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Abstract

In this thesis, we address the problem of reconstructing the optical properties of human tis-
sue from the measured scattered light at the boundary. The conventional methods make the use
of Born approximation due to the inherent nonlinear nature of the above-said problem. This
involves the inversion of the so-called Jacobian matrix which is always ill-conditioned. Here,
we propose a novel algorithm based on the product of several Jacobians corresponding to sev-
eral measurements which will eventually tell us the location of the optical property without any
matrix inversion. In addition, we are also able to recover the value of the optical property along
with the location for specific cases. We compare our method against the well-known Tikhonov
regularized Born approximation solutions for both simulations and experimental studies.
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1 Introduction

Human body is a complex machine. Imaging a human body gives a lot of information to
physicians that can assist them in making better decisions. Some existing medical imaging
modalities include X-ray, CT scan, MRI, ultrasound, etc. Most of them have radiative sources
and are bulky and expensive in nature and this leads to limitations in the usage of such tech-
niques. One of the alternative which is non-invasive and portable is the Near Infrared (NIR)
spectroscopy. It is an imaging technique using radiation which lies in the NIR region of the
spectrum. In the 1970s, Jobsis et al [3] observed high penetration of radiation into biological
samples in the NIR region of the spectrum. Better imaging can be obtained if radiation expe-
riences less absorption and high penetration into the medium. So, NIR radiation proved to be
a good choice in the entire spectrum of radiation for imaging tissues. Many scientists started
using this region of the spectrum for biological imaging purposes[4][5][6][7]. Soon, it started
finding great applications in the medical field. It has been used for detection of tumor in breast
[8][9][10] as well as in brain [8]. It has also been used for studying the functional activities of
different parts of the brain [11][12][13] and thus, address brain-related disorders [14]. Apart
from that, it is also used for probing and monitoring flow of blood in patients[15][16][17], and
in the study of stroke[18][19].

Figure 1: Laser source directed towards a biological sample (palm of hand).

When light enters a tissue, it starts getting scattered to different directions. This is shown in
figure 1, where a laser is directed towards the palm of the hand. It is seen that the laser light no
more retains its direction. This is because of the multiple scattering events happening inside the
tissue. Apart from that, the intensity (fluence rate) of light is also not preserved throughout its
path and it dies off completely after a particular distance. In fact, it is observed that the intensity
decreases exponentially with distance as shown in figure 2. This is because of absorption of
light by the tissue.
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So, tissue has both absorption and scattering properties [20] and these are the major prop-
erties that affect the flow of light through the tissue . Thus, there is always an absorption coef-

ficient (µa) and a scattering coefficient (µs) and, thereby, their corresponding absorption length

(1/µa) and scattering length (1/µs) related to the tissue for light of a particular wavelength[21].
Based on the scattering angle due to a single scattering event, the anisotropy factor (g) is being
defined[20]. In tissues, scattering generally happens in the forward direction with the value of
g approximately 0.9 for most cases. By taking the anisotropy factor into consideration, another
length scale related to scattering is being considered which is known as transport mean free

path [21]. This is defined as the distance traveled by light before its direction becomes ran-
dom. The inverse of the transport mean free path is known as reduced scattering coefficient

(µ ′s=µs(1−g)). In general, µ ′s >> µa for biological samples [22].

Figure 2: The fluence rate versus distance from the source, where the source is considered at
the origin.

Due to high scattering property of tissues, light gets scattered towards all possible direc-
tions. As a consequence, when the detector is placed in the same side of the sample as the
source, it can detect light. This geometry of placing both source and detector in the same side
of the sample is known as reflection geometry. For most of the experimental cases, this re-
flection geometry is being used instead of the transmission geometry, where the source and
the detector are placed on the opposite sides of the sample. The advantage of using reflection
geometry is that it can be used for thicker samples as well, where transmission geometry may
not be possible because light may get completely absorbed on its way. Figure 3 shows the two
geometries of source-detector positions. The highlighted pink region shows the most probable
path of photons inside the sample while traveling from source to detector. These paths are
known as Jacobians and are defined by the Jacobian matrix in the diffusion equation. It is
explained in detail in section 2.2.1.
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Figure 3: The two geometries of source-detector position- (a) reflection geometry and (b) trans-
mission geometry.

The transfer of photons through a tissue can be mathematically modeled by the Radiative

Transfer Equation (RTE) [22][23]. This equation basically gives a relation between radiance
through the highly scattering medium and the quantitative properties of the medium namely
absorption coefficient and scattering coefficient. The main drawback of using this equation
directly for study of transfer of photons through a tissue is that this equation is very difficult
to solve due to the presence of many independent variables. Due to such complexity of this
equation, it is often approximated to average out the variables related to direction and obtain a
less complicated form of equation known as the Diffusion Equation (DE) [22][24][25]. Imag-
ing, which uses diffusion equation to model transfer of light through the sample, is known as
diffuse optical imaging.

In an experiment, we generally image a biological sample using diffuse optics to detect the
presence of any abnormality or inhomogeneity in the sample. Here, we look for the change in
values of the quantitative properties in the inhomogeneity region with respect to the background
homogeneous medium. If we have an inhomogeneity in our medium, then by solving the
diffusion equation and using the Born approximation (details explained in the section 2.1.1), we
can find a relation between the measurement values from our experiment and the perturbation
in the tissue properties. This relation is of the form,

b = Ax

where ‘x’ is the matrix containing the unknown perturbation value in the tissue properties,
‘b’ is the matrix having the change in measurement values (fluence rate) with respect to the
baseline and ‘A’ is a matrix that can be calculated which is known as the Jacobian matrix.
Here, since ‘x’ is the unknown matrix, it can be calculated by inverting the matrix ‘A’. But this
is not directly possible because ‘A’ is not a square matrix. So, in most of the cases, it is done
using Tikhonov regularization method. In this thesis, we present a new way of addressing this
problem and detecting the inhomogeneity in the sample without inverting the Jacobian Matrix.

12



We expect that this can reduce the computational load and give more precise results.

In this thesis, we shall discuss the related theory, the methods implemented by us in the
simulations and the experimental setup in the section 2. The results obtained from the simula-
tions and the experiments are discussed in section 3. A brief conclusion is given in section 4.
Some important definitions are given in appendix A.

2 Methods

2.1 Theory

2.1.1 Modeling transfer of photons through tissue

The Radiative Transfer Equation (RTE), which describes the flow of photons inside a highly
scattering medium such as a tissue, is given by [22][23],

∂L(~r, ŝ, t)/c
∂ t

+ ŝ.∇L(~r, ŝ, t) =−µt(~r)L(~r, ŝ, t)+µs(~r)
∫

4π

(L(~r, ŝ′, t)P(ŝ′, ŝ))dΩ
′+S(~r, ŝ, t) (1)

where
L(~r,ŝ,t) = radiance at position~r, traveling in a direction ŝ at time t
c = speed of light in vacuum
µs(~r) = scattering coefficient of the medium at position~r
µa(~r) = absorption coefficient of the medium at position~r
µt(~r) = µs(~r) + µa(~r)=extinction coefficient of the medium at position~r
P(ŝ′, ŝ) = Phase function which gives the probability of light travelling in direction ŝ′ to get
scattered to the direction ŝ

Ω′ = solid angle in the direction ŝ′

S(~r,ŝ,t) = Spatial and temporal distribution of energy from the source at position~r, traveling in
direction ŝ at time t

Here, the terms on the left hand side denotes the change in the radiance with respect to
time and distance respectively in a particular direction ŝ at a particular position ~r in the bio-
logical sample. On the other hand, the terms on the right hand side of the equation denotes
the properties of the system which leads to this change in the radiance. The first term denotes
the contribution by the extinction coefficient leading to loss of radiance in the direction ŝ, the
second term denotes the scattering from neighboring elements to the element at position~r and
the third terms denotes the contribution by the source directly. The RTE is based on the con-
servation of energy law for a system containing the incident radiation and the tissue[22]. It can
also be derived from the Foldy-Lax formulations[26][27].
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The RTE is difficult to solve because it has six independent variables (x,y,z,θ , φ , t). So, it
is often approximated to the Diffusion Equation (DE) [22][24][25] using certain assumptions
which is applicable to most of the commonly studied biological tissues. In the diffusion equa-
tion, the number of independent variables is four, ie. (x,y,z,t), because here, the radiance is
averaged over all directions and thus, the directionality is lost. The assumptions that lead to the
diffusion equation are as follows :

(i) High albedo medium: The medium is highly scattering and the reduced scattering coefficient
is much higher than the absorption coefficient, µ ′s >> µa.

(ii) P1 approximation: The radiance can be expanded in terms of spherical harmonics to the
first order.

(iii) Fick’s Law: The fractional change in current density ~J within a small length element equal
to the transport mean free path ( 1

µ ′s
) is very small (negligible).

(iv) Isotropic source: The source is also considered to be isotropic.

These assumptions lead to the introduction of two more terms related to the flow of photons
through the medium namely fluence rate (Φ) and current density (~J). The definitions are given
in appendix A. Thus, using the assumptions, diffusion equation is derived, and is given by:

1
c

∂Φ(~r, t)
∂ t

+µa(~r)Φ(~r, t)−∇.(D(~r)∇Φ(~r, t)) = S(~r, t) (2)

where
Φ(~r,t) = Fluence rate at position~r at time t
D(~r) = 1

3(µa(~r)+µ ′s(~r))
= Optical Diffusion Coefficient

S(~r,t) = Spatial distribution of energy from the isotropic source at position~r at time t

If we are dealing with a continuous source, the diffusion equation for the system will not
be time dependent. So, in the time-independent case, it can be written as [22],

µa(~r)Φ(~r)−∇.(D(~r)∇Φ(~r)) = S(~r) (3)

The solution to the equation (3) for a homogeneous infinite medium for a delta source is
given by [22]:

Φ(~r) =
1

4πD(~r)r
exp(−µe f f (~r)r) (4)

where µe f f (~r)=
√

µa(~r)
D(~r) =

√
3µa(~r)(µa(~r)+µ ′s(~r)) which tells us about the rate at which the flu-

ence rate is decaying spatially.
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In practical cases, it is not possible to have an infinite medium. So, the boundary conditions
come into picture. We generally consider the medium to be a semi-infinite medium for experi-
mental cases.

In diffusion equation, we come across two problems which are known as the forward model
and the inverse model [28]. These are defined below:

Forward Model : When the input and
the tissue properties (the absorption and
scattering coefficients) are known, and we
need to find the output at the boundary by
using a given model, then it is known as
the forward model. (Figure 4)

Inverse Model : When the input and the
output at the boundary are known, and we
need to find the tissue properties by using
a given model, then it is known as the in-
verse model. (Figure 5)

Figure 4: A schematic showing forward
model.

Figure 5: A schematic showing inverse
model.

In our experiment, we tried to reconstruct a sample having a inhomogeneity in the absorp-
tion coefficient by using the diffusion equation. While doing so, we are always concerned with
the change in the properties of the sample due to the presence of the inhomogeneity and not the
absolute values of these quantitative properties. This means we are looking for the perturbation
in the values instead of the actual values.

Suppose the absorption coefficient is perturbed from µa(~r) to µa(~r)+µδ
a (~r). We assume that

this changes the fluence rate from Φ(~r) to Φ(~r)+Φ(~r)δ . Then, the time independent diffusion
equation becomes:

(µa(~r)+µ
δ
a (~r))(Φ(~r)+Φ

δ (~r))−∇.(D(~r)∇(Φ(~r)+Φ
δ (~r))) = S(~r) (5)

Subtracting equation (3) from equation (5), we get,

µa(~r)Φδ (~r)−∇.(D(~r)∇Φ
δ (~r)) =−µ

δ
a (~r)(Φ(~r)+Φ

δ (~r)) (6)

Comparing equations (3) and (6), we see that both are almost similar. In equation (6), there
is Φδ (~r) instead of Φ(~r) and −µδ

a (~r)(Φ(~r)+Φδ (~r)) instead of S(~r). In equation (3), S(~r) is
called the forcing function because if there is no source, then this equation will not exist. In the
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similar way, in equation (6), −µδ
a (~r)(Φ(~r)+Φδ (~r)) can be called as the forcing function.

Now, if the source is a delta source, then the solution for equation 3 is called the Green’s

function which is denoted as G(~r,~r′), where~r is the position of the observer and~r′ is the position
of the source. Any source can be considered as the combination of many point sources. So,
for equation (6), if the source is denoted by −µδ

a (~r)(Φ(~r)+Φδ (~r)), then the solution for this
equation is the convolution of Green’s functions given as:

Φ
δ (~r) =−

∫
G(~r,~r′)µδ

a (
~r′)(Φ(~r′,~rs)+Φ

δ (~r′,~rs))d~r′ (7)

Here, we can see that Φδ (~r′,~rs) is present on both sides and this makes it difficult to solve.
So, to simplify this, we use the Born approximation which assumes that:

Φδ (~r′,~rs) << Φ(~r′,~rs)

Thus, now in equation 7, we can neglect Φδ (~r′,~rs) in the right hand side under Born ap-
proximation and the expression becomes:

Φ
δ (~r) =−

∫
G(~r,~r′)µδ

a (
~r′)Φ(~r′,~rs)d~r′ (8)

This can equivalently be written in the matrix form as



Φδ (~r1)

Φδ (~r2)

Φδ (~r3)

.

.

.

Φδ (~rM)


=−



G(~r1,~r′1)Φ(~r′1,~rs)d~r′1 G(~r1,~r′2)Φ(~r′2,~rs)d~r′2 . . G(~r1, ~r′N)Φ(~r′N ,~rs)d~r′N
G(~r2,~r′1)Φ(~r′1,~rs)d~r′1 G(~r2,~r′2)Φ(~r′2,~rs)d~r′2 . . G(~r2, ~r′N)Φ(~r′N ,~rs)d~r′N
G(~r3,~r′1)Φ(~r′1,~rs)d~r′1 G(~r3,~r′2)Φ(~r′2,~rs)d~r′2 . . G(~r3, ~r′N)Φ(~r′N ,~rs)d~r′N

.

.

.

G(~rM ,~r′1)Φ(~r′1,~rs)d~r′1 G(~rM ,~r′2)Φ(~r′2,~rs)d~r′2 . . G(~rM , ~r′N)Φ(~r′N ,~rs)d~r′N





µδ
a (
~r′1)

µδ
a (
~r′2)

µδ
a (
~r′3)
.

.

.

µδ
a (

~r′N)


(9)

In an experiment, we can obtain the readings for Φδ at the boundary of the sample and we
need to find the µδ

a in all the points in the sample. Thus, equation (9) is of the form,

b = Ax (10)

Here, ‘b’ is the matrix consisting of the change in fluence rate (measurement) measured
at the detector; ‘A’ is the matrix consisting of the Green’s function terms which is also known
as the Jacobian matrix; and ‘x’ is a matrix consisting of the absorption coefficient values at
each point in the sample. The matrix ‘A’ gives the most probable path followed by the photons
to reach the detector from the source. Thus, we need to solve for the matrix ‘x’ to find the
properties of the sample in terms of the absorption (and/or scattering) coefficient.
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Suppose we consider a sample which
can be discretized into ‘N’ nodes (discrete
points) inside it (represented as Ω domain)
as shown in figure 6. Let ‘M’ be the num-
ber of measurements that can be taken in
the sample at the boundary (represented as
∂Ω domain). For all practical cases, N
>> M. So, we cannot just invert the ma-
trix ‘A’ to obtain the values of ‘x’ because
it is not a square matrix (size of A is NxM).
However, a pseudo-inverse can be created
to find the values of ‘x’ as shown below
[29][30],

Figure 6: A schematic showing the Ω and
∂Ω domains in a sample.

b = Ax

⇒ AT b = AT Ax

⇒ (AT A)−1AT b = (AT A)−1AT Ax

⇒ (AT A)−1AT b = Ix

⇒ x = (AT A)−1AT b

(11)

But this method of finding ‘x’ is very unstable because of the properties of the Jacobian
matrix ‘A’. So, instead, it is inverted by the method of Tikhonov regularization[29][30]. Using
this method, the equation can be written as,

x = AT (AAT +λ1max(diag(S))I)−1b (12)

where λ1 is a regularization constant and S is the diagonal matrix obtained by Singular
Value Decomposition (SVD) of A, ie. A=USVT , where U and V are unitary matrices and S is
a rectangular diagonal matrix.

As light passes through a biological sample, its intensity decays exponentially with depth.
This results in reduction of sensitivity of measurement values with the increase in depth. So,
the reconstructed inhomogeneities are inclined more towards the surface layers. To address this
problem, equation (12) was modified to equation (13) [30]. Here, a depth compensation algo-
rithm is embedded in the reconstruction which takes care of the error caused due to reduction
of sensitivity with depth.

x = (L−1A)T [(L−1A)(L−1A)T +λ1max(diag(S))I]−1L−1b (13)
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where λ1 is a regularization constant similar to the one in equation (12) and L is a diagonal
matrix defined as

diag(L) = [diag(AT A)+λ2max(diag(AT A))]1/2

where λ2 is another regularization constant.
The constants, λ1 and λ2 are not easy to find and there is always a possibility of finding bet-

ter values of these constants and thus, reconstruct the sample in a better way. This enhances the
complexity of the problem. In this thesis, we present an alternative way of solving this problem.

2.1.2 Proposed Method: A novel algorithm based on the principles of diffuse optics to
reconstruct the location of optical properties in human tissue

We consider two sources and an array of detectors in between them as shown in figure 7.
Measurements (fluence rates) are taken from all the detectors.

Figure 7: Experimental setup for the proposed Jacobian combination method.

Suppose we label the two sources as source 1 and source 2 respectively as shown in figure
7 and the array of detectors in between them are labelled from left to right. The two sources are
switched on individually and the measurements are taken at all the detector positions. These
two arrays of measurements are then multiplied to each other such that we can obtain all the
combination of measurements corresponding to the two sources. Thus, if we had an array of
M detectors between the two sources, then we obtain a M x M square matrix having all the
combinations of measurements as shown in figure 8. (details are explained in section 2.2.2)
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Figure 8: The combination of measurements to obtain a square matrix.

The same process is repeated for the baseline and an M x M square matrix is obtained for
the baseline too. Then, we find the percentage change of each constituent of the matrix with
respect to the baseline. It is observed that certain combination of detectors in the matrix shows
a very high change compared to the others. So, picking up those detector pairs whose change is
higher than a particular threshold value would give us our required source-detector pairs. Plot-
ting the combination (multiplication) of Jacobians for all these pairs would give the position of
the inhomogeneity.

For simple cases, we can also find the approximate change in the property of the sample
at the position of the inhomogeneity. Let us consider the case where the absorption coefficient
is being perturbed at the inhomogeneity region in the sample. Suppose the sample has N
nodes (Ω domain) and we consider two pairs of sources and detectors. Let Φδ

1 and Φδ
2 be the

measurement values at the two detector positions at the boundary of the sample (∂Ω domain)
due to the two sources. So, in terms of the Jacobian matrix, it can be expressed as

Φ
δ
1 =−

[
J(~r1) J(~r2) J(~r3) . . . J(~rN)

]


µδ
a (~r1)

µδ
a (~r2)

µδ
a (~r3)

.

.

.

µδ
a (~rN)


=

N

∑
i=1

J(~ri)µ
δ
a (~ri) (14)

Φ
δ
2 =−

[
J′(~r1) J′(~r2) J′(~r3) . . . J′(~rN)

]


µδ
a (~r1)

µδ
a (~r2)

µδ
a (~r3)

.

.

.

µδ
a (~rN)


=

N

∑
i=1

J′(~ri)µ
δ
a (~ri) (15)

Thus, product of the measurement values means taking the product of equations (14) and
(15). So, we get
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Φ
δ
1 Φ

δ
2 =

N

∑
i=1

J(~ri)µ
δ
a (~ri)

N

∑
j=1

J′(~r j)µ
δ
a (~r j) (16)

In the position where the inhomogeneity is present, suppose change in absorption coef-
ficient has a value µδ

a . This means, the entire inhomogeneity region has a constant change in
absorption coefficient µδ

a , and in the rest of the sample it is zero.
Thus, in equation (16), only those values will remain which have both the µδ

a (~r) non-zero.
Suppose, there are p nodes in the sample which has the perturbation in absorption coefficient.
Then, equation (16) becomes

Φ
δ
1 Φ

δ
2 = (

p

∑
i=1

J(~ri)
p

∑
j=1

J′(~r j))(µ
δ
a )

2p⇒ µ
δ
a = (

Φδ
1 Φδ

2

∑
p
i=1 J(~ri)∑

p
j=1 J′(~r j)

)
1

2p (17)

So, for a general case, where we consider q detectors for the first source and q detectors for
the second source to form the Jacobian combination to detect the position of the inhomogeneity,
equation (17) becomes,

µ
δ
a = (

∏
q
i=1 Φδ

1i ∏
q
j=1 Φδ

2 j

∑
p
i=1 J(~ri)∑

p
j=1 J′(~r j)

)
1

2p (18)

Thus, for the simple case where the change in absorption coefficient is constant throughout
the inhomogeneity region, we can quantify this change. Hence, according to our hypothesis,
we can find the approximate location as well as the approximate change in the absorption
coefficient by our method for simple cases.

2.2 Simulations

2.2.1 Finite Element Method (FEM)

The simulations are done using the Finite Element Method (FEM) [31][32]. It is a method
to solve Partial Differential Equations (PDEs) using appropriate boundary conditions. In this
method, the system under consideration is divided into finite number of smaller elements.

Figure 9 shows an FEM mesh of size 1.8cm x 1.3cm which is being subdivided into 4032
elements defined on 2093 nodes. In the simulations, this entire mesh is considered as the sam-
ple and calculations are done on it. This mesh is being used for plotting the Jacobians in the
section 2.2.2.
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Figure 9: A mesh used for calculations using the Finite Element Method (FEM).

2.2.2 Combination of Jacobians

Suppose we consider a source and a detector placed on the upper surface of the sample
represented by the blue region as shown in the figure 10. The red pointer represents the position
of the source and the black pointer represents the position of the detector. The most probable
path of photons from the source to the detector is given by the Jacobian (highlighted pink region
in the figure).

Figure 10: The Jacobian plotted for a particular pair of source and detector.

If we combine (multiply) two such Jacobians for two source-detector pairs, then the region
of intersection of the Jacobians is the region which is most sensitive to any change in the prop-
erties of the sample. This means if the absorption (and/or scattering) coefficient changes in this
region of intersection of the Jacobians, then the product of measurements at those particular
detector positions will show the maximum change in its value with respect to the baseline (ho-
mogeneous medium).
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Figure 11: Two Jacobians for two different source-detector pairs in the sample; the most sensi-
tive region as shown by the product of these two Jacobians.

In figure 11(first two figures), two Jacobians are plotted for two source-detector pairs placed
in the upper surface of the sample. When we multiply these two Jacobians, their region of inter-
section shows a very high sensitivity as shown by the pink highlighted region in figure 11(last
figure). Suppose, the sample has an inhomogeneity in its scattering and/or absorption coef-
ficient at this highlighted region. Then, the product of the fluence rates at the two detector
positions will show a high perturbation with respect to the baseline. But, if the inhomogeneity
is present is any position other than this highlighted region, then the perturbation in the product
of fluence rates at the two detector positions will be almost negligible with respect to the base-
line.

We shall be using this concept to locate the position of the inhomogeneity in the sample in
our experiments.

2.3 Experiment

2.3.1 Details of the Experimental Components

The experimental setup consists of the following components:

Laser Diode:
The source used in the experiment is a temperature and current controlled laser diode (Thorlabs,

laser diode : L785P090, diode set : LTC100-B). The wavelength used for the experiment is
785nm.

Figure 12: The laser diode and its set consisting of the current and temperature controllers, the
diode mount and the necessary accessories. c© Thorlabs [1]
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Beam Shaping Optics:
The radiation from the source is passed through the beam shaping optical components to fo-
cus the beam at the sample. The beam diameter on the sample is approximately 1mm. The
components for the beam shaping include an aspheric lens, an anamorphic prism pair and a fo-
cusing lens. The aspheric lens (Thorlabs, S1TM09) is used as the collimator just after the laser
diode. The anamorphic prism pair (Thorlabs, PS875-B-N-SF11 Mounted Prism Pair, ARC:650-

1050nm, Mag: 2.0) is put next to the collimator to make the beam spherical in shape because
the shape of the beam from a laser diode is always elliptical. Then, a focusing lens (Thorlabs,

AC254-080-B-ML), which has a focal length 8cm, is used to focus the beam on the phantom.

Figure 13: The beam shaping optical components used in the experiment - a) Collimator , b)
Focusing lens and c) Anamorphic Prism Pair. c© Thorlabs[1]

Galvo Mirror Set
A galvo mirror pair (Thorlabs, GVS002) is used to scan the light source over the sample and
direct it towards the required position. It is a 2-dimentional galvo system having two silver
coated mirrors with which we can control both the x and y axis in the plane and thus direct the
beam accordingly.

Figure 14: The Galvo mirror used to set the direction of the beam. c© Thorlabs[1]

Sample
The experiment is carried out in tissue-mimicking solid phantoms which have similar absorp-
tion and scattering properties as the tissues[33]. Figure 15 shows a laser beam directed towards
such a tissue mimicking phantom. It is seen that the light from the laser gets scattered as well
as absorbed inside the phantom in the same way as it happens in tissues.
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Figure 15: Laser source directed towards a tissue mimicking phantom which shows similar
absorption and scattering properties as biological samples.

These phantoms were prepared by us in the laboratory using the standard protocol[34].
As shown in figure 16, a cubical inhomogeneity of approximate size 3mm x 3mm x3mm was
introduced inside the phantom at a depth of approximately 3mm from the surface. For more
details, check section 2.3.2.

Figure 16: The solid phantom prepared for the experiment and its schematic diagram.

Detector
In the experiment, a CCD camera (Basler, acA640-120um) is used as the detector. It has a
resolution of 659 px x 494 px having pixel size of 5.6 µm x 5.6 µm and frame rate of 120 fps.

Figure 17: The CCD camera from Basler used as detector. c© Basler [2]

2.3.2 Preparation of Tissue Mimicking Phantoms

The solid tissue-mimicking phantoms used in the experiment were prepared using the stan-
dard protocols[34]. The materials used for the preparation include Slygard 184 (PDMS), Sly-
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gard 184 Curing Agent and Titanium Dioxide (TiO2). These are taken in the standard amounts
to obtain an absorption coefficient, µa = 0.021cm−1 and a scattering coefficient, µ ′s =8 cm−1.
For the inhomogeneity, a small amount of Indian Ink (Daler-Rowney Ltd, England) is added
to the mixture because this increases its absorption coefficient. Due to the limitations of the
detector used in the experiment (CCD camera), the contrast (perturbation in µa) of the inho-
mogeneity is taken higher than the typical values expected in tissue during tumors. If a better
detector is used, inhomogeneities with even small contrasts can also be detected successfully.

2.3.3 Experimental Setup

Light from the laser diode passes through the beam shaping optical components which
consists of the collimator lens for making the beam parallel; the anamorphic prism for making
the cross-sectional shape of the beam circular (because the shape of the beam from a laser diode
is always elliptical); and the focusing lens for focusing the beam at the sample. A galvo mirror
pair is kept on the path of the beam to direct the beam according to our required direction. The
beam hits the sample at the desired position and the images are taken by a CCD camera. Here,
figure 18 shows the experimental setup.

Figure 18: The setup for the experiment - (a) the schematic diagram and (b) the photograph of
the setup.

For taking the measurements, a small window (region of interest) of size 1.4cm x 1.1 cm
was considered on the surface of the sample as shown in figure 19. In this window, nine pairs
of source positions were defined. For each pair, the source is directed such that the highest
intensity pixel is seen at the left corner of the image in the first set and at the right corner for
the second set. The fluence rates are detected by the CCD camera in array format (each pixel
as a detector) for all source positions. All pairs are considered as two-dimentional samples for
calculation purposes and thus, calculations are done independently for each pair. We took 500
images for each source position so that the intensity per pixel can later be averaged over all the
images of the set to reduce error due to noise. The exposure time for the camera is set at 5ms.
We also took corresponding dark images to remove the error due to background light.

25



Figure 19: The experimental arrangements for taking the measurements in the phantom.

We plotted the two-dimentional Jacobian combination for each pair and tried to find out
the position of the inhomogeneity in that two-dimentional plane. In this way, we can find the
approximate location of the inhomogeneity in the sample at different locations, and thus, get a
three-dimentional overview. Since, we worked only with simple cases where the inhomogene-
ity has a constant absorption coefficient throughout, we were also able to calculate the change
in absorption coefficient value in the inhomogeneity with respect to the rest of the sample by
our method.

3 Results and Discussion

3.1 Results

3.1.1 Simulation Results

We generated a two-dimentional FEM mesh of size 3.8cm x 2.3cm for the simulations as
shown in figure 20(a). It has 411 nodes, 68 edges and 752 elements. An inhomogeneity in
the absorption coefficient is defined at the position 1.9<x<2.4 and 1.6<y<1.8 as shown in the
figure 20(b). The absorption coefficient is taken to be 0.1cm−1 for the sample and it is defined
as 0.5cm−1 in the region of the inhomogeneity.

Figure 20: (a) The FEM mesh of side 3.8cm x 2.3 cm used for the simulations ; (b) the inho-
mogeneity in absorption coefficient introduced in the mesh.

We defined the source positions in the nodes marked by the red arrows as shown in figure
20(a) . In between these two sources, 13 detector nodes were defined for each source. First,
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one of the sources is considered and the fluence rate is measured at all the detector nodes by the
forward model using the diffusion equation for semi-infinite medium. So, the measurement is
obtained as an array of size 13. The same is repeated for the other source and the measurements
are obtained for the other source too. Thus, we have two arrays of measurements of size 13
each for the sample. Next, we need to find the combination of fluence rates.

All the combinations of the measurements are
calculated by multiplication of fluence rate value for one
source with that for the other source. So, a square matrix
of size 13 x 13 is obtained. In figure 21, the vertical
axis in the matrix corresponds to the detectors for the
first source and the horizontal axis corresponds to the
detectors for the second source. (All the detectors were
labelled from left to right in the simulations.) In figure
21, it is seen that the product values are highest for the
combination of fluence rates for detector 1 for source 1
and detector 13 for source 2. This is because detector
1 is nearest to source 1 and detector 13 is nearest to
source 2. So, their combination gives the highest value.
Also, the inhomogeneity do not lie on the path of their
Jacobians. It is also observerd that the product value
decreases as we move away from the source. This is
because as the distance from the source increases, the
measurement values drops exponentially as shown in
figure 2.

The same procedure of calculation of square matrix
of size 13x13 was carried out for the baseline where the
medium is considered to be homogenous with an absorp-
tion coefficient of 0.1cm−1. The calculated matrix is
shown in figure 22. A same trend as figure 21 is seen
in the baseline case too.

Figure 21: The matrix show-
ing the values of the product
of measurements due to the
two sources for the sample
with inhomogeneity.

Figure 22: The matrix show-
ing the values of the product
of measurements due to the
two sources for the baseline.

We want to see the change in the measurement values due to the presence of the inhomo-
geneity with respect to the baseline. So, we subtract the matrix shown in figure 21 from the
matrix for the baseline shown in figure 22, and find the percentage change in each value of the
matrix. The matrix obtained by doing so is shown in figure 23. It is seen that there are certain
values in the matrix in figure 23 which are much higher, while there are certain values which are
almost negligible. This means the inhomogeneity must be in the path of the Jacobian combina-
tions for these detector pairs which show a high change in the values. We took a thresholding
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of top 96% of the maximum change value and thus, pick all the detector pairs which has change
values higher than 96% of the maximum change. When we plot the combination Jacobian for
all the pairs of detectors for the two sources which are higher than the threshold value, it gives
the approximate position of the inhomogeneity.

Figure 23: (a)The matrix showing the percentage change in values of the matrix with respect to
the baseline; (b) the position of the inhomogeneity in the sample as shown by the highlighted
region; (c) the Jacobian combination showing the detected position of the inhomogeneity.

Thus, we can find the approximate position of the inhomogeneity by this method of
combination of Jacobians. We can also find the approximate change in absorption coefficient
without inversion of the Jacobian matrix as described in last part of section 2.1 by equation
(18). For the inhomogeneity defined by us with a change in absorption coefficient is 0.4cm−1

(0.5cm−1 for inhomogeneity and 0.1cm−1 for the rest of the sample), the calculated change
in absorption coefficient is 3.88 x 10−2cm−1. It is observed that the calculated change is less
than the given change by an order of 10 approximately.

We tried to calculate the change in absorption coefficients by assigning different values of
absorption coefficient to the inhomogeneity. This is shown in table 1.

Table 1: The given and the calculated values of µδ
a for the inhomogeneity in the sample.

Given µδ
a value (cm−1) Calculated µδ

a value (cm−1)

4.00 x 10−3 4.84x 10−4

1.00x 10−2 1.20x 10−3

1.00x 10−1 1.14x 10−2

2.00x 10−1 2.16x 10−2

3.00x 10−1 3.07x 10−2

4.00x 10−1 3.88x 10−2
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Figure 24: A graph showing the given versus the calculated values of µδ
a for the inhomogeneity

in the sample.

It is seen in table 1 that the ratio at which the given values of µδ
a is changing is almost being

maintained in the calculated values too. But all the calculated values are less than the given
values by a factor of 10 approximately. We can consider this as a calibration factor for the
calculations. Thus, taking 10 as a calibration factor and multiplying all the calculated values
by 10, we get the following values of µδ

a as shown in table 2. This is very close to the given
values of µδ

a .

Table 2: The given and the calculated values of µδ
a for the inhomogeneity in the sample after

multiplying the calculated values by the calibration factor 10.

Given µδ
a value (cm−1) Calculated µδ

a value (cm−1)

4.00 x 10−3 4.84x 10−3

1.00x 10−2 1.20x 10−2

1.00x 10−1 1.14x 10−1

2.00x 10−1 2.16x 10−1

3.00x 10−1 3.07x 10−1

4.00x 10−1 3.88x 10−1

Figure 25: A graph showing the given versus the calculated values of µδ
a for the inhomogeneity

in the sample after multiplying the calculated values with the calibration factor.

Next, we tried to compare our method with the existing methods which are commonly used
for the detection of inhomogeneity in a biological sample. For most cases, the diffusion equa-
tion is directly solved by inverting the Jacobian matrix using the method of Tikhonov regular-
ization. Equation (12) shows the inversion of the Jacobian matrix using this method. We tried
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to reconstruct the same inhomogeneity shown in figure 20 by using the same FEM mesh by
Tikhonov regularization so that we can have a direct comparison. The reconstruced image is
shown in figure 26.

Figure 26: (a)The position of the inhomogeneity as shown by the highlighted region;(b) the
inhomogeneity reconstructed by inversion of the Jacobian matrix by using Tikhonov regular-
ization.

In figure 26, it is seen that the position of the inhomogeneity in the reconstructed image is
shifted towards the superficial layers of the sample. This is expected because of the proper-
ties of the Jacobian matrix. So, to address this problem, depth compensation algorithms are
generally incorporated along with the Tikhonov regularization to locate the inhomogeneity in
a better way. In equation (13), a depth compensation algorithm has been used for this purpose.
So, we shall reconstruct the inhomogeneity by using this equation and try to compare the result
with our proposed method.

Figure 27: (a)The position of the inhomogeneity as shown by the highlighted region;(b) the
inhomogeneity reconstructed by using depth compensation algorithm.

Figure 27 shows the reconstructed image of the sample after using an appropriate depth-
compensation algorithm. It is observed that in this reconstructed image, the inhomogeneity
is not shifted towards the surface layers. However, the location of the inhomogeneity is not
precisely shown by this method. Apart from that, the main difficulty of using such inversion
methods for reconstruction is the presence of the regularization constants λ1 and λ2 which are
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difficult to determine. In fact, there is always a possibility to get a better reconstruction of the
sample by using a better values of these regularization constants.

In our proposed Jacobian combination method, no such parameters are being used. So, this
makes the computation using this method more easier. All these reasons makes the Jacobian
combination method a simplier way of locating the inhomogeneity.

3.1.2 Experimental Results

As shown in figure 19, a region of interest of size 1.4cm x 1.1 cm was considered
on the surface of the sample where nine pairs of source positions were taken. For each
source, the fluence rates were detected by the CCD camera in array format (each pixel as
a detector). The matrices are calculated by multiplying the fluence rates detected by the
detector array for the two sources independently and thus, the change matrices are calculated
with respect to the baseline. In the change matrix, thresholding is being set at top 96% of
the maximum value of change. So, Jacobians are being plotted for all those pairs of source-
detectors which had change more than 96% of the maximum change value in the change matrix.

For plotting the Jacobians, an FEM
mesh was constructed of size 1.8cm x
1.3cm as shown in figure 28, having 8217
nodes, 16128 elements and 304 edges. In
this mesh, the two source positions are de-
fined on the top surface of the mesh such
that the distance between them is approx-
imately 1.4cm, same as our experimental
case. The measurements at all detector po-
sitions are also being interpolated to the
mesh.

Figure 28: The FEM mesh constructed to
plot the Jacobians for the experiment.

It was observed that out of nine pairs, only six pairs had high change in the product of
fluence rate values compared to the baseline. The rest three pairs had almost negligible change.
So, this means that six pairs of detector were in the region of inhomogeneity and the other
three pairs did not have the inhomogeneity below them. The Jacobians are being plotted for
these six pairs which had the inhomogenety below them and these are shown in figure 29.
From these figures, the location of the inhomogeneity is being determined. It is observed that
the location detected by our method is similar to the location of the inhomogeneity defined by
us which is shown in figure 30. The inhomogeneity is seen at a depth of approximately 3mm
in the detected location as expected.
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Figure 29: The position of the inhomogeneity as seen by detector arrays located between the
source pairs.

Figure 30: Position of the inhomogeneity as defined by us in the phantom.

We also quantified the value of change in absorption coefficient for each pair independently
by using our method. These are shown in table 3. We have multiplied the calculated µδ

a value
by the caliberation factor 10 to obtain these values. For all the layers, the value is approximatey
same which was expected.

Table 3: The calculated values of µδ
a for the inhomogeneity in the experiment after multiplying

them by the caliberation factor 10.

Source pair Calculated µδ
a (cm−1) Mean µδ

a (cm−1)

Source 1-Source 2 2.77
Source 3-Source 4 2.45
Source 5-Source 6 2.81 2.66
Source 7-Source 8 2.61

Source 9-Source 10 2.87
Source 11-Source 12 2.47

The calculated µδ
a for our experimental case is approximately 2.66 cm−1.
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3.2 Discussion

As per our hypothesis, we are able to detect any inhomogeneity present in a biological
sample by the using the properties of the Jacobians associated with the source and detector
pairs defined on the sample surface. We carried out simulations as well as experiments to prove
our hypothesis. This method is also expected to work if we perturbed the scattering coefficient
instead to the absorption coefficient in the region of inhomogeneity in the sample.

The simulations were done for two-dimentional case using FEM mesh in the Matlab
software. An inhomogeneity was introduced at a particular depth in the sample and we tried
to detect it using our proposed method. We were able to detect the approximate position by
combining all the Jacobians for those source-detector pairs whose measurements got highly
affected due to the presence of the inhomogeneity in the sample. This is shown in figure 23
for the simulation case. We also successfully quantified the perturbation in the absorption
coefficient in the sample for simple cases where the absorption coefficient was constant
throughout the inhomogeneity region. It was seen that we can detect even the smallest change
in the absorption coefficient which is shown in table 2. However, for practical cases, due to the
limitations set by noise, this may not be possible.

The experiments are carried out in tissue-mimicking phantoms which are prepared such
that they have the same absorption and scattering properties as tissues. For the inhomogeneity,
Indian ink was added during preparation for increasing its absorption coefficient with respect
to the rest of the sample. It was introduced at a particular depth inside the phantom. The
experimental setup was set as shown in figure 18 for detection of the inhomogeneity. We
selected a region of interest of size 1.4cm x 1.1 cm in the sample surface and nine pairs of
source positions were defined in that area. All the calculations were done independently for all
nine pairs by considering them as independent 2-dimentional setups.

4 Conclusions and Outlook

In this thesis, we presented a new method for detection and positioning an inhomogeneity
present in any biological sample having the typical absorption and scattering properties. We
were also able to quantify the change in properties of the sample in the inhomogeneity region
for simple cases. This method is expected to reduce the computational load and also recon-
struct the details in the sample in a more precise way compared to the pre-existing methods.
We proved our hypothesis in simulations and also in experiments. All the computational
work is done using the Matlab software. The simulations were carried out using the Finite
Element Method (FEM). The experiment was done in tissue-mimicking phantoms prepared
in the laboratory which possess the same absorption and scattering properties as tissues.
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In the experiment, the inhomogeneity present in the sample, which is being reconstructed,
had very high contrast with respect to the background. We used such a sample for the
experiment because of the limitations of the detection system. By using a detector with better
specifications, very small contrast in the inhomogeneity can also be reconstructed by our
method.

This method seems to be very promising and this can have many applications in the medical
field. It can be used for detection of tumor in brain or breast in future.
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A Appendix I : Important Definitions

Radiance:
Radiance is defined as the flow of energy per unit solid angle per unit normal area and per unit
time over a narrow range of frequency. Radiance at position~r in the direction ŝ and at time t is
donoted by L(~r,ŝ,t). Its unit is Wm−2sr−1 [22].

Fluence Rate:
The radiance averaged over all the directions without taking the direction into consideration
for a particular distance |~r| is known as fluence rate for that distance and at time t [22]. It is a
scalar quantity and its unit is Wm−2. It is given by:

Φ(~r, t) =
∫

4π

L(~r, ŝ, t)dΩ

Current Density:
The radiance averaged over all the directions by taking account of the direction for a particular
distance |~r| is known as current density for that distance and at time t [22]. It is a vector
quantity and its unit is Wm−2. It is given by:

~J(~r, t) =
∫

4π

ŝL(~r, ŝ, t)dΩ

Scattering Length:
When photon travels through a scattering medium, the distance travelled by it before it gets
scattered is known as scattering length [21]. It has unit of length.

Trnasport Mean Free Path:
When photon travels through a scattering medium, the direction of the photon gets randomized
after a particular distance. This distance is defined as transport mean free path [21]. It has unit
of length.

Absorption Length:
When photon travels through a absorbing medium, the distance travelled by it before it gets
completely absorbed is known as absorption length [21]. It has unit of length.

Scattering Coefficient:
Scattering coefficient is defined as the reciprocal of scattering length [21]. It has unit of inverse
of length. It is denoted by µs.

Reduced Scattering Coefficient:
The reduced scattering length is the reciprocal of transport mean free path [21]. It is denoted
by µ ′s has unit of inverse of length. It is related to the scattering coefficient µs by the relation
[22],
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µ
′
s = µs(1−g)

where g is known as the anistropy factor which gives the measure of the change in direction
experienced by a photon after a single scattering event. Typically, it has value 0.9 (approx.) for
tissue [20].

Absorption Coefficient:
The reciprocal of absorption length is defined as absorption coefficient [21]. It has unit of
inverse of length and its denoted by µa.
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