The Minimum Neighbourhood
Problem

A Thesis

submitted to
Indian Institute of Science Education and Research Pune
in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Chinmay Joshi

IISER PUNE

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,
Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Dr. Soumen Maity
(© Chinmay Joshi 2019

All rights reserved

Certificate

This is to certify that this dissertation entitled The Minimum Neighbourhood Problem
towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute
of Science Education and Research, Pune represents study/work carried out by Chinmay
Joshi at Indian Institute of Science Education and Research under the supervision of Dr.
Soumen Maity, Associate Professor, Department of Mathematics, and Dr. Saket Saurabh,
Professor, TCS group, Institute of Mathematical Sciences, during the academic year
2018-2019.

YA fmw Moalf

Dr. Saket Saurabh Dr. Soumen Maity

Committee:
Dr. Soumen Maity
Dr. Saket Saurabh

Dr. Geevarghese Philip

This thesis is dedicated to my parents

Declaration

I hereby declare that the matter embodied in the report entitled The Minimum
Neighbourhood Problem are the results of the work carried out by me at the Department
of Mathematics, Indian Institute of Science Education and Research, Pune, under the
supervision of Dr. Soumen Maity and the same has not been submitted elsewhere for any

other degree.

Vol [—
C Nivywos Jas .

Chinmay Joshi

Acknowledgments

I would first like to thank Dr. Soumen Maity. He consistently allowed this to be my own
work, but steered me in the right direction whenever he thought I needed it. I would also
like to thank Dr. Saket Saurabh from the Institute of Mathematical Sciences. The door to
his office was always open whenever I had a question about my work. I would also like to
acknowledge Dr. Geevarghese Philip from The Chennai Mathematical Institute as the second
reader of this thesis, and I am gratefully indebted to him for his very valuable comments on
this thesis. Finally, I must express my very profound gratitude to my parents for providing
me with unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

X

Abstract

Given a graph G = (V, E) with n vertices and a positive integer s < n, we want to find a set
S C V of size s such that |Ng[S]| is minimum, where Ng[S] denotes closed neighbourhood
of S. We call this problem as the minimum neighbourhood problem (MNP). In this project,
we give a parameterized algorithm which takes as input a graph G, its tree decomposition
with width at most &, and a positive integer s, and returns |N[S]| such that S CV | |S| =s

and S has minimum neighbours in G, where the parameter is k.

x1

xii

Contents

Abstract xi
Introduction 1
1 Preliminaries 5

1.1 Weighted Independent Set 9
2 NP-completeness of the minimum neighbourhood problem 11
3 Minimum Neighbourhood Problem 13
4 Conclusions 19
Appendices 21

A Python Code 23

xiil

Xiv

Introduction

The neighbourhood of v, written Ng(v), is the set of vertices adjacent to v in G; and
N[v] = N(u) U {v} denotes the closed neighbourhood of v. For a subset S C V(G), we
use Ng[S] = UyesNg[v], to denote the closed neighbourhood of S in G. The input to the
parameterized version of Minimum Neighbourhood Problem is a graph G with two integers
s, < |V(G)|, and (G, s, ¢) is a yes-instance if G has a set S of s vertices such that | Ng[S]| < Z.

Computational problems are classified on the basis of their complexity. To decide how
complex a problem is, a generally accepted standard is the time in which it can be solved
by an algorithm. An “efficient” algorithm is one that runs in time polynomial in the size of
input, to yield the solution. The problems that are solvable by polynomial time algorithms
are considered “easy” and those that require super polynomial time algorithms are deemed
“hard”.

The computationally hard problems are classified as NP-hard. These problems are neither
known to have a polynomial time solution, nor has anyone been able to prove that such a
solution does not exist. Several problems that do occur in practice, are NP-hard. The best
known algorithms that are used to solve them, require exponential time or worse. Some ap-
proaches to tackle these problems are approximation and parameterization. Approximation
algorithms are those that run in polynomial time to yield a solution that is closed to the
optimum. In this technique, we relax the constraint of optimality and can therefore aim for

a polynomial time solution.

A relatively recent approach to solving NP-hard problems is parameterization [3, 1]. A
parameterized problem has an input instance x, as well as a parameter k, which is believed
to be sufficiently small compare to the size of input instance. The art of parameterization
lies in selecting the best possible parameter such that our algorithm is efficient, and the

computational explosion is restricted to the parameter. Some NP-hard and NP-complete

problems can be solved by algorithms that are exponential in the size of a fixed parameter
while polynomial in the size of the input. Such problems are called fixed parameters tractable
(FPT). FPT contains the fixed parameter tractable problems, which are those that can be

solved in time f(k)|z|°®" for some computable function f.

Definition 0.0.1. /9] A parameterized problem is a language L C ¥* x N, where ¥ is a
fixed, finite alphabet. For instance (z,k) € ¥* x N, k is called the parameter.

For example, in parametrized algorithm, the problem of finding minimum vertex cover
in graph G translates to whether there exists a vertex cover of size at most k in GG, where k

is the parameter.

Definition 0.0.2. [7/A parameterized problem L C ¥*x N is called fized-parameter tractable
(FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a computable
function f : N — N, and a constant ¢ such that, given (x,k) € ¥* X N the algorithm A
correctly decides whether (z, k) € L in time bounded by f(k)|(z, k)|°. The complexity class

containing all fixed-parameter tractable problems is called FPT.

For example, the vertex cover problem is FPT. By using kernalization algorithms and
reduction methods, the vertex cover problem can be solved in O(n+/m + 1.4656kk0(1)) where

n and m are the number of vertices and edges in G respectively and k is the parameter.

Definition 0.0.3. [7/ (XP) A parameterized problem L C ¥* x N is called slice-wise poly-
nomial (XP) if there exists an algorithm A and two computable functions f,g : N — N
such that, given (x,k) € ¥* x N, the algorithm A correctly decides whether (z,k) € L in
time bounded by f(k)|(x, k)[?*). The complexity class containing all slice-wise polynomial

problems is called XP.

To rule out certain problems are not FPT, there is a notion of lower bound which is
similar to the NP-completeness theory of polynomial time computation. We observe one
difference though, there are different levels of hardness classes W[1],W[2],.. in parameterized
complexity, unlike in classical complexity where all the NP hard problems are reducible to

each other.

The primary assumption here is FPT # W/[1] which is a stronger assumption than

P # NP. We introduce a notion of reduction to classify problems into such classes. If we

2

can reduce a parameterized problem A to a parameterized problem B such that if B has an

algorithm of a particular kind then so does A.

For our purposes, we mainly try to rule out the existence of an FPT algorithm for MkU
problem. It is known that CLIQUE parameterized by solution size is W[1] complete. This
means that W1] is the set of all problems that can be obtained through a parameterized
reduction from CLIQUE parameterized by solution size. We now recall the notion of param-
eterized reduction. If we can find a parameterized reduction from CLIQUE or some other
problem X | then we can say that X cannot have an FPT algorithm unless F'/PT = W[1].

Definition 0.0.4. [7/ Let A, B C ¥* x N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (z, k) of A, outputs an instance
(', k") of B such that

1. (x,k) is a yes-instance of A if and only if (z/, k") is a yes-instance of B,

2. k' < g(k) for some computable function g, and

oa

3. the running time is f(k)|z|°®" for some computable function f.

The following results hold for a parameterized reduction.

Theorem 0.0.1. [3] If there is a parameterized reduction from A to B and B is FPT, then
A is FPT as well.

Proof. Let (x,k) be the instance of A and there is a parameterized reduction from A to
B giving equivalent instance (z, k). As discussed above, the running time of it would be
f(k)|z|e, where ¢; is some constant. By definition of parameterized reduction, k" < g(k) and
2’| < f(k)|z|** as running time of reduction should be an upper bound on size of produced
instance. Now, B is FPT hence the reduced instance is solvable in time h(k')|z’|*. By
using relations mentioned above we get, h(k')|z’|2 < h(g(k))|f(k)|z'|*|®. So total running
time to solve A is equal to the time for reduction plus h(g(k))|f(k)|z'|t| = f(k)|z|®* +
h(g(E)|f (k)| || = f (k)|z|e2, where f'(k) = h(g(k))f(k)+ f(k) which is a computable
function. Therefore A is FPT. O

Theorem 0.0.2. [7] If there are parameterized reductions from A to B and from B to C,

then there is a parameterized reduction from A to C.

3

Proof. Let (z, k) be the instance of A and (x1, k1) be the instance of B reduced from A. Also,
let (9, ko) be the instance of C reduced from instance (z1, k1) of B. Now, let’s suppose that
we have parameterized reduction from A to B and B to C. For parameterized reduction
from A to B we get, k1 < ¢g1(k) and fi(k)|z|* to be the running time of reduction. Similarly
for reduction from B to C, we get, ks < go(k1) and fo(kq)|z|?. Here fi, f2, g1, g2 are
all computable functions. Now, from above equations we can see that ks < go(g1(k)) and
reduction from A to C will have time complexity go(f1(k))(g1(k)|x|)? = g3(k)|z|®, where
g3(k) = g2(f1(k))(g1(k))* and ¢3 = ¢1 *x c3. Now, (z,k) is yes instance of A if and only if
(21, k1) is an yes instance of B; and (x4, k1) is yes instance of B if and only if (x9, ko) is yes
instance of C. Hence (x,k) is yes instance of A if and only if (x9, ks) is yes instance of C.

Therefore reduction from A to C satisfies all the requirements of parameterized reduction. []

Chapter 1

Preliminaries

We begin with the definition of tree decomposition of a given graph G. The goal is to provide
a dynamic programming algorithm on a tree decomposition that finds a subset S C V' of

size s having minimum size neighbourhood.

Definition 1.0.1. A tree decomposition of a graph G is a pair (T, {X¢}iev(r)) where T is
a tree and each node t of the tree T contains a bag X; C V(G), such that the following

conditions are satisfied:

1. Each vertex of G is contained in at least one bag.
2. For every edge uv € E(G), both u and v are contained in at least one bag.

3. For every u € V(G), the set {t € V(T) | u € X;} induces a connected subtree of the
tree T

Definition 1.0.2. The width of a tree decomposition is defined as width(T") = maxcy)| X¢|—
1 and the treewidth tw(G) of a graph G is the minimum width among all possible tree de-

compositions of G.

Definition 1.0.3. A tree decomposition (7', {X;}+cv(r)) is said to be nice tree decomposition

if the following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as root node
r. Thus X, = 0 and X; = 0 for each leaf [.

5

2. There are three types of non-leaf nodes:
e Introduce node: we say a vertex v is introduced at node t if X; = X, U {v}, where
v ¢ X, and ¢ is the only child of ¢ in T; we say node ¢ is an introduce node and
introducing vertex v.
e Forget node: a node t is a forget node and forgetting vertex v if X; = X, \ {v}, where
v e X, and t is the only child of ¢.
e Join node: a node ¢ is a join node if X; = X;, = X,,, where ¢; and ¢, are two children
of t.

Note that, by the third property of tree decomposition, a vertex v € V(G) may be
introduced several time, but each vertex is forgotten only once. To control introduction
of edges, sometimes one more type of node is considered in nice tree decomposition called
introduce edge node. An introduce edge node is a node t, labeled with edge uv € E(G), such
that u,v € X; and X; = X, where t' is the only child of ¢. We say that node ¢ introduces
edge uv. Node t is inserted in nice tree decomposition as a child of forget node of u, given

that u is forgotten before v.

Let this graph be H

Nice tree decomposition for the graph H.

Nice tree decomposition with Introduces Edge Nodes is given below:
Nodes 5,6, 12,13, 16, 23,24, 27 are introduce edge nodes of edges ab, be, ed, dc, ae, fg, gc, af

respectively.

Lemma 1.0.1. [9] A graph G with a tree decomposition of width at most k also has a nice
tree decomposition of width at most k. Moreover, given a tree decomposition (T, {X;}iev(r))

of G of width at most k, its nice tree decomposition of width at most k that has at most
O(k|V(G)]) nodes can be computed in time O(k* max{|V(G)|, |[V(T)|}).

1.1 Weighted Independent Set

In this section, we give an example of FPT dynamic programming algorithm using treewidth
as a parameter. We will focus on weighted independent set problem. Given a graph GG, where
each vertex is assigned a weight, the task is to find weighted independent set of maximum
weight in the graph. This is the maximum weighted independent set problem.

Let G be an n-vertex weighted graph and (7, {Y;}icv(r)) be the tree decomposition on G.
We can assume that this is a nice tree decomposition using above lemma. Let r be the root
node and let V; be the union of all bags in subtree rooted at i including Y;.

We will be defining a subproblem as finding maximum weighted independent Z', given Z C Y;
and Z C Z such that Z° C V; and Z NY; = Z. We denote maximum possible weight of
7' = Pli,Z]. We put P[t,Z] = —oc in case no such Z exists. Our aim would be to find
value of Plr, ¢].

Now we will give recursive formulas:

Let S be any subset of Y; and its independent, if not, then P[i, Z] = —oc.

Leaf Node: If i is a leaf node then P[i, ¢] = 0.

Introduce vertex Node: If i is introduce vertex node with 4" as a child then we know that

Y; =Y, U{m}, where m is the introduced vertex. Then following relation holds:

Pli., 7] it m¢ 7

PR 2]+) othervise.

where w(m) is weight of m.

Case 1: m ¢ Z. Then all families of set Z' under consideration in P[i, Z] and P[i’, Z] are
equal, hence P[i, Z] = P[i , Z|

Case 2: m € S. Assume Z is maximum independent set attained in definition of P[i, Z].
Clearly Z'\ {m} comes under definition of P[i', Z \ {m}], so we get P[i', Z\ {m}] > w(Z"\
{m}) = w(Z') — w(m) = P[i,Z] — w(m), which implies that P[i,Z] > P[i',Z \ {m}] +

9

w(m). Conversely, let the maximum achieved in definition of P[i',Z \ {m}] is Z!, then
Z'NY, = Z\ {m} and m does not a neighbour in m, \ ¥, so m does not have neighbour in
Z'\'Yy. Hence, Z' U {m} is independent set and comes in definition of Pli, Z]. So we get,
Pli, Z) > w(Z' U{m}) = w(Z") + w(m) = P[i', Z \ {m}] + w(m).

Combining two inequalities we get, P[i, Z] = P[i’, Z \ {m}] + w(m).

Forget Node: If i is a forget node with child 7 then Y; = Yy \ {v}, where v is the forgotten

vertex. Then following relation holds:
Pli, Z] = maz{P[i , Z],Pli’, Z U {v}]}.

Proof for this formula is as below. Let Z' is maximum achieved in definition of P[t,Z]. If
v & Z then Z' comes under definition of P[i’, Z], which implies P[i’, Z] > w(Z') = PJi, Z].
On the other hand if v € Z then Z' is considered in definition of P[i’, Z U {v}]. So we get
Pli, Z) < max{P[i', Z], Pli', Z U {v}]}.
As P[i', Z] and P[i', Z U{v}] are considered in definition of P[i, Z] , we get P[i, Z] > Pli’, Z]
and P[i, Z] > P[i’, Z U {v}], which implies P[i, Z] > maxz{P[i’, Z], P[i', Z U {v}]}.
Combining both inequalities we get the recursive formula.
Join Node: If 7 is a join node with 4; and 7y as its children then Y; = Y;, = Y,,. The
recursive formula is

Pli, Z] = Pli1, Z] + Plia, Z] — w(Z)

The proof is as follows. Let Z be the maximum set in definition of P[i, Z] and S; = Z' N
Vi, Za = Z’ﬂVEQ. Then we can see that S is independent and S1NY;, = Z, so it comes under
definition of Pliy, Z], hence we have P[iy, Z] > w(Z;). Similarly we have Plis, Z] > w(Zs).
Since Z1NZy = Z, we get, Pli, Z] = w(Z') = w(Z))+w(Zy)—w(Z) < Pliy, Z|+Pli Z]—w(Z).
Conversely, let Z; be the maximum achieved in definition of P[i;, Z] and Z' in Plis, Z]. Now
we know that there is no edge between vertices of V;, \ Y; and V;, \ Y}, therefore Z3 = Z; U Z,
is independent and we have Z3 NY; = Z, which means Z3 is in definition of P[i, Z]. Hence
Pli, Z) > w(Z3) = w(Zy) + w(Zs) — w(Z) = Pliy, Z] + Plia, Z] — w(Z).

Combining two inequalities we get the recursive formula.

We can compute each value P[i, 7] in time £°Y) and number of subsets Z of Y; is 2¥. So
to compute all the values of P[i, Z] for each i will require 2°k°() time. As there are O(kn)

nodes in tree decomposition total time required is 2°k°(Mn.

10

Chapter 2

NP-completeness of the minimum

neighbourhood problem

In this chapter, we prove that minimum neighbourhood problem is NP-complete. Here is the
decision version of the minimum neighbourhood problem. We are given a graph G = (V, E)
with n vertices and two positive integers k < n and ¢. Does GG contain a set S C V of size
k such that |Ng[S]| < €7 Now we state the decision version of Minimum k-Union (MkU)

problem.

Definition 2.0.1. In MkU problem, we are given an universe U = {1,2,...,n} of n ele-
ments and a collection of sets S C 2V, as well as two integers k < |S| and ¢. Does there
exist a collection T C S with |T| = k such that | Uger S| < L.

Theorem 2.0.1. The MkU problem is NP-hard.

Now we prove that the minimum neighbourhood problem is NP-complete.

Theorem 2.0.2. The muinimum neighbourhood problem is NP-complete.

Proof. We first show that minimum neighbourhood problem is in NP. Given a graph G =
(V, E) with n vertices and two integers k < n and ¢, a certificate could be a set S C V of
size k. We could then check, in polynomial time, there are k vertices in S, and the size of

Ng[S] is less than or equal to £.

11

We prove the minimum neighbourhood problem is NP-hard by showing that that Mini-
mum k-Union problem <p Minimum Neighbourhood Problem. Given an instance (U, S, k, ¢)
of MkU problem, we construct a bipartite graph H with bipartition X and Y. The vertices in
X = {uy,ug,...,u,} are the elements in U; the vertices in Y = {s1,s9,...,8,,} correspond
to sets in S = {51, 52,...,Sn}. We make u; € X adjacent to s; € Y if and only if u; € S;.
Additionally, for each vertex u;, we add a clique of size n+1, K, ,; and we make u; adjacent

.
to each vertex in K ;.

We show that there is a collection of k sets {S;,, S;,, ..., i, } C & such that |Us_, S; | <,
for Minimum k-Union problem if and only if there is a set S C V(H) of k vertices such that
|INg[S]| < k+¢, for Minimum Neighbourhood Problem. Suppose there is a collection of k sets
{Si1; Siy: -~ Si, } C Ssuch that [UE_, S; | < €. We choose the vertices {s;,, si,, ..., 8, CV
correspond to sets S;,,Si,,...,5;,. As the size of the union of these k sets S;,, Si,, ..., 5,

is less or equal to ¢, the closed neighbourhood of s;,,s;,,...,s; will contain s;,,s;,,...,s;,

and at most ¢ vertices u, where u € U;?:lSij. Hence the size of the closed neighbourhood of

Sits Sigs - - -5 S, 1S at most k + £.

Conversely, suppose there is a collection S C V(H) of k vertices that has a closed
neighbourhood of size at most £ + ¢ < n. S cannot contain any vertex from X as each
vertex in X has at least n 4+ 2 closed neighbour in H. S cannot contain any vertex from
K!.,, as each vertex in K’ , has n + 2 closed neighbours in H. Thus S C Y and let
S ={sj,,8jys---,5j,}. We consider the k sets S;,,5;,,...,Sj, correspond to these k vertices

in S. As S has at most k+ ¢ closed neighbours, |U¥_; S;,| < ¢. This completes the proof. [

12

Chapter 3

Minimum Neighbourhood Problem

In this chapter, we propose a dynamic programming algorithm for minimum neighbourhood
problem. Recall that given a graph G = (V, E) and a positive integer p, we want to find
S C V such that |S| = p and the size of N[S] is minimum. We provide a dynamic program-
ming algorithm on a tree decomposition of G. Given a graph G, an integer p and a tree
decomposion (T, X; : t € V(T')), subproblems will be defined on G; = (V;, E;) where V} is the
union of all bags present in subtree of T' rooted at t, including X, and E} is the set of edges e
introduced in the subtree rooted at t. We define a colour function f : X; — {0,1,0,1} that
assigns four different colours to the vertices of X;. The meanings of four different colour are

given below:

1 (black vertices): vertices contained in set S whose neighbourhood size we wish to calculate
in Gy.

0 (white vertices): vertices adjacent to black vertices, these vertices are contained in partial
solution in Gy.

0 (green vertices): vertices not adjacent to black vertices in G;.

1 (gray vertices): vertices whose colour (black, white or green) has not been decided yet.

At the end of algorithm, the vertices of G will be coloured by colours black, white and
green, no vertex will be of grey colour, that is no vertex will be left undecided. The reason

behind using grey colour is that some vertices of a bag may be in S or in N(S) depending

13

on the vertices and edges which are not introduced so far. So we consider subproblems
where role of some vertices are left undecided, since such subproblems are important for
getting the optimal solution. Now we introduce some notations. Let X C V and consider
a colouring f : X ~— {1,0,0,1}. For a € {1,0,0,1} and v € V(G) a new colouring
fosa : X U{v} = {1,0,0,1} is defined as follows:

f(z) when z #v

«Q when . = v

f’w—m(x) =

Let f be a colouring of X, then the notation f|, is used to denote the restriction of f to Y,
where Y C X.

For a colouring f of X;, we denote by c[t, f,4] the minimum size of N(S) C V; such that

1. SCV,and |S|=1.
2. SN X, = f~1(1) which is the set of vertices of X; coloured black.
3. N(S)NX; = f71(0), which is the set of vertices of X; coloured white.

4. Bach vertex in V; \ f~'(1) is either in S, N(S) or non-adjacent in G, to the vertices
in set S. As all grey(1) vertices belong to X;, removal of f~1(1) from X; will result in

A~

removal of all grey(1) vertices from V;.

We call such a set N(S) a minimum neighbourhood set compatible for (¢, f,4). If no compat-
ible N[S]\ S exists, then we put c[t, f,i] = oo also clt, f,i < 0] = oo. Since each vertex in
X; can be coloured with 4 colours (1,0, 0, i), the number of possible colourings f of X; is
4%l and for each colouring f we vary i from 0 to p. The size of minimum neighbourhood
NI[S]\ S of G with |S| = p will be ¢[r, ¢, p|, where r is the root node of tree decomposition

of G as G =G, and X, = (). Now we present the recursive formulae for the values of c.

Leaf node: If ¢ is a leaf node, then the corresponding bag X; is empty. Hence the colour
function f on X; is an empty colouring; the number i of vertices coloured black cannot be

greater than zero. Thus we have c[t,(),i = 0] = 0 and c[t, (), > 0] = .

14

Introduce node: Suppose ¢ is an introduce node with child ¢ such that X; = X, U {v}
for some v ¢ Xy. The introduce node introduces the vertex v but does not introduce the
edges incident to v to GG;. So when v is introduced by node ¢ it is an isolated vertex in
G;. Vertex v cannot be coloured white 0; as it is isolated and it cannot be neighbour of
any black vertex. Hence if f(v) = 0, then c[t, f,i] = co. When f(v) = 1, v is contained
in S. As v is an isolated vertex, it does not contribute towards the size of N(S), hence
clt, f,i] = c[t', fix, i — 1]. When f(v) = 0 or f(v) = 1, v does not contribute towards the
size of N(S). Here minimum neighbourhood set compatible for (¢, fi, i) is the same as
minimum neighbourhood set compatible for (¢, f,7). So, c[t, f,i] = c[t',tf| X, i]. Combining

all the cases together, we get

00 if f(v)=0
clt. foi] = qelt' fix i = 1] i fv) =1
ct’, fix 1] otherwise

Introduce edge node: Let ¢t be an introduce edge node that introduces the edge (u,v), let
t’" be the child of t. Thus X; = X,; the edge (u, v) is not there in ¢/, but it is there in ¢. Let

f be a colouring of X;. We consider the following cases:

e Suppose f(u) = 1 and f(v) = 0. This means v € S and v is non-adjacent to black
vertices in Gy. But v and v are adjacent in G;. Thus c|t, f,i] = co. The same conclusion

can be drawn when v is coloured black and u is coloured green.

e Suppose f(u) =1 and f(v) = 0. This means u € S and v € N(S) in G;. In order to
get a minimum neighbourhood set compatible for (¢, f,7), we consider precomputed so-
lution for " where the colour of v is grey, that is , we consider precomputed minimum
neighbourhood set compatible for (¢, f,_;,7). The size of minimum neighbourhood
compatible set for (¢, f,7) is one more than the size of minimum neighbourhood com-
patible set for (¢, f, ,1,1), that is, c[t, f,i] = 1 +c[t’, f,.,1,]. The same conclusion can

be drawn when v is coloured black and u is coloured white.

e Other colour combinations of u and v do not affect the size of N(S) or do not con-
tradict the definition of campatability. So minimum neighbourhood set compatible for

t, /i Xt,,i is the same as minimum neighbourhood compatible set for ¢, f,7 and hence

clt, f,i] = c[t, f‘Xt/’i]'

15

Combining all the cases together, we get

.

o0 if [f(w), £(0)] = 0,1
00 if [f(u), f(v)] = [1,0]

cft, £,i] = qelt’, fui i + 1 [f(u), f(0)] = [1,0]
clt’, funinil +1 i [f(u), f(0)] = 10,1]
clt, f X, 1] otherwise

Forget node: Let t be a forget node with the child ¢ such that X; = X, \ {w} for some
vertex w € Xy. Here the bag X, forgets the vertex w. At this stage we decides the final colour
of the vertex w. We observe that G, = G;. The closed neighbourhood sets compatible for
(', furs1,9)s (8 furs0,9)s (', fusgs) are also compatible for (¢, f,i). On the other hand the
closed neighbourhood compatible set for (¢, f,i) is also compatible for (¢, fu1,4) if w € S

or (t', fuso,i) if w € (N[S]\ S) or (t, f, ,5,7) if w ¢ N[S]. Hence

C[taﬁi]:min{ [s Jwes1,]7 [t Jw—0,]7 [t/vfwwf)vi]}

Join Node: Let t be a join node with children ¢; and ¢5, such that X; = X;, = X,. Let
f be a colouring of X;. We say that colourings f; of X;, and f5 of X, are consistent for

colouring f of X, if the following conditions are true for each v € X;:

1. f(v) =1if and only if fi(v) = fo(v) =
2. f(v) =0 if and only if fi(v) = fo(v)
3. f(v) =1 if and only if f1(v) = fo(v)

4. f(v) = 0if and only if (f,(v), fo(v)) = (0,1) or (1,0)

0

Il
>

Let f ba a colouring of X;; f1 and f> be two colourings of X;, and X, respectively consistent
with f. Suppose N[S;]\ S is a neighbourhood compatible set for (t1, f1,4;) and N[Ss]\ Ss is
a neighbourhood compatible set for (¢, fo,2), where |S7| = i1 and |Sy| = 5. Set S = S1US,,
clearly |S| = [S1|+|S2|—|f~1(1)]. Tt is easy to see that N[S]\S = (N[S1]\S1)U(N[S2]\S2) is a

16

neighbourhood compatible set for (¢, f, 1), where i = i;+is—|f~*(1)|. According to Condition
4 in the definition of consistent function, each v € X; that is white in f, we make it white
either in f; or fy. In other words, for such S; and Sy, we have (N[S1]\ S1)N(N[S2]\Ss) = 0;
it follows that

INISTA S| = [(N[S1\ SO+ [(N[S2] \ S2)l-

Consequently, we have the following recursive formula:

c(t, f,1) :mm{il . min {C(tlafbil)+C(t27f2>i2)}}'

fi.f2 s i=tyFig—|fT1(1)]

We now analyse the running time of the algorithm. The time needed to process each
leaf node, introduce vertex node, introduce edge node or forget node is 4*k°Mp as each
bag X, can be coloured in 4% ways, adjacency of vertices can be checked in k) time and
for each colouring f we vary i from 0 to p, where k is tree width and hence |X;| < k.
The computation of ¢ value for join node takes more time and it can be done as fol-
lows. If colourings f; and f, are consistent with f, then for every v € X; we have
(f(v), i(v), 1(v)) € {(1,1,1),(0,0,0),(1,1,1),(0,0,1),(0,1,0)}. Hence there are exactly
5%t triples of colourings (f, f1, f2) such that f; an f, are consistent with f, since we have
5 possibilities of (f(v), f1(v), fo(v)) for every vertex v € X;. In order to compute c(t, f, 1),
we iterate through all triples (f, f1, f2); then for each considered triple (f, f1, f2) we vary iy
from 0 to p and iy varies according to equation i = iy + o — |f~|. Also ¢ varies from 0
to p. So the time needed for each join node is 5*k°Mp?. There are O(kn) nodes in a nice
tree decomposition. Therefore, the time complexity of the algorithm is 5*k°(Mp?n, where

n=V(G).

17

18

Chapter 4

Conclusions

Given a graph G = (V, F) and an integer k, we want to find a S C V, such that |S| = k and
the cardinality of N[S] is minimum. This problem is called minimum neighbourhood prob-
lem. We propose a fix parameter tractable (FPT) algorithm for minimum neighbourhood
problem parameterized by the treewidth of the graph G. It is an interesting open problem
to study minimum neighbourhood problem with respect to the other parameters. There is
no known FPT algorithm for minimum neighbourhood problem when parameterized with
respect to the solution size. It is also interesting to study parameterized complexity of min-
imum neighbourhood problem for special graph classes like, chordal graph, interval graphs,

proper interval graphs, split graphs, etc.

19

20

Appendices

21

Appendix A

Python Code

This is a python code for the dynamic programming algorithm discussed above, using graph

H and its nice tree decomposition with introduce edge nodes as an input (from page 8).

#class vercol is defined to assign colour to vertices
class vercol:
def __init__(whose, colour):

whose . colour = colour

#All vertices are assigned grey colour. This will be the default
#colour of vertices. As program progresses, their colour will change
#according to algorithm.

a = vercol ("grey”)

7 ”

vercol (" grey

(
(
= vercol (" grey”
vercol (" grey”
(9
()
(

7 gre)
7 grey’

b2 ”

grey

= vercol

<

= vercol

R = O & o T
Il

)
)
)
)
)
= vercol)

#m is the total number of vertices in the input graph.

m="7

#class bag is defined to create nodes and assign properties to them.

class bag:

23

def __init__(whose, vertices,
number) :

vertices = vertices
childrenl = childrenl

type = nodetype

whose .
whose .
whose .
whose. hero = herovertex

whose .number = number

2nd

#1st entry assigns vertices to node,

childrenl ,

nodetype ,

herovertex ,

is the child of node which

#establishes connection between current node to its child node,
#3rd entry assigns node type (LN = leaf node, IVN = introduce vertex
#node, IEN = introduce edge node, FN = forget node, JN = join node),

#4th entry (herovertex) assigns that vertex to the node which

#defines its

#vertex b (hence called herovertex),

node type. For example bag?2

is introduce vertex node of

#5th entry is the number assigned to the bag.
bagl = bag([], [, "IN, [], 1)

bag2 = bag([b], bagl, "IVN”, [b], 2)

bagd = bag([b, c], bag2, "IVN”, [c], 3)

bagd = bag([a, b, c], bag3, "IVN”, [a], 4)

bagh = bag([a, b, c], bagd, "IEN”, [a, b], 5)
bag6 = bag([a, b, c], bagh, "IEN”, [b, c], 6)
bag?7 = bag([a, c], bag6, "EN”, [b], 7)

bag8 = bag([], [], "IN", [], 8)

bag9 = bag([d], bag8, "IVN” [d], 9)

bagl0 = bag([c, d], bag9, "IVN”, [c], 10)

bagll = bag([e, ¢, d], baglO, "IVN”, [e], 11)
bagl2 = bag([e, ¢, d], bagll, "IEN", [e, d], 12)
bagl3 = bag([e, ¢, d], bagl2, "IEN”, [d, c¢], 13)
bagld = bag([e, c], bagl3, "EN”, [d], 14)

bagls = bag([a, e, c], bagld, "IVN”, [a], 15)
bagl6 = bag([a, e, c], bagls, "IEN”, [a, e], 16)
bagl7 = bag([a, c], bagl6, "EN”, [e], 17)

bagl8 = bag([a, c], bagl?7, "JN”, [], 18)

bagl9 = bag([], [], "LN”, [], 19)

bag20 = bag([g], bagl9, "IVN” | [g], 2)

bag2l = bag([c, g], bag20, "IVN”, [c], 21)

bag22 = bag ([f, ¢, g], bag2l, "IVN”, [f], 22)
bag23 = bag ([f, ¢, g], bag22, "IEN”, [f, g], 23)
bag24 = bag ([f, ¢, g], bag23, "IEN", [g, c], 24)
bag25 = bag([f, c], bag24, "EN”, [g], 25)

24

65 bag26 = bag([a, f, c], bag25, "IVN”, [a], 26)

66 bag27 = bag([a, f, c], bag26, "IEN”, [a, f], 27)

67 bag28 = bag([a, c], bag27, "FN”,k [f], 28)

68 bag29 = bag([a, c], bag28, "IN”, [], 29)

69 bag30 = bag([a], bag29, "EN”, [c], 30)

70 bag3l = bag([], bag30, "FN”, [a], 31)

71

73 #parent () function defines the parental relation between nodes, so now the

nodes are

74 #connected to their parent nodes.
75 def parent(x):

76 if x=bagl:

77 return bag2
78 elif x=bag2:

79 return bag3
80 elif x==bag3:

81 return bag4
82 elif x=bag4:

83 return bagh
84 elif x==bagh:

85 return bag6
86 elif x==bagb:

87 return bag7
88 elif x=bagT:

89 return bagl8
90 elif x==bag8§:

91 return bag9
92 elif x=bag9:

93 return baglO
94 elif x=—=bagl0:

95 return bagll
96 elif x==bagll:

97 return bagl2
98 elif x=bagl2:

99 return bagl3
100 elif x=bagl3:
101 return bagl4
102 elif x=bagl4:
103 return baglh
104 elif x=baglh:

25

105 return bagl6

106 elif x=bagl6:
107 return bagl?7
108 elif x=—=baglT7:
109 return bagl8
110 elif x==bagl8:
111 return bag29
112 elif x=bagl9:
113 return bag20
114 elif x=bag20:
115 return bag2l
116 elif x=bag2l:

117 return bag22
118 elif x=bag22:
119 return bag23
120 elif x=bag23:

121 return bag24
122 elif x=bag24:
123 return bag2h
124 elif x=bag25:
125 return bag26
126 elif x=bag26:

127 return bag27
128 elif x=bag27:
129 return bag28
130 elif x=bag28:

131 return bag29
132 elif x=bag29:

133 return bag30
134 elif x=bag30:

135 return bag3l
136

137 #children2 () defines the second child of node if it has any (join
138 #node has two children).
139 def children2 (x):

140 if x=bagl8:

141 return bag7
142 elif x=bag29:

143 return bagl8

145 #This concludes input.

26

160

161

162

163

164

166

167

168

169

180

181

182

183

184

#Creating a list of length n+2, where n is the total number of nodes.
colourlist =[]

n=31

for i in range(n+1):

colourlist .append (1)

#Defining minfun function which embeds the recursive formula for
#join node.
#It takes s and u as input where s is a node and u is an integer.

def minfun (s, u):

#Empty lists are created.
minlist =[]

blacklist =[]

whitelist =[]

#This ’'for’ loop insures that all black vertices and all white
#vertices in node s go into blacklist and whitelist
#respectively .
for x in s.vertices:
if x.colour = 7 white”:
whitelist .append(x)
elif x.colour = ”black”:

blacklist .append (x)

#Defining function r with ¢, v and q as inputs, where ¢ is a
#list , v is an integer and q is a node.
#Function w will be defined later.
#This function assigns colours from list ¢ to the vertices in
#whitelist and returns function w taking input as one of the
#children of q as an input.
def r(c, v, q):

for x in range(len(whitelist)):

whitelist [x]. colour = c¢[x]
return W(q.childrenl , v, q.hero)

#Defining function rr with ¢, v and q as inputs, where ¢ is a

#list , v is an integer and q is a node.

27

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

216

217

218

219

220

221

222

223

224

225

226

227

#Function w will be defined later.
#This function assigns colours from list ¢ to the vertices in
#whitelist and returns function w taking input as other child of
#q as an input.
def rr(c, v, q):

for x in range(len(whitelist)):

whitelist [x]. colour = c[x]
return W(children2(q), v, q.hero)

#n is assigned the value equal to length of whitelist created
#earlier .

#List cash is created whose each entry is a list. Each entry is
#n length long list and its entry can either be ”white” or

grey”.

#List cash contains all such permutations of n length list with
#’ white” or ”grey” as entries.

#Length of cash will be 2°n.

#Each entry of recash is complementery opposite to entry at the
#same position in cash.

#For example if an entry at 4th position in cash looks like
#[” white” ;” grey”] then entry at 4th position in recash will be
#[” grey” ,” white 7].

import itertools

n=len (whitelist)

cash = list (itertools.product ([”white”, ”grey”], repeat=n))
recash = cash[:: —1]

#For each entry in cash and for each t (from 0 to utm+1l) we
#calculate p and append it to minlist .
#Then minimum entry in minlist is returned.
#This loop represents the recursive relation of join node.
for x in cash:
for t in range (utmn+1):
p =r(x,t,s8) + rr(recash|[cash.index(x)],u—t+len(blacklist),s)
minlist .append(p)

return min(minlist)

#colourlist will be used to keep the record of colour of all vertices at
#each step.

#Here nth element of colourlist is substituted with current colourings of

28

228 #vertices. As at this step all vertices are ”grey” coloured.

229 colourlist [n]=[a.colour, b.colour, c.colour, d.colour, e.colour, f.colour,
g.colour |

230

231 #Function W represents the recursive relations.

232 #It takes node, z and herocolour as an input, where z is an integer and

233 #herocolour is in a form of a string.

234 #herocolour is the colourings assigned by the recurrence relation of

235 #parent node to herovertex which are then used by child node.

236 #7z is the integer p which is the size of vertex set whose minimum

237 #neighbourhood size we want to find out.

238 def W(node, z, herocolour=["grey”]):

239

240 #Here vertices are coloured by the colourings bestowed upon

241 #by their parent node which we already stored in colourlist ,

242 #except for join node.

243 #Each time herovertex of parent node will be coloured in

244 #different colour. So after each iteration , colouring given

245 #by parent nodes to other vertices must be remembered.

246 #But this is not the case with join node as join node does

247 #not have a herovertex it has only one iteration in this

248 #function (i.e, function W).

249 #The iterations in recurcive relations of join node are

250 #taken care of in minfun function and not in function W.

251 if node.type="JN":

252 None

253 else:

254 [a.colour, b.colour, c.colour, d.colour, e.colour, f.colour,

255 g.colour]=colourlist [node.number

256

257 #Here herovertex is coloured as the recursive relation of

258 #parent node commanded i.e, colour of herovertex is changed

259 #to colours in herocolour list.

260 #Again leaf node and children of join node will be excluded

261 #from here as leaf node doesn’t have a child and join node

262 #does not have herovertex.

263 if parent(node) = [] or parent(node).hero — []:

264 None

265 else:

266 for k in range(len(herocolour)):

267 parent (node) . hero [k]. colour = herocolour [k]

29

268

269

289

290

291

292

293

294

296

297

298

299

301

302

303

304

#This is recurrence relation for Introduce Vertex Node.
if node.type="IVN”:
if node.hero[0]. colour=="white” :
return float (’inf’)
elif node.hero[0].colour="black”:
colourlist [node. childrenl .number]=[a.colour, b.colour ,
c.colour , d.colour, e.colour, f.colour, g.colour]
return W(node. childrenl , z—1, [”black”])
elif node.hero[0].colour="green”:
colourlist [node. childrenl .number|=[a.colour, b.colour
c.colour , d.colour, e.colour, f.colour, g.colour]
return W(node. childrenl , z, [”green”])
else:
colourlist [node. childrenl .number|=[a.colour, b.colour
c.colour, d.colour, e.colour, f.colour, g.colour]
return W(node. childrenl , z)

#This is recurrence relation for Forget Node.

elif node.type="FN”:
colourlist [node. childrenl .number]=[a.colour, b.colour,
c.colour, d.colour, e.colour, f.colour, g.colour]
return min(W(node. childrenl, z, [”black”]),
W(node. childrenl , z, [”white”]), W(node.childrenl , z,

["green”]))

#This is recurrence relation for Introduce Edge Node.
elif node.type="IEN”:

if node.hero[0].colour="black” and

node. hero [1]. colour="green” :
return float (’inf ")
elif node.hero[0].colour="green” and
node. hero[1]. colour="black”:
return float (’inf’)
elif node.hero[0].colour="black” and
node. hero [1]. colour="white” :
colourlist [node. childrenl .number|=[a.colour, b.colour
c.colour, d.colour, e.colour, f.colour, g.colour]
return W(node. childrenl , z, [”black” ,”grey”]) + 1
elif node.hero[0].colour="white” and

node. hero [1]. colour="black” :

30

311

312

313

314

319

colourlist [node. childrenl .number]=[a.colour, b.colour,

c.colour, d.colour, e.colour, f.colour, g.colour]

return W(node. childrenl , z, [7grey”,”black”]) + 1
else:

colourlist [node. childrenl .number|=[a.colour, b.colour

c.colour, d.colour, e.colour, f.colour, g.colour]

return W(node. childrenl , z,

[node.hero [0]. colour ,node.hero[1]. colour])

#This is recurrence relation for join node (by using minfun).
elif node.type="JN":
colourlist [node. childrenl .number]|=[a.colour, b.colour,
c.colour, d.colour, e.colour, f.colour, g.colour]
colourlist [children2 (node) .number]=[a.colour, b.colour,
c.colour, d.colour, e.colour, f.colour, g.colour]

return minfun (node, z)

#This is the base case of algorithm.
elif node.type="LN":
if z==0:
return 0
else:

return float (’inf’)

#Finally we call function w with inputs as the root node which in
#this case is bag26 and parameter p(size of vertex set whose minimum
#neighbourhood size we are about to find) whose value is 8 in this

#particular case.
print (W(bag26, 8))

Listing A.1: Python example

31

32

Bibliography

1]

[10]

Bodlaender, H., On linear time minor tests with depth-first search, J. Algorithms, 14,
pp- 1-23, 1993.

Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani, Algorithms, Mc Graw
Hill, 2006.

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S., Parameterized Algorithms, Springer, 2015.

Downey, Rodney G., Fellows, M.R., Parameterized Complexity, Springer, 1999.

Eden Chlamtac, Michael Dinitz, Yury Makarychev. Minimizing the Union: Tight Ap-
proximations for Small Set Bipartite Vertex Expansion, 24 Nov. 2014.

Chen, J., Kneis, J., Lu, S., Mlle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang, F.,
Randomized divide-and-conquer: improved path, matching, and packing algorithms,
SIAM J. Computing 38(6), 2526-2547, 2009.

Koutis, 1., Faster algebraic algorithms for path and packing problems. In Proceedings of
the 35th International Colloquium of Automata, Languages and Programming (ICALP),
Lecture Notes in Comput. Sci., vol. 5125, pp. 575-586, 2008.

Naor, M., Schulman, L.J., Srinivasan, A., Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 182-191. IEEE, 1995.

Philipp Zschoche, Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Complexity of
Finding Small Separators in Temporal Graphs, 2015.

Seroussi, G. and Bshouty, N.H., Vector sets for exhaustive testing of logic circuits, IEEFE
Transactions on Information Theory, Vol 34(3), 513-522, 1988.

33

	Abstract
	Introduction
	Preliminaries
	Weighted Independent Set

	NP-completeness of the minimum neighbourhood problem
	Minimum Neighbourhood Problem
	Conclusions
	Appendices
	Python Code

