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Abstract

In this thesis we focus on understanding the longitudinal fluctuations in the initial state of

relativistic nuclear collisions when Quark-Gluon Plasma is formed. Hydrodynamic

evolution of the QGP state is performed using the three-dimensional viscous hydrodynamic

code MUSIC with fluctuating initial density profiles generated using TRENTo 3D of

Pb+Pb collisions at
√
sNN = 5.02 TeV in the centrality range 0 to 1%. The initial state

fluctuations leave their signature on the emitted particles as flow coefficients. Anisotropic

flows of the emitted particles are analyzed in order to study the fluctuations in the system.

Two-particle correlation matrices corresponding to the multiplicity fluctuation, elliptic and

triangular flow are constructed and analyzed through the statistical technique called

principal component analysis. This method reveals the leading and the sub-leading modes

of the fluctuations in the longitudinal direction. The non-flow effects in the flow coefficients

are reduced by introducing gaps in the pseudorapidity bins while constructing the

two-particle correlation matrix. Longitudinal decorrelations in terms of flow vector, flow

magnitude and flow orientation are also explored. Sub-leading modes in pseudorapidity are

clearly visible and measurable even after imposing a sizable gap.
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Chapter 1

Introduction

Quark-Gluon Plasma (QGP) is a strongly-coupled state of matter created in relativistic

nuclear collisions in the form of microscopic droplets. The myriad of particles that are

formed from this droplet tell us about the properties of QGP. Computational models have

been developed which precisely enact the entire process, starting from generating the initial

density profile at the thermalization time of QGP, followed by its hydrodynamic evolution,

subsequent particlization and finally computing particle observables. Analyzing particle

observables of interest through statistical procedures reveals underlying properties of this

strongly coupled matter.

1.1 A historical overview of heavy-ion collisions

In the past twenty years, the relativistic heavy-ion collision experiments conducted at the

Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) have been

successful in creating strongly-interacting high-density nuclear matter through

nucleus-nucleus and proton-nucleus collisions. An interesting feature is that this short-lived

state behaves like an almost perfect liquid droplet with very small viscosity, and has been

called strongly-interacting Quark-Gluon Plasma (sQGP). It eventually hadronizes into

different kinds of particles. Initial expectations were of a gas-like system of weakly

interacting particles (wQGP), expanding almost isotropically because of the extreme high

density achieved in heavy-ion collisions. But the first results at RHIC showed otherwise.
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Significant azimuthal anisotropy was observed in the distribution of particles emerging out

of the heavy-ion collision [1].

1.2 Dynamical evolution of a HIC event

Figure. (1.1) displays timeline of a typical heavy-ion collision event. Large nuclei such as Pb

or Au have a diameter of about 14 fm. Since the collision is happening at relativistic energies

(2.76 TeV or 5.02 TeV) the colliding nuclei are Lorentz-contracted and are in the form of

discs. As a consequence, it creates a very high energy density right after the two nuclei

collide. Most of the collisions involve little momentum transfer since only a small fraction

of the discs overlap. The system is quite far from equilibrium initially. The quarks and

gluons formed as a result of the collision are not independent of each other. They are very

strongly correlated and the state has been named Quark-Gluon Plasma (QGP). It has now

been established that the evolution of this strongly-correlated matter until the formation of

particles can be modelled using relativistic viscous fluid dynamics. The data agreed quite

well with the initial calculations using ideal hydrodynamics. Later on, improved agreements

have been achieved with viscous hydrodynamics with very small shear viscosity to entropy

density ratio, η/s ≈ 1/4π. Sometime after the collision, the pressure-driven hydrodynamic

expansion causes the dense matter to develop a flow in the plane that is perpendicular to

the beam axis. This is usually called the transverse flow. In the final stages of the collision,

consisting of a dilute system of hadrons, hydrodynamical approach cannot be used since the

system is far from equilibrium.

It is still not completely understood how a strongly interacting system attains thermal

equilibrium in a time τ0 < 1 fm/c. Typically, critical temperature, Tc is 155-160 MeV.

Below this temperature, quarks and gluons in QGP combine to form hadrons. The cross-

over between QGP and hadrons is shown in Fig. (1.2). Inelastic reactions between different

species of hadrons cease at a temperature ≈ 165MeV corresponding to τ ≈ 10fm. This

stage is called chemical freezeout. After the chemical freezeout the relative number of stable

hadrons remains constant. Generally the fluid will continue evolving till a kinetic freeze

out occurs. Kinetic freezeout temperature is defined as the temperature at which even

elastic scatterings stop. This occurs at a temperature ≈ 120MeV corresponding to τ ≈
15fm. Subsequently, the hadrons continue free-streaming towards the detector and hadronic

2



Figure 1.1: Illustration of time evolution of heavy-ion collision [2].

Figure 1.2: QCD Phase Diagram.
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observables are studied.

1.3 Development of Anisotropies

The heavy-ion collision is very fast and has a high expansion rate. So the system never

achieves a global thermal equilibrium. It is observed that the fluctuation in the initial state

leaves its signature on the final-state particle observables rather than dying out [3]. Because

of the geometry of the overlapping region of colliding nuclei, anisotropic pressure gradients

develop and result in the anisotropic distribution of final particles. Analyzing the anisotropic

flow reveals information about the initial state of the system. This thesis aims to gather

valuable information about pseudorapidity dependence of flow fluctuations.

1.4 Outline

In this thesis, I discuss the pseudorapidity dependence of longitudinal fluctuations by

analyzing anisotropic flow through a statistical procedure called principal component

analysis (PCA). The major goal is to study the properties of the initial state of nuclear

collision when strongly interacting Quark-Gluon Plasma (QGP) is formed.

Historical introduction has been provided in this chapter. In chapter 2, we discuss the

different stages of heavy-ion collision by introducing simulation models with detailed

explanations. Different kinds of interesting hadronic observables including the two-particle

correlation matrix which can provide information about the initial state of heavy-ion

collisions are discussed in chapter 3. In chapter 4, I describe in depth the construction of

the correlation matrix and how PCA reveals information about fluctuations in the

anisotropic flow coefficients from the correlation matrix. Chapter 5 discusses a technique

which reduces the contribution of short-range nonflow effects present in the correlation

matrix. In chapter 6, some additional properties of the longitudinal fluctuations in the

system are discussed. Finally, we present the most important conclusions in chapter 7.
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Chapter 2

Modelling of heavy-ion collisions

2.1 Initial density model TRENTo

Dynamic initial-condition models simulate an initial profile with the preequilibrium

evolution dynamics. For our purposes, we are using a nondynamic initial-condition model

called TRENTo which generates initial energy density or entropy density profile at the

thermalization time of the strongly coupled QGP which is later evolved using

hydrodynamical models [4]. TRENTo does not simulate any preequilibrium evolution.

It generates the initial density profile at the thermalization time by constructing a

thickness function for each projectile. The participant thickness function is defined as

TA,B(x, y) =

∫
dzρA,B(x, y, z), (2.1)

where A and B denote projectiles colliding along the z axis and ρ is the participant nuclear

density. When the target and projectile nuclei overlap, it is assumed that entropy is

produced. In reality, the initial density profile fluctuates from one collision event to

another. So in the thickness function, an independent random weight denoted by wA,B is

introduced.

TA,B(x, y) = wA,B

∫
dzρA,B(x, y, z) (2.2)

5



A scalar function f is constructed which converts the thickness function into entropy

deposition.

f ∝ dS

dy

∣∣∣
τ=τ0

, (2.3)

where dS
dy

is the entropy density at midrapidity. The scalar function f is constructed as

f = TR(p;TA, TB) ≡

(
T pA + T pB

2

)1/p

. (2.4)

Depending on the value of p, the scalar function called generalised mean oscillates between

the minimum and maximum of TA and TB. We are using p = 0 which corresponds to

geometric mean where there is a symmetric entropy deposition at the midrapidity.

TRENTo is a modified version of Monte Carlo Glauber model developed by PHOBOS

collaboration. In this model, nuclear charge density distribution is parameterized as

e(r) = e0

1 + w( r
R

)2

1 + exp ( r−R
a

)
. (2.5)

In this equation, e0 is the normalization constant and the parameters w, R and a define the

shape of the nucleus. The variable r =
√
x2 + y2 denotes a point in the transverse plane

inside the nucleus. Let us consider a Pb-Pb collision. When we simulate an event, a random

impact parameter, b, which ranges from 0 to 20 fm approximately, is generated based on

the probability distribution dN
db
∝ b. The number of nucleons interacting in a collision event

is called the number of participant nucleons, Np. For Pb-Pb collision, the upper limit of

Np is 416. The distribution of participant nucleons in the transverse plane is important for

hydrodynamics, because these interaction points are the sources of energy or entropy density

after the collision.

2.1.1 Centrality cuts

Centrality is an important quantity to sort and categorize the fluctuating events based on

their charged hadron multiplicity at mid-rapidity, dN ch/dη||η|<0.5. The total initial entropy

6



Figure 2.1: Histogram of total initial entropy dS/dy using 1 million events generated from
TRENTo.

in the transverse plane is linear in relation with the charged hadron multiplicity.

dS

dy

∣∣∣∣∣
y=0

∝ dN ch

dη

∣∣∣∣∣
|η|<0.5

. (2.6)

The correct total initial entropy in the transverse plane is fixed by matching the charged

hadron multiplicity to the experimental data. So events can be sorted out based on the total

initial entropy in the transverse plane. When the two colliding nuclei completely overlap, the

charged hadron multiplicity will also be maximum and it is called a central collision. The

0-1% central collisions consists of 1% of all the collision events with the largest dS/dy|y=0.

The classification of events based on centrality is shown in Fig. (2.1).

2.1.2 Fluctuation in three dimension

In reality, every collision event differs from another in the distribution of lumps of initial

energy density in the three dimensions i.e., x, y and η. TRENTo 3D is a three-dimensional

7



Figure 2.2: Fluctuation in the xy plane. Figure 2.3: Fluctuation in the xη plane.

Figure 2.4: Overlapping zone of two colliding nuclei in the transverse plane. Pressure
gradients are created because of the spatial asymmetry.

extension of the above discussed initial-condition model with fluctuations in the longitudinal

pseudorapidity direction also [5]. We use 0-1% central Pb+Pb collision events at 5.02 TeV.

Figs. (2.2) and (2.3) display initial density profile in a typical collision event.

2.1.3 Eccentricity

The overlapping zone of two nuclei has almond-shaped asymmetry as shown in Fig. (2.4).

When the collision is 0% central, the eccentricity, ε ≈ 0. As the collision becomes more and

more peripheral, ε approaches 1. The variation of ε with centrality is shown in Fig. (2.5).
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Figure 2.5: Centrality dependence of the root mean square eccentricities

. The spatial anisotropies in the initial energy density profile are characterized by the

eccentricity coefficient εn and the associated angle Φn.

Σn ≡ εne
inΦn ≡ −

∫
rdrdφrneinφe(r, φ)∫
rdrdφrne(r, φ)

= −
〈
einφ

〉
, n > 1 (2.7)

where e(r, φ) is the initial energy density distribution in the transverse plane, and n is the

harmonic index.

2.2 Hydrodynamic modelling

The simulation with TRENTo provides an initial density profile with many discrete sources of

energy in the (x, y, η) space. These point sources are smeared assuming a smooth Gaussian

profile over each energy density point. Essentially each participant nucleon is a source

of energy density now. Summing over all the participant nucleons provides us a smooth

Gaussian energy source which ensures a local thermal equilibrium so that hydrodynamics

9



Figure 2.6: Energy density distribution at
τ0 = 0.2 fm/c

Figure 2.7: Energy density distribution at
τ = 5 fm/c

can take place now. The initial density profile from TRENTo 3D is fed into a hydrodynamic

model, where it undergoes hydrodynamical expansion through the equation of state and

conservation laws, followed by freezing out to hadron gas. Our choice of (3+1)-dimensional

viscous hydrodynamic model is MUSIC, Monotonic Upwind Scheme for conservation laws

of Ion Collisions [6]. In MUSIC, Kurganov-Tadmor algorithm is used to solve hydrodynamic

equations. Figs. (2.6) and (2.7) shows the time evolution of energy density and smoothening

due to hydrodynamics.

2.2.1 Relativistic hydrodynamics

The degrees of freedom of a relativistic fluid component are Lorentz four-vector flow uµ,

energy density ε, the pressure P and the baryon energy density ρB. µ = 0, 1, 2, 3 denotes

Minkowski 4-space with metric gµν = diag(+,-,-,-). The six dynamic quantities such as energy

density, pressure, the three components of flow vector (the fourth component is constrained

by the relation, uµuν = 1) and ρB are linked by the conservation laws,

∂µT
µν = 0 (2.8)

∂µJ
µ
B = 0 (2.9)

10



and the equation of state,

P = P (ε, ρB). (2.10)

T µν is the energy-momentum tensor and JµB is the net baryon current density. The net baryon

number density is negligible in the central region for RHIC and LHC. So JµB is essentially

zero.

When the system is exactly at local thermal equilibrium, it is described by ideal

hydrodynamics. In this case, T µν is defined as

T µν ideal = εuµuν −∆µνP, where ∆µν = gµν − uµuν , (2.11)

the projector transverse to the flow velocity. System which deviates from local equilibrium

can be described by viscous hydrodynamics.

T µν = εuµuν −∆µν(P + Π) + πµν (2.12)

in the case of viscous hydrodynamics. The shear viscous pressure, πµν and the bulk viscous

pressure, Π contain information about the deviation of the system from local thermal

equilibrium.

2.2.2 Coordinate system

The plane perpendicular to the collision axis is called the transverse plane. For each particle

emitted, transverse momentum pT and azimuthal angle ϕ are defined as shown in Fig. (2.8).

The variables defined in the direction of the collision axis are the momentum rapidity y and

pseudorapidity η. They are defined as,

y ≡ 1

2
ln
E + pz
E − pz

, (2.13)

η ≡ − ln tan
θ

2
=

1

2
ln
|p|+ pz
|p| − pz

, (2.14)

where E is the energy and p is the momentum vector of the particle emitted. pz is the

component of momentum along the collision axis and θ is the angle between the momentum

vector of the particle and the collision axis. Since it is difficult to measure the two quantities
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Figure 2.8: Coordinates of heavy-ion collision[7].

namely E and pz of each particle emitted, pseudorapidity which requires only θ is preferred

over momentum rapidity for experimental purposes.

In high-energy reactions, nearly uniform energy deposition is observed as a function

of rapidity y, which is consistent with the boost-invariance approximation. So hyperbolic

coordinates (τ, ηs) which make use of this symmetry are preferred:

τ =
√
t2 − z2, (2.15)

tanh ηs =
z

t
. (2.16)

(In the boost-invariance approximation, y = ηs.) Since in this thesis, we are focusing on

fluctuations in the longitudinal direction, we cannot use the boost-invariance

approximation. Fully fluctuating (3+1)D initial density model with hydrodynamic

expansion in three dimensions is used in our work.

2.2.3 Transport coefficients

Shear viscosity coefficient and bulk viscosity coefficient are the two important transport

coefficients which characterize the dynamic properties of a fluid. Resistance of the fluid to

shear strain is characterized by the dimensionless quantity, ratio of shear viscosity coefficient

to entropy density, η/s. The strongly interacting QGP has a small viscosity. String theory
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Figure 2.9: Energy density distribution at
τ = 5 fm/c, η/s = 0

Figure 2.10: Energy density distribution
at τ = 5 fm/c, η/s = 0.12

provides a lower limit for the specific shear viscosity η/s as 1/4π ≈ 0.08. Presence of

viscosity in the fluid smoothens out the small-scale lumps in the energy density distribution

as it evolves and makes it more isotropic. This is shown in Figs. (2.9) and (2.10).

Bulk viscosity describes the fluid resistance to volume strain. But it does not make any

qualitative difference in the hydrodynamic expansion rate. For our purposes, we are using

an η/s = 0.08 without turning on the bulk viscosity effect.

2.2.4 Equation of state

Equation of state (EOS) connects the local thermodynamic quantities: pressure, P and

energy density, ε. The relation P = P (ε) is required to close the conservation laws. The

EOS is modelled from lattice-based quantum chromodynamics (QCD) calculations. It has

been observed that lattice QCD calculations agree remarkably well with the

thermodynamic properties of hadron resonance gas (HRG) at low temperatures. This is

shown in Fig. (2.11). After the hydrodynamical expansion, the system reaches a state

where hadrons are formed. Hydrodynamic description based only on quarks and gluons is

not valid now, and an EOS which incorporates the dynamics of hadrons is needed. In our

work we are using a lattice based EOS parametrization “s95p-PCE-v1” [8]. Here, HRG at

low temperatures is extrapolated to lattice results at higher temperatures. This model
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Figure 2.11: Below 200 MeV, lattice QCD
calculations matches with HRG [9].

Figure 2.12: Freeze-out surfaces of two
different events.

implements a partial chemical equilibrium at T = 150 MeV. Below the chemical freeze-out

temperature, Tchem = 150 MeV, the total densities (including the densities from resonance

decay of unstable species) of stable hadrons are conserved. As explained in section 1.2,

hadrons will undergo kinetic freeze-out after the chemical freeze-out where even elastic

scatterings between the hadrons stop. Figure. (2.12) shows the kinetic freeze-out surfaces

in the x-τ plane for two different events.

2.3 Particlization dynamics

Some heavy-ion collision models are designed by combining a hydrodynamical model to

describe the evolution when the system is partonic and a hadronic transport model like

UrQMD to describe the evolution post hadronization. The surface on which the transition

from fluid to cascade is chosen to be the surface of constant temperature, Tsw [10]. The

reason for this choice is that the mean-free path is an important quantity for a system in

local thermal equilibrium and temperature is a monotonous function of mean-free path (the

higher the temperature of the liquid, the lower is the mean-free path). The switch does not

happen at kinetic freeze-out. Because after kinetic freeze-out, the only process remaining

is resonance decay. Transport model is not required for that. The switch does not happen

at hadronization either. The reason is that the confinement of partons into hadrons is a

smooth crossover transition. So we choose the switching surface to be at a temperature

where hadronization has already occurred and close to the crossover transition temperature
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as shown in Fig. (1.2), where the physics of the system does not change.

The information from the freeze-out is used to calculate the distribution of particles with

well-defined positions and momenta, and this is done by a procedure proposed by Cooper

and Frye. This distribution is then used as the initial state of the hadron transport model,

which describes the properties of the system until kinetic freeze-out.

The freeze-out hypersurface in the four-dimensional (τ, x, y, η) space has information

about the system at all T > Tsw, when it was undergoing hydrodynamical expansion. The

particle distribution is calculated using the Cooper-Frye formula [11],

E
dN

d3p
=

dN

dypTdpTdφp
= gi

∫
Σ

f(uµpµ)pµdΣµ, (2.17)

with the distribution function,

fB/F (uµpµ) =
1

(2π)3

1

exp(uµpµ/T )± 1
(2.18)

In computational model, the integral is replaced by summation and the d3Σµ by ∆3Σµ. In

Eq. (2.17), gi is the degeneracy of particle species i. The integral runs over the surface

Σ, dΣ0 = d3r and dΣ = dτd2sn is the hypersurface element in the four-dimensional space

(τ, x, y, η). n is the unit vector normal to the hypersurface. When the system is exactly

in thermal equilibrium, it can be described by Bose-Einstein or Fermi-Dirac distribution

function as shown in Eq. (2.18). The upper sign corresponds to fermions and lower to

bosons. But when studying a system with viscous effects, correction functions are added to

the distribution function.

According to the kinetic theory, for a non-interacting gas,

T µν =
∑
species

g

∫
d3p

(2π)3

pµpν

E
f(p). (2.19)

According to viscous hydrodynamics,

T µν = εuµuν −∆µν(P + Π) + πµν (2.20)

In order to match Eq. (2.19) and Eq. (2.20), that is, to consider the viscous effects in

the kinetic theory, the only way is to modify the distribution function by adding viscous
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corrections

fB/F = f
(0)
B/F + δf shearB/F + δf bulkB/F (2.21)

where f
(0)
B/F is the thermal Bose-Einstein or Fermi-Dirac distribution function, δf shearB/F is the

viscous correction due to shear stress tensor πµµ and δf bulkB/F is the viscous correction due to

bulk pressure Π.

2.4 Post-particlization dynamics

After particlization, the system consists of hadron gas with particles undergoing inelastic and

elastic collisions with each other until the final freeze-out. Unstable hadron species decay

into stable hadron species. Due to inelastic collisions and decays, the relative abundance

of each hadron species changes, and due to elastic collisions, the momentum distribution

function gets modified. This entire post-particlization dynamics is modelled using kinetic

theory.

The viscous hydrodynamic code MUSIC incorporates the transport model called

UrQMD (Ultra-relativistic Quantum Molecular Dynamics) for describing the

post-particlization dynamics. UrQMD solves the coupled Boltzmann equations,

dfi(x, p)/dt = Ci(x, p), where fi is the distribution function of species i and Ci is the term

which has information about collisions of ith species with others. After the final freeze-out,

hadronic observables are calculated from the momentum spectra of each particle.
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Chapter 3

Hadronic observables

The most significant and convincing evidence for hydrodynamical description of heavy-ion

collisions is the anisotropic distribution of charged hadrons. One can investigate the signature

of the initial state in the final distribution of particles by studying the flow anisotropies.

When two Lorentz-contracted nuclei collide along the longitudinal axis, significant amount

of their kinetic energy is deposited in the mid-rapidity region. The distance between the

centers of the two nuclei is defined as the impact parameter, b. Experimentally, one has no

control over the value of b. It is highly unlikely for the overlapping region of two nuclei to have

an azimuthal symmetry in the transverse plane. Indeed it acquires an approximate elliptical

shape. Due to the geometrical reasons, anisotropic pressure gradients are developed which

drive the hydrodynamical expansion. When hadrons are finally formed, this initial spatial

anisotropy gets imprinted on the hadrons as momentum anisotropy. In the direction where

the fluid is compressed more, larger pressure gradients are developed and more energetic

particles are emitted, e.g., at φ ≈ 0 and φ ≈ π) as depicted in Fig. (3.1). It is understood

that the azimuthal anisotropies in the distribution of final-state particles is the hydrodynamic

response to the anisotropies in the initial state [12].

3.1 Quantifying momentum anisotropy

The hydrodynamic response to the spatial anisotropy in the initial density profile is captured

by the anisotropic flow coefficient vn and the associated event plane angle Ψn. The flow vector

17



Figure 3.1: Conversion of spatial anisotropy into momentum anisotropy

Vn is defined as,

Vn = vne
inΨn ≡ 〈einϕ〉 (3.1)

where ϕ is the azimuthal angle of transverse momentum of the emitted particle, and the

average runs over particles in an event and then over events in a centrality class.

From Eq. (3.1), we can write that

vn = 〈cos[n(ϕ−Ψn)]〉, (3.2)

since averaging over many events results in a vanishing imaginary part of the flow vector.

The momentum anisotropies of emitted particles are typically quantified as Fourier

coefficients of azimuthal distribution of particles [13]. Consider a periodic function, f(x)

with period 2π. On Fourier expansion,

f(x) =
a0

2
+
∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx) (3.3)

If we impose the constraints,
∫ 2π

0
f(x)dx = 1 and f(x) = f(−x) on Eq. (3.3) we get a0 = 1/π

and bn = 0 ∀ n.

〈cos(nx)〉 =

∫ 2π

0

cos(nx)f(x)dx =
∞∑
m=1

am

∫ 2φ

0

cos(nx) cos(mx)dx = πan, (3.4)

Now, if we consider the variable x as (ϕ−Ψn),

〈cos[n(ϕ−Ψn)]〉 = πan (3.5)
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and

〈sin[n(ϕ−Ψ)]〉 = 0. (3.6)

Hence,

f(ϕ) =
1

2π

[
1 +

∞∑
n=1

2〈cos[n(ϕ−Ψn)]〉 cos[n(ϕ−Ψn)]

]
(3.7)

Considering Eq. (3.2) and Eq. (3.5), vn = πan. Thus vn is the Fourier coefficient except for

a factor of π.

Equation. (3.7) becomes

f(ϕ) =
1

2π

[
1 +

∞∑
n=1

2vn cos[n(ϕ−Ψn)]

]
(3.8)

And, one can assume that, at the end of the evolution, particles are emitted based on a

probability distribution [14]. The azimuthal distribution of particles can be written as,

dN

dϕ
∝ 1 +

∞∑
n=1

2vn cos[n(ϕ−Ψn)] =
∞∑

n=−∞

vne
inΨne−inϕ =

∞∑
n=−∞

Vne
−inϕ, (3.9)

where n is the harmonic index which is the order of anisotropy. v1, v2 and v3 are called

directed, elliptic and triangular flows, respectively. These names are based on the shapes of

polar plots shown in Fig. (3.2). The geometry of the overlapping region contributes to the

even harmonics, n = 2,4,6, ... and it cannot contribute to odd harmonics. Until recently, it

was assumed that because of the symmetry of the colliding identical nuclei, Ψn ≈ 0 for n =

odd. But RHIC and LHC have observed odd harmonics which explain the fluctuations in

the geometry of the overlapping area.

The set of complex Fourier coefficients Vn represents the anisotropic flow which fluctuates

from event to event. Both vn and Ψn in principle depend on transverse momentum pT and

pseudorapidity η. It has the following properties. Vn(p) = V ∗−n(p) and V0(p) is real. The

variable p stands for (pT , η). The usual definition of flow coefficient is vn = |Vn|/V0 which is

real and normalized.
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Figure 3.2: Polar plots of flow coefficients

In general, the flow vector is written as

vne
inΨn(pT , η) ≡

∫
dϕeinϕ dNch

dηdpT dϕ∫
dϕ dNch

dηdpT dϕ

(3.10)

In this thesis, we are interested in the pT -integrated flow coefficient at each η. We modify

the hydrodynamic code MUSIC such that the flow coefficient is defined in the following way

for each event.

vne
inΨn(η) ≡

∫
dϕdpT e

inϕ dNch

dηdpT dϕ∫
dϕdpT

dNch

dηdpT dϕ

(3.11)
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Figure 3.3: η dependence of vn

The variation of flow coefficient with pseudorapidity is shown in Fig. (3.3). The

hydrodynamical evolution with MUSIC is simulated with Pb+Pb collision at
√
sNN =5.02

TeV with pT ranging from 0.2 GeV to 3 GeV and η ranging from -3 to +3 with 12 bins for

the 0-1% central Pb+Pb collision events generated by TRENTo 3D. The pseudorapidity

dependence of the flow coefficient vn has not yet been measured experimentally for 0-1%

central Pb+Pb collision at
√
sNN =5.02 TeV. Flow coefficients from hydrodynamical

simulation in 0-1% centrality bin are compared with flow coefficients from ATLAS data in

0-0.1% and 0-5% centrality bins [15]. As explained earlier, when the collision is more

peripheral, anisotropy in the distribution of particles, quantified by the flow coefficient vn,

increases. This trend is clearly visible in Fig. (3.3). vn for 0-0.1% is smaller and vn for

0-5% is larger while vn for 0-1% sits in between the curves.

The trend is not very clear in the case of higher harmonics. This can be due to the

difference in the definitions of flow coefficients experimentally and theoretically. The multiple

definitions are due to the reason that vn of a single event is impossible to measure directly

in experiments. Although different definitions are used, they only differ by 10-20%.
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Figure 3.4: Pseudorapidity distribution of charged particles

Experimentally, in “scalar-product method” vn is measured as,

vexpn =

√〈
〈ein(ϕ1−ϕ2)〉particles

〉
events

, (3.12)

where the inner bracket represent average over all charged hadrons within an event and

the outer bracket represents average over all events in a centrality bin. vn is calculated

theoretically as follows.

vthn =
√
〈v2
n〉events, (3.13)

where vn inside the brackets is for one event which is obtained from hydrodynamic simulation

model and the brackets represent average over all events in a centrality bin.

3.2 Charged hadron multiplicity

Another interesting hadronic observable is the charged hadron multiplicity. The distribution

of charged hadron multiplicity as a function of pseudorapidity is shown in Fig. (3.4). Boost

invariance had been observed in RHIC and LHC in a small region in mid-rapidity. Open

circles represent 2+1 D calculations which assumes complete boost invariance.

22



3.3 Flow correlation

According to the definition of vn in Eq. (3.1), measuring them is experimentally difficult

because event plane orientation Ψn is not directly measurable. In order to overcome this

drawback, the method of multi-particle azimuthal correlation has been employed to measure

the flow coefficients. In the two-particle correlation method, instead of measuring Ψn, one

fixes the difference between azimuthal angles of two particles ∆ϕ = ϕ(1) − ϕ(2) and then

measures the number of charged particle-pairs with that ∆ϕ. Since the azimuthal orientation

of every collision is not controlled, the quantities which are invariant under rotation are

measured. The method of multi-particle particle correlation is well suitable in that aspect

also.

Two-particle correlation measured by CMS experiment is shown in Fig. (3.5). The

number of particle pairs at each (∆ϕ,∆η), is shown as a three-dimensional histogram as a

function of ∆ϕ and ∆η. The important feature in the figure is gradual change which is

actually a signature of fluid behaviour. The extension of “ridge” in the pseudorapidity

direction indicates the collective behavior. A long-range ridge with maximum values of

particle-pairs observed is visible at ∆ϕ = π. This describes the elliptic flow. The peak

visible at ∆ϕ ≈ ∆η ≈ 0 describes the jets that come from short-range correlations.

At the end of the collective expansion particles are emitted based on the probability

distribution, Eq. (3.9) which depends on the initial geometry as well. In general particles

are not emitted independently[17]. So the distribution of particle-pairs can be written as,

dNpairs

dp1dp2

=
dN

dp1

dN

dp2

+ δ(p1,p2). (3.14)

The term δ(p1,p2) corresponds to the intrinsic particle correlations that come neither

from initial geometry nor from the hydrodynamic expansion. They denote correlations from

resonance decay, jets, final state particle interactions etc. They are called direct or non-flow

correlations. Since these correlations do not contain any information about the geometry of

the reaction plane, we are not interested in them.

The collective behaviour of the expansion is entirely coming from the first term of

Eq. (3.14) which only depends on the single particle distribution function. When non-flow
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Figure 3.5: Two particle correlation function for Pb+Pb collision at 5.02 TeV for 0-5%
central events [16].

terms are not there, the pair distribution is simply the product of single particle

distributions, showing that particles are emitted independently. This is the signature of

collective flow. These terms are called indirect or flow correlations.

The event to event fluctuations impart a statistical uncertainty of approximately 1/
√
Nev

in the values of flow coefficients, where Nev is the number of events. Therefore, one needs to

simulate enough number of events and deal with averaged quantities.

The distribution of particle pairs is calculated from a sample of events and averaged.〈
dNpairs

dp1dp2

〉
=

〈
dN

dp1

dN

dp2

〉
+O(N ). (3.15)

The non-flow terms are of order N , while the flow terms are of order N 2, where N is the

approximate number of particles emitted out of each collision. So for large system, we can

ignore non-flow terms although it is quite impossible to eliminate all the non-flow effects in
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experiments. For our convenience, we are defining the single-particle distribution as [18],

dN

dp
=

∞∑
n=−∞

Vn(p)e−inϕ, (3.16)

where dp ≡ dpTdηdϕ.
dN

dp1

=
∞∑

n=−∞

Vn(p1)e−inϕ1 (3.17)

and
dN

dp2

=
∞∑

m=−∞

Vm(p2)e−imϕ2 (3.18)

LHS of both the equations are real. So RHS also have to be real. Taking transpose conjugate

of Eq. (3.18) gives,

dN

dp2

=
∞∑

m=−∞

V ∗m(p2)eimϕ2 . (3.19)

Multiplying Eq. (3.17) and Eq. (3.19) gives,

dN

dp1

dN

dp2

=
∞∑

n,m=−∞

Vn(p1)V ∗m(p2)e−inϕ1eimϕ2 . (3.20)

LHS of the above equation is real because it is simply the product of number of particles.

In order to make the RHS also real, m has to be equal to n. So Eq. (3.20) becomes,

dN

dp1

dN

dp2

=
∞∑

n=−∞

Vn(p1)V ∗n (p2)ein(ϕ2−ϕ1). (3.21)

Averaging over statistically significant number of events within a centrality bin gives,〈
dN

dp1

dN

dp2

〉
=

∞∑
n=−∞

Vn∆(p1, p2)ein(ϕ2−ϕ1), (3.22)

where Vn∆ is defined as,

Vn∆(p1, p2) = 〈Vn(p1)V ∗n (p2)〉 (3.23)

The pair particle distribution is invariant under rotation which is ensured by the difference

in azimuthal angles in the right hand side of the Eq. (3.22).
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Since we are interested in the longitudinal fluctuations, the focus is only on pT -integrated

quantities. Our aim is to understand flow fluctuations in heavy-ion collisions by analyzing

the quantity Vn∆(p1, p2) through a statistical procedure called principal component analysis

which is described in the upcoming chapters.
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Chapter 4

Modes of fluctuations

The different modes of flow fluctuations give additional information on the initial state of

heavy-ion collisions. Our aim is to apply the method of principle component analysis (PCA)

to study the event-by-event fluctuations of the anisotropic flow in the longitudinal direction.

In this chapter, the leading and sub-leading components of anisotropic flow are explored.

4.1 Principal component analysis

Principal component analysis is a powerful statistical technique which basically reduces the

dimensions of the data set [19]. Using this technique, an original set of correlated variables

can be linearly transformed into an uncorrelated smaller set of variables called principal

components. The beauty is that the final smaller set of data contains all the essential

information in the original set of data. Thus all the information contained in two-particle

correlation can be studied by applying PCA to multiplicity fluctuations and flow coefficients

fluctuations.

4.1.1 Geometric representation of principal components

An illustration of PCA is shown below. Imagine x1 and x2 denote two properties of a n−sized

sample. Our interest is the correlation between these two variable. Figure. (4.1) shows 2D
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Figure 4.1: A plot of n observations on
variables x1, x2

Figure 4.2: First component z1 and
second component z2

representation of two variables x = (x1, x2).

It is clear from the figure that the two variables are correlated. So a new variable can be

constructed out of the two variables x1 and x2, which is a new property of the n−sized sample.

The new variable is constructed as a linear combination of the two variables, z1 = ax1 + bx2

where a and b correspond to the best fit of the line to the n-sized data. It is plotted in

Fig. (4.2).

The method of PCA finds the best fit line z1 by imposing two constraints: minimizing

the error of each point on the fit line and maximizing the spread of projection of points on

the line. By pythagoras theorem, the higher variance implies lower error. z1 is called the

first principal component. z2 is the best fit to the sample in the plane perpendicular to the

first principal component. Principal components are linear least fits to a sample, each fit

orthogonal to all the previous fits.

4.1.2 Derivation of principal components

Suppose x is a vector and each component of the vector is an observation: x =

(x1, x2, x3, ..., xp). We construct a vector α1 = α11, α12, α13, ..., α1p. The first principal
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component is gives as,

αT
1 x = α11x1 + α12x2 + α13x3 + ...+ α1pxp =

p∑
j=1

α1jxj, (4.1)

subject to the constraint var[αT1 x] is maximum. Similarly, kth PC is defined as,

αT
k x = αk1x1 + αk2x2 + αk3x3 + ...+ αkpxp =

p∑
j=1

αkjxj, (4.2)

subject to the constraints, var[αT
k x] is maximum, cov[αT

k x,αT
l x] = 0 and αT

kαk = 1.

Suppose S represents the covariance matrix of the vector x, where the term (i, j)th element

is the covariance between ith and jth element of x when i 6= j and variance when i = j. One

need to maximize var[αT
k x] = αT

k Sαk with the constraint αT
kαk = 1. This is done through

the approach of Lagrange multipliers.

The idea is to maximize,

αT
k Sαk − λk(αT

kαk − 1), (4.3)

where λ is the lagrange multiplier. In order to find the maximum of the above quantity, we

set the first derivative to zero. Differentiating with respect to αk gives,

Sαk = λkαk (4.4)

The above equation indicates λ is the eigenvalue of the covariance matrix S and αk is the

corresponding eigenvector. The quantity which is to be maximized is,

αT
k Sαk = αT

k λkαk = λkα
T
kαk = λk. (4.5)

The kth PC is αT
k x and kth largest eigenvalue is λk. Another constraint between

eigenvalues is that, cov[αT
k x,αT

l x] = 0 for k 6= l.

cov[αT
k x, αT

l x] = αT
k Sαl = λlα

T
kαl. (4.6)

The eigenvectors αk and αl should obey the constraint that αT
kαl = 0 for αT

k x and αT
l x to

be PCs.
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As a conclusion, the kth largest eigenvalue of S is the variance of the kth principal

component. And the kth PC corresponds to the kth largest variation of the sample. The

covariance matrix needed for the PCA analysis from flow vectors is discussed in the next

section.

4.2 Analyzing strategy

In this section, we discuss the construction of the correlation matrix Vn∆(p1, p2) introduced

in the previous chapter and the analysis procedure using PCA. We show how PCA reveals

information about pseudorapidity dependence of flow fluctuations. The leading and sub-

leading modes of multiplicity and flow fluctuation are obtained and discussed in detail.

4.2.1 Construction of correlation matrix

We construct a matrix using the Eq. (3.23) where the variable p = η varies from -3 to 3.

We divide the detector acceptance into Nb = 12 bins in η. Now the matrix is a 12 × 12

matrix where each element Vn∆(η1, η2) measures the correlation between flow at bins η1

and η2. The correlation matrix is a covariance matrix by construction. Therefore, it is

positive semidefinite. Covariance matrix has non-negative eigenvalues. Thus it is a non-

trivial property of the correlation matrix to have non-negative eigenvalues. The presence of

negative eigenvalues or negative diagonal elements can happen from the presence of non-flow

effects such as resonance decay or jets.

For our purposes, flow vector Vn(η) is defined as Q-vector [20],

Qn(η) ≡ 1

2π∆pT∆η

M(η)∑
j=1

einϕj , (4.7)

where ϕj is the azimuthal angle of particle j and M(η) is the number of particles in the

corresponding η bin. The pair correlation is constructed from the Q-vectors as

Vn∆(η1, η2) ≡ 〈Qn(η1)Q∗n(η2)〉 − 〈M(η1)〉δη1,η2
(2π∆pT∆η)2

− 〈Qn(η1)〉〈Q∗n(η2)〉 (4.8)
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The above equation with RHS without the second term is a covariance matrix and has

positive eigenvalues. The second term on RHS denotes self-correlations. After subtracting

self-correlations, we might not get positive eigenvalues since by construction the matrix is

not covariance matrix. But if the non-flow effects are not very significant, it should not affect

the covariance matrix. Because self-correlations are basically interactions between particles

coming from the same pseudorapidity bins which account for the non-flow effects. So if

correlations are due to flow, eigenvalues are expected to be positive.

In our definition of Q-vector, we are not following the usual definition as in Eq. (3.1)

where the flow vector is normalized with the number of particles. Instead, we are summing

over the pairs because it gives weight to a bin on the order of number of particles it contains.

4.2.2 PCA on correlation matrix

Since Vn∆(η1, η2) is a covariance matrix, principal component analysis can be performed to

get the eigenvalues and eigenvectors [18].

Vn∆(η1, η2) ≈
k∑

α=1

λ(α)
n ψ(α)

n (η1)ψ(α)∗
n (η2), (4.9)

where λ
(α)
n and ψ

(α)
n are the corresponding eigenvalues and normalized eigenvectors of the

correlation matrix Vn∆(η1, η2) and k ≤ Nb.

The 12 × 12 matrix Vn∆ is diagonalized to obtain a maximum of 12 eigenvalues and

corresponding 12 eigenvectors. But PCA finds out the principal modes which causes most

of the variation in the fluctuating flow vectors. Thus it arranges the significant eigenvalues

λ
(α)
n in the order of decreasing, λ

(1)
n > λ

(2)
n > λ

(3)
n ....

PCA allows the pair distribution to be expressed as a sum over different modes given by,

Vn∆(η1, η2) ≈
k∑

α=1

V (α)
n (η1)V (α)∗

n (η2), (4.10)

where each term corresponds to a different mode of fluctuation.
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Comparing Eq. (4.9) and Eq. (4.10), we get

V (α)
n (η) ≡

√
λnψ

(α)
n (η), (4.11)

which confirms that eigenvalues should be positive. The normalized definition of flow

coefficient is that

v(α)
n (η) ≡ V

(α)
n (η)

M(η)
. (4.12)

The fluctuation in multiplicity is described by the quantity v
(α)
0 (η), and v

(α)
n (η), where n > 0,

describes the fluctuation in anisotropic flow.

4.3 Principal components of flow fluctuations

To understand the fluctuations in the anisotropic flow coefficients in the longitudinal

direction, two-particle correlation matrix is constructed. PCA is performed on the

two-particle correlation matrix to extract the leading and significant sub-leading flow

modes. We analyze 103 Pb+Pb collision events at
√
sNN = 5.02 TeV in the 0 to 1%

centrality bin. Initial conditions are generated by TRENTo 3D with event-by-event

fluctuations and hydrodynamical simulation is done with MUSIC which includes non-flow

effects such as resonance decays.

4.3.1 Results

The two-particle correlation matrix is constructed in pseudorapidity window ranging from -3

to 3 with 12 bins each of width 0.5. The 12×12 matrix is diagonalized to find eigenvalues and

corresponding eigenvectors for PCA. PCA enables us to differentiate the leading and sub-

leading modes of fluctuations in the anisotropic flow coefficients in the longitudinal direction

which is shown in Fig. (4.3) and sub-leading modes are shown clearly in Fig. (4.4). The

eigenvalues for the two-particle correlation matrix Vn∆(η1, η2) for n = 0, 2, 3 and 4 are shown

in Table 4.1.
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Figure 4.3: Leading and sub-leading

modes measured using PCA.

Figure 4.4: Sub-leading modes measured

using PCA.

λ
(1)
n λ

(2)
n λ

(3)
n λ

(4)
n

n = 0 34986 1291 38 8

n = 2 38484 553 6 3

n = 3 21735 293 3 1

n = 4 7301 98 1 0.6

Table 4.1: Eigenvalues of PCA.
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4.3.2 Discussion

Multiplicity and flow fluctuations as a function of pseudorapidity are shown where α denotes

the different modes of fluctuations. The leading mode is α = 1 with the largest eigenvalue.

The prominent sub-leading modes are α = 2, 3 and 4 with successively decreasing eigenvalues.

The leading mode, v
(1)
0 for multiplicity fluctuation, n = 0 is 0.03 approximately independent

of η. This shows that the events in 0 to 1% centrality bin have a relative multiplicity

fluctuation of 3%. Multiplicity fluctuations of events in 0 to 10% centrality bin were found

to be about 12% [18]. The deviation of this value obtained in the present work can be

attributed to the smaller width of centrality range.

The first sub-leading mode, v
(2)
0 is smaller than the leading mode and goes from negative

to positive values as the value of η goes from negative to positive values. Its eigenvalue λ
(2)
0

is smaller than λ
(1)
0 by a factor of 27. The parity change is due to the asymmetry of the

multiplicity in the forward and backward pseudorapidity directions. This is in fact due to

the small changes in the nuclear density distribution of the two colliding nuclei because of

the event-by-event fluctuation. The next sub-leading modes, α = 3 and α = 4 also have

alternating parities. Basically, v
(α)
n (η) has α − 1 nodes. The eigenvalues decrease again for

these modes, λ
(3)
0 ≈ λ

(2)
0 /33 and λ

(4)
0 ≈ λ

(3)
0 /5. It is also visible from the figure that modes

are orthogonal to each other as is evident from the definition of principal components.

k∑
α=1

V (α)
n (η1)V (β)∗

n (η2) = 0, α 6= β (4.13)

The leading and sub-leading principal components of anisotropic flow for n = 2, 3 and

4 are also shown. The leading modes, v
(1)
n agree well with the experimental values of flow

harmonics, vn and also depend weakly on η with a small enhancement at mid-rapidity, η = 0.

They represent the hydrodynamic response to initial state eccentricities. The oscillating

parity is also visible for principal components of anisotropic flow fluctuations. This behaviour

can be explained by relative angle difference in the event plane of the two colliding nuclei.

The eigenvalue of leading mode is larger than that of sub-leading mode for the flow harmonics

as well. The trend is followed for the subsequent modes also, λ
(2)
n ≈ λ

(1)
n /70, λ

(3)
n ≈ λ

(2)
n /95

and λ
(4)
n ≈ λ

(3)
n /2. The major cause of breaking of factorization (explained in sec. 6.2) is the

existence of sub-leading modes which arise due to the initial state fluctuations in the system.

34



Chapter 5

Method to reduce short-range

non-flow effects

The two-particle correlation matrix Vn∆(η1, η2) in general includes the contribution from

both flow and non-flow effects. The second term on the RHS of Eq. (4.8) removes self-

correlations in the correlation matrix which is one of the major non-flow contributions. But

particles emitted from nearby bins can cause short-range non-flow correlations. This effect

can be reduced if we introduce a suitable pseudorapidity gap when measuring two-particle

correlation. If we eliminate the elements of the two particle correlation matrix with η1 ≈ η2

and perform principal component analysis, the non-flow effects in the modes of fluctuations

will be much reduced.

5.1 Fixed gap and Mobile gap

The pseudorapidity gap can be imposed in the two-particle correlation matrix in two ways:

fixed gap and mobile gap. Pseudrorapidity ranges from -3 to 3 in 12 bins with a bin width

of 0.5. In the method of fixed gap, a particular pseudorapidity gap, |∆η| > 2 is imposed by

fixing the pseudorapidity gap from -1 to 1 and ignoring all the correlation matrix elements

which are constructed using combinations of pseudorapidity bins, within the gap as well as

of the same sign. It is shown in Fig. (5.1). The figure is a 12× 12 matrix where each block

corresponds to the element in the matrix. The blue colored blocks in the matrix denote the

35



Figure 5.1: Fixed gap Figure 5.2: Mobile gap

eliminated elements.

The procedure of mobile gap is shown in Fig. (5.2). Here, all the correlation matrix

elements with the pseudorapidity difference less than or equal to 2 are ignored. This

comparison in the case of pseudorapidity gap |∆η| > 2 shows that the method of mobile

gap is more efficient than that of fixed gap since it serves the same purpose by eliminating

a smaller number of matrix elements. Therefore, we choose the method of mobile gap in

imposing pseudorapidity gaps in correlation matrix.

The primary short range effect comes from interaction of particles from the same bin. So

the first step to eliminate such effects is to ignore the diagonal elements where the correlation

of each bin is measured with itself. The short range effects from nearby bins can be eliminated

by ignoring the elements sitting next to the diagonal elements. This gap can be extended

such that most of the short-range non-flow contributions are reduced.

A mobile gap |∆η| > 0.5 indicates the elimination of diagonal elements. Ignoring diagonal

and next-to-diagonal elements indicates the imposition of a mobile gap |∆η| > 1. Finally

diagonal, next-to-diagonal and next-to-next-to-diagonal elements are dropped indicating that

a mobile gap of |∆η| > 1.5 is imposed. After imposing the above mentioned pseudorapidity

gaps, PCA is performed and the different modes of flow fluctuations are analyzed.
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5.2 PCA with fixed pseudorapidity gap

The two-particle correlation matrix is a 12×12 real and symmetric matrix. There are only 78

independent elements instead of 144, since it is a symmetric matrix. If we assume the matrix

has one significant eigenvalue and others are negligible, the eigenvector can be constructed

demanding that |eigenvector〉〈eigenvector| yields the matrix. The number of independent

elements denoted by Nindep will vary depending on the pseudorapidity gap imposed on the

correlation matrix. For example, if we are imposing a pseudorapidity gap of |∆η| > 0.5,

diagonal elements have to be ignored, resulting in 66 independent elements. The number of

independent elements corresponding to different pseudorapidity gaps are shown in table 5.1.

Change in the matrix |∆η| Nindep

(a) No elements dropped |∆η| ≥ 0 78

(b) D dropped |∆η| > 0.5 66

(c) D and D ± 1 dropped |∆η| > 1.0 55

(d) D, D ± 1 and D ± 2 dropped |∆η| > 1.5 45

Table 5.1: Independent elements of correlation matrix with pseudorapidity gaps.

We are interested in exploring the leading and the first two sub-leading modes of the

pseudorapidity gaps imposed correlation marix obtained on performing PCA. The leading

mode is analyzed by the method of one-mode fit. This method is also called 12-parameter

fit since the leading mode has 12 parameters. The idea is to reproduce all the independent

elements in the matrix by only using the information of 12 parameters. Similarly, in the

method of 2-mode fit or 24-parameter fit, the leading and the first sub-leading mode which

has 24 parameters in total reproduce all the independent elements in the matrix. The fit

values are found using a method called direction set (Powell’s) methods in

multidimensions [21]. The number of free elements, Nfree is defined as

Nfree = Nindep −Npara which is shown in Table 5.2.

In the Powell’s method, a function of n variables is minimized starting from a vector in

n−dimensions towards a particular direction. Input consists of a vector in n−dimensions

and a matrix with dimensions n × n whose columns contain the initial set of directions

for the given vector to optimize. In our case, the input vector is eigenvector which has 12
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Nindep 1 mode fit
Npara = 12

2 mode fit
Npara = 24

3 mode fit
Npara = 36

(a) 78 66 54 42

(b) 66 54 42 30

(c) 55 43 31 19

(d) 45 33 21 9

Table 5.2: Free elements of correlation matrix with pseudorapidity gaps.

components, the function is χ2 which is the function of 12 components of the eigenvector

and the input matrix is 12× 12 correlation matrix with the number of independent elements

depends on the pseudorapidity gap imposed. After many iterations, the output is the best

fit of eigenvector with the minimized χ2. The correlation matrix is the direction set of the

final iteration. By diagonalizing the matrix, eigenvalues and eigenvectors correponding to

different modes of flow fluctuation are found and compared with that of the original matrix

where no elements are ignored.

The goodness of fit can be well tested using χ2 analysis [22]. In this method, the weighted

sum of squares of the deviation of the data from the fitting function is minimized to describe

the data in a best way. χ2 is defined as,

χ2 ≡
Nindep∑

1

{
1

σ2
i

[yi − y(xi)]
2

}
, (5.1)

where yi’s are the data points, y(xi) is the fitting function, and σ2
i denotes the variance in

the data point yi. Reduced chi-square, χ2
red is defined as the ratio of χ2 to the number of

degrees of freedom.

χ2
red ≡

χ2

Nfree

. (5.2)

The best fit results in a value of χ2
red = 1. If the fitting function does not describe the data

very well, χ2
red will be very much larger than 1. The value of χ2

red � 1 describes an error in

the assignment of uncertainties in the measured variables.

The variance of the data, σ2 is calculated using the Jackknife method [23]. It is a

resampling technique used to determine standard deviation for a set of measurements.

Suppose we have a set of n observations: x1, x2, .., xn and an estimator, X̂. We construct
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samples eliminating single observation at a time: x(i) = x1, x2, .., xi−1, xi+1.., xn. X̂(i)

denotes the estimate calculated leaving the ith observation. Jackknife estimate of variance

is defined as,

σ2 =
n− 1

n

n∑
i=1

(X̂(i) − X̂)2, (5.3)

where X̂ denotes the estimate including all the sample points. This method works well when

the estimator is linear (eg: mean).

The quantity that we are interested in is the correlation coefficient which is a non-linear

statistical measure. In that case, we divide the data into M blocks with a significant block

length. We construct the correlation coefficient eliminating one block at a time. X̂(m) denotes

the estimate calculated leaving the mth block. The variance is defined as,

σ2 =
M − 1

M

M∑
i=1

(X̂(m) − X̂)2, (5.4)

where X̂ denotes the correlation coefficient with all the blocks.

Tables (5.3), (5.5) and (5.7) shows the eigenvalues and χ2
red values for the one-mode, two-

mode and three-mode fits for elliptic flow correlation matrix, Vn∆(η1, η2) respectively. The

column 1 notation corresponds to the four different cases mentioned in Table (5.1). The first

two leading eigenvalues of the two-particle correlation matrix without any pseudorapidity

gaps for elliptic flow (n = 2) are 38484 and 553 and that of triangular flow (n = 3) are

21735, and 283. The eigenvalues in the case of one-mode and two-mode fits are consistent

with the largest two eigenvalues of the original two-particle correlation matrix. This trend is

visible in the case of triangular flow also (n = 3) shown in Table (5.4), (5.6) and (5.8). This

indicates the leading and the first sub-leading mode are clearly visible even when short-range

non-flow effects are removed.

The values of χ2
red which are close to 1 show the better fit. Also, χ2

red is close to 1 when

the difference between number of parameters Npara and number of independent elements

Nindep is small. Since this difference is large in the case of 12-parameter fit, the large values

of χ2
red are justified.
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1 mode or

12-parameter fit

χ2
red λ1

(a) 13.1 38353

(b) 10.8 38303

(c) 7.8 38268

(d) 4.4 38296

Table 5.3: One-mode fit for n = 2

1 mode or

12-parameter fit

χ2
red λ1

(a) 7.9 21709

(b) 7.6 21673

(c) 6.3 21644

(d) 3.7 21615

Table 5.4: One-mode fit for n = 3

2 mode or

24-parameter fit

χ2
red λ1 λ2

(a) 1.2 38481 565

(b) 1.4 38462 617

(c) 1.1 38453 566

(d) 1.1 38458 728

Table 5.5: Two-mode fit for n = 2

2 mode or

24-parameter fit

χ2
red λ1 λ2

(a) 3.6 21526 464

(b) 2.9 21541 491

(c) 1.9 21564 547

(d) 1.0 21583 513

Table 5.6: Two-mode fit for n = 3

3 mode

or

36-para fit

χ2
red λ1 λ2 λ3

(a) 1.2 38433 454 97

(b) 1.1 38447 533 106

(c) 0.5 38436 634 105

(d) 1.7 38458 719 195

Table 5.7: Three-mode fit for n = 2

3 mode

or

36-para fit

χ2
red λ1 λ2 λ3

(a) 1.1 21607 370 68

(b) 0.6 21625 332 178

(c) 1.7 21611 393 149

(d) 1.3 21621 259 98

Table 5.8: Three-mode fit for n = 3
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Figure 5.3: Elliptic flow modes

5.3 Flow modes

PCA is performed on the two-particle correlation matrix with pseudorapidity gaps, |∆η| >
0.5, |∆η| > 1 and |∆η| > 1.5. Figure. (5.3) shows the different modes of elliptic flow

fluctuation and Fig. (5.4) shows the different modes of triangular flow fluctuations.

The figure shows that even if pseudorapidity gaps are imposed, the first three leading

modes are clearly evident and measurable. We have discussed earlier that the leading mode

depicts the response of hydrodynamics to the initial geometry. The leading modes are

undisturbed by the elimination of elements corresponds to the short-range effects in the

correlation matrix. This indicates that the non-flow effects do not contribute significantly

to the elliptic flow measured using two-particle correlation. On the other hand, abruptness
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Figure 5.4: Triangular flow modes

in the second sub-leading mode v
(3)
n for n = 2 and n = 3 can suggest that non-flow effects

are not completely removed from the system. A parity change is visible in the first sub-

leading mode v
(2)
n for n = 2 and n = 3 which indicates the asymmetry of multiplicity in the

forward and backward direction. PCA of pseudorapidity dependence of flow fluctuation has

not yet been done experimentally. It is evident that sub-leading modes are more sensitive

to non-flow effects than is the leading mode.
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Chapter 6

Decorrelations of anisotropic flows

Due to event by event fluctuations, magnitude of the flow vector and the flow orientation vary

from event to event. Fluctuations can cause measurable decorrelations of anisotropic flow in

the pseudorapidity direction. Because of the fluctuation, the magnitude of the flow vector

vn and flow orientation Ψn at two different pseudorapidities will be different: Vn(η1) 6=
Vn(η2). This phenomenon is also called flow factorization breaking in pseudorapidity as

explained in section. 6.2. This quantity provides additional information about the initial

state fluctuations. CMS collaboration proposed a reference-rapidity-bin method to study

the longitudinal decorrelations of anisotropic flow [24].

6.1 Reference-rapidity-bin method

In this method, the correlation between flow in rapidity bins η and −η is measured by

constructing a quantity r[n, k] defined as,

r[n, k](η) =
〈Qk

n(−η)Q∗kn (ηr)〉
〈Qk

n(η)Q∗kn (ηr)〉
, (6.1)

where Qn is the Q-vector defined in Eq. 4.7 and ηr is the reference rapidity bin. We are

interested in k = 1 only. We choose the rapidity bins, ±η in the interval -2.5 to 2.5 and

the reference rapidity window in the forward direction 2.5 < ηr < 3.0. As the rapidity gap

between −η and ηr increases, the short-range non-flow effects become small. The quantity
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r[n, k] measures the decorrelation between η and −η by comparing it with reference rapidity

bin ηr. Hence, this is also called three-rapidity bin method.

In order to have a deeper understanding, two other decorrelation functions are also

constructed to analyze the decorrelation of the flow magnitude vn and flow orientation Ψn

specifically [25]. Longitudinal decorrelation of flow magnitude vn is defined as,

rM [n, k](η) =
〈qkn(−η)q∗kn (ηr)〉
〈qkn(η)q∗kn (ηr)〉

, (6.2)

where qn is the magnitude of vector Qn. The longitudinal decorrelation of flow orientation

is defined as,

rΨ[n, k](η) =
〈Q̂k

n(−η)Q̂∗kn (ηr)〉
〈Q̂k

n(η)Q̂∗kn (ηr)〉
, (6.3)

where Q̂n is defined as Qn/qn.

Figure 6.1: Decorrelation functions

r[n, 1], rM [n, 1] and rΨ[n, 1] with n = 2, 3

and 4

.

Figure 6.2: Ratio of correlation between

diagonal and non-diagonal elements.
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We analyze 103 Pb+Pb collisions at
√
sNN = 5.02 TeV in the centrality range 0 to 1%.

In Fig. 6.1, the longitudinal decorrelation functions r[n, 1], rM [n, 1] and rΨ[n, 1] for flow

harmonics n = 2, 3 and 4 are shown. The fully fluctuating initial density profile is taken

from TRENTo 3D and hydrodynamic simulations are perfomed using MUSIC. The rapidity

bins are taken in mid-rapidity from -2.5 to 2.5 and reference rapidity window is taken as

2.5 < ηr < 3.0.

The interesting feature of all the decorrelations functions is that it is clearly linear in the

mid-rapidity range for the anisotropic flow coefficients, v2, v3 and v4. As the gap between

the pseudorapidity bins increases, correlation between flow coefficients decreases, thereby

non-flow effects are reduced. We can see the slopes of the three curves follow a trend. The

slope of flow orientation, rΨ is always higher than that of the flow magnitude rM and the

flow vector r. This clearly indicates that flow orientation is much more sensitive to the

longitudinal fluctuations in the initial state. The flow magnitudes are almost independent of

flow fluctuations. The flow vector sits in between the flow magnitude and the flow orientation

because the flow vector represents the combined sensitivity of both flow magnitude and flow

orientation to the initial-state fluctuations in the longitudinal direction.

6.2 Decorrelation in breaking of factorization

As explained in Eq. (3.20), when we are neglecting contribution non-flow components, we

should be able to factorize two-particle correlation as product of two single particle

distribution functions. This has been tested on particle-pairs in different bins of transverse

momentum [26]. They found that,

Vn∆(pa, pb) = V (α)
n (pa)V

(α)∗
n (pb), (6.4)

where pa and pb correspond to two different transverse momentum bins. This relation cannot

hold true when non-flow effects are present. So this relation is non-trivial observation coming

from the fact that particles are emitted independently at the end of the hydrodynamical

expansion.

In Eq. (4.10), breakdown from factorization is shown. This does not mean that

hydrodynamical picture is breaking. Instead, this is a consequence of event-by-event
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fluctuation present in the initial state of the heavy-ion collision even in the hydrodynamic

system [27].

The event-averaged correlation matrix obeys the following two conditions.

1) Diagonal elements must be positive:

Vn∆(pa, pa) ≥ 0 (6.5)

2) The matrix obeys Cauchy-Schwarz inequality:

Vn∆(pa, pb)2 ≤ Vn∆(pa, pa)Vn∆(pb, pb) (6.6)

It is clear from the Cauchy-Schwarz inequality that flow does not imply factorization.

Violation of the above two properties indicates the presence of non-flow.

The validity of the Cauchy-Schwarz inequality is tested on 1000 Pb+Pb collision events

at 5.02 TeV from 0-1% centrality bin by constructing a parameter rn which is defined as,

rn =
Vn∆(ηa, ηb)√

Vn∆(ηa, ηa)Vn∆(ηb, ηb)
. (6.7)

Here, rn is a correlator which measures the decorrelation of flow at two pseudorapidity bins.

According to the inequality, rn should lie between -1 and 1. If rn = 1, it implies the saturation

condition where factorization is present. Figure. (6.2) shows rn where n = 2, 3 as a function

of η1 where η2 is fixed at -2.75 and η1 varies from -2.75 to 2.75 in 12 bins.

Factorization breaking is visible in elliptic and triangular flows. And this breaking

increases with the difference |η1 − η2|. rn is non-negative and always less than 1. This

confirms that non-flow effects are absent.
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Chapter 7

Conclusion

In this thesis, we have presented a new method to study the event-by-event fluctuation in

the longitudinal direction of relativistic heavy-ion collisions. We used the initial condition

model TRENTo 3D to generate fully fluctuating initial profiles and the 3+1 D viscous

hydrodynamic model MUSIC to perform hydrodynamic simulation. It is known that the

fluctuations in the initial state will leave their signature on the hadronic observables. One

such interesting hadronic observable is anisotropic flow coefficients. The hydrodynamic

expansion converts the spatial anisotropies in the initial state of QGP to momentum

anisotropies which is represented by anisotropic flow coefficients. The method of principal

component analysis is applied to the correlation matrix in which each element represents

the correlation between flow coefficients in two different pseudorapidity bins.

PCA fully exploits all the information contained in the two-particle correlation matrix

to analyze the flow fluctuations. 103 Pb+Pb collision events at
√
sNN = 5.02 TeV in the

centrality range 0 to 1% are analyzed using PCA which revealed the dominant modes of

the flow. The leading modes constructed from two-particle correlation matrix are the same

as experimentally measured anisotropic flow coefficients. Therefore the leading modes

represent the hydrodynamic response to initial state eccentricities. The sub-leading modes

basically come from the event-by-event initial-state fluctuations which are responsible for

the breaking of factorization. Multiplicity and flow fluctuations in the entire sample of

events are represented by four principal components since the higher modes are negligible.

A new method is presented which eliminates the short-range non-flow effects from the
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anisotropic flow. A suitable pseudorapidity gap is imposed on the two-particle correlation

matrix and the flow modes are studied. We found that even if a pseudorapidty gap |∆η| >
1.5 is imposed, the first two sub-leading modes are clearly measurable. The method also

shows that sub-leading modes are more sensitive to the non-flow effects than are the leading

modes. In addition, we also studied the longitudinal decorrelation of flow vectors, flow

magnitudes and flow orientations. We found that flow orientation is much more sensitive to

the decorrelation effects than the flow magnitude.
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