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Abstract

In [1], it has been shown that for an expanding BEC model with constant background

density, the scale invariance of the inflationary power spectrum breaks down when strong

dipole-dipole interactions are involved. So, with the aim of studying the scale invariance

of the power spectrum, in this work, a Gaussian background density is introduced into the

expanding BEC model and the dipole-dipole interaction term is ignored. Within such a

setting, it is found that the scale invariance of the inflationary power spectrum is retained

in the long wavelength limit. Continuing further, the terms ignored in the long wavelength

limit are treated perturbativately using the approach of multiple scale analysis. It is shown

that the resulting inflationary power spectrum due to first order amplitude corrections still

remains scale invariant.
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Chapter 1

Introduction

The inflationary model of the universe, which suggests that the cosmos expanded rapidly at

the early phase of the universe, theoretically answers many questions about the flatness and

homogeneity of the universe [2], and even explains the origin of large-scale structure of the

cosmos. However this model presents a new problem - if the period of inflation lasts long so

as to be concordant with the observations, the scales of physical wavelength which get in-

volved at early times are much smaller than Planck length [1, 3], the length scale below which

effects of quantum gravity potentially become apparent [4]. In such a case, trans-Planckian

energies become involved, for which the physics is speculative at the best currently. So, in

order to tackle this problem, we will take the approach of analogue gravity and model the

cosmos as considered by [1] on the basis of an expanding Bose Einstein Condensate (BEC),

a known condensed matter system, whose properties can be experimentally investigated.

Since trans-Planckian energies become involved, Planck length becomes an important length

scale. Healing length of BEC, ξhl which characterizes the transition from phononic to free

particle mode, happens to provide this crucial analogy to Planck length [5, 6]. In BECs, for

length scales much greater than healing length i.e small momenta (k << 1/ξhl), the energy

dispersion relation is linear, whereas for length scales much smaller than healing length i.e

large momenta (k >> 1/ξhl), the energy dispersion is quadratic. Also, the Lorentz invariance

of the field equations is violated below the healing length of BEC. This motivates further to

model the cosmic inflation using the expanding BEC model as proposed by [1].
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In particular, we are interested in studying the scale invariance of the inflationary power

spectrum and where it breaks down. So, first we will consider a BEC with a constant

background density and see under what domain the scale invariance of its power spectrum

remains. In the later chapters, we will introduce a co-ordinate dependent background density

and see what effect it has on scale invariance of the power spectrum.

1.1 The BEC Model - Lagrangian to GP Equation

We want to model the cosmos by an expanding dipolar Bose Einstein Condensate (BEC).

This has done successfully in [1] by Seok-Young and Fischer. In their work, they build the

expanding BEC model for cosmos starting from the lagrangian density of the condensate,

considering a constant background density. From here, they derive the Gross-Pitaevskii

equation (in (2+1)-D), which they later use to generate the phase fluctuation equation.

Then, they proceed to solve this equation and use the resultant solution to generate the

inflationary power spectrum. On doing this, they have shown that the scale invariance of

power spectrum breaks down when strong dipole-dipole interactions are considered. In the

rest of this chapter, the details of their work will be described to get a thorough understand-

ing of the model.

Consider the Langrangrian density, L, of a Bose condensate whose state is described by

the wavefunction, Ψ (such that |Ψ|2 gives the number density of the condensate), and its

bosons have a mass, m.

L =
i~
2

(Ψ∗∂tΨ− ∂tΨ∗Ψ)− ~2

2m
|∇Ψ|2 − Vext|Ψ|2 −

1

2

∫
d3R′Vint(R−R′)|Ψ(R′)|2 (1.1)

( R ≡ (r, z) is the 3-D spatial spherical co-ordinate )

where,

Vext = mω2r2

2
+ mω2

zz
2

2
is the confining potential and

Vint(R−R′) = gcδ
(3)(R−R′) + Vdd(R−R′) is the interaction potential between bosons.

2



Separating the axial and the radial part, one can take an ansatz for Ψ as:

Ψ(R, t) = Ψr(r, t)Φz(z)e−iωzt/2 (1.2)

where,

Φz(z) =
1

(πd2
z)

1
4

exp
[
− z2

2d2
z

]

Putting the expression (1.2) back into the expression (1.1) (and substituting for Vext and

Vint), and integrating the z-dependent part of L, one gets the modified lagrangian, Lr, in

(2+1)-D.

Lr =
i~
2

(Ψ∗r∂tΨr − ∂tΨ∗rΨr)−
~2

2m
|∇rΨr|2 −

mω2r2

2
|Ψr|2

− g2D
c

2
|Ψr|4 −

1

2
|Ψr|2

∫
d2r′V 2D

dd (r− r′)|Ψr′(r
′)|2 (1.3)

where,

g2D
c =

gc√
2πdz

V 2D
dd (r− r′) =

∫
dzdz′Vdd(R−R′)Φ2

zΦ
2
z′

At this stage, one makes a scale transformation defined by:

x =
r

b(t)
(1.4)

τ =

∫ t

0

1

b2(t′)
dt′ (1.5)

3



Under such a scale transformation, ψ, can be defined as:

Ψr(r, t) =
eiΦψ(x, τ)

b
(1.6)

where,

Φ =
1

2

mr2

~
∂tb

b

As a result of incorporating all these transformations, one has to see how each term of

the Lr changes.

i~
2

(Ψ∗r∂tΨr − ∂tΨ∗rΨr) =
i~
2

(ψ∗∂τψ
b4

+
1

b2

∂x

∂t
ψ∗
∂ψ

∂x
+ i

∂Φ

∂t

|ψ|2

b2

− ∂τψ
∗ψ

b4
− 1

b2

∂x

∂t

∂ψ∗

∂x
ψ + i

∂Φ

∂t

|ψ|2

b2

)
=
i~
2

(ψ∗∂τψ
b4

+
1

b2

∂x

∂t
ψ∗
∂ψ

∂x
− ∂τψ

∗ψ

b4
− 1

b2

∂x

∂t

∂ψ∗

∂x
ψ
)

− mx2

2b

∂2b

∂t2
|ψ|2 +

mx2

2

(∂b
∂t

)2 |ψ|2

b2
(1.7)

~2

2m
|∇rΨr|2 =

mx2

2

(∂b
∂t

)2 |ψ|2

b2
+
i~
2

( 1

b2

∂x

∂t
ψ∗
∂ψ

∂x
− 1

b2

∂x

∂t

∂ψ∗

∂x
ψ
)

+
~2

2mb4
|∇xψ|2 (1.8)

mω2r2

2
|Ψr|2 +

g2D
c

2
|Ψr|4 +

1

2
|Ψr|2

∫
d2r′V 2D

dd (r− r′)|Ψr′(r
′)|2

=
mω2x2

2
|ψ|2 +

g2D
c

2

|ψ|4

b4
+

1

2
|ψ|

2

b4

∫
d2x′V 2D

dd (x− x′)|ψ(x′)|2 (1.9)

4



Using the equations (1.7), (1.8) and (1.9), Lr is obtained in the transformed co-ordinates.

Now Lr should be multiplied by a factor of b4 (as dtd2r = b4dτd2x) to get the effective

lagrangian density, Ls, in the transformed co-ordinates.

Ls =
i~
2

(ψ∗∂τψ − ∂τψ∗ψ)− ~2

2m
|∇xψ|2 −

mx2

2
b3∂

2b

∂t2
|ψ|2 − mx2

2
ω2b4|ψ|2

− g2D
c

2
|ψ|4 − 1

2
|ψ|2

∫
d2x′V 2D

dd (x− x′)|ψ(x′)|2 (1.10)

Now one can define:

f 2 =
b3∂2

t b+ b4ω2

ω2
0

=
g2D
c

g2D
c,0

=
g2D
d

g2D
d,0

(1.11)

Also it is known that,
V 2D
dd

V 2D
dd,0

=
g2D
d

g2D
d,0

(1.12)

Therefore one gets,

Ls =
i~
2

(ψ∗∂τψ − ∂τψ∗ψ)− ~2

2m
|∇xψ|2

− f 2
(mx2ω2

0

2
|ψ|2 −

g2D
c,0

2
|ψ|4 − 1

2
|ψ|2

∫
d2x′V 2D

dd,0(x− x′)|ψ(x′)|2
)

(1.13)

Using the variational principle on the action obtained from this lagrangian density, one

arrives at the non-local Gross-Pitaevskii (GP) equation (1.14).

i~∂τψ = − ~2

2m
∇2
xψ + f 2

(mx2ω2

2
+
g2D
c,0

2
|ψ|2 +

∫
d2x′V 2D

dd,0(x− x′)|ψ(x′)|2
)
ψ (1.14)

5



1.2 GP Equation to the Phase Fluctuation Equation

One can always write ψ as

ψ(x) =
√
ρ(x)eiφ(x) (1.15)

Putting the equation (1.15) back into (1.14), and then separating the real and imaginary

part, one arrives at:

Imaginary Part:

∂τρ(x) = − ~
m

(∇xφ(x) · ∇xρ(x) + ρ∇2
xφ(x)) (1.16)

Real Part:

−~∂τφ(x) = − ~2

2m
√
ρ(x)
∇2
x

√
ρ(x)+

~2

2m
(∇xφ(x))2+f 2mx

2ω2
0

2
+f 2

∫
d2x′V 2D

int,0(x− x′)ρ(x′)

(1.17)

where,

V 2D
int,0(x− x′) = g2D

c,0 δ
(2)(x− x′) + V 2D

dd,0(x− x′) (1.18)

Now, one can linearize the fields around the background stationary solution i.e ρ(x) =

ρ0(x) + δρ(x) and φ(x) = φ0(x) + δφ(x), where ρ0(x) and φ0(x) are the density and the

phase of the stationary background solution respectively, and δρ(x) and δφ(x) are the small

variation of the density and the phase with respect to the background solution. If one puts

the linearized field into the equations (1.16) and (1.17) and take the terms of the first order,

the following two equations are obtained.

∂τδρ(x) = − ~
m

(
∇xφ0(x) · ∇xδρ(x) +∇xδφ(x) · ∇xρ0(x) + ρ0(x)∇2

xδφ(x) + δρ(x)∇2
xφ0(x)

)
(1.19)

∂τδφ(x) =
h

4m

(
1

ρ0(x)
∇2
xδρ(x)−

δρ(x)

ρ0(x)2
∇2
xρ0(x)−

1

ρ0(x)2
∇xρ0(x) · ∇xδρ(x) +

δρ(x)

ρ0(x)3
(∇xρ0(x))

2

)

− ~
m
∇xφ0(x) · ∇xδφ(x)− f2

∫
d2x′V 2D

int,0(x− x′)δρ(x′) (1.20)

6



Now, if ρ0(x) is assumed to be a constant in space - ρ0, then all the space derivatives of

ρ0(x) can be ignored. Once this is done, δρ(x) and δφ(x) are written in terms of their fourier

components (this is done so that a specific set of momentum values can be chosen later), i.e:

δρ ≡ δρ(x) =

∫
δρke

ik.xdk (1.21)

δφ ≡ δφ(x) =

∫
δφke

ik.xdk (1.22)

After putting the equations (1.21) and (1.22) back into (1.19) and (1.20), and setting the

space derivatives of ρ0(x) to be zero, one arrives at the coupled fluctuation equations.

(∂τ + ivcom · k)δρk =
~ρ0

m
k2δφk (1.23)

(∂τ + ivcom · k)δφk = −f
2geff0

~
Wkδρk (1.24)

where,

vcom =
~
m
∇xφ0(x)

Wk =
ζ2

4Af 2
+
V 2D
int,0(ζ)

geff0(
where A =

mc20
~ωz,0 , c0 =

√
geff0 ρ0/m, ζ = kdz,0 and V 2D

int,0(ζ) is the fourier transformation

of V 2D
int,0

)
Now, if the co-moving frame velocity, vcom, is further assumed to be vanishingly small,

it can be set to zero. Then, the equations (1.23) and (1.24) reduce to:

∂τδρk =
~ρ0

m
k2δφk (1.25)

∂τδφk = −f
2geff0

~
Wkδρk (1.26)

7



Then, equation (1.25) can be substituted into equation (1.26) along with rescaling in the

following way - δφ̃ = Ω−1/2δφ (where Ω = c2
0m

2/~2ρ0), so as to get the de-coupled fluctuation

equation.

δ ¨̃φk+
(

2
ȧ

a
− Ẇk

Wk

)
δ ˙̃φk +

(c0k

a

)2

Wkδφ̃k = 0 (1.27)

(where the overdot indicates the τ derivaties and a = 1/f)

In the long wavelength limit (k → 0), Wk tends to 1, and thus equation (1.27) reduces

to:

δ ¨̃φk + 2
ȧ

a
δ ˙̃φk +

(c0k

a

)2

δφ̃k = 0 (1.28)

This is the phase fluctuation equation.

1.3 Scale Invariant Power Spectrum

Before the power spectrum can be calculated, one has to first find a solution to the equation

(1.28), which will give the phase fluctuations, from which the power spectrum can be deter-

mined. In order to that, one has to start by first defining the conformal time, η (which will

run from −∞ to 0) in the following way:

η =

∫ τ

∞

c0

a(τ ′)
dτ ′ (1.29)

As one is working in an effective de-Sitter space, a has the form, a = eHτ (where H is the

Hubble constant). Putting this back in the definition of conformal time, we get:

η = − c0

aH
(1.30)

8



Note

To get a = eHτ , one needs to tune the scale parameter, b(t), and the angular frequency,

ω(t), of the BEC in the experimental setup. In order to do this, the scale parameter has

to be set in the following way : b(t) = a2(t). Then, using equations (1.5) and (1.11), and

the fact that a(t) = 1/f(t), one finds that [7, 8]:

b(t) =
√

4Ht+ 1 (1.31)

ω2(t) =
ω2

0(t)

b5
+

4H2

b4
(1.32)

Thus, if one tunes b(t) and ω(t) as prescribed by the above equations in the experimental

set-up, a(t) can be made to behave like the cosmological factor in the de-Sitter space.

At this stage, one has to define another parameter, s, which is the ratio of Hubble radius to

the physical wavelength of the chosen mode.

s =
c0/H

a/k
=
c0k

aH
(1.33)

Therefore, it can be seen be that s is related to η by the simple relation s = −kη (hence

s runs from ∞ to 0). Now using this relation and equation (1.29), equation (1.28) can be

rewritten using the parameter s instead of τ , and thus one obtains:

δφ̃′′k −
1

s
δφ̃′k + δφ̃k = 0 (1.34)

(where prime denotes the derivative with respect to s)

9



We want to find δφk which satisfies the equation (1.34). In order to do this, let us first

consider the equation in large s limit, where it reduces to δφ̃′′k + δφ̃k = 0. In such a scenario,

the solution to the equation is given by:

δφ̃k =

√
~V

2ma2Hs
exp (is) (1.35)

where the co-efficient was determined by imposing the normalization condition:

(
δφ̃ke

ik.x/V, δφ̃k′e
ik′.x/V

)
KG

= δ
(2)
k,k′ (1.36)

(
The conserved Klein-Gordon(KG) product is defined in the following way:

(f, g)K,G = i
mc0

~

∫
d2x
√
|γ|f ∗(x, τ)

←→
∂n g(x, τ)

= i
mc0

~

∫
d2x

a2

c2
0

f ∗(x, τ)
←→
∂τ g(x, τ)

where γ is the determinant of the metric in the spatial slice τ = constant, nµ its normal and

f ∗(x, τ)
←→
∂n g(x, τ) = f ∗(x, τ)nµ∂µ(g(x, τ))− nµ∂µ(f ∗(x, τ))g(x, τ)

)
In order to determine the analytic solution of δφ̃k over the entire range of s, a function,

F (s), has to defined in the following way:

F (s) =
1

s
δφ̃k(s) (1.37)

Putting this back in equation (1.34), one gets:

s2F ′′ + sF ′ + (s2 − 1)F = 0 (1.38)

This is a Bessel equation of order 1, whose general solution can be written as a linear

combination of Bessel functions, J1 and Y1. Thus, one obtains:

δφ̃k(s) = s[A(k)J1(s) +B(k)Y1(s)] (1.39)

10



In order to determine the co-efficients, A(k) and B((k), the above solution needs to be

compared to the solution at s→∞ limit [9, 10].

lim
s→ ∞

J1(s) =

√
2

πs
cos (s)

lim
s→ ∞

Y1(s) =

√
2

πs
sin (s)

Putting this back in expression (1.39) and comparing it with solution (1.35), one finds that

B(k) = iA(k)

A(k) =

√
π~V H
4mc2

0k
2

Therefore,

δφ̃k(s) = s

√
π~V H
4mc2

0k
2
[J1(s) + iY1(s)] = hk(s) (1.40)

Using the expression (1.40), one can write the mode expansion for the phase fluctuation

as:

δ ˆ̃φ(x, τ) =
∑
k

âkf
(0)
k (x, τ) +

∑
k

âk
†f

(0)∗
k (x, τ) (1.41)

where âk and âk
† are time independent creation and annihilation operators obeying the

commutation relation, [âk, âk′
†] = δ

(2)
k,k′ . Also the mode function, f

(0)
k (x, τ) is written as:

f
(0)
k (x, τ) =

1

V
hk(s)e

ik.x (1.42)

11



Now using the definition of the mode expansion of phase fluctuation, one can calculate

the correlation function, ξ.

ξ(x− y) = 〈0|δ ˆ̃φ(x, τ)δ ˆ̃φ(y, τ)|0〉

=
1

V

∑
k

|hk|2

V
eik.(x−y) (1.43)

Power spectrum is defined as the fourier transform of the correlation function. Hence from

the above definition of correlation function, |hk|2/V can be identified as the power spectrum,

P (k) i.e:

P (k) =
|hk|2

V
(1.44)

The power spectrum has be to calculated at late times i.e at s → 0 (or τ → ∞), hence hk

needs to known as s→ 0 [9, 10].

lim
s→ 0

hk = −i

√
~V H
πmc2

0

1

k
(1.45)

Thus one gets the power spectrum, P (k), to be:

P (k) =
~H
πmc2

0

1

k2
(1.46)

At this point, one define a quantity,

∆2(k) = k2P (k) (1.47)

It can clearly see that ∆2(k) is independent of k for the P (k) calculated above. This quantity

is what will be referred to as the Scale Invariant Power Spectrum (SIPS). In [1], it has been

shown through numerical simulations that SIPS breaks down when strong dipole-dipole

interactions are considered.
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Chapter 2

Co-ordinate Dependent Background

Density and its Implications

In all of the calculations in the previous chapter, the background density of the BEC, ρ0(x),

was assumed to be a constant in space, which need not be the case in a generalized setting.

So in our work, we will relax this assumption and see how the co-ordinate dependence of

ρ0(x) will affect the calculations even in the absence of the strong dipole-dipole interactions,

which was primarily responsible for the breakdown of SIPS in the expanding BEC model

of [1].

2.1 Choosing a Suitable Background Density

The background density, ρ0 we want to choose should be such that it satisfies the zeroth

order GP equation, which reads

µ
√
ρ0(x) = − ~2

2m
∇2
x

√
ρ0(x) + f 2mx

2ω2
0

2

√
ρ0(x) + f 2

[ ∫
d2x′V 2D

int,0(x− x′)ρ0(x′)
]√

ρ0(x)

(2.1)

where,

µ = −~∂τφ0

13



If we ignore the confining potential term (f 2mx
2ω2

0

2

√
ρ0(x)) - as we are interested in the

region of small x - we see that
√
ρ0(x) =

√
ρ

0
cos (p · x) (where ρ0 is a constant) would solve

the equation (2.1). So at a first glance this seems like a viable solution. But in order to

see the problem with this choice of background density, we have to write out the resulting

fluctuation equation, which reads

∂τδφ =
1

ρ0 cos2 (p · x)

~
4m

(
∇2
xδρ + p2δρ+

2 sin (p · x)

cos (p · x)
p · ∇xδρ

)
− f 2

~

∫
d2x′V 2D

int,0(x− x′)δρ(x′) (2.2)

Now, if we observe the equation (2.2) closely, we see that there are terms with cos (p.x) in the

denominator. Whenever (p ·x) = nπ
2

(where n is an odd integer), these terms would blow up

and as a result the fluctuation equation becomes problematic. Moreover, neglecting the con-

fining potential term goes against the concept of controlled expansion of the gas, making this

choice uninteresting. All of this forces us to abandon the choice of
√
ρ0(x) =

√
ρ

0
cos (p · x)

for background density.

Having seen that our initial choice of ρ0(x) does not work, let us adopt a slightly differ-

ent approach in choosing the background density. If we ignore the interaction term (V 2D
int,0),

we see that equation (2.1) has the structure of the linear harmonic oscillator. This motivates

us to choose
√
ρ0(x) to be the solution of the harmonic oscillator i.e,

√
ρ0(x) =

√
ρ0e
−x2

α (2.3)

(where ρ0 is a constant)

In order to determine the constants µ and α, we substitute equation (2.3) back into equation

(2.1). From this, we get

µ = ~ω0

f
α = 2~f

mω0
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We are interested in the behaviour of ρ0(x) near the centre of the cloud, where we are

dealing with small values of x. In this region, our choice of a Gaussian background density

can be approximated to be of the form R − Sx2 (where R and S are constants), which is

similar in structure to the density determined from the Thomas-Fermi approximation, where

the kinetic energy term is ignored (appendix of [1]). As these two varied approaches to de-

termine the background density predict a similar structure of ρ0(x), we feel more confident

in our choice.

2.2 New Fluctuation Equations

Now, we need to incorporate the co-ordinate dependence of ρ0(x) into the fluctuation equa-

tions. In order to do that, let us first recall the fluctuation equation from the previous before

ρ0(x) was set to be a constant i.e:

∂τδρ = − ~
m

(∇xδφ · ∇xρ0(x) + ρ0∇2
xδφ) (2.4)

∂τδφ =
h

4m

( 1

ρ0(x)
∇2
xδρ−

δρ

ρ0(x)2
∇2
xρ0(x)− 1

ρ0(x)2
∇xρ0(x) · ∇xδρ+

δρ

ρ0(x)3
(∇xρ0)2

)
− f 2

∫
d2x′V 2D

int,0(x− x′)δρ(x′) (2.5)

Now, we can substitute the expression (2.3) into the equations (2.4) and (2.5). Then, we get

∂τδρ =
~ρ0

m
e
−2x2

α

( 4

α
x · ∇xδφ−∇2

xδφ
)

(2.6)

e
−2x2

α ∂τδφ =
~

4mρ0

(
∇2
xδρ+

8

α
δρ+

4

α
x · ∇xδρ

)
− e

−2x2

α
f 2

~

∫
d2x′V 2D

int,0(x− x′)δρ(x′) (2.7)
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Taking the Fourier transformation of these equations, we arrive at

∂τδρk =
~ρ0

m

α

8π

∫
d2p e−

α
8

(k−p)2 k · p δφp (2.8)

α

8π

∫
d2p e−

α
8

(k−p)2∂τδφp =
~

4mρ0

(
− k2δρk +

8

α
δρk −

4

α

∫
d2p ∇k−p · (δρp p)

)
− f 2

~
α

8π

∫
d2p e−

α
8

(k−p)2V 2D
int,0(p) δρp (2.9)

Using the divergence theorem in 2-D, notice that we can write,∫
d2p ∇k−p · (δρp p) = −

∮
dpl · p δρp

(where dpl is the line element along the loop)

But for large enough p, we can approximate

−
∮
dpl · p δρp ' −p

∑
δρp

' 0

where the last equality can be written because the sum of the fluctuations on a closed loop

can be approximated to add up to 0.

Also notice that the Gaussian function goes towards zero as we move away from the centre

and hence the majority contribution to the integral terms involving the Gaussian comes from

near the centre. Thus, in this region, we can can approximate δρp, δφp and V 2D
int,0(p) to δρk,

δφk and V 2D
int,0(k) respectively. Using this, we can write
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~ρ0

m

α

8π

∫
d2p e−

α
8

(k−p)2 k · p δφp '
~ρ0

m

α

8π
δφk

∫
d2p e−

α
8

(k−p)2 k · p

=
~ρ0

m
k2δφk

α

8π

∫
d2p e−

α
8

(k−p)2∂τδφp '
α

8π
∂τδφk

∫
d2p e−

α
8

(k−p)2

= ∂τδφk

f 2

~
α

8π

∫
d2p e−

α
8

(k−p)2V 2D
int,0(p) δρp '

f 2

~
α

8π
V 2D
int,0(k) δρk

∫
d2p e−

α
8

(k−p)2

=
f 2

~
V 2D
int,0(k) δρk

Once these approximations are put in place, equations (2.8) and (2.9) reduce to

∂τδρk =
~ρ0

m
k2δφk (2.10)

∂τδφk =
(
− ~k2

4mρ0

+
2~

mρ0α
− f 2

~
V 2D
int,0(k)

)
δρk (2.11)

Comparing equations (2.10) and (2.11) with equations (1.25) and (1.26), we see that 2~
mρ0α

δρk

is the additional term which arises because of the co-ordinate dependence of the background

density. In the next chapter, we will see how this additional term plays into the de-coupled

phase fluctuation and then the power spectrum of the BEC.
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Chapter 3

Power Spectrum of the Modified BEC

System

In the previous chapter, we had obtained the new coupled fluctuation equations as a result of

accounting for the co-ordinate dependence of background density (ρ0(x)). Now using those

equations, we will first arrive at the de-coupled phase fluctuation equation. Then, using the

solution of these phase fluctuation equation, we arrive at the power spectrum of the modified

BEC system.

3.1 New Phase Fluctuation Equation

Once we substitute for α in the equation (2.11), the fluctuation equation for BEC reads

∂τδρk =
~ρ0

m
k2δφk (3.1)

∂τδφk =
(
− ~k2

4ma2ρ0

+
aω0

ρ0

− 1

a2~
V 2D
int,0(k)

)
δρk (3.2)
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In our calculations, we will ignore the dipole-dipole interaction (i.e V 2D
dd,0), and hence the

interaction term, V 2D
int,o = g2D

eff,0. With this in mind, let us define a quantitiy,

M =
g2D
eff,0

a2
− ~ω0

ρ0

a (3.3)

Re-writing (3.2) in terms of M , we have

∂τδφk =
1

~

(
M − ~2k2

4ma2ρ0

)
δρk (3.4)

Let us estimate the order of the term ~2k2
4ma2Mρ0

, considering a2 to be of order unity. Using the

data from [11, 12] ~2k2
4ma2Mρ0

∼ (10−68kg2m4s−2)(1m−2)
(4)(10−27kg)(1)(10−30kgm2s−2)

∼ 10−11∗. With this rough estimate in

mind, it is reasonable to make the approximation, 1 >> ~2k2
4ma2Mρ0

. Then, we can substitute

the expression for δρk from the equation (3.4) into (3.1) and rescale δφ̃ = Ω−1/2δφ (where

Ω = g2D
eff,0m/~2), we have

(
1− ~2k2

4ma2Mρ0

)
δ ¨̃φk +

( 2~2k2

4ma2Mρ0

ȧ

a
+

2~2k2

4ma2Mρ0

Ṁ

M
− Ṁ

M

)
δ ˙̃φk +

ρ0M

m
k2δφ̃k = 0 (3.5)

=⇒ δ ¨̃φk +
( 2~2k2

4ma2Mρ0

ȧ

a
+

~2k2

4ma2Mρ0

Ṁ

M
− Ṁ

M

)
δ ˙̃φk +

ρ0M

m
k2
(

1 +
~2k2

4ma2Mρ0

)
δφ̃k = 0

(3.6)

∗In order to determine the order of magnitude of the factor Mρ0, we take the data from [11, 12] to get
Mρ0 ∼ g2Deff,0ρ0 ∼ 10−50 × 1020 kgm2s−2 ∼ 10−30 kgm2s−2. We have used the data of geff,0 and ρ3D0 and

this could be done, since we can relate these quantities to g2Deff,0 and ρ0 as follows: geff,0 ρ
3D
0 ∼ g2D

eff,0

dz
ρ0dz,

where dz is the length scale associated with the problem
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Equation (3.6) can be written as a wave equation for a massless and minimally coupled

free scalar field in a curved space time i.e

2δφ =
1√
|g|
∂µ(
√
|g|gµν∂νδφ) = 0 (3.7)

where the metric gµν is given by:

gµν =


c2

0 0 0

0 −g2Deff,0
M

(
1− ~2k2

4ma2Mρ0

)
0

0 0 −g2Deff,0
M

(
1− ~2k2

4ma2Mρ0

)
 (3.8)

(The metric is described by a 3×3 matrix as the z-part has been integrated out and we are

in the (2+1)-D space-time)

In the long wave length limit, the terms having ~2k2
4ma2Mρ0

can be dropped and thus (3.6)

reduces to

δ ¨̃φk −
Ṁ

M
δ ˙̃φk +

ρ0M

m
k2δφ̃k = 0 (3.9)

Now, if substitute the expression for M from (3.3), we get

δ ¨̃φk +

2g2Deff,0
a2

+ hω0a
ρ0

g2Deff,0
a2
− hω0a

ρ0

δ ˙̃φk +
ρ0

m

(g2D
eff,0

a2
− hω0a

ρ0

)
k2δφ̃k = 0 (3.10)

The above equation can be re-written as a free scalar field equation using the metric given

below.

gµν = Ω−2


c2

0 0 0

0 −g2Deff,0
M

0

0 0 −g2Deff,0
M

 (3.11)
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In the metric (3.11) , only the term
g2Deff,0
M

has time(τ) dependence. Thus let us define:

a′2(τ) =
g2D
eff,0

M
(3.12)

Now, writing the metric in terms of a′(τ), we have

gµν = Ω−2

c2
0 0 0

0 −a′2(τ) 0

0 0 −a′2(τ)

 (3.13)

Also, re-writing (3.9) in terms of a′(τ), we get the new phase fluctuation equation.

δ ¨̃φk + 2
ȧ′

a′
δ ˙̃φk +

(c0k

a′

)2

δφ̃k = 0 (3.14)

3.2 Obtaining the Power Spectrum

The new phase fluctuation equation has a structure similar to equation (1.28) with the

difference that a(τ) is replaced by a′(τ). Hence, in order to obtain the power spectrum from

here we will follow an approach very similar to the one used in section (1.3). So, let us start

by defining a conformal time, η′ (which will run from −∞ to 0) in the following way:

η′ =

∫ τ

∞

c0

a′(τ ′)
dτ ′ (3.15)

The metric in (3.13) looks like the FRW metric with a′(τ) as the scaling factor. Thus, in an

effective de-Sitter space we can write a′(τ) = eHτ (where H is the Hubble constant). Putting

this back in the definition of conformal time, we get:

η′ = − c0

a′H
(3.16)
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Note

For our calculations to be experimentally viable, we need to check if we can get a′ = eHτ

by tuning the scale parameter, b(t), and the angular frequency, ω(t), of the BEC in

the experimental setup. To do that, let us first write a′(τ) in terms of a(τ) using the

equations (3.3) and (3.12) and then substitute a′ = eHτ . On doing that, we arrive at

~ω0

ρ0

a3 +
g2D
eff,0

e2Hτ
a2 − g2D

eff,0 = 0 (3.17)

Looking at the equation (3.17), we can see that there is atleast one positive real value

of a(τ), which solves the equation. The existence of this positive real value of a(τ)

combined with the fact that b = a2 and a = 1/f will allow us to get an expression for

b(t) and ω(t) using the equations (1.5) and (1.11). This will give us the experimental

conditions necessary to get a′(τ) to behave like the cosmological scale factor in de-Sitter

space.

Let us also define another parameter, snew, which is the ratio of Hubble radius to the physical

wavelength of the chosen mode.

snew =
c0/H

a′/k
=

c0k

a′H
(3.18)

Therefore, we can see that s is related to η′ by the simple relation snew = −kη′ (hence snew

runs from ∞ to 0). Now using this relation and (3.15), we can rewrite (3.14) using the

parameter snew instead of τ , and thus we obtain:

δφ̃′′k −
1

snew
δφ̃′k + δφ̃k = 0 (3.19)

(where prime denotes the derivative with respect to snew)
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We want to find δφ̃k which satisfies the equation (3.19). In order to this, let us first consider

the equation in large snew limit, where it reduces to δφ̃′′k + δφ̃k = 0. In such a scenario, the

solution to the equation is given by:

δφ̃k =

√
~V

2ma′2Hsnew
exp (isnew) (3.20)

The co-efficient of eisnew was determined by imposing the normalization condition:

(
δφ̃ke

ik.x/V, δφ̃k′e
ik′.x/V

)
KG

= δ
(2)
k,k′ (3.21)

(
The conserved Klein-Gordon(KG) product is defined in the following way:

(f, g)K,G = i
mc0

~

∫
d2x
√
|γ|f ∗(x, τ)

←→
∂n g(x, τ)

= i
mc0

~

∫
d2x

a′2

c0

f ∗(x, τ)
←→
∂τ g(x, τ)

where γ is the determinant of the metric in the spatial slice τ = constant, nµ its normal and

f ∗(x, τ)
←→
∂n g(x, τ) = f ∗(x, τ)nµ∂µ(g(x, τ))− nµ∂µ(f ∗(x, τ))g(x, τ)

)
In order to determine the analytic solution of δφ̃k over the entire range of snew, let us

define a function, F (snew):

F (snew) =
1

snew
δφ̃k(snew) (3.22)

Putting this back in equation (3.19), we get:

s2
newF

′′ + snewF
′ + (s2

new − 1)F = 0 (3.23)

This is a Bessel equation of order 1, whose general solution can be written as a linear

combination of Bessel functions, J1 and Y1. Thus, we obtain:

δφ̃k(snew) = snew[A(k)J1(snew) +B(k)Y1(s)] (3.24)
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In order to determine the co-efficients, A(k) and B((k), we need to compare the above

solution to the solution at snew →∞ limit [9, 10].

lim
snew→ ∞

J1(snew) =

√
2

πs
cos (snew)

lim
snew→ ∞

Y1(snew) =

√
2

πs
sin (snew)

Putting this back in the expression (3.24) and comparing it with solution (3.20), we find

that

B(k) = iA(k)

A(k) =

√
π~V H
4mc2

0k
2

Thus we have,

δφ̃k(snew) = snew

√
π~V H
4mc2

0k
2
[J1(snew) + iY1(snew)] = hk(snew) (3.25)

From this, we can write the mode expansion for the phase fluctuation as:

δ ˆ̃φ(x, τ) =
∑
k

âkf
(0)
k (x, τ) +

∑
k

âk
†f

(0)∗
k (x, τ) (3.26)

where âk and âk
† are time independent creation and annihilation operators obeying the

commutation relation, [âk, âk′
†] = δ

(2)
k,k′ . Also the mode function, f

(0)
k (x, τ) is written as:

f
(0)
k (x, τ) =

1

V
hk(snew)eik.x (3.27)
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Now using the definition of the mode expansion of phase fluctuation, let us calculate the

correlation function, ξ.

ξ(x− y) = 〈0|δ ˆ̃φ(x, τ)δ ˆ̃φ(y, τ)|0〉

=
1

V

∑
k

|hk|2

V
eik.(x−y) (3.28)

Power spectrum is defined as the fourier transform of the correlation function. Hence from the

above definition of correlation function, we can identify that |hk|2/V is the power spectrum,

P (k) i.e:

P (k) =
|hk|2

V
(3.29)

We want to calculate the power spectrum at late times i.e at snew → 0 (or τ → ∞), hence

we want to know hk as snew → 0 [9, 10].

lim
snew→ 0

hk = −i

√
~V H
πmc2

0

1

k
(3.30)

Thus we get the power spectrum, P (k), to be:

P (k) =
~H
πmc2

0

1

k2
(3.31)

Previously, we had defined the Scale Invariant Power Spectrum (SIPS), ∆2(k), in the follow-

ing way:

∆2(k) = k2P (k) (3.32)

Putting back the expression for P (k) from (3.31), we see that ∆2(k) is independent of k and

thus, still remains scale invariant.

26



3.3 Multiple Scale Analysis

In the previous section, we had ignored the terms having ~2k2
4ma2Mρ0

in the long wavelength

limit. But now, continuing in the same limit, let us keep those terms and try to solve

(3.6) perturbatively. In order to do this, we will be using the approach of multiple-scale

analysis [13]. Before we begin the multiple-scale approach, we have to first identify a di-

mensionless time independent small parameter λ, which can be treated perturbatively. Even

though quantity ~2k2
4ma2Mρ0

is small in the long wavelength limit, it has time dependence. To

absorb this time dependence, let us define an other dimensionless quantity, Z. Then we can

write,
~2k2

4ma2Mρ0

=
λ

Z
(3.33)

such that,

λ =
~2k2

4mg2D
eff,0ρ0

(3.34)

Z =
a2M

g2D
eff,0

(3.35)

Now using these definitions, we can re-write equation (3.6) in the following way:

δ ¨̃φk +
(
λ

2

Z

ȧ

a
+ λ

Ṁ

ZM
− Ṁ

M

)
δ ˙̃φk +

ρ0M

m
k2
(

1 + λ
1

Z

)
δφ̃k = 0 (3.36)

In the multiple scale approach, we will use two time scales, τ and τ ′ (= λτ), and treat each

time scale independently i.e:

dO(τ, τ ′)

dτ
=
∂O(τ, τ ′)

∂τ
+
dτ ′

dτ

∂O(τ, τ ′)

∂τ ′

dO(τ, τ ′)

dτ
=
∂O(τ, τ ′)

∂τ
+ λ

∂O(τ, τ ′)

∂τ ′
(3.37)
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But before we do that, we must write δφ̃k in its perturbative expansion form.

δφ̃k(τ, τ
′) = δφ̃0

k(τ, τ
′) + λδφ̃1

k(τ, τ
′) (3.38)

where,

δφ̃0
k(τ, τ

′) = F0(τ ′) δφ̃0
k(τ)

δφ̃1
k(τ, τ

′) = F1(τ ′) δφ̃1
k(τ)

(δφ̃0
k(τ) is the solution (3.25), which solves the zeroth order equation (3.9))

Now we can put the equation (3.38) into (3.36), and use the definition prescribed in equation

(3.37). Then, once we separate the terms zero and first order in λ, we have,

(From here, the overdot indicates the partial τ derivative and not the full τ derivative.

The partial τ ′ derivative, wherever present, will be explicitly shown.)

Terms Zeroth Order in λ:

F0(τ ′)
(
δ

¨̃
φ0
k(τ) − Ṁ

M
δ

˙̃
φ0
k(τ) +

ρ0M

m
k2δφ̃0

k(τ)
)

= 0 (3.39)

Terms First Order in λ:

−F1(τ ′)
(
δ

¨̃
φ1
k(τ) − Ṁ

M
δ

˙̃
φ1
k(τ) +

ρ0M

m
k2δφ̃1

k(τ)
)

=
(
F0(τ ′)

2

Z

ȧ

a
+ F0(τ ′)

Ṁ

ZM
+ 2

∂F0(τ ′)

∂τ ′

)
δ

˙̃
φ0
k(τ)

+
(
F0(τ ′)

ρ0M

mZ
k2 − ∂F0(τ ′)

∂τ ′
Ṁ

M

)
δφ̃0

k(τ) (3.40)

Since δφ̃0
k(τ) is the zeroth order solution (3.25), equation (3.39) is trivially solved. In order

to solve equation (3.40), we have to ensure that co-efficient of secular terms on the right

hand side are set to zero. This is needed because the secular term grows faster than the

corresponding solution to the homogeneous equation. The secular term appears whenever

the inhomogeneous term is itself a solution to the corresponding homogeneous equation. In
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this case, the associated homogeneous equation is

δ
¨̃
φ1
k(τ) − Ṁ

M
δ

˙̃
φ1
k(τ) +

ρ0M

m
k2δφ̃1

k(τ) = 0

and δφ̃0
k(τ) would be its solution, so terms having a constant multiplied to δφ̃0

k(τ) would be

the secular terms and thus their co-efficient must be set to zero. With this is mind, let us

try to express δ
˙̃
φ0
k(τ) in terms of δφ̃0

k(τ) using the equations (3.18) and (3.25). If this can be

done, it could contribute to more secular terms on the right hand side of equation (3.40).

δ
˙̃
φ0
k(τ) =

∂(δφ̃0
k(τ))

∂τ

=
∂snew
∂τ

∂(δφ̃0
k(snew))

∂snew

= −Hsnew
∂

∂snew

(
snew

√
π~V H
4mc2

0k
2
[J1(snew) + iY1(snew)]

)
= −Hsnew

∂

∂snew

(
snew

√
π~V H
4mc2

0k
2
H(1)

1 (snew)
)

(H(1)(snew) is the Hankel function of the first kind)

= −Hsnew

√
π~V H
4mc2

0k
2

(2H(1)
1 (snew)− sH(1)

2 (snew))

= −2Hsnew

√
π~V H
4mc2

0k
2
H(1)

1 (snew) +Hs2

√
π~V H
4mc2

0k
2
H(1)

2 (snew)

∴ δ
˙̃
φ0
k(τ) = −2Hδφ̃0

k(τ) +D(τ(snew)) (3.41)

where,

D(τ(snew)) = Hs2
new

√
π~V H
4mc2

0k
2
H

(1)
2 (snew)
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Now, substituting for δ
˙̃
φ0
k(τ) from the expression (3.41) into the equation (3.40), we have

−F1(τ ′)
(
δ

¨̃
φ1
k(τ) −Ṁ

M
δ

˙̃
φ1
k(τ) +

ρ0M

m
k2δφ̃1

k(τ)
)

=
(
F0(τ ′)

2

Z

ȧ

a
+ F0(τ ′)

Ṁ

ZM
+ 2

∂F0(τ ′)

∂τ ′

)
(−2Hδφ̃0

k(τ) +D(τ))

+
(
F0(τ ′)

ρ0M

mZ
k2 − ∂F0(τ ′)

∂τ ′
Ṁ

M

)
δφ̃0

k(τ) (3.42)

Also, Ṁ
M

= −2H. Using this and re-arranging a few terms, we can write equation (3.42) as

F1(τ ′)
(
δ

¨̃
φ1
k(τ) −Ṁ

M
δ

˙̃
φ1
k(τ) +

ρ0M

m
k2δφ̃1

k(τ)
)

=
(

2HF0(τ ′)
2

Z

ȧ

a
+ 2HF0(τ ′)

Ṁ

ZM
+ 2H

∂F0(τ ′)

∂τ ′
−F0(τ ′)

ρ0M

mZ
k2
)
δφ̃0

k(τ)

−
(
F0(τ ′)

2

Z

ȧ

a
+ F0(τ ′)

Ṁ

ZM
+ 2

∂F0(τ ′)

∂τ ′

)
D(τ) (3.43)

If we observe equation (3.43) carefully, we see that all the δφ̃0
k(τ) terms except 2H ∂F0(τ ′)

∂τ ′
δφ̃0

k(τ)

have other factors which have τ dependence. So, 2H ∂F0(τ ′)
∂τ ′

δφ̃0
k(τ) is the only secular term

and hence, let us set its co-efficient to zero.

2H
∂F0(τ ′)

∂τ ′
= 0 (3.44)

This tell us that F0(τ ′) must be a constant. Thus, the first order correction in δφ̃k(τ, τ
′) due

to amplitude is only by a constant. Hence, the resulting power spectrum (∆2(k) = k2P (k))

will also vary only by a constant and therefore still remains scale invariant. But in our work,

we have not considered the first order correction due to δφ̃1
k(τ). Once this is considered,

there is a good chance that it might introduce k dependence into the power spectrum, in

which case the scale invariance will break down.
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Chapter 4

Conclusion and Future Work

We introduced a Gaussian background density into the expanding BEC model, ignoring

dipole-dipole interaction term and generated the phase fluctuation equation with this con-

sideration. In the long wavelength limit, we dropped the terms having ~2k2
4ma2Mρ0

and proceeded

to solve the phase fluctuation equation. The resulting power spectrum was found to be scale

invariant. After this, we continued further by keeping the terms with ~2k2
4ma2Mρ0

in the phase

fluctuation equation and solved the equation perturbatively using the multiple scale ap-

proach. The first order correction in solution due to the amplitude term, F0(τ ′), gave only

a constant and hence the resulting the power spectrum continued to be scale invariant.

However in this work, the first order correction in the solution due to the δφ̃1
k(τ) term

has not been considered. If this is considered, the resulting power spectrum might end up

having a k dependence and this will result in the scale invariance of the power spectrum

breaking down. If this is true, then we can show that the scale invariance of inflationary

power spectrum breaks down, even in the absence of strong dipole-dipole interaction, once

the co-ordinate dependence of the background state is taken.
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