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ABSTRACT 

 

Our aim is to learn about asymptotic symmetries and conserved charges so that we may apply 

its knowledge to know about conserved charges in situations where the notion of conserved 

charges does not make sense or are difficult to evaluate. We do this specifically by learning 

about Chern-Simons Theory and the process of finding out the energy of the BTZ black hole 

in (1+2) dimensions. 
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INTRODUCTION 

 

One of the key features to solve a physical system is the need to understand about 

symmetries of the system. As stated by Noether the symmetries in the system means that there 

are associated conserved quantities and also, we can think the opposite way that if a physical 

system has conserved quantities then there will be some sort of symmetries that are associated 

with them.  

To make things concrete when we say a physical quantity is conserved, we mean that 

the parameters defining that physical quantities do not evolve in time [1]. But the notion of 

conserved quantities makes sense only when we are in regime of flat spacetime. As we know 

the theory of general relativity suggests that the physical systems may be in a curved spacetime, 

thus its difficult to define universally the notion of conserved quantities even though one might 

be able to peruse some kind of symmetries of the system [2]. 

One way to know about the conserved quantities of a physical system in curved 

spacetime is by the concept of asymptotic symmetries which are symmetries corresponding to 

asymptotic charges. By conserved charges we mean conserved quantities [1]. The notion of 

asymptotic conserved charges and symmetries makes sense for a physical system only 

asymptotically which means that we are radially far away from the system. So, we can now 

talk about conserved charges only asymptotically far away. As soon as we are near the system 

or break our asymptotic conditions our notion of asymptotic conserved charges and asymptotic 

symmetries will fail [3]. 
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Having a very general discussion about asymptotic symmetries and conserved charges 

is not very enlightening. So here we discuss Chern-Simons theory [7] and study its asymptotic 

symmetries and conserved charges and apply this knowledge to see how the energy of the BTZ 

black hole in (1+2) dimensions [9],[8] is found, which is nothing but a conserved charge. 
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CHAPTER 1 

PRELIMINARIES 

 

 In this chapter we discuss all the important concepts required to understand about 

conserved quantities of a theory on Minkowski spacetime [6] i.e. what we refer to as flat 

spacetime. For our discussion we consider all manifolds to be Sudo-Riemannian with 

Lorentzian signature. 

 

1.1 SYMMETRIES OF MANIFOLD  

 

 Consider a manifold labelled as 𝑀. The symmetries on the manifold 𝑀 form a Lie 

Group which it self is a differentiable manifold. Generators of this Lie Group form a Lie 

Algebra. Symmetries of manifold 𝑀 are given by vector fields knows as killing fields. These 

fields also preserve distances and as known as Isometric fields. For our purposes we will 

interested in knowing about Isometries of the manifold which form Isometric group.  

 Let 𝑔𝜇𝜈 be the metric and 𝑢𝛼 be a vector field on 𝑀. Now to get all the killing fields on 

𝑀 we use the following equation 

ℒ𝑢𝑔𝜇𝜈 = 𝑢𝜆𝜕𝜆𝑔𝜇𝜈 + 𝜕𝜇𝑢𝜆𝑔𝜆𝜈 + 𝜕𝑣𝑢𝜆𝑔𝜇𝜆 (1.1) 



4 

 

where ℒ𝑢 represents lie derivative of the tensor fields with respect to vector field 𝑢 and using 

(1.1) we find out all the vector fields 𝑢𝛼. These fields correspond to symmetries of the manifold 

𝑀. These field form what is known as killing algebra i.e. 

[𝑢𝑖, 𝑢𝑗] = 𝑐𝑖𝑗𝑘𝑢𝑘 (1.2) 

 We say that our manifold 𝑀 is maximally symmetric if it has maximal number of killing 

fields i.e. for 𝑛 dimensional manifold we get  

𝑛 + 𝐶2 
𝑛 = 𝑛 +

𝑛(𝑛 − 1)

2
(1.3) 

where 𝑛 killing fields are for translations and 
𝑛(𝑛−1)

2
 are for rotations, i.e. we get a total of 𝑛 +

𝐶2 
𝑛  killing fields. 

When we study diffeomorphic covariant theories, which are theories that are invariant 

under general coordinate transformation then the lie derivate of the canonical fields along the 

killing fields is equivalent to diffeomorphisms of the theory. Consider a coordinate 

transformation given by  

𝑥′𝜇 = 𝑥𝜇 + 휀𝜇(𝑥) (1.4) 

now the diffeomorphisms are given by lie derivate of the tensor fields 𝑇   𝜈…
𝜇…

 along 휀𝜇 i.e. 

𝛿𝑇   𝜈…
𝜇…

= ℒ𝑢𝑇   𝜈…
𝜇… (1.5) 

 

1.2 SYMMETRIES OF THEORY 

 

 A theory on a manifold 𝑀, can be describe by scalar, vector and tensor fields present 

on 𝑀. So, a theory is given by its action 𝐼 which is the integral of scalar Lagrangian. By 

symmetries of theory we mean symmetries of action 𝐼. 

 For simplicity we consider 𝑑-dimensional manifold and a scalar field 𝜙(𝑥) on it. Now 

suppose we have a theory  

𝐼 = ∫ 𝑑𝑑𝑥 ℒ(𝜙, 𝜕𝜇𝜙) (1.6) 
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Now this field theory has symmetries which are set of all infinitesimal functions 𝛿𝑠𝜙(𝑥) such 

that for all 𝜙(𝑥)  

𝛿𝐼(𝜙, 𝛿𝑠𝜙) ≡ 𝐼(𝜙, 𝛿𝑠𝜙) − 𝐼(𝜙) = ∫ 𝑑𝑑𝑥 𝜕𝜇𝐾𝜇      ∀𝜙 (1.7) 

These symmetries can be either Noether’s symmetries or Gauge symmetry. We would discuss 

more about Gauge Theories in chapter 2 and chapter 3. For now, we deal with only Non-Gauge 

theories. 

 

1.3 NOETHER’S THEOREM AND CONSERVED CHARGES 

 

We would now discuss about Noether’s theorem which is very important in all of 

theoretical physics. The basic idea of the Noether’s theorem states that symmetry is associated 

with conservation of some quantity i.e. a quantity which does not evolve in time. 

Consider the theory given by (1.6) its equations of motion are given by 

휀(𝜙(𝑥)) ≡ 𝜕𝜇 (
𝜕ℒ

𝜕𝜙,𝜇
) −

𝜕ℒ

𝜕𝜙
= 0 (1.8) 

These equations are known as Euler Lagrange equations of motion. So, the Noether’s Theorem 

states that if we have a Noether’s symmetry in our theory and we compute the variation of 

action 𝐼 on shell i.e. where the fields satisfy equation of motion, then we obtain a conserved 

current. 

 The on-shell variation is computed as below where �̅� satisfies equation (1.8)  

𝛿𝐼[𝜙,̅ 𝛿𝜙] = ∫ 𝑑4𝑥 (
𝜕ℒ

𝜕𝜙
𝛿𝜙 +

𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙,𝜇) (1.9) 

𝛿𝐼[𝜙,̅ 𝛿𝜙] = ∫ 𝑑4𝑥 ([
𝜕ℒ

𝜕𝜙
− 𝜕𝜇 (

𝜕ℒ

𝜕𝜙,𝜇
)] 𝛿𝜙) + ∫ 𝑑4𝑥𝜕𝜇 (

𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙) (1.10) 

𝛿𝐼[𝜙,̅ 𝛿𝜙] = ∫ 𝑑4𝑥𝜕𝜇 (
𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙) (1.11) 
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If we have Noethers symmetry with on shell variation, using (1.7) and (1.11) we get conserved 

current equation  

𝜕𝜇𝐽𝜇 = 0      𝑤ℎ𝑒𝑟𝑒    𝐽𝜇 =
𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙 − 𝐾𝜇 (1.12) 

We can split (1.12) into space+time and we get  

𝜕𝑡𝐽0 = −𝛻. 𝐽 (1.13) 

Integrating both sides of (1.13) and using divergence theorem we obtain  

∫ 𝑑3𝑥 𝜕𝑡𝐽0
 

𝑉

= − ∫ 𝑑3𝑥 𝛻. 𝐽 = −
 

𝑉

∫ 𝐽. 𝑑𝐴
 

𝜕𝑉

(1.14) 

And we assume that fields fall of sufficiently rapidly at infinity i.e. when 𝑟 → ∞, 𝜙 → 0, where 

𝑟 is the radial coordinate. Generally, this assumption might not be true for Gauge theories. 

Thus, we get 

𝑄 = ∫ 𝑑3𝑥 𝐽0
 

𝑉

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   
𝑑𝑄

𝑑𝑡
= 0 (1.15) 

where 𝑄 is our conserved charge i.e. which does not evolve in time. 

 

1.4 ENERGY MOMENTUM TENSOR 

 

The concept of energy momentum tensor is very important. In Minkowski spacetime 

energy momentum tensor is locally conserved but for a curved spacetime it might not be 

conserved [2]. So basically, stress energy tensor is the Noether’s current associated with 

symmetry of constant spacetime translations. So, consider the following spacetime translations 

𝑥′𝜇 = 𝑥𝜇 + 휀𝜇 (1.16) 

where 𝑥𝜇 is the original coordinate system and 𝑥′𝜇 is the transformed coordinate system by 

constant killing fields 휀𝜇. Now, corresponding to each translation we would have a conserved 

current which would be linear in 휀𝜇 and is given by  

𝐽𝜇 = 𝑇    𝜈
𝜇

휀𝜈 (1.17) 
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So, the coefficient 𝑇    𝜈
𝜇

 is known as energy momentum tensor. From equation (1.12) we get 

𝜕𝜇𝑇    𝜈
𝜇

= 0 (1.18) 

which shows that energy momentum tensor is conserved here in flat space time, but it might 

not be in curved spacetime.  

So, in curved spacetime for a given theory i.e. its action 𝐼 we have an expression of 

stress energy tensor given by 

𝑇𝜇𝜈 =
1

√𝑔

𝛿𝐼

𝛿𝑔𝜇𝜈

(1.19) 

where 𝑔𝜇𝜈 is the metric and 𝑔 is determinant of 𝑔𝜇𝜈 and 
𝛿𝐼

𝛿𝑔𝜇𝜈
 is the Euler-Lagrange derivative. 

So, the energy momentum tensor defined by (1.18) is covariantly conserved i.e.  

𝛻𝜇𝑇𝜇𝜈 = 0 (1.20) 

where 𝛻𝜇 is the covariant derivative. 

 

1.5 CONSERVED QUANTITIES OF MINKOWSKI SPACETIME 

 

To put together all the ideas present in this chapter we would compute the conserved 

charges of a theory in Minkowski spacetime. Here the Minkowski metric is  

𝑔𝜇𝜈 = 𝑑𝑖𝑎𝑔(−1,1,1,1) (1.21) 

Now for Minkowski spacetime we compute all its killing fields given by equation  

ℒ 𝑔𝜇𝜈 = 𝜕𝜇휀𝜈 + 𝜕𝜈휀𝜇 (1.22) 

whose general solution is given by  

휀𝜇 = 𝑎𝜇 + 𝑏[𝜇𝜈]𝑥𝜈 (1.23) 

where 𝑎𝜇 correspond to 4 constant translations and 𝑏[𝜇𝜈]𝑥𝜈 correspond to 6 rotations due to 

anti-symmetric matrix. Consider a theory of fields given by action 𝐼 on Minkowski spacetime, 



8 

 

we then compute its energy momentum tensor given by 𝑇𝜇𝜈.Now the conserved charge is 

nothing but integral of 𝐽0 on a Cauchy surface 𝛴. 

Thus, we get  

𝑃𝜇 = ∫ 𝑑3𝑥
 

𝛴

𝑇𝜇0 (1.24) 

𝑀𝜇𝜈 = ∫ 𝑑3𝑥
 

𝛴

(𝑥𝜇𝑇𝜈0 − 𝑥𝜈𝑇𝜇0) (1.25) 

𝑃𝜇 are 4 conserved quantities corresponding to translations which shows that Minkowski 

spacetime is homogeneous and 𝑀𝜇𝜈 are 6 conserved quantities corresponding to Lorentz 

transformation which shows that Minkowski spacetime is isotopic and relativistic [6]. 
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CHAPTER 2 

DYNAMICS OF CONSTRAINED 

SYSTEM 

 

 The purpose of this chapter is to study about constrained system. Usually if a theory 

has constraints in it then the action of the theory has Gauge symmetry. We will demonstrate 

this fact by studying two theories in detail that are electromagnetic field theory and general 

relativity[1]. 

 

2.1 CHARACTERISTICS OF CONSTRAINED SYSTEMS 

 

As we will see in this chapter explicitly a system with constraints have the following characters 

[4] 

• The equations of motion are not independent 

• The Hamiltonian of the theory possesses constraints 

• The general solution of equations of motion contain arbitrary functions of time 

• The action of the theory has gauge symmetry 
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And we will see that if a theory has first class constraints then the theory has gauge symmetry 

[4]. 

 

2.2 GAUGE THEORIES IN HAMILTONIAN FORM 

 

Here we work with Hamiltonian formulation since it is convenient to use and provides 

a unified vision to deal with all theories. Thus, the action of all Gauge theories in Hamiltonian 

form can be written as  

𝐼[𝑝𝑖 , 𝑞𝑖, 𝜆𝑎] = ∫ 𝑑𝑡 (𝑝𝑖𝑞𝑖̇ − 𝐻0(𝑝𝑖 , 𝑞𝑖) + 𝜆𝑎𝜙𝑎(𝑝 , 𝑞)) (2.1) 

where  

𝑝𝑖 --- Canonical momentum fields 

𝑞𝑖 --- Canonical fields  

𝜆𝑎 --- Lagrange multiplier fields 

𝜙𝑎 ---Constraints fields 

𝑝𝑖 , 𝑞𝑖 are the dynamical variables of the theory and  

𝐻𝑇 = 𝐻0(𝑝𝑖 , 𝑞𝑖) − 𝜆𝑎𝜙𝑎(𝑝 , 𝑞) (2.2) 

is known as the total Hamiltonian of our theory where 𝐻0 is the constraint free part and 𝜆𝑎𝜙𝑎 

denotes the contribution from the constraints 𝜙𝑎. 

Thus, we know that Hamiltonian formulation gives us the following equation of motion of our 

dynamical variables  

�̇�𝑖 =
𝜕𝐻0

𝜕𝑝𝑖
− 𝜆𝑎

𝜕𝜙𝑎

𝜕𝑝𝑖

(2.3) 

�̇�𝑖 = −
𝜕𝐻0

𝜕𝑞𝑖
+ 𝜆𝑎

𝜕𝜙𝑎

𝜕𝑞𝑖
(2.4) 

provided with  

𝜙𝑎(𝑝 , 𝑞) = 0 (2.5) 
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those are constraints in our theory. 

So now we need our equations of motion to evolve consistently i.e. at all times we are 

required to follow equation (2.5). In order to do this Dirac proposed a mathematical method 

and said that all constraints should be weakly imposed i.e. 

𝜙𝑎(𝑝 , 𝑞) ≈ 0 (2.6) 

this means we consider that, constraints are not equal to zero and calculate our Poisson’s 

bracket and after the calculation we equate the constraints to be zero. 

Now we do our analysis in general and look at the time evolution of the constraints i.e. 

compute its Poisson’s bracket with the total Hamiltonian and thus we get  

𝑑

𝑑𝑡
𝜙𝑎(𝑝 , 𝑞) = [𝜙𝑎 , 𝐻𝑇] = [𝜙𝑎  , 𝐻0] − [𝜙𝑎  , 𝜙𝑏]𝜆𝑏 (2.7) 

Since the constraints will be imposed weakly, we get 

[𝜙𝑎  , 𝐻0] − [𝜙𝑎  , 𝜙𝑏]𝜆𝑏 ≈ 0 (2.8) 

which can also be written as 

[𝜙𝑎  , 𝐻0] − 𝐶𝑎𝑏𝜆𝑏 ≈ 0 (2.9) 

Since we are doing our analysis in general, we can now have the following cases: 

 

CASE I: Non-Gauge Theories  

If the matrix 𝐶𝑎𝑏 is invertible than using (2.8) we can find 𝜆𝑎(𝑡) i.e. 

𝜆𝑎(𝑡) = 𝐶𝑎𝑏[𝜙𝑎 , 𝐻0] (2.10) 

This is known as the theory with second class constraints. Thus, we are able to solve our theory. 

 

CASE II: Gauge Theories 

If the matrix 𝐶𝑎𝑏 is zero or 𝐶𝑎𝑏 ≈ 0 on the surface 𝜙𝑎 = 0, then 𝜆𝑎(𝑡) remains undetermined. 

This shows that the dynamical variables of the theory contain arbitrary functions of time which 

gives us a signature of gauge theories. If 𝐶𝑎𝑏 = 0 then [𝜙𝑎  , 𝐻0] = 0.  
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Constraints are said to be first class if they satisfy  

[𝜙𝑎 , 𝐻0] = 𝐾𝑎𝑏𝜙𝑏 (2.11) 

[𝜙𝑎  , 𝜙𝑏] = 𝐾𝑎𝑏𝑐𝜙𝑐 (2.12) 

 

CASE III: Mixed Case 

We can also have a theory which has both first-class and second-class constraints thus 

representing a mixed case. 

 

We now state a very important result [1]:  

If the constraints and Hamiltonian of our theory satisfy (2.11) and (2.12) then our action (2.1) 

will be invariant under the following transformations: 

𝛿𝑞𝑖 = [𝑞𝑖 , 𝜙𝑎]𝜖𝑎(𝑡) (2.13) 

𝛿𝑝𝑖 = [𝑝𝑖 , 𝜙𝑎]𝜖𝑎(𝑡) (2.14) 

𝛿𝜆𝑐 = 𝜖̇𝑐 + 𝜖𝑎(𝑡)𝐾𝑎
  𝑐 − 𝜆𝑎𝜖𝑏(𝑡)𝐾𝑎𝑏

    𝑐 (2.15) 

These transformations are nothing but gauge symmetry of the action.  

 

2.3 ELECTROMAGNETIC FIELD THEORY 

 

So, the electromagnetic field action is given by [5] 

𝐼𝐸𝑀 = −
1

4
∫ 𝑑4𝑥 𝐹𝜇𝜈𝐹𝜇𝜈 (2.16) 

where  

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 (2.17) 

After doing a (1+3) split action can be written as 
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𝐼𝐸𝑀 = ∫ 𝑑4𝑥 (
1

2
�̇�𝑖�̇�𝑖 − �̇�𝑖𝜕

𝑖𝐴0 +
1

2
𝜕𝑖𝐴0𝜕𝑖𝐴0 −

1

4
𝐹𝑖𝑗𝐹𝑖𝑗) (2.18) 

Here 𝐴𝑖 are canonical fields and so we define our canonical momentum field as  

𝜋𝜇 =
𝜕ℒ

𝜕�̇�𝜇

(2.19) 

Thus, we get  

𝜋0 = 0    ,    𝜋𝑖 = �̇�𝑖 − 𝜕𝑖𝐴0 (2.20) 

Here 𝜋0 = 0 is known as the primary constraint of the theory since it follows from the 

definition of canonical momenta. 

Thus, our Hamiltonian will be  

𝐻(𝑝, 𝐴) = 𝜋𝑖�̇�𝑖 − ℒ (2.21) 

After calculating we get  

𝐻(𝑝, 𝐴) =
1

2
𝜋𝑖𝜋𝑖 +

1

4
𝐹𝑖𝑗𝐹𝑖𝑗 − 𝐴0𝜕𝑖𝜋𝑖 (2.22) 

where we have dropped the boundary term. 

Here  

𝐻0 =
1

2
𝜋𝑖𝜋𝑖 +

1

4
𝐹𝑖𝑗𝐹𝑖𝑗 (2.23) 

The Poisson’s brackets of our theory are 

[𝜋𝑖(𝑥), 𝜋𝑗(𝑦)] = 0 (2.24) 

[𝐴𝑖(𝑥), 𝐴𝑗(𝑦)] = 0 (2.25) 

[𝐴𝑖(𝑥), 𝜋𝑗(𝑦)] = 𝛿𝑖𝑗𝛿3(𝑥 − 𝑦) (2.26) 

For consistency we need to check time evolution of 𝜋0 so we use the equation (2.7) and we get  

[𝜋0 , 𝐻𝑇] ≈ 0 (2.27) 

[𝜋0(𝑥), 𝐻0(𝑦)] + 𝜆𝑏[𝜋0(𝑥), 𝜋0(𝑦)] ≈ 0 (2.28) 

Doing this calculation, we get 
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𝜕𝑖𝜋𝑖 ≈ 0 (2.29) 

This is known as secondary constraint of our theory. We have to again do a consistency check 

on 𝜕𝑖𝜋𝑖 i.e. 

[𝜕𝑖𝜋
𝑖  , 𝐻𝑇] ≈ 0 (2.30) 

Thus, we get 0 = 0 so this means that our theory has no more secondary constraints. 

We can see by using equation (2.11) and (2.12) both of these are first class constraints as shown 

by algebra below  

[𝜋0 , 𝐻0] = 0    [𝜕𝑖𝜋
𝑖  , 𝐻0] = 0 (2.31) 

[𝜋0 , 𝜕𝑖𝜋𝑖] = 0    [𝜕𝑖𝜋
𝑖  , 𝜕𝑗𝜋𝑗] = 0 (2.32) 

Since there are two constraints, the action of theory is  

𝐼𝐸𝑀[𝜋𝑖  , 𝐴𝑖  , 𝐴0 , 𝛾] = ∫ 𝑑4𝑥 [𝜋𝑖�̇�
𝑖 − (

1

2
𝜋𝑖𝜋𝑖 +

1

4
𝐹𝑖𝑗𝐹𝑖𝑗) + 𝐴0𝜕𝑖𝜋𝑖 + 𝛾𝜋0] (2.33) 

Here  

𝜋𝑖-----------Canonical momentum fields  

𝐴𝑖-----------Canonical fields 

𝐴0 , 𝛾-------Lagrange multiplier fields 

𝜕𝑖𝜋𝑖 , 𝜋0----Constraint fields  

Using physical arguments one can say that the term 𝛾𝜋0 will give us no additional information 

so, we can drop this term from our action. This process is gauge fixing in a theory and the 

process of gauge fixing has to be done according to the situation, i.e. here we fixed our gauge 

𝜋0 = 0 [5]. 

So finally, we have  

𝐼𝐸𝑀[𝜋𝑖  , 𝐴𝑖  , 𝐴0] = ∫ 𝑑4𝑥 [𝜋𝑖�̇�𝑖 − (
1

2
𝜋𝑖𝜋𝑖 +

1

4
𝐹𝑖𝑗𝐹𝑖𝑗) + 𝐴0𝜕𝑖𝜋

𝑖] (2.34) 

which is in the general form equation (2.1)  

So, equations of motion are  
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�̇�𝑖 = −
𝜕𝐻

𝜕𝐴𝑖
   ,   �̇�𝑖 =

𝜕𝐻

𝜕𝜋𝑖
   ,   𝜙 = 𝜕𝑖𝜋

𝑖 = 0 (2.35) 

Now we use equation (2.7) i.e.  

𝑑𝜙

𝑑𝑡
= [𝜙, 𝐻𝑇] = 0  

[𝜙(𝑥), 𝐻𝑇(𝑥′)] = [𝜕𝑖𝜋𝑖(𝑥),
1

2
(𝜋𝑖𝜋𝑖(𝑥′) + 𝐹𝑖𝑗𝐹𝑖𝑗(𝑥′) −

1

2
𝐴0𝜕𝑖𝜋𝑖(𝑥′))] (2.36) 

which gives us  

𝑑𝜙

𝑑𝑡
= 2𝜕𝑘𝜕𝑖

′[𝜋𝑘(𝑥′), 𝐴𝑗(𝑥′)]𝐹𝑖𝑗(𝑥′) 

𝑑𝜙

𝑑𝑡
= −2(𝜕𝑘𝜕𝑖

′𝛿3(𝑥 − 𝑥′))𝐹𝑖𝑗(𝑥′) = 0 (2.37) 

Now we use the equations (2.13), (2.14) and (2.15) and find the gauge symmetry of the theory. 

But before that instead of using 𝜙(𝑥) = 𝜕𝑖𝜋𝑖(𝑥) we use Φ[∧ (𝑥)] i.e. we attach a weight 

function also known as test function as follows  

Φ[∧ (𝑥)] = ∫ 𝑑3𝑥 ∧ (𝑥)𝜕𝑖𝜋
𝑖(𝑥) (2.38) 

Calculating the poisons bracket we find  

𝛿𝐴𝑖(𝑥) = [𝐴𝑖(𝑥, 𝑡) , Φ[∧ (𝑥′)]] (2.39) 

𝛿𝐴𝑖(𝑥) = ∫ 𝑑3𝑥′ ∧ (𝑥′, 𝑡)𝜕𝑖
′[𝐴𝑖(𝑥, 𝑡), 𝜋𝑗(𝑥′, 𝑡)]  

= ∫ 𝑑3𝑥′ ∧ (𝑥′, 𝑡)𝛿𝑗𝑖𝜕𝑗
′𝛿3(𝑥 − 𝑥′) 

= −𝜕𝑖 ∧ (𝑥, 𝑡) (2.40) 

and  

𝛿𝜋𝑖(𝑥, 𝑡) = [𝜋𝑖 , Φ[∧ (𝑥′)]] = ∫ 𝑑3𝑥′ ∧ (𝑥′, 𝑡) [𝜋𝑖  , 𝜕𝑗𝜋𝑗] = 0 (2.41) 

Now to find 𝛿𝐴0 we calculate the variation of our action i.e.  
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𝛿𝐼 = ∫ 𝑑4𝑥 [𝜋𝑖𝛿�̇�𝑖 + 𝛿𝐴0𝜙] 

= ∫ 𝑑4𝑥 [−𝜋𝑖𝜕
𝑖𝜕0 ∧ +𝛿𝐴0𝜕𝑖𝜋𝑖] 

= ∫ 𝑑4𝑥 [𝜕𝑖(−𝜋𝑖𝜕0 ∧) + 𝜕𝑖𝜋𝑖𝜕0 ∧ +𝛿𝐴0𝜕𝑖𝜋
𝑖] 

= ∫ 𝑑4𝑥 [𝜕𝜇𝐾𝜇 + 𝜕𝑖𝜋𝑖(𝛿𝐴0 + 𝜕0 ∧)] (2.42) 

For the variation to be the boundary term we need 𝛿𝐴0 = −𝜕0 ∧ . Thus, we have found out 

𝛿𝐴0.and we have proved that 𝛿𝐴𝑖(𝑥) together with 𝛿𝐴0 form the gauge transformation of 

electromagnetic field i.e. 

𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇 ∧ (𝑥) (2.43) 

which was generated by the constraint 𝜕𝑖𝜋𝑖 = 0 [5]. 

 

2.4 GENERAL RELATIVITY 

 

We have a manifold ℳ whose metric is given by 𝑔𝜇𝜈 and the Einstein Hilbert action is 

given by [2] 

𝐼𝐸𝐻 =
1

16𝜋
∫ 𝑅√−𝑔𝑑4𝑥 (2.44) 

To write this action in Hamiltonian form we do an ADM decomposition of the spacetime [3]. 

Spacetime is divided into 3 dimensional surfaces 𝛴𝑡
3 where 𝑔𝑖𝑗 is the intrinsic metric on 𝛴𝑡

3. 

The lapse function is defined as 𝑁(�⃗�, 𝑡) such that 𝑁(�⃗�, 𝑡)𝑑𝑡 takes us from 𝛴𝑡
3 to 𝛴𝑡+𝑑𝑡

3  and the 

shift function is defined as 𝑁𝑖(�⃗�, 𝑡) such that 𝑁𝑖(�⃗�, 𝑡)𝑑𝑡 measures the shift produced at 

constant time between �⃗� + 𝑑�⃗� and the point that will eventually hit (�⃗� + 𝑑�⃗�, 𝑡 + 𝑑𝑡) by 

projecting 𝑁𝑑𝑡 Fig(2.1)  
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                                               Fig (2.1) Lapse and Shift Functions 

Action can now be written as 

𝐼𝐸𝑀[𝑁, 𝑁𝑖 , 𝑔𝑖𝑗] = ∫ 𝑑4𝑥 𝑁√− 𝑔 
(3) ( 𝑅 

(3) − 𝐾2 + 𝐾𝑖𝑗𝐾𝑖𝑗) (2.45) 

where we have neglected the boundary term. Here 𝐾𝑖𝑗 is the extrinsic curvature and 𝐾 is the 

Ricci scalar on 𝛴𝑡
3 given by 

𝐾𝑖𝑗 =
1

2𝑁
[−�̇�𝑖𝑗 + 𝑁𝑖;𝑗 + 𝑁𝑗;𝑖] (2.46) 

𝐾 = 𝑔𝑖𝑗𝐾𝑖𝑗 (2.47) 

Now we can define canonical momentum fields as  

𝛱𝑖𝑗 =
𝜕ℒ

𝜕�̇�𝑖𝑗

(2.48) 

which we calculate using 𝛿𝐼 and we get 

𝛱𝑖𝑗 = √|𝑔|[𝐾𝑔𝑖𝑗 − 𝐾𝑖𝑗] (2.49) 

Taking the trace of (2.49) we get  

𝐾 =
𝛱

√|𝑔|
       𝑤ℎ𝑒𝑟𝑒 𝛱 = 𝛱𝑖𝑗𝑔𝑖𝑗 (2.50) 

where 𝐾𝑖𝑗 is given as  

𝐾𝑖𝑗 =
1

√|𝑔|
(−𝛱𝑖𝑗 +

𝛱

2
𝑔𝑖𝑗) (2.51) 

Using (2.46) and (2.51) we calculate �̇�𝑖𝑗 and we get the Hamiltonian as  
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𝐻 = ∫ 𝑑3𝑥 (𝛱𝑖𝑗�̇�𝑖𝑗 − ℒ) (2.52) 

which after calculating is  

= ∫ 𝑑3𝑥 [𝑁 [
𝛱𝑖𝑗𝛱𝑖𝑗

√|𝑔|
−

1

2

𝛱2

√|𝑔|
− √|𝑔|𝑅] − 2𝛱   ;𝑗

𝑖𝑗
𝑁𝑖] 

Thus, our Hamiltonian is  

𝐻 = ∫ 𝑑3𝑥 (𝑁ℋ + 𝑁𝑖ℋ
𝑖) (2.53) 

Where  

ℋ =
1

√|𝑔|
(𝛱𝑖𝑗𝛱𝑖𝑗 −

𝛱2

2
) − √|𝑔|𝑅           ℋ𝑖 = −2𝛱   ;𝑗

𝑖𝑗 (2.54) 

So, the Einstein Hilbert action can be written in form (2.1) as 

𝐼𝐴𝐷𝑀[𝑔𝑖𝑗 , 𝛱𝑖𝑗, 𝑁, 𝑁𝑖] = ∫ 𝑑4𝑥 [𝛱𝑖𝑗�̇�𝑖𝑗 − 𝑁ℋ − 𝑁𝑖ℋ𝑖] (2.55) 

Where  

𝑔𝑖𝑗--------Cannonical Fields 

𝛱𝑖𝑗--------Canonical Momentum fields 

𝑁, 𝑁𝑖------Lagrange Multiplier Fields 

ℋ, ℋ𝑖----Contraint Fields 

and the Poisson’s bracket for our theory is  

[𝑔𝑖𝑗(𝑥), 𝜋𝑘𝑙(𝑥′)] =
1

2
(𝛿𝑖

𝑘𝛿𝑗
𝑙 + 𝛿𝑖

𝑙𝛿𝑗
𝑘)𝛿3(𝑥 − 𝑥′) (2.56) 

since both the tensors are symmetric. 

And the equations of motion are 

𝛿𝐼

𝛿𝑁
= ℋ = 0         ,        �̇�𝑖𝑗 =

𝛿𝐻

𝛿𝜋𝑖𝑗
(2.57) 
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𝛿𝐼

𝛿𝑁𝑖
= ℋ𝑖 = 0         ,        �̇�𝑖𝑗 = −

𝛿𝐻

𝛿𝑔𝑖𝑗

(2.58) 

So, there are 4 constraints ℋ = 0 , ℋ𝑖 = 0  and 4 Lagrange multipliers 𝑁, 𝑁𝑖. These constraints 

are first class constraints and they satisfy the Dirac Algebra 

[ℋ(𝑥), ℋ(𝑦)] = 𝑔𝑖𝑗ℋ𝑗(𝑥)
𝜕

𝜕𝑥𝑖
𝛿(𝑥, 𝑦) − 𝑔𝑖𝑗ℋ𝑗(𝑦)

𝜕

𝜕𝑦𝑖
𝛿(𝑥, 𝑦) (2.59) 

[ℋ𝑗(𝑥), ℋ(𝑦)] = ℋ(𝑦)
𝜕

𝜕𝑥𝑖
𝛿(𝑥, 𝑦) (2.60) 

[ℋ𝑗(𝑥), ℋ𝑗(𝑦)] = ℋ𝑗(𝑦)
𝜕

𝜕𝑦𝑖
𝛿(𝑥, 𝑦) − ℋ𝑖(𝑦)

𝜕

𝜕𝑦𝑗
𝛿(𝑥, 𝑦) (2.61) 

As done in section of electromagnetic field theory we write down the generator as  

𝛷 ℋ𝑖[𝜉𝑖] = ∫ 𝑑3𝑥 𝜉𝑖(𝑥) ℋ𝑖 (2.62) 

= −2 ∫ 𝑑3𝑥 𝜉𝑖𝛱  ;𝑗
𝑖𝑗

 

= 2 ∫ 𝑑3𝑥 𝜉𝑖;𝑗𝛱𝑖𝑗 (2.63) 

for the constraint ℋ𝑖 where 𝜉𝑖 is the test function. Now using Poisson’s bracket, we find  

𝛿𝑔𝑖𝑗 = [𝑔𝑖𝑗, 𝛷 ℋ𝑖[𝜉𝑖]] (2.64) 

= 2 ∫ 𝑑3𝑥′ 𝜉𝑘;𝑙(𝑥′)[𝑔𝑖𝑗(𝑥), 𝜋𝑘𝑙(𝑥′)] 

𝛿𝑔𝑖𝑗 = 휀𝑖;𝑗 + 휀𝑗;𝑖 = ℒ 𝑔𝑖𝑗 (2.65) 

which is simply the lie derivate of 𝑔𝑖𝑗 on 𝛴𝑡
3 that are diffeomorphisms which are gauge 

transformations in general relativity [2].  
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CHAPTER 3 

ASYMPTOTIC SYMMETRIES AND 

CONSERVED CHARGES 

 

 In this chapter we deal with gauge theories i.e. where fields have effect at large 

distances [1]. Thus, the analysis of theory includes contribution from boundary terms which 

we had neglected in chapter 1 and chapter 2. 

 

3.1 BOUNDARY CONDITIONS AND BOUNDARY TERMS 

 

 Let us now explain what we mean by boundary conditions and boundary terms. For 

simplicity consider a theory of some real scalar field 𝜙 on some non-compact manifold ℳ 

which is given by 

𝐼 = ∫ 𝑑4𝑥
 

ℳ

ℒ(𝜙, 𝜕𝜇𝜙) (3.1) 

Now the variation of the action is given by 
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𝛿𝐼 = ∫ 𝑑4𝑥
 

ℳ

(
𝜕ℒ

𝜕𝜙
𝛿𝜙 +

𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙,𝜇) (3.2) 

𝛿𝐼 = ∫ 𝑑4𝑥
 

ℳ

(
𝜕ℒ

𝜕𝜙
− 𝜕𝜇 (

𝜕ℒ

𝜕𝜙,𝜇
)) 𝛿𝜙 + ∫ 𝑑4𝑥𝜕𝜇 (

𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙) 

 

ℳ

(3.3) 

Here the boundary term is  

𝐵 = ∫ 𝑑4𝑥𝜕𝜇 (
𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙)

 

ℳ

(3.4) 

which using divergence theorem can be written as  

𝐵 = ∫ 𝑑4𝑥𝜕𝜇 (
𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙)

 

ℳ

= ∫ 𝑑𝛴𝜇 (
𝜕ℒ

𝜕𝜙,𝜇
𝛿𝜙)

 

𝜕ℳ

(3.5) 

So, to visualize the situation better let us consider a 3-dimensional case, with 1-spatial 

dimension suppressed (Fig 3.1).  

 

                                                      

                                                        Fig (3.1): The Manifold 

 

From the figure (3.1) we can see that the boundary 𝜕ℳ of ℳ have three pieces, the two covers 

at constant time 𝑡1 and 𝑡2 and where 𝑑𝛴𝜇 = 𝑑3𝑥 pointing upwards and downwards in time 

respectively and the cylinder at 𝑟 → ∞ where 𝑑𝛴𝜇 = 𝑟2𝑑𝛺𝑑𝑡�̂� where 𝑑𝛺 is the solid angle. 

The boundary term then becomes  
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𝐵 = ∫
𝜕ℒ

𝜕𝜙,0
𝛿𝜙 𝑑3𝑥|𝑡1

𝑡2 + ∫
𝜕ℒ

𝜕𝜙,𝑟
𝛿𝜙 𝑟2𝑑𝛺𝑑𝑡|𝑟→∞ (3.6) 

Since the initial and final conditions are fixed the first term vanishes i.e. 𝛿𝜙(𝑡1) = 𝛿𝜙(𝑡2) =

0. And we are left with  

𝐵 = ∫
𝜕ℒ

𝜕𝜙,𝑟
𝛿𝜙 𝑟2𝑑𝛺𝑑𝑡|𝑟→∞ (3.7) 

Usually we deal with Non-Gauge theories where field have compact support i.e. when 𝑟 → ∞ 

then 𝜙 → 0, but in case of Gauge theories this is not true i.e. when 𝑟 → ∞ then 𝜙 ≠ 0. Even if 

physical fields do tend to zero the presence of Lagrange multipliers with no dynamical 

equations restricting them make it difficult to solve our theory.  

 

3.2 CHERN SIMONS THEORY 

 

The action of Chern-Simons theory in (1+2) dimensions in component notation is given as 

[7]  

𝐼[𝐴] =
𝑘

4𝜋
∫ 𝑑3𝑥 𝜖𝜇𝜈𝜆 𝑇𝑟 (𝐴𝜇𝜕𝜈𝐴𝜆 +

2

3
𝐴𝜇𝐴𝜈𝐴𝜆) (3.8) 

Here 

𝜖𝜇𝜈𝜆--- Totally Antisymmetric tensor 

𝑘------- Constant 

𝑇𝑟----- Represents trace of the matrix 

𝐴𝜇----- Are known as the connections  

 

The connection takes values in some given algebra usually associated with some Gauge group 

i.e. 

𝐴𝜇 = 𝐴  𝜇
𝑎 (𝑥)𝐽𝑎 (3.9) 

here 𝐽𝑎 are generators of the Gauge group and 𝐴  𝜇
𝑎 (𝑥) are scalars. 
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We split the Chern-Simons action in (1+2) where 𝐴𝜇 = (𝐴0, 𝐴𝑖) and we get  

𝐼𝐶𝑆[𝐴0 , 𝐴𝑖] =
𝑘

8𝜋
∫ 𝑑3𝑥 𝜖𝑖𝑗𝜂𝑎𝑏[−𝐴   𝑖

𝑎 �̇�   𝑗
𝑏 + 𝐴   0

𝑎 𝐹   𝑖𝑗
𝑏 ] (3.10) 

This action has the general structure of (2.1), where 𝐴𝑖 are two dynamical fields. Here 𝐴   0
𝑎  are 

the Lagrange multipliers, 𝐹   𝑖𝑗
𝑏  are the constraints and 𝜂𝑎𝑏 is the flat metric. The poisons bracket 

is given by 

[𝐴   𝑖
𝑎 (𝑥), 𝐴   𝑗

𝑏 (𝑥′)] =
4𝜋

𝑘
𝜖𝑖𝑗𝜂𝑎𝑏𝛿(𝑥 − 𝑥′) (3.11) 

and the poisons bracket of ant two functions 𝐿1(𝐴),𝐿2(𝐴) of the fields 𝐴   𝑖
𝑎  is given by 

[𝐿1(𝐴), 𝐿2(𝐴)] =
4𝜋

𝑘
∫ 𝑑2𝑥

𝛿𝐿1(𝐴)

𝛿𝐴   𝑖
𝑎 𝜖𝑖𝑗𝜂𝑎𝑏

𝛿𝐿2(𝐴)

𝛿𝐴   𝑗
𝑏

(3.12) 

and the equation of motion are  

�̇�   𝑖
𝑎 = 𝐷𝑖𝐴   0

𝑎 (3.13) 

𝐹   𝑖𝑗
𝑎 = 0 (3.14) 

where 𝐷𝑖𝐴   0
𝑎 = 𝜕𝑖𝐴   0

𝑎 + 𝜖  𝑏𝑐
𝑎 𝐴   𝑖

𝑏 𝐴   0
𝑐  is the covariant derivative. 

 

3.2.1 BOUNDARY TERMS 

 

As we had shown in chapter 2 in case of electromagnetic field theory and general 

relativity, if we look at the action (3.10) we could say that the generator of gauge transformation 

with parameter 𝜉𝑎 is the integral of constraint with a test function 𝜉 is  

𝐺0[𝜉] =
𝑘

8𝜋
∫ 𝑑2𝑥 𝜖𝑖𝑗𝜉𝑎𝐹   𝑖𝑗

𝑎 (3.15) 

which would have been correct if we had no boundaries on the manifold but here the case is 

different, we do have manifold boundaries and the correct Gauge transformation with 

parameter 𝜉𝑎 acting on 𝐴   𝑖
𝑎  as we know is  

𝛿𝐴   𝑖
𝑎 = 𝐷𝑖𝜉𝑎 (3.16) 
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If the equation (3.15) is correct then the following should hold from (3.11) i.e. 

[𝐴   𝑖
𝑎 , 𝐺0[𝜉]] = 𝜖𝑖𝑗𝜂𝑎𝑏

𝛿𝐺0[𝜉]

𝛿𝐴   𝑗
𝑏 = 𝐷𝑖𝜉𝑎 (3.17) 

Now to check whether the equality hold true or not we calculate the variation  

𝛿𝐺0[𝜉] =
𝑘

8𝜋
∫ 𝑑2𝑥 𝜖𝑖𝑗𝜉𝑎𝛿𝐹   𝑖𝑗

𝑎 (3.18) 

which after calculating we get  

𝛿𝐺0[𝜉] = 𝛿𝐵[𝜉] −
𝑘

4𝜋
∫ 𝑑2𝑥 𝜖𝑖𝑗𝐷𝑖𝜉𝑎𝛿𝐴   𝑗

𝑎 (3.19) 

where the first term which is a boundary term is  

𝐵[𝜉] =
𝑘

4𝜋
∮ 𝑑𝜑𝜉𝑎𝐴   𝜑

𝑎
 

𝑟→∞

(3.20) 

In order to make sense of equation (3.17) we do the following by taking 𝛿𝐵[𝜉] on the LHS of 

equation (3.19) and we get 

𝛿(𝐺0[𝜉] − 𝐵[𝜉]) = −
𝑘

4𝜋
∫ 𝑑2𝑥 𝜖𝑖𝑗𝐷𝑖𝜉𝑎𝛿𝐴   𝑗

𝑎 (3.21) 

This suggests that instead of considering 𝐺0[𝜉] we consider 𝐺[𝜉] ≡ 𝐺0[𝜉] − 𝐵[𝜉] so we get 

𝐺[𝜉] =
𝑘

8𝜋
∫ 𝑑2𝑥 𝜖𝑖𝑗𝜉𝑎𝐹   𝑖𝑗

𝑎 −
𝑘

4𝜋
∮ 𝑑𝜑𝜉𝑎𝐴   𝜑

𝑎
 

𝑟→∞

(3.22) 

whose variation is well-defined as 

𝛿𝐺[𝜉]

𝛿𝐴   𝑗
𝑎 = −

𝑘

4𝜋
𝜖𝑖𝑗𝐷𝑖𝜉𝑎 (3.23) 

So, we conclude by saying that in case of boundaries on manifold the generator of gauge 

transformation is 𝐺[𝜉] instead of 𝐺0[𝜉] and 𝐺[𝜉] is known as the improved generator. Now if 

we consider the equation (3.17) we see that using 𝐺[𝜉] makes sense i.e. 

[𝐴   𝑖
𝑎 , 𝐺[𝜉]] = 𝜖𝑖𝑗𝜂𝑎𝑏

𝛿𝐺[𝜉]

𝛿𝐴   𝑗
𝑏 = 𝐷𝑖𝜉𝑎 (3.24) 

and indeed, the equality holds true. 
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We should be aware that the value of 𝐵[𝜉] depends on gauge parameter 𝜉𝑎 so it can in principle 

take any value. Thus, not all gauge transformations are on equal footing so we can make the 

following classification 

• PROPER GAUGE TRANSFORMATION: Choices of 𝜉𝑎such that 𝐵[𝜉] = 0. These 

form the class of Pure Gauge transformations and do not change the physical state of 

the system and their generator is purely a constraint. 

• IMPROPER GAUGE TRANSFORMATION: Choices of 𝜉𝑎such that 𝐵[𝜉] ≠ 0. These 

form the class of impure gauge transformations and they do change the physical state 

of the system and the transformation corresponding to them is physical which can be 

realized physically. 

 

3.2.2 ASYMPTOTIC SYMMETRIES 

 

 Suppose we have a field with specified boundary conditions. We say that asymptotic 

symmetry group of this field is the set of all symmetry transformation that preserve the 

asymptotic boundary conditions and these symmetries possess non-zero conserved charges. 

For our case to say whether 𝐵[𝜉] is zero or non-zero depends on asymptotic conditions. These 

conditions depend on the physical situations. We will explain these ideas with the help of 

examples below. 

Example 1: Consider the set of all connections 𝐴0 𝐴𝑟 𝐴𝜑 such that we have the following 

boundary conditions  

𝐴0 = 0 , 𝐴𝑟 = 0      𝑎𝑡 𝑟 → ∞ (3.25) 

We find all the gauge transformation that leave this boundary condition invariant i.e. 

𝛿𝐴𝜇 = 𝐷𝜇𝜉   ⇒   𝐷𝑡𝜉 = 𝐷𝑟𝜉 = 0 (3.26) 

and the solution is given by the parameter 𝜉𝑎 which depends only on 𝜑 i.e. 

𝜉𝑎 = 𝜉𝑎(𝜑) (3.27) 

At boundary the only non-zero field is 𝐴𝜑(𝜑) and our theory is invariant under the 

transformations whose parameter depend only on 𝜑 i.e.  
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𝛿𝐴𝜑 = 𝐷𝜑𝜉 (3.28) 

which is set of asymptotic symmetries for these boundary conditions. 

Example 2: We have boundary condition known as chiral condition which is use d to study 

black holes and CFTs are given as  

𝐴0 = 𝐴𝜑 , 𝐴𝑟 = 0      𝑎𝑡 𝑟 → ∞ (3.29) 

once again, we find all the gauge transformation that leave this boundary condition invariant 

i.e. 

𝛿𝐴𝜇 = 𝐷𝜇𝜉 (3.30) 

and the solution is given by the parameter 

𝜉𝑎 = 𝜉𝑎(𝑡 + 𝜑) (3.31) 

At the boundary the only non-zero field is the chiral field i.e. 𝐴𝜑(𝑡 + 𝜑) and our theory is 

invariant under the chiral transformations whose parameter depend only on 𝜉𝑎(𝑡 + 𝜑) 

 

3.2.3 ASYMPTOTIC ALGEBRA 

 

Now we calculate the asymptotic algebra of the generators of the gauge transformations 

since now we have well defined variations for 𝐺[𝜉] so computing the algebra we get  

[𝐺[𝜉], 𝐺[𝜌]] =
𝑘

4𝜋
∫ 𝑑2𝑥𝜖𝑖𝑗𝜂𝑎𝑏

𝛿𝐺[𝜉]

𝛿𝐴   𝑖
𝑎 (𝑥)

𝛿𝐺[𝜌]

𝛿𝐴   𝑗
𝑏 (𝑥)

(3.32) 

=
𝑘

4𝜋
∫ 𝑑2𝑥𝜂𝑎𝑏𝜖𝑖𝑗𝜖𝑖𝑛𝜖𝑗𝑚 (𝐷𝑛𝜉𝑎)(𝐷𝑚𝜌𝑏) 

=
𝑘

4𝜋
∫ 𝑑2𝑥𝜖𝑛𝑚𝜕𝑛(𝜉𝑎𝐷𝑚𝜌𝑎) −

𝑘

4𝜋
∫ 𝑑2𝑥𝜖𝑛𝑚𝜉𝑎𝐷𝑛𝐷𝑚 𝜌𝑎 

=
𝑘

4𝜋
∮ 𝑑𝜑𝜉𝑎𝐷𝜑𝜌𝑎 −

𝑘

4𝜋
∫ 𝑑2𝑥

1

2
𝜉𝑎𝜖  𝑏𝑐

𝑎 𝐹   𝑖𝑗
𝑏

 

𝑟→∞

𝜌𝑐𝜖𝑖𝑗 

=
𝑘

4𝜋
∮ 𝑑𝜑𝜉𝑎𝜕𝜑𝜌𝑎 −

𝑘

4𝜋
∮ 𝑑𝜑𝜖𝑎𝑏𝑐𝜉𝑎𝜌𝑐𝐴  𝜑

𝑏 +
𝑘

8𝜋

 

𝑟→∞

∫ 𝑑2𝑥 𝜖𝑎𝑏𝑐𝜉𝑎𝜌𝑐𝜖𝑖𝑗𝐹   𝑖𝑗
𝑏

 

𝑟→∞

(3.33) 
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where we have used strokes theorem, 𝜖𝑛𝑚𝐷𝑛𝐷𝑚𝜌𝑎 =
1

2
𝜖𝑛𝑚𝐹𝑛𝑚𝜌𝑎 and 𝜉𝑎𝜌𝑎 is scalar under 

the gauge group. The last two terms group to form 𝐺 again thus finally we get  

[𝐺[𝜉], 𝐺[𝜌]] = 𝐺[[𝜉, 𝜌]] +
𝑘

4𝜋
∮ 𝑑𝜑𝜉𝑎𝜕𝜑𝜌𝑎

 

𝑟→∞

(3.34) 

Where we have used ([𝜉, 𝜌])𝑏 = 𝜖𝑎𝑏𝑐𝜉𝑎𝜌𝑐 for 𝜉, 𝜌 in gauge algebra. The last term is called the 

central extension of the algebra. 

 

3.2.4 HAMILTONIAN AND ENERGY 

 

For Chern-Simons action given by (3.10) we compute its variation i.e. 

𝛿𝐼𝐶𝑆 =
𝑘

8𝜋
𝛿 ∫ 𝑑3𝑥 𝜖𝑖𝑗  𝑇𝑟(𝐴𝑖�̇�𝑗 − 𝐴0𝐹𝑖𝑗) (3.35) 

=
𝑘

8𝜋
∫ 𝑑3𝑥 𝜖𝑖𝑗 𝑇𝑟 (−𝛿𝐴0𝐹𝑖𝑗 + 𝛿𝐴𝑖𝐴�̇� − �̇�𝑖𝛿 𝐴𝑗 − 𝐴0𝛿𝐹𝑖𝑗 +

𝑑

𝑑𝑡
(𝐴𝑖𝛿𝐴𝑗)) 

= −
𝑘

8𝜋
∫ 𝑑3𝑥 𝜖𝑖𝑗 𝑇𝑟(𝛿𝐴0𝐹𝑖𝑗 + 2�̇�𝑖𝛿 𝐴𝑗 + 𝐴0𝛿𝐹𝑖𝑗) (3.36) 

where the time derivative is zero since the initial and final conditions are held fixed and we 

used the cyclic property of the trace. And we use 

𝜖𝑖𝑗 𝑇𝑟(𝐴0𝛿𝐹𝑖𝑗) = 2𝜖𝑖𝑗 𝑇𝑟[𝜕𝑖(𝐴0𝛿𝐴𝑗) − 𝐷𝑖𝐴0𝛿𝐴𝑗] (3.37) 

and thus, we get 

𝛿𝐼𝐶𝑆 = −
𝑘

8𝜋
∫ 𝑑3𝑥 𝜖𝑖𝑗 𝑇𝑟 (𝛿𝐴0𝐹𝑖𝑗 + 2(�̇�𝑖 − 𝐷𝑖𝐴0)𝛿𝐴𝑗 + 2𝜕𝑖(𝐴0𝛿𝐴𝑗)) (3.38) 

=
𝑘

8𝜋
∫(𝑒. 𝑜. 𝑚) −

𝑘

4𝜋
∫ 𝑑𝑡 ∫ 𝑑2𝑥 𝜕𝑖𝑇𝑟 (𝜖𝑖𝑗(𝐴0𝛿𝐴𝑗)) 

𝛿𝐼𝐶𝑆 =
𝑘

8𝜋
∫(𝑒. 𝑜. 𝑚) −

𝑘

4𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟(𝐴0𝛿𝐴𝜑) (3.39) 

where in the last step we used Strokes theorem.  
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Now we define a new action by passing the boundary term on the left side of equation (3.39), 

now the equations of motion define an extremum for this new action i.e. 

𝛿𝐼𝐶𝑆 +
𝑘

4𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟(𝐴0𝛿𝐴𝜑) =
𝑘

8𝜋
∫(𝑒. 𝑜. 𝑚) (3.40) 

But the process done above is equivalent to defining a new Hamiltonian i.e. 

𝐻 = 𝐻0 + 𝐸 (3.41) 

𝐻 =
𝑘

8𝜋
∫ 𝜖𝑖𝑗 𝐴0𝐹𝑖𝑗 + 𝐸 (3.42) 

where  

𝛿𝐸 =
𝑘

4𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟(𝐴0𝛿𝐴𝜑) (3.43) 

This boundary term is known as Energy, since 𝐻0 is a constraint, 𝐸 gives us energy for any 

solution to equations of motion. 

Now finding 𝐸 depends on boundary conditions  

Case I: Let’s consider 𝐴0 = 0  and 𝐴𝑟 = 0 when 𝑟 → ∞ so this means that our energy 𝐸 = 0 

Case II: Lets consider Chiral boundary conditions i.e. 𝐴0 = 𝐴𝜑 and 𝐴𝑟 = 0 when 𝑟 → ∞ so 

now using (3.43) we get 

𝛿𝐸 =
𝑘

4𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟(𝐴𝜑𝛿𝐴𝜑) =
𝑘

4𝜋
𝛿 ∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟 (
1

2
𝐴𝜑

2) (3.44) 

Thus, our energy will be 

𝐸[𝐴𝜑] =
𝑘

8𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟(𝐴𝜑
2) (3.45) 
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3.2.5 HAMILTONIAN GENERATES TIME TRANSLATIONS 

 

The Hamiltonian 𝐻 we defined in the previous section is the correct Hamiltonian is the 

generator of time translations which are symmetry transformations corresponding to conserved 

energy. The equations of motion are now given by  

�̇�  𝑖
𝑎 = [𝐴  𝑖

𝑎  , 𝐻] = 𝜖𝑖𝑗𝜂𝑎𝑏
𝛿𝐻

𝛿𝐴   𝑗
𝑏 = 𝐷𝑖𝐴  0

𝑎 (3.46) 

 

3.2.6 CONSERVED CHARGES 

 

As we have seen that improper gauge transformations are not generated by constraints, 

they change the physical state of the system and do give rise to non-trivial conserved charge. 

Thus, its generator should not evolve in time so we need to see if 
𝑑

𝑑𝑡
𝐺[𝜉] is zero or not. So, the 

time derivative of 𝐺[𝜉] is  

𝑑

𝑑𝑡
𝐺[𝜉] = [𝐺[𝜉], 𝐻] + ∫ 𝑑2𝑥

𝛿𝐺[𝜉]

𝛿𝜉
�̇� (3.47) 

since 𝐺[𝜉] depends on 𝐴𝑖 and the parameter 𝜉 which may also depend on time. Now from the 

previous section we know that Hamiltonian is gauge generator with the parameter 𝐴0  i.e.  

𝐻 = 𝐺[𝐴0] (3.48) 

Here we are dealing with chiral boundary conditions (3.29) so we get 

𝑑

𝑑𝑡
𝐺[𝜉] = [𝐺[𝜉], 𝐺[𝐴0]] + ∫ 𝑑2𝑥

𝛿𝐺[𝜉]

𝛿𝜉
�̇� (3.49) 

= ∫ 𝑑2𝑥 𝜖𝑖𝑗[𝜉, 𝐴0]𝐹𝑖𝑗 + ∫ 𝑑𝜑
 

𝑟→∞

𝜉 𝜕𝜑𝐴0 + ∫ 𝑑𝜑 𝐴𝜑�̇� 

= 0 + ∫ 𝑑𝜑 𝜉(𝜕𝜑 − 𝜕0)𝐴𝜑 

𝑑

𝑑𝑡
𝐺[𝜉] = 0 (3.50) 
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Thus equation (3.50) shows us that 𝐺[𝜉] i.e. the generator of symmetry is conserved, in our 

case the conserved charge is given by 

𝑄[𝜉] = −
𝑘

4𝜋
∫ 𝑑𝜑

 

𝑟→∞

𝜉𝑎𝐴  𝜑
𝑎 (3.51) 

which is independent of time. 

 

3.3 BTZ BLACK HOLE 

 

The Einstein-Hilbert action in (1+2) dimensions is given by [2] 

𝐼 =
1

16𝜋
∫ 𝑑3𝑥

 

𝑀
√−𝑔(𝑅 − 2𝜆) (3.52) 

where 𝜆 = −
1

𝑙2 is the cosmological constant. Extremizing this action with respect to the metric 

𝑔𝜇𝜈 gives us Einstein’s vacuum field equations that are 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 =

1

𝑙2
𝑔𝜇𝜈 (3.53) 

where 𝑅𝜇𝜈 is Ricci tensor and 𝑅 is Ricci scalar. 

Now the equations (3.53) in (1+2) dimensions can be obtained from the action given by 𝐼𝐶𝑆𝐺  

(Chern-Simons Gravity) which is reformulated in terms of two copies of Chern-Simons theory 

[7],[8],[9] i.e. 

𝐼𝐶𝑆𝐺 = 𝐼[𝐴+] − 𝐼[𝐴−] (3.54) 

Since our covering space is anti-de Sitter due to negative cosmological constant 𝜆, here our 

gauge group is 𝑆𝑂(2,2) whose algebra is given as [7]  

[𝐽𝑎  , 𝐽𝑏] = 𝜖𝑎𝑏𝑐𝐽𝑐 (3.55) 

[𝐽𝑎 , 𝑃𝑏] = 𝜖𝑎𝑏𝑐𝑃𝑐 (3.56) 

[𝑃𝑎  , 𝑃𝑏] = 𝜆𝜖𝑎𝑏𝑐𝐽𝑐 (3.57) 

This algebra can be simplified by introducing  
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𝐽𝑎
± =

1

2
(𝐽𝑎 ±

𝑃𝑎

√𝜆
) (3.58) 

since 𝑆𝑂(2,2) ≡ 𝑆𝐿(2, 𝑅) × 𝑆𝐿(2, 𝑅), the algebra then becomes  

[𝐽𝑎
+ , 𝐽𝑏

+] = 𝜖𝑎𝑏𝑐𝐽𝑐
+ (3.59) 

[𝐽𝑎
− , 𝐽𝑏

−] = 𝜖𝑎𝑏𝑐𝐽𝑐
− (3.60) 

[𝐽𝑎
+ , 𝐽𝑏

−] = 0 (3.61) 

So, our connections are given by  

𝐴  𝑗
𝑎± = 𝜔  𝑗

𝑎 ± √𝜆𝑒  𝑗
𝑎 (3.68) 

where 𝑒  𝑗
𝑎  and 𝜔  𝑗

𝑎  are the triads and spin connections given by 𝑒𝑎 = 𝑒  𝑖
𝑎 𝑑𝑥𝑖 and 𝜔𝑎 =

1

2
𝜖𝑎𝑏𝑐𝜔𝑖𝑏𝑐𝑑𝑥𝑖 respectively. The covariant derivative is  

𝐷𝑗 = 𝜕𝑗 + 𝐽𝑎
+𝐴  𝑗

𝑎+ + 𝐽𝑎
−𝐴  𝑗

𝑎− (3.69) 

One of the solutions of (3.53) is given by a black hole known as BTZ black hole and its 

metric is given by [9] 

𝑑𝑠2 = −𝑓2𝑑𝑡2 + 𝑓−2𝑑𝑟2 + 𝑟2(𝑑𝜙 + 𝑁𝜙𝑑𝑡)
2

(3.70) 

where  

𝑓2 = (−𝑀 +
𝑟2

𝑙2
+

𝐽2

4𝑟2
)       𝑁𝜙 = −

𝐽2

2𝑟2
(3.71) 

Here 𝑓 is the lapse function and 𝑁𝜙 is the shift function with (|𝐽| ≤ 𝑀𝑙). This metric is 

stationary and axially symmetric with killing fields 𝜕𝑡 and 𝜕𝜙. ADM mass and angular 

momentum are given by 𝑀 and 𝐽 respectively. This metric is asymptotically 𝐴𝑑𝑆. 

The BTZ black hole with mass 𝑀 and angular momentum 𝐽 in the Chern-Simons formulation 

can be described by constant connections 𝐴𝜑
± which follow [8] 

𝑇𝑟(𝐴𝜑
±) = ±

2

𝑘
(𝑀 ± 𝐽) (3.72) 

We are interested in finding out the energy of BTZ black hole using the ideas we studied 

in this chapter. We know the energy corresponding to asymptotic symmetry provided with 
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asymptotic boundary conditions in our case which was chiral condition was given by 

expression (3.29). Here our boundary conditions are given as  

𝐴0
+ = 𝐴𝜑       𝐴0

− = −𝐴𝜑
−        𝑎𝑡  𝑟 → ∞ (3.73) 

and these condition lead to what are known as holomorphic and anti-holomorphic currents. 

Now using (3.45) for (3.54) we get 

𝐸[𝐴𝜑 , 𝐴𝜑
−] =

𝑘

8𝜋
∫ 𝑑𝑡 ∫ 𝑑𝜑

 

𝑟→∞

𝑇𝑟 ((𝐴𝜑
+)

2
− (𝐴𝜑

−)
2

) (3.74) 

Therefore, in Euclidean time where 0 ≤ 𝑡 ≤ 1 the energy of the black hole is 

𝐸𝐵𝑇𝑍 =
𝑘

8𝜋
∫ 𝑑𝜑

 

𝑟→∞

(
2𝜋

𝑘
(𝑀 + 𝐽) +

2𝜋

𝑘
(𝑀 − 𝐽)) = 𝑀 (3.75) 

which is the mass of the (1+2) dimensional BTZ black hole. 
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CHAPTER 4 

CONCLUSIONS 

 

In this chapter we will summarize all three chapters and try to conclude our work. 

So, in the first chapter we saw what we meant by symmetries and conserved charges of 

a theory specifically by learning about them for Minkowski spacetime. In chapter 2 we studied 

dynamics of constrained system. But our discussion was limited to the theories excluding the 

boundary terms. We learnt that if a theory has constraints in it and if these constraints are first 

class then this implies that our theory has gauge symmetry, and this gauge symmetry does not 

have a corresponding conserved charge. We discussed these ideas via study of electromagnetic 

field theory and general relativity. 

Chapter 3 had all the core ideas about asymptotic symmetries and conserved charges. 

Now here we dealt with gauge theories specifically Chern Simons theory with boundary terms 

and saw how the boundary terms interfere with the generators of gauge symmetry. So, we had 

two possibilities, first was proper gauge transformations and second was improper gauge 

transformations. Proper gauge transformations are the ones where the boundary term was zero 

and they corresponded to symmetry which did not change the physical state of the system. 

Whereas improper gauge transformations were the ones where we had non zero boundary terms 

and they corresponded to symmetry which did change the physical state of the system and we 

had the corresponding conserved charges.  
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The idea of improper gauge transformation provided with specific boundary conditions 

resulted in what are known as asymptotic symmetries. We saw how important these boundary 

conditions were, as the generator of asymptotic symmetries depends on them. We were 

required to find out those gauge transformations which left the boundary condition invariant. 

One important boundary condition was chiral boundary condition which is used in study of 

CFTs and black hole physics. We then explicitly calculated the asymptotic algebra.  

One of the corresponding conserved charges for asymptotic symmetries is the energy. 

The Hamiltonian is the generator of energy which corresponds to asymptotic time translations. 

We saw that under certain boundary conditions we might even have a trivial energy. Thus, 

boundary conditions are really important for understanding the system. Lastly, we applied all 

the knowledge to see the calculation of the energy of the BTZ black hole in (1+3) dimensions, 

which was nothing but the asymptotically conserved charge corresponding to the chiral 

boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

 

 

 

BIBLIOGRAPHY 

 

[1] Banados, Max, and Ignacio Reyes. "A short review on Noether’s theorems, gauge 

symmetries and boundary terms." International Journal of Modern Physics D 25.10 

(2016): 1630021. 

 

[2] Blau, Matthias. "Lecture notes on general relativity." (2011). 

 

[3] Poisson, Eric. "A relativist's toolkit: the mathematics of black-hole mechanics." (2004). 

 

[4] Dirac, Paul Adrien Maurice. "Lectures on quantum mechanics." (2001). 

 

[5] Das, Ashok. "Lectures on quantum field theory." (2008). 

 

[6] Compère, Geoffrey. "Advanced Lectures on General Relativity." (2018). 

 

[7] Witten, Edward. "2+ 1 dimensional gravity as an exactly soluble system." Nuclear 

Physics B 311.1 (1988): 46-78. 

 

[8] Banados, Maximo. "Three-dimensional quantum geometry and black holes." AIP 

Conference Proceedings. Vol. 484. No. 1. AIP, 1999. 

 



38 

 

[9] Carlip, Steven. "The (2+ 1)-dimensional black hole." Classical and Quantum 

Gravity 12.12 (1995): 2853. 




