^{5}$. Bulletin of Allahabad Mathematical Society, 102014.
[GK09a] Krishnendu Gongopadhyay and Ravi Kulkarni. z-classes of isometries of the hyperbolic space. Conformal Geometry and Dynamics of the American Mathematical Society, 13(4):91-109, 2009.
[GK09b] Krishnendu Gongopadhyay and Ravi S Kulkarni. The z-classes of isometries. Journal of the Indian Mathematical Society, 2009.
[Gon13] Krishnendu Gongopadhyay. The z-classes of quaternionic hyperbolic isometries. Journal of Group Theory, 16(6):941-964, 2013.
[Gou06] R. Gouraige. z-classes in Central Simple Algebras. PhD thesis, 2006.
[JK84] G.D. James and A. Kerber. The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984.
[KKJ16] Ravindra Kulkarni, Rahul Dattatraya Kitture, and Vikas S. Jadhav. z-classes in groups. Journal of Algebra and Its Applications, 15(07):1650131, 2016.
[Kul07] Ravi S Kulkarni. Dynamics of linear and affine maps. Asian Journal of Mathematics, 2007.
[Sin08] Anupam Singh. Conjugacy classes of centralizers in g_{2}. Journal of the Ramanujan Mathematical Society, 2008.
[SK07] Ravi. S. Kulkarni. Dynamical types and conjugacy classes of centralizers in groups. Journal of the Ramanujan Mathematical Society, 2007.
[Ste74] R. Steinberg. Conjugacy classes in algebraic groups. Lecture notes in mathematics. Springer-Verlag, 1974.
[VLA03] Antonio Vera-López and JM Arregi. Conjugacy classes in unitriangular matrices. Linear Algebra and its Applications, 370:85-124, 2003.

