
The Minimum Neighbourhood
Problem

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Chinmay Joshi

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Dr. Soumen Maity

c© Chinmay Joshi 2019

All rights reserved

This thesis is dedicated to my parents

Declaration

I hereby declare that the matter embodied in the report entitled The Minimum

Neighbourhood Problem are the results of the work carried out by me at the Department

of Mathematics, Indian Institute of Science Education and Research, Pune, under the

supervision of Dr. Soumen Maity and the same has not been submitted elsewhere for any

other degree.

Chinmay Joshi

Acknowledgments

I would first like to thank Dr. Soumen Maity. He consistently allowed this to be my own

work, but steered me in the right direction whenever he thought I needed it. I would also

like to thank Dr. Saket Saurabh from the Institute of Mathematical Sciences. The door to

his office was always open whenever I had a question about my work. I would also like to

acknowledge Dr. Geevarghese Philip from The Chennai Mathematical Institute as the second

reader of this thesis, and I am gratefully indebted to him for his very valuable comments on

this thesis. Finally, I must express my very profound gratitude to my parents for providing

me with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

ix

x

Abstract

Given a graph G = (V,E) with n vertices and a positive integer s ≤ n, we want to find a set

S ⊆ V of size s such that |NG[S]| is minimum, where NG[S] denotes closed neighbourhood

of S. We call this problem as the minimum neighbourhood problem (MNP). In this project,

we give a parameterized algorithm which takes as input a graph G, its tree decomposition

with width at most k, and a positive integer s, and returns |N [S]| such that S ⊆ V , |S| = s

and S has minimum neighbours in G, where the parameter is k.

xi

xii

Contents

Abstract xi

Introduction 1

1 Preliminaries 5

1.1 Weighted Independent Set . 9

2 NP-completeness of the minimum neighbourhood problem 11

3 Minimum Neighbourhood Problem 13

4 Conclusions 19

Appendices 21

A Python Code 23

xiii

xiv

Introduction

The neighbourhood of v, written NG(v), is the set of vertices adjacent to v in G; and

N [v] = N(u) ∪ {v} denotes the closed neighbourhood of v. For a subset S ⊆ V (G), we

use NG[S] = ∪v∈SNG[v], to denote the closed neighbourhood of S in G. The input to the

parameterized version of Minimum Neighbourhood Problem is a graph G with two integers

s, ` ≤ |V (G)|, and (G, s, `) is a yes-instance ifG has a set S of s vertices such that |NG[S]| ≤ `.

Computational problems are classified on the basis of their complexity. To decide how

complex a problem is, a generally accepted standard is the time in which it can be solved

by an algorithm. An “efficient” algorithm is one that runs in time polynomial in the size of

input, to yield the solution. The problems that are solvable by polynomial time algorithms

are considered “easy” and those that require super polynomial time algorithms are deemed

“hard”.

The computationally hard problems are classified as NP-hard. These problems are neither

known to have a polynomial time solution, nor has anyone been able to prove that such a

solution does not exist. Several problems that do occur in practice, are NP-hard. The best

known algorithms that are used to solve them, require exponential time or worse. Some ap-

proaches to tackle these problems are approximation and parameterization. Approximation

algorithms are those that run in polynomial time to yield a solution that is closed to the

optimum. In this technique, we relax the constraint of optimality and can therefore aim for

a polynomial time solution.

A relatively recent approach to solving NP-hard problems is parameterization [3, 4]. A

parameterized problem has an input instance x, as well as a parameter k, which is believed

to be sufficiently small compare to the size of input instance. The art of parameterization

lies in selecting the best possible parameter such that our algorithm is efficient, and the

computational explosion is restricted to the parameter. Some NP-hard and NP-complete

1

problems can be solved by algorithms that are exponential in the size of a fixed parameter

while polynomial in the size of the input. Such problems are called fixed parameters tractable

(FPT). FPT contains the fixed parameter tractable problems, which are those that can be

solved in time f(k)|x|O(1) for some computable function f .

Definition 0.0.1. [3] A parameterized problem is a language L ⊆ Σ∗ × N , where Σ is a

fixed, finite alphabet. For instance (x, k) ∈ Σ∗ ×N , k is called the parameter.

For example, in parametrized algorithm, the problem of finding minimum vertex cover

in graph G translates to whether there exists a vertex cover of size at most k in G, where k

is the parameter.

Definition 0.0.2. [3]A parameterized problem L ⊆ Σ∗×N is called fixed-parameter tractable

(FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a computable

function f : N → N , and a constant c such that, given (x, k) ∈ Σ∗ × N the algorithm A

correctly decides whether (x, k) ∈ L in time bounded by f(k)|(x, k)|c. The complexity class

containing all fixed-parameter tractable problems is called FPT.

For example, the vertex cover problem is FPT. By using kernalization algorithms and

reduction methods, the vertex cover problem can be solved in O(n
√
m+1.4656kkO(1)) where

n and m are the number of vertices and edges in G respectively and k is the parameter.

Definition 0.0.3. [3] (XP) A parameterized problem L ⊆ Σ∗ ×N is called slice-wise poly-

nomial (XP) if there exists an algorithm A and two computable functions f, g : N → N

such that, given (x, k) ∈ Σ∗ × N , the algorithm A correctly decides whether (x, k) ∈ L in

time bounded by f(k)|(x, k)|g(k). The complexity class containing all slice-wise polynomial

problems is called XP.

To rule out certain problems are not FPT, there is a notion of lower bound which is

similar to the NP-completeness theory of polynomial time computation. We observe one

difference though, there are different levels of hardness classes W[1],W[2],.. in parameterized

complexity, unlike in classical complexity where all the NP hard problems are reducible to

each other.

The primary assumption here is FPT 6= W [1] which is a stronger assumption than

P 6= NP . We introduce a notion of reduction to classify problems into such classes. If we

2

can reduce a parameterized problem A to a parameterized problem B such that if B has an

algorithm of a particular kind then so does A.

For our purposes, we mainly try to rule out the existence of an FPT algorithm for MkU

problem. It is known that CLIQUE parameterized by solution size is W [1] complete. This

means that W [1] is the set of all problems that can be obtained through a parameterized

reduction from CLIQUE parameterized by solution size. We now recall the notion of param-

eterized reduction. If we can find a parameterized reduction from CLIQUE or some other

problem X , then we can say that X cannot have an FPT algorithm unless FPT = W [1].

Definition 0.0.4. [3] Let A,B ⊆ Σ∗×N be two parameterized problems. A parameterized

reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance

(x′, k′) of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the running time is f(k)|x|O(1) for some computable function f .

The following results hold for a parameterized reduction.

Theorem 0.0.1. [3] If there is a parameterized reduction from A to B and B is FPT, then

A is FPT as well.

Proof. Let (x, k) be the instance of A and there is a parameterized reduction from A to

B giving equivalent instance (x
′
, k
′
). As discussed above, the running time of it would be

f(k)|x|c1 , where c1 is some constant. By definition of parameterized reduction, k
′ ≤ g(k) and

|x′| ≤ f(k)|x|c1 as running time of reduction should be an upper bound on size of produced

instance. Now, B is FPT hence the reduced instance is solvable in time h(k
′
)|x′|c2 . By

using relations mentioned above we get, h(k
′
)|x′ |c2 ≤ h(g(k))|f(k)|x′|c1|c2 . So total running

time to solve A is equal to the time for reduction plus h(g(k))|f(k)|x′ |c1|c2 = f(k)|x|c1 +

h(g(k))|f(k)|x′|c1|c2 = f
′
(k)|x|c1c2 , where f

′
(k) = h(g(k))f(k) + f(k) which is a computable

function. Therefore A is FPT.

Theorem 0.0.2. [3] If there are parameterized reductions from A to B and from B to C,

then there is a parameterized reduction from A to C.

3

Proof. Let (x, k) be the instance of A and (x1, k1) be the instance of B reduced from A. Also,

let (x2, k2) be the instance of C reduced from instance (x1, k1) of B. Now, let’s suppose that

we have parameterized reduction from A to B and B to C. For parameterized reduction

from A to B we get, k1 ≤ g1(k) and f1(k)|x|c1 to be the running time of reduction. Similarly

for reduction from B to C, we get, k2 ≤ g2(k1) and f2(k1)|x|c2 . Here f1, f2, g1, g2 are

all computable functions. Now, from above equations we can see that k2 ≤ g2(g1(k)) and

reduction from A to C will have time complexity g2(f1(k))(g1(k)|x|c1)c2 = g3(k)|x|c3 , where

g3(k) = g2(f1(k))(g1(k))c2 and c3 = c1 ∗ c2. Now, (x, k) is yes instance of A if and only if

(x1, k1) is an yes instance of B; and (x1, k1) is yes instance of B if and only if (x2, k2) is yes

instance of C. Hence (x, k) is yes instance of A if and only if (x2, k2) is yes instance of C.

Therefore reduction fromA to C satisfies all the requirements of parameterized reduction.

4

Chapter 1

Preliminaries

We begin with the definition of tree decomposition of a given graph G. The goal is to provide

a dynamic programming algorithm on a tree decomposition that finds a subset S ⊆ V of

size s having minimum size neighbourhood.

Definition 1.0.1. A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T)) where T is

a tree and each node t of the tree T contains a bag Xt ⊆ V (G), such that the following

conditions are satisfied:

1. Each vertex of G is contained in at least one bag.

2. For every edge uv ∈ E(G), both u and v are contained in at least one bag.

3. For every u ∈ V (G), the set {t ∈ V (T) | u ∈ Xt} induces a connected subtree of the

tree T .

Definition 1.0.2. The width of a tree decomposition is defined as width(T) = maxt∈V (T)|Xt|−
1 and the treewidth tw(G) of a graph G is the minimum width among all possible tree de-

compositions of G.

Definition 1.0.3. A tree decomposition (T, {Xt}t∈V (T)) is said to be nice tree decomposition

if the following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as root node

r. Thus Xr = ∅ and Xl = ∅ for each leaf l.

5

2. There are three types of non-leaf nodes:

• Introduce node: we say a vertex v is introduced at node t if Xt = Xt′ ∪ {v}, where

v /∈ Xt′ and t
′

is the only child of t in T ; we say node t is an introduce node and

introducing vertex v.

• Forget node: a node t is a forget node and forgetting vertex v if Xt = Xt′ \{v}, where

v ∈ Xt′ and t
′

is the only child of t.

• Join node: a node t is a join node if Xt = Xt1 = Xt2 , where t1 and t2 are two children

of t.

Note that, by the third property of tree decomposition, a vertex v ∈ V (G) may be

introduced several time, but each vertex is forgotten only once. To control introduction

of edges, sometimes one more type of node is considered in nice tree decomposition called

introduce edge node. An introduce edge node is a node t, labeled with edge uv ∈ E(G), such

that u, v ∈ Xt and Xt = Xt′ , where t
′

is the only child of t. We say that node t introduces

edge uv. Node t is inserted in nice tree decomposition as a child of forget node of u, given

that u is forgotten before v.

a

b

c d

e

f

g

Let this graph be H

6

Nice tree decomposition for the graph H.

∅

{a}

{a, c}

{a, c}

{a, f, c}

{f, c}

{f, c, g}

{c, g}

{g}

∅

{a, c}

{a, c}

{a, e, c}

{e, c}

{e, c, d}

{c, d}

{d}

∅

{a, c}

{a, b, c}

{b, c}

{b}

∅

Nice tree decomposition with Introduces Edge Nodes is given below:

Nodes 5, 6, 12, 13, 16, 23, 24, 27 are introduce edge nodes of edges ab, bc, ed, dc, ae, fg, gc, af

respectively.

7

∅31

{a}30

{a, c}29

{a, c}28

{a, f, c}27

{a, f, c}26

{f, c}25

{f, c, g}24

{f, c, g}23

{f, c, g}22

{c, g}21

{g}20

∅19

{a, c)18

{a, c}17

{a, e, c}16

{a, e, c}15

{e, c}14

{e, c, d}13

{e, c, d}12

{e, c, d}11

{c, d}10

{d}9

∅8

{a, c}7

{a, b, c}6

{a, b, c}5

{a, b, c}4

{b, c}3

{b}2

∅1

8

Lemma 1.0.1. [3] A graph G with a tree decomposition of width at most k also has a nice

tree decomposition of width at most k. Moreover, given a tree decomposition (T, {Xt}t∈V (T))

of G of width at most k, its nice tree decomposition of width at most k that has at most

O(k|V (G)|) nodes can be computed in time O(k2.max{|V (G)|, |V (T)|}).

1.1 Weighted Independent Set

In this section, we give an example of FPT dynamic programming algorithm using treewidth

as a parameter. We will focus on weighted independent set problem. Given a graph G, where

each vertex is assigned a weight, the task is to find weighted independent set of maximum

weight in the graph. This is the maximum weighted independent set problem.

Let G be an n-vertex weighted graph and (T, {Yi}i∈V (T)) be the tree decomposition on G.

We can assume that this is a nice tree decomposition using above lemma. Let r be the root

node and let Vi be the union of all bags in subtree rooted at i including Yi.

We will be defining a subproblem as finding maximum weighted independent Z
′
, given Z ⊆ Yi

and Z ⊆ Z
′

such that Z
′ ⊆ Vi and Z

′ ∩ Yi = Z. We denote maximum possible weight of

Z
′

= P [i, Z]. We put P [t, Z] = −∞ in case no such Z
′

exists. Our aim would be to find

value of P [r, φ].

Now we will give recursive formulas:

Let S be any subset of Yi and its independent, if not, then P [i, Z] = −∞.

Leaf Node: If i is a leaf node then P [i, φ] = 0.

Introduce vertex Node: If i is introduce vertex node with i
′

as a child then we know that

Yi = Yi′ ∪ {m}, where m is the introduced vertex. Then following relation holds:

P [i, Z] =

P [i
′
, Z] if m /∈ Z

P [i
′
, Z \ {m}] + w(m) otherwise ,

where w(m) is weight of m.

Case 1: m /∈ Z. Then all families of set Z
′

under consideration in P [i, Z] and P [i
′
, Z] are

equal, hence P [i, Z] = P [i
′
, Z]

Case 2: m ∈ S. Assume Z
′

is maximum independent set attained in definition of P [i, Z].

Clearly Z
′ \ {m} comes under definition of P [i

′
, Z \ {m}], so we get P [i

′
, Z \ {m}] ≥ w(Z

′ \
{m}) = w(Z

′
) − w(m) = P [i, Z] − w(m), which implies that P [i, Z] ≥ P [i

′
, Z \ {m}] +

9

w(m). Conversely, let the maximum achieved in definition of P [i
′
, Z \ {m}] is Z1, then

Z1 ∩Yi′ = Z \ {m} and m does not a neighbour in mi′ \Yi′ so m does not have neighbour in

Z1 \ Yi′ . Hence, Z1 ∪ {m} is independent set and comes in definition of P [i, Z]. So we get,

P [i, Z] ≥ w(Z1 ∪ {m}) = w(Z1) + w(m) = P [i
′
, Z \ {m}] + w(m).

Combining two inequalities we get, P [i, Z] = P [i
′
, Z \ {m}] + w(m).

Forget Node: If i is a forget node with child i
′

then Yi = Yi′ \ {v}, where v is the forgotten

vertex. Then following relation holds:

P [i, Z] = max{P [i
′
, Z], P [i

′
, Z ∪ {v}]}.

Proof for this formula is as below. Let Z
′

is maximum achieved in definition of P [t, Z]. If

v /∈ Z then Z
′

comes under definition of P [i
′
, Z], which implies P [i

′
, Z] ≥ w(Z

′
) = P [i, Z].

On the other hand if v ∈ Z then Z
′

is considered in definition of P [i
′
, Z ∪ {v}]. So we get

P [i, Z] ≤ max{P [i
′
, Z], P [i

′
, Z ∪ {v}]}.

As P [i
′
, Z] and P [i

′
, Z ∪{v}] are considered in definition of P [i, Z] , we get P [i, Z] ≥ P [i

′
, Z]

and P [i, Z] ≥ P [i
′
, Z ∪ {v}], which implies P [i, Z] ≥ max{P [i

′
, Z], P [i

′
, Z ∪ {v}]}.

Combining both inequalities we get the recursive formula.

Join Node: If i is a join node with i1 and i2 as its children then Yi = Yi1 = Yi2 . The

recursive formula is

P [i, Z] = P [i1, Z] + P [i2, Z]− w(Z)

The proof is as follows. Let Z
′

be the maximum set in definition of P [i, Z] and S1 = Z
′ ∩

Vi1 , Z2 = Z
′∩Vi2 . Then we can see that S1 is independent and S1∩Yi1 = Z, so it comes under

definition of P [i1, Z], hence we have P [i1, Z] ≥ w(Z1). Similarly we have P [i2, Z] ≥ w(Z2).

Since Z1∩Z2 = Z, we get, P [i, Z] = w(Z
′
) = w(Z1)+w(Z2)−w(Z) ≤ P [i1, Z]+P [i,Z]−w(Z).

Conversely, let Z
′
1 be the maximum achieved in definition of P [i1, Z] and Z

′
in P [i2, Z]. Now

we know that there is no edge between vertices of Vi1 \Yi and Vi2 \Yi, therefore Z3 = Z1∪Z2

is independent and we have Z3 ∩ Yi = Z, which means Z3 is in definition of P [i, Z]. Hence

P [i, Z] ≥ w(Z3) = w(Z1) + w(Z2)− w(Z) = P [i1, Z] + P [i2, Z]− w(Z).

Combining two inequalities we get the recursive formula.

We can compute each value P [i, Z] in time kO(1) and number of subsets Z of Yi is 2k. So

to compute all the values of P [i, Z] for each i will require 2kkO(1) time. As there are O(kn)

nodes in tree decomposition total time required is 2kkO(1)n.

10

Chapter 2

NP-completeness of the minimum

neighbourhood problem

In this chapter, we prove that minimum neighbourhood problem is NP-complete. Here is the

decision version of the minimum neighbourhood problem. We are given a graph G = (V,E)

with n vertices and two positive integers k ≤ n and `. Does G contain a set S ⊆ V of size

k such that |NG[S]| ≤ `? Now we state the decision version of Minimum k-Union (MkU)

problem.

Definition 2.0.1. In MkU problem, we are given an universe U = {1, 2, . . . , n} of n ele-

ments and a collection of sets S ⊆ 2U , as well as two integers k ≤ |S| and `. Does there

exist a collection T ⊆ S with |T | = k such that | ∪S∈T S| ≤ `.

Theorem 2.0.1. The MkU problem is NP-hard.

Now we prove that the minimum neighbourhood problem is NP-complete.

Theorem 2.0.2. The minimum neighbourhood problem is NP-complete.

Proof. We first show that minimum neighbourhood problem is in NP. Given a graph G =

(V,E) with n vertices and two integers k ≤ n and `, a certificate could be a set S ⊆ V of

size k. We could then check, in polynomial time, there are k vertices in S, and the size of

NG[S] is less than or equal to `.

11

We prove the minimum neighbourhood problem is NP-hard by showing that that Mini-

mum k-Union problem ≤P Minimum Neighbourhood Problem. Given an instance (U,S, k, `)
of MkU problem, we construct a bipartite graph H with bipartition X and Y . The vertices in

X = {u1, u2, . . . , un} are the elements in U ; the vertices in Y = {s1, s2, . . . , sm} correspond

to sets in S = {S1, S2, . . . , Sm}. We make ui ∈ X adjacent to sj ∈ Y if and only if ui ∈ Sj.
Additionally, for each vertex ui, we add a clique of size n+ 1, Ki

n+1 and we make ui adjacent

to each vertex in Ki
n+1.

We show that there is a collection of k sets
{
Si1 , Si2 , . . . , Sik

}
⊆ S such that |∪kj=1Sij | ≤ `,

for Minimum k-Union problem if and only if there is a set S ⊆ V (H) of k vertices such that

|NH [S]| ≤ k+`, for Minimum Neighbourhood Problem. Suppose there is a collection of k sets{
Si1 , Si2 , . . . , Sik

}
⊆ S such that |∪kj=1Sij | ≤ `. We choose the vertices {si1 , si2 , . . . , sik} ⊆ Y

correspond to sets Si1 , Si2 , . . . , Sik . As the size of the union of these k sets Si1 , Si2 , . . . , Sik
is less or equal to `, the closed neighbourhood of si1 , si2 , . . . , sik will contain si1 , si2 , . . . , sik
and at most ` vertices u, where u ∈ ∪kj=1Sij . Hence the size of the closed neighbourhood of

si1 , si2 , . . . , sik is at most k + `.

Conversely, suppose there is a collection S ⊆ V (H) of k vertices that has a closed

neighbourhood of size at most k + ` < n. S cannot contain any vertex from X as each

vertex in X has at least n + 2 closed neighbour in H. S cannot contain any vertex from

Ki
n+1, as each vertex in Ki

n+1 has n + 2 closed neighbours in H. Thus S ⊆ Y and let

S = {sj1 , sj2 , . . . , sjk}. We consider the k sets Sj1 , Sj2 , . . . , Sjk correspond to these k vertices

in S. As S has at most k+ ` closed neighbours, |∪ki=1Sji | ≤ `. This completes the proof.

12

Chapter 3

Minimum Neighbourhood Problem

In this chapter, we propose a dynamic programming algorithm for minimum neighbourhood

problem. Recall that given a graph G = (V,E) and a positive integer p, we want to find

S ⊆ V such that |S| = p and the size of N [S] is minimum. We provide a dynamic program-

ming algorithm on a tree decomposition of G. Given a graph G, an integer p and a tree

decomposion (T,Xt : t ∈ V (T)), subproblems will be defined on Gt = (Vt, Et) where Vt is the

union of all bags present in subtree of T rooted at t, including Xt and Et is the set of edges e

introduced in the subtree rooted at t. We define a colour function f : Xt 7→ {0, 1, 0̂, 1̂} that

assigns four different colours to the vertices of Xt. The meanings of four different colour are

given below:

1 (black vertices): vertices contained in set S whose neighbourhood size we wish to calculate

in Gt.

0 (white vertices): vertices adjacent to black vertices, these vertices are contained in partial

solution in Gt.

0̂ (green vertices): vertices not adjacent to black vertices in Gt.

1̂ (gray vertices): vertices whose colour (black, white or green) has not been decided yet.

At the end of algorithm, the vertices of G will be coloured by colours black, white and

green, no vertex will be of grey colour, that is no vertex will be left undecided. The reason

behind using grey colour is that some vertices of a bag may be in S or in N(S) depending

13

on the vertices and edges which are not introduced so far. So we consider subproblems

where role of some vertices are left undecided, since such subproblems are important for

getting the optimal solution. Now we introduce some notations. Let X ⊆ V and consider

a colouring f : X 7→ {1, 0, 0̂, 1̂}. For α ∈ {1, 0, 0̂, 1̂} and v ∈ V (G) a new colouring

fv 7→α : X ∪ {v} 7→ {1, 0, 0̂, 1̂} is defined as follows:

fv 7→α(x) =

f(x) when x 6= v

α when x = v

Let f be a colouring of X, then the notation f|Y is used to denote the restriction of f to Y ,

where Y ⊆ X.

For a colouring f of Xt, we denote by c[t, f, i] the minimum size of N(S) ⊆ Vt such that

1. S ⊆ Vt and |S| = i.

2. S ∩Xt = f−1(1) which is the set of vertices of Xt coloured black.

3. N(S) ∩Xt = f−1(0), which is the set of vertices of Xt coloured white.

4. Each vertex in Vt \ f−1(1̂) is either in S, N(S) or non-adjacent in Gt to the vertices

in set S. As all grey(1̂) vertices belong to Xt, removal of f−1(1̂) from Xt will result in

removal of all grey(1̂) vertices from Vt.

We call such a set N(S) a minimum neighbourhood set compatible for (t, f, i). If no compat-

ible N [S] \ S exists, then we put c[t, f, i] = ∞ also c[t, f, i < 0] = ∞. Since each vertex in

Xt can be coloured with 4 colours (1, 0, 0̂, 1̂), the number of possible colourings f of Xt is

4|Xt| and for each colouring f we vary i from 0 to p. The size of minimum neighbourhood

N [S] \ S of G with |S| = p will be c[r, φ, p], where r is the root node of tree decomposition

of G as G = Gr and Xr = ∅. Now we present the recursive formulae for the values of c.

Leaf node: If t is a leaf node, then the corresponding bag Xt is empty. Hence the colour

function f on Xt is an empty colouring; the number i of vertices coloured black cannot be

greater than zero. Thus we have c[t, ∅, i = 0] = 0 and c[t, ∅, i > 0] =∞.

14

Introduce node: Suppose t is an introduce node with child t′ such that Xt = Xt′ ∪ {v}
for some v /∈ Xt′ . The introduce node introduces the vertex v but does not introduce the

edges incident to v to Gt. So when v is introduced by node t it is an isolated vertex in

Gt. Vertex v cannot be coloured white 0; as it is isolated and it cannot be neighbour of

any black vertex. Hence if f(v) = 0, then c[t, f, i] = ∞. When f(v) = 1, v is contained

in S. As v is an isolated vertex, it does not contribute towards the size of N(S), hence

c[t, f, i] = c[t′, f|Xt′
, i − 1]. When f(v) = 0̂ or f(v) = 1̂, v does not contribute towards the

size of N(S). Here minimum neighbourhood set compatible for (t
′
, f|X

t
′
, i) is the same as

minimum neighbourhood set compatible for (t, f, i). So, c[t, f, i] = c[t
′
, f|X

t
′
, i]. Combining

all the cases together, we get

c[t, f, i] =


∞ if f(v) = 0

c[t
′
, f|X

t
′
, i− 1] if f(v) = 1

c[t
′
, f|X

t
′
, i] otherwise

Introduce edge node: Let t be an introduce edge node that introduces the edge (u, v), let

t′ be the child of t. Thus Xt = Xt′ ; the edge (u, v) is not there in t′, but it is there in t. Let

f be a colouring of Xt. We consider the following cases:

• Suppose f(u) = 1 and f(v) = 0̂. This means u ∈ S and v is non-adjacent to black

vertices in Gt. But u and v are adjacent in Gt. Thus c[t, f, i] =∞. The same conclusion

can be drawn when v is coloured black and u is coloured green.

• Suppose f(u) = 1 and f(v) = 0. This means u ∈ S and v ∈ N(S) in Gt. In order to

get a minimum neighbourhood set compatible for (t, f, i), we consider precomputed so-

lution for t′ where the colour of v is grey, that is , we consider precomputed minimum

neighbourhood set compatible for (t′, fv→1̂, i). The size of minimum neighbourhood

compatible set for (t, f, i) is one more than the size of minimum neighbourhood com-

patible set for (t′, fv→1̂, i), that is, c[t, f, i] = 1 + c[t
′
, fu7→1̂, i]. The same conclusion can

be drawn when v is coloured black and u is coloured white.

• Other colour combinations of u and v do not affect the size of N(S) or do not con-

tradict the definition of campatability. So minimum neighbourhood set compatible for

t
′
, f|X

t
′ , i is the same as minimum neighbourhood compatible set for t, f, i and hence

c[t, f, i] = c[t
′
, f|X

t
′
, i].

15

Combining all the cases together, we get

c[t, f, i] =



∞ if [f(u), f(v)] = [0̂, 1]

∞ if [f(u), f(v)] = [1, 0̂]

c[t
′
, fv 7→1̂, i] + 1 if [f(u), f(v)] = [1, 0]

c[t
′
, fu7→1̂, i] + 1 if [f(u), f(v)] = [0, 1]

c[t
′
, f|X

t
′
, i] otherwise

Forget node: Let t be a forget node with the child t′ such that Xt = Xt′ \ {w} for some

vertex w ∈ Xt′ . Here the bag Xt forgets the vertex w. At this stage we decides the final colour

of the vertex w. We observe that Gt′ = Gt. The closed neighbourhood sets compatible for

(t
′
, fw 7→1, i), (t

′
, fw 7→0, i), (t

′
, fw 7→0̂, i) are also compatible for (t, f, i). On the other hand the

closed neighbourhood compatible set for (t, f, i) is also compatible for (t
′
, fw 7→1, i) if w ∈ S

or (t
′
, fw 7→0, i) if w ∈ (N [S] \ S) or (t

′
, fw 7→0̂, i) if w /∈ N [S]. Hence

c[t, f, i] = min
{
c[t
′
, fw 7→1, i], c[t

′
, fw 7→0, i], c[t

′
, fw 7→0̂, i]

}

Join Node: Let t be a join node with children t1 and t2, such that Xt = Xt1 = Xt2 . Let

f be a colouring of Xt. We say that colourings f1 of Xt1 and f2 of Xt2 are consistent for

colouring f of Xt, if the following conditions are true for each v ∈ Xt:

1. f(v) = 1 if and only if f1(v) = f2(v) = 1

2. f(v) = 0̂ if and only if f1(v) = f2(v) = 0̂

3. f(v) = 1̂ if and only if f1(v) = f2(v) = 1̂

4. f(v) = 0 if and only if (f1(v), f2(v)) = (0, 1̂) or (1̂, 0)

Let f ba a colouring of Xt; f1 and f2 be two colourings of Xt1 and Xt2 respectively consistent

with f . Suppose N [S1]\S1 is a neighbourhood compatible set for (t1, f1, i1) and N [S2]\S2 is

a neighbourhood compatible set for (t2, f2, i2), where |S1| = i1 and |S2| = i2. Set S = S1∪S2,

clearly |S| = |S1|+|S2|−|f−1(1)|. It is easy to see thatN [S]\S = (N [S1]\S1)∪(N [S2]\S2) is a

16

neighbourhood compatible set for (t, f, i), where i = i1+i2−|f−1(1)|. According to Condition

4 in the definition of consistent function, each v ∈ Xt that is white in f , we make it white

either in f1 or f2. In other words, for such S1 and S2, we have (N [S1]\S1)∩ (N [S2]\S2) = ∅;
it follows that

|N [S] \ S| = |(N [S1] \ S1)|+ |(N [S2] \ S2)|.

Consequently, we have the following recursive formula:

c(t, f, i) = min
f1,f2

{
min

i1,i2 : i=i1+i2−|f−1(1)|

{
c(t1, f1, i1) + c(t2, f2, i2)

}}
.

We now analyse the running time of the algorithm. The time needed to process each

leaf node, introduce vertex node, introduce edge node or forget node is 4kkO(1)p as each

bag Xt can be coloured in 4k ways, adjacency of vertices can be checked in kO(1) time and

for each colouring f we vary i from 0 to p, where k is tree width and hence |Xt| ≤ k.

The computation of c value for join node takes more time and it can be done as fol-

lows. If colourings f1 and f2 are consistent with f , then for every v ∈ Xt we have

(f(v), f1(v), f1(v)) ∈ {(1, 1, 1), (0̂, 0̂, 0̂), (1̂, 1̂, 1̂), (0, 0, 1̂), (0, 1̂, 0)}. Hence there are exactly

5|Xt| triples of colourings (f, f1, f2) such that f1 an f2 are consistent with f , since we have

5 possibilities of (f(v), f1(v), f2(v)) for every vertex v ∈ Xt. In order to compute c(t, f, i),

we iterate through all triples (f, f1, f2); then for each considered triple (f, f1, f2) we vary i1

from 0 to p and i2 varies according to equation i = i1 + i2 − |f−1|. Also i varies from 0

to p. So the time needed for each join node is 5kkO(1)p2. There are O(kn) nodes in a nice

tree decomposition. Therefore, the time complexity of the algorithm is 5kkO(1)p2n, where

n = |V (G)|.

17

18

Chapter 4

Conclusions

Given a graph G = (V,E) and an integer k, we want to find a S ⊂ V , such that |S| = k and

the cardinality of N [S] is minimum. This problem is called minimum neighbourhood prob-

lem. We propose a fix parameter tractable (FPT) algorithm for minimum neighbourhood

problem parameterized by the treewidth of the graph G. It is an interesting open problem

to study minimum neighbourhood problem with respect to the other parameters. There is

no known FPT algorithm for minimum neighbourhood problem when parameterized with

respect to the solution size. It is also interesting to study parameterized complexity of min-

imum neighbourhood problem for special graph classes like, chordal graph, interval graphs,

proper interval graphs, split graphs, etc.

19

20

Appendices

21

Appendix A

Python Code

This is a python code for the dynamic programming algorithm discussed above, using graph

H and its nice tree decomposition with introduce edge nodes as an input (from page 8).

1 #c l a s s v e r c o l i s de f in ed to a s s i gn co l our to v e r t i c e s

2 c l a s s v e r c o l :

3 de f i n i t (whose , co l ou r) :

4 whose . co l our = co lour

5

6 #Al l v e r t i c e s are a s s i gned grey co l our . This w i l l be the d e f au l t

7 #co lour o f v e r t i c e s . As program progre s s e s , t h e i r co l ou r w i l l change

8 #accord ing to a lgor i thm .

9 a = ve r c o l (” grey ”)

10 b = ve r c o l (” grey ”)

11 c = ve r c o l (” grey ”)

12 d = ve r c o l (” grey ”)

13 e = ve r c o l (” grey ”)

14 f = ve r c o l (” grey ”)

15 g = ve r c o l (” grey ”)

16

17

18 #m i s the t o t a l number o f v e r t i c e s in the input graph .

19 m=7

20

21

22 #c l a s s bag i s de f i ned to c r ea t e nodes and a s s i gn p r op e r t i e s to them .

23 c l a s s bag :

23

24 de f i n i t (whose , v e r t i c e s , ch i ld ren1 , nodetype , herovertex ,

25 number) :

26 whose . v e r t i c e s = v e r t i c e s

27 whose . ch i l d r en1 = ch i l d r en1

28 whose . type = nodetype

29 whose . hero = herover tex

30 whose . number = number

31

32 #1 s t entry a s s i g n s v e r t i c e s to node , 2nd i s the ch i l d o f node which

33 #e s t a b l i s h e s connect ion between cur rent node to i t s c h i l d node ,

34 #3rd entry a s s i g n s node type (LN = l e a f node , IVN = int roduce ver tex

35 #node , IEN = int roduce edge node , FN = f o r g e t node , JN = j o i n node) ,

36 #4th entry (herover tex) a s s i g n s that ver tex to the node which

37 #de f i n e s i t s node type . For example bag2 i s in t roduce ver tex node o f

38 #vertex b (hence c a l l e d herover tex) ,

39 #5th entry i s the number as s i gned to the bag .

40 bag1 = bag ([] , [] , ”LN” , [] , 1)

41 bag2 = bag ([b] , bag1 , ”IVN” , [b] , 2)

42 bag3 = bag ([b , c] , bag2 , ”IVN” , [c] , 3)

43 bag4 = bag ([a , b , c] , bag3 , ”IVN” , [a] , 4)

44 bag5 = bag ([a , b , c] , bag4 , ”IEN” , [a , b] , 5)

45 bag6 = bag ([a , b , c] , bag5 , ”IEN” , [b , c] , 6)

46 bag7 = bag ([a , c] , bag6 , ”FN” , [b] , 7)

47 bag8 = bag ([] , [] , ”LN” , [] , 8)

48 bag9 = bag ([d] , bag8 , ”IVN” , [d] , 9)

49 bag10 = bag ([c , d] , bag9 , ”IVN” , [c] , 10)

50 bag11 = bag ([e , c , d] , bag10 , ”IVN” , [e] , 11)

51 bag12 = bag ([e , c , d] , bag11 , ”IEN” , [e , d] , 12)

52 bag13 = bag ([e , c , d] , bag12 , ”IEN” , [d , c] , 13)

53 bag14 = bag ([e , c] , bag13 , ”FN” , [d] , 14)

54 bag15 = bag ([a , e , c] , bag14 , ”IVN” , [a] , 15)

55 bag16 = bag ([a , e , c] , bag15 , ”IEN” , [a , e] , 16)

56 bag17 = bag ([a , c] , bag16 , ”FN” , [e] , 17)

57 bag18 = bag ([a , c] , bag17 , ”JN” , [] , 18)

58 bag19 = bag ([] , [] , ”LN” , [] , 19)

59 bag20 = bag ([g] , bag19 , ”IVN” , [g] , 2)

60 bag21 = bag ([c , g] , bag20 , ”IVN” , [c] , 21)

61 bag22 = bag ([f , c , g] , bag21 , ”IVN” , [f] , 22)

62 bag23 = bag ([f , c , g] , bag22 , ”IEN” , [f , g] , 23)

63 bag24 = bag ([f , c , g] , bag23 , ”IEN” , [g , c] , 24)

64 bag25 = bag ([f , c] , bag24 , ”FN” , [g] , 25)

24

65 bag26 = bag ([a , f , c] , bag25 , ”IVN” , [a] , 26)

66 bag27 = bag ([a , f , c] , bag26 , ”IEN” , [a , f] , 27)

67 bag28 = bag ([a , c] , bag27 , ”FN” , [f] , 28)

68 bag29 = bag ([a , c] , bag28 , ”JN” , [] , 29)

69 bag30 = bag ([a] , bag29 , ”FN” , [c] , 30)

70 bag31 = bag ([] , bag30 , ”FN” , [a] , 31)

71

72

73 #parent () func t i on d e f i n e s the parenta l r e l a t i o n between nodes , so now the

nodes are

74 #connected to t h e i r parent nodes .

75 de f parent (x) :

76 i f x==bag1 :

77 re turn bag2

78 e l i f x==bag2 :

79 re turn bag3

80 e l i f x==bag3 :

81 re turn bag4

82 e l i f x==bag4 :

83 re turn bag5

84 e l i f x==bag5 :

85 re turn bag6

86 e l i f x==bag6 :

87 re turn bag7

88 e l i f x==bag7 :

89 re turn bag18

90 e l i f x==bag8 :

91 re turn bag9

92 e l i f x==bag9 :

93 re turn bag10

94 e l i f x==bag10 :

95 re turn bag11

96 e l i f x==bag11 :

97 re turn bag12

98 e l i f x==bag12 :

99 re turn bag13

100 e l i f x==bag13 :

101 re turn bag14

102 e l i f x==bag14 :

103 re turn bag15

104 e l i f x==bag15 :

25

105 re turn bag16

106 e l i f x==bag16 :

107 re turn bag17

108 e l i f x==bag17 :

109 re turn bag18

110 e l i f x==bag18 :

111 re turn bag29

112 e l i f x==bag19 :

113 re turn bag20

114 e l i f x==bag20 :

115 re turn bag21

116 e l i f x==bag21 :

117 re turn bag22

118 e l i f x==bag22 :

119 re turn bag23

120 e l i f x==bag23 :

121 re turn bag24

122 e l i f x==bag24 :

123 re turn bag25

124 e l i f x==bag25 :

125 re turn bag26

126 e l i f x==bag26 :

127 re turn bag27

128 e l i f x==bag27 :

129 re turn bag28

130 e l i f x==bag28 :

131 re turn bag29

132 e l i f x==bag29 :

133 re turn bag30

134 e l i f x==bag30 :

135 re turn bag31

136

137 #ch i l d r en2 () d e f i n e s the second ch i l d o f node i f i t has any (j o i n

138 #node has two ch i l d r en) .

139 de f ch i l d r en2 (x) :

140 i f x==bag18 :

141 re turn bag7

142 e l i f x==bag29 :

143 re turn bag18

144

145 #This conc ludes input .

26

146

147

148 #Creat ing a l i s t o f l ength n+2, where n i s the t o t a l number o f nodes .

149 c o l o u r l i s t =[]

150 n=31

151 f o r i in range (n+1) :

152 c o l o u r l i s t . append (i)

153

154

155 #Def in ing minfun func t i on which embeds the r e c u r s i v e formula f o r

156 #jo i n node .

157 #I t takes s and u as input where s i s a node and u i s an i n t e g e r .

158 de f minfun (s , u) :

159

160 #Empty l i s t s are c rea ted .

161 min l i s t =[]

162 b l a c k l i s t =[]

163 wh i t e l i s t =[]

164

165 #This ’ f o r ’ loop i n su r e s that a l l b lack v e r t i c e s and a l l white

166 #ve r t i c e s in node s go in to b l a c k l i s t and wh i t e l i s t

167 #r e s p e c t i v e l y .

168 f o r x in s . v e r t i c e s :

169 i f x . co l ou r == ”white ” :

170 wh i t e l i s t . append (x)

171 e l i f x . co l ou r == ”black ” :

172 b l a c k l i s t . append (x)

173

174 #Def in ing func t i on r with c , v and q as inputs , where c i s a

175 #l i s t , v i s an i n t e g e r and q i s a node .

176 #Function w w i l l be de f ined l a t e r .

177 #This func t i on a s s i g n s c o l ou r s from l i s t c to the v e r t i c e s in

178 #wh i t e l i s t and re tu rn s func t i on w tak ing input as one o f the

179 #ch i l d r en o f q as an input .

180 de f r (c , v , q) :

181 f o r x in range (l en (wh i t e l i s t)) :

182 wh i t e l i s t [x] . c o l ou r = c [x]

183 re turn W(q . ch i ld ren1 , v , q . hero)

184

185 #Def in ing func t i on r r with c , v and q as inputs , where c i s a

186 #l i s t , v i s an i n t e g e r and q i s a node .

27

187 #Function w w i l l be de f ined l a t e r .

188 #This func t i on a s s i g n s c o l ou r s from l i s t c to the v e r t i c e s in

189 #wh i t e l i s t and re tu rn s func t i on w tak ing input as other c h i l d o f

190 #q as an input .

191 de f r r (c , v , q) :

192 f o r x in range (l en (wh i t e l i s t)) :

193 wh i t e l i s t [x] . c o l ou r = c [x]

194 re turn W(ch i l d r en2 (q) , v , q . hero)

195

196 #n i s a s s i gned the value equal to l ength o f wh i t e l i s t c r ea ted

197 #e a r l i e r .

198 #Li s t cash i s c r ea ted whose each entry i s a l i s t . Each entry i s

199 #n length long l i s t and i t s entry can e i t h e r be ”white ” or

200 #”grey ” .

201 #Li s t cash conta in s a l l such permutat ions o f n l ength l i s t with

202 #”white ” or ” grey ” as e n t r i e s .

203 #Length o f cash w i l l be 2ˆn .

204 #Each entry o f recash i s complementery oppos i t e to entry at the

205 #same po s i t i o n in cash .

206 #For example i f an entry at 4 th po s i t i o n in cash looks l i k e

207 #[” white ” ,” grey ”] then entry at 4 th po s i t i o n in recash w i l l be

208 #[” grey ” ,” white ”] .

209 import i t e r t o o l s

210 n=len (wh i t e l i s t)

211 cash = l i s t (i t e r t o o l s . product ([”white ” , ” grey ”] , r epeat=n))

212 recash = cash [: : − 1]

213

214 #For each entry in cash and f o r each t (from 0 to u+m+1) we

215 #ca l c u l a t e p and append i t to m in l i s t .

216 #Then minimum entry in m in l i s t i s returned .

217 #This loop r ep r e s en t s the r e c u r s i v e r e l a t i o n o f j o i n node .

218 f o r x in cash :

219 f o r t in range (u+m+1) :

220 p = r (x , t , s) + r r (recash [cash . index (x)] , u−t+len (b l a c k l i s t) , s)

221 min l i s t . append (p)

222 re turn min (m in l i s t)

223

224

225 #c o l o u r l i s t w i l l be used to keep the record o f co l our o f a l l v e r t i c e s at

226 #each step .

227 #Here nth element o f c o l o u r l i s t i s s ub s t i t u t ed with cur rent c o l ou r i n g s o f

28

228 #ve r t i c e s . As at t h i s s tep a l l v e r t i c e s are ” grey ” co loured .

229 c o l o u r l i s t [n]=[a . co lour , b . co lour , c . co lour , d . co lour , e . co lour , f . co lour ,

g . co l ou r]

230

231 #Function W rep r e s en t s the r e c u r s i v e r e l a t i o n s .

232 #I t takes node , z and heroco lour as an input , where z i s an i n t e g e r and

233 #heroco lour i s in a form o f a s t r i n g .

234 #heroco lour i s the c o l ou r i n g s a s s i gned by the r e cu r r ence r e l a t i o n o f

235 #parent node to herover tex which are then used by ch i l d node .

236 #z i s the i n t e g e r p which i s the s i z e o f ver tex s e t whose minimum

237 #neighbourhood s i z e we want to f i nd out .

238 de f W(node , z , he roco lour=[” grey ”]) :

239

240 #Here v e r t i c e s are co loured by the c o l ou r i n g s bestowed upon

241 #by th e i r parent node which we a l ready s to r ed in c o l o u r l i s t ,

242 #except f o r j o i n node .

243 #Each time herover tex o f parent node w i l l be co loured in

244 #d i f f e r e n t co l our . So a f t e r each i t e r a t i o n , c o l ou r i ng g iven

245 #by parent nodes to other v e r t i c e s must be remembered .

246 #But t h i s i s not the case with j o i n node as j o i n node does

247 #not have a herover tex i t has only one i t e r a t i o n in t h i s

248 #func t i on (i . e , f unc t i on W) .

249 #The i t e r a t i o n s in r e cu r c i v e r e l a t i o n s o f j o i n node are

250 #taken care o f in minfun func t i on and not in func t i on W.

251 i f node . type==”JN” :

252 None

253 e l s e :

254 [a . co lour , b . co lour , c . co lour , d . co lour , e . co lour , f . co lour ,

255 g . co l ou r]= c o l o u r l i s t [node . number]

256

257 #Here herover tex i s co loured as the r e c u r s i v e r e l a t i o n o f

258 #parent node commanded i . e , co l our o f herover tex i s changed

259 #to co l ou r s in he roco lour l i s t .

260 #Again l e a f node and ch i l d r en o f j o i n node w i l l be excluded

261 #from here as l e a f node doesn ’ t have a ch i l d and j o i n node

262 #does not have herover tex .

263 i f parent (node) == [] or parent (node) . hero == [] :

264 None

265 e l s e :

266 f o r k in range (l en (he roco lour)) :

267 parent (node) . hero [k] . c o l ou r = heroco lour [k]

29

268

269 #This i s r e cu r r ence r e l a t i o n f o r Introduce Vertex Node .

270 i f node . type==”IVN” :

271 i f node . hero [0] . c o l ou r==”white ” :

272 re turn f l o a t (’ i n f ’)

273 e l i f node . hero [0] . c o l ou r==”black ” :

274 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

275 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

276 re turn W(node . ch i ld ren1 , z−1, [” b lack ”])

277 e l i f node . hero [0] . c o l ou r==”green ” :

278 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

279 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

280 re turn W(node . ch i ld ren1 , z , [” green ”])

281 e l s e :

282 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

283 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

284 re turn W(node . ch i ld ren1 , z)

285

286 #This i s r e cu r r ence r e l a t i o n f o r Forget Node .

287 e l i f node . type==”FN” :

288 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

289 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

290 re turn min (W(node . ch i ld ren1 , z , [” b lack ”]) ,

291 W(node . ch i ld ren1 , z , [”white ”]) , W(node . ch i ld ren1 , z ,

292 [” green ”]))

293

294 #This i s r e cu r r ence r e l a t i o n f o r Introduce Edge Node .

295 e l i f node . type==”IEN” :

296 i f node . hero [0] . c o l ou r==”black ” and

297 node . hero [1] . c o l ou r==”green ” :

298 re turn f l o a t (’ i n f ’)

299 e l i f node . hero [0] . c o l ou r==”green ” and

300 node . hero [1] . c o l ou r==”black ” :

301 re turn f l o a t (’ i n f ’)

302 e l i f node . hero [0] . c o l ou r==”black ” and

303 node . hero [1] . c o l ou r==”white ” :

304 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

305 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

306 re turn W(node . ch i ld ren1 , z , [” b lack ” , ” grey ”]) + 1

307 e l i f node . hero [0] . c o l ou r==”white ” and

308 node . hero [1] . c o l ou r==”black ” :

30

309 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

310 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

311 re turn W(node . ch i ld ren1 , z , [” grey ” , ” black ”]) + 1

312 e l s e :

313 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

314 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

315 re turn W(node . ch i ld ren1 , z ,

316 [node . hero [0] . co lour , node . hero [1] . c o l ou r])

317

318 #This i s r e cu r r ence r e l a t i o n f o r j o i n node (by us ing minfun) .

319 e l i f node . type==”JN” :

320 c o l o u r l i s t [node . ch i l d r en1 . number]=[a . co lour , b . co lour ,

321 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

322 c o l o u r l i s t [ch i l d r en2 (node) . number]=[a . co lour , b . co lour ,

323 c . co lour , d . co lour , e . co lour , f . co lour , g . co l ou r]

324 re turn minfun (node , z)

325

326 #This i s the base case o f a lgor i thm .

327 e l i f node . type==”LN” :

328 i f z==0:

329 re turn 0

330 e l s e :

331 re turn f l o a t (’ i n f ’)

332

333

334 #Fina l l y we c a l l f unc t i on w with inputs as the root node which in

335 #th i s case i s bag26 and parameter p(s i z e o f ver tex s e t whose minimum

336 #neighbourhood s i z e we are about to f i nd) whose value i s 8 in t h i s

337 #pa r t i c u l a r case .

338 pr in t (W(bag26 , 8))

339

Listing A.1: Python example

31

32

Bibliography

[1] Bodlaender, H., On linear time minor tests with depth-first search, J. Algorithms, 14,
pp. 1-23, 1993.

[2] Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani, Algorithms, Mc Graw
Hill, 2006.

[3] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S., Parameterized Algorithms, Springer, 2015.

[4] Downey, Rodney G., Fellows, M.R., Parameterized Complexity, Springer, 1999.

[5] Eden Chlamtac, Michael Dinitz, Yury Makarychev. Minimizing the Union: Tight Ap-
proximations for Small Set Bipartite Vertex Expansion, 24 Nov. 2014.

[6] Chen, J., Kneis, J., Lu, S., Mlle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang, F.,
Randomized divide-and-conquer: improved path, matching, and packing algorithms,
SIAM J. Computing 38(6), 2526-2547, 2009.

[7] Koutis, I., Faster algebraic algorithms for path and packing problems. In Proceedings of
the 35th International Colloquium of Automata, Languages and Programming (ICALP),
Lecture Notes in Comput. Sci., vol. 5125, pp. 575-586, 2008.

[8] Naor, M., Schulman, L.J., Srinivasan, A., Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 182-191. IEEE, 1995.

[9] Philipp Zschoche, Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Complexity of
Finding Small Separators in Temporal Graphs, 2015.

[10] Seroussi, G. and Bshouty, N.H., Vector sets for exhaustive testing of logic circuits, IEEE
Transactions on Information Theory, Vol 34(3), 513-522, 1988.

33

	Abstract
	Introduction
	Preliminaries
	Weighted Independent Set

	NP-completeness of the minimum neighbourhood problem
	Minimum Neighbourhood Problem
	Conclusions
	Appendices
	Python Code

