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Abstract

We study a variant of graph colouring called Role colouring. Role colouring is an assignment

of colours to the vertices of a graph, such that if two distinct vertices of the graph get the

same colour, then their neighbourhoods are assigned the same set of colours. In the k-role

colouring problem, we are given a simple, undirected graph G and an integer k. We are

required to determine if G can be role coloured in exactly k colours. k-role colouring

has been shown to be NP-Complete on arbitrary graphs, for all k ≥ 2.

We explore the complexity of k-role colouring on hereditary classes of graphs. In

particular, we determine the complexity of the problem on the class of bipartite graphs

and prove that it is NP-Complete, when k ≥ 3. Furthermore, we give a polynomial time

algorithm to 3-role colour bipartite chain graphs.

2-Role colouring is trivially solvable in polynomial time on bipartite graphs and

split graphs. Let G be a graph that contains a set S of d vertices (or edges), d being a

constant, such that G \ S is either a bipartite or a split graph. We say that the graph G is

d-away from a bipartite or a split graph. We show that even for a small constant d, 2-role

colouring is NP-Hard on G. In the realm of parametrized complexity, we say that on

graphs that are d-away from bipartite or split graphs, 2-role colouring is para-NP-Hard,

when parametrized by d.
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Chapter 1

Introduction

1.1 Context and Motivation

Graphs have long been used in social sciences, to model social networks. Typically, each

node of a graph represents an individual and the edges represent the relationship between

them. Interesting mathematical questions arise regarding the structure of such networks-

the most natural question being the definition of social roles.

It is axiomatic that “Individuals play the same roles if they relate in the same way to

individuals playing counterpart roles.” White and Reitz [20] formalized this notion in terms

of graph homomorphisms and vertex partitions, and called it regular equivalence. In 1991,

Borgatti and Everett [13] used the idea of vertex colouring in graphs, to give an alternate

definition of the concept. They called it role colouring.

Role colouring is an assignment of colours to the vertices of a graph such that if two

distinct vertices are assigned the same colour then their neighbourhood get the same set of

colours. Roberts and Sheng [16] proved that deciding if an arbitrary graph G has a 2-role

colouring is NP-Complete. Later Fiala and Paulusma [7] showed that k-role colouring,

k ≥ 3, is NP-Complete.

The following dichotomy exists for the problem of k-role colouring a graph: Given a graph

G, deciding if it has a k-role colouring is polynomial time solvable when k= 1 or |V (G)|,
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and NP-Complete for 2 ≤ k < |V (G)|. Hence, it is interesting to look for smaller classes of

graphs on which the problem may be tractable.

Purcell and Rombach [15] claimed that 2K2-free graphs are always 2-role colourable. In

fact, they claimed to have proved the following Lemma:

Lemma 1. If G is a connected 2K2-free graph which contains a maximal independent set I

of size at least 2, then the induced subgraph on G \ I is connected.

We discovered a mistake in the proof of this lemma. In fact we found an example, namely,

a complete bipartite graph, which shows that the Lemma is not true. If G is a complete

bipartite graph, then it is 2K2-free. The maximal independent sets in G comprise each of

the two partitions. However, G \ I has no edges and is disconnected.

On split graphs, which are (2K2, C4, C5)-free, k-role colouring is NP-Complete for

k ≥ 4. Hence it is NP-Complete on the superclass of split graphs, that is 2K2-free graphs.

However, the complexity of the problem is unresolved when k = 2 and k = 3.

While investigating these open problems, we showed that 2K2-free bipartite graphs (bi-

partite chain graphs) are always 3-role colourable. This led us to study the complexity of

3-role colouring on another superclass of such graphs, that is, the class of bipartite

graphs.

Thereafter, we proved that given a bipartite graph, k-role colouring is NP-Complete

when k ≥ 3. Moreover, we showed that if a graph has a set of d vertices (or edges) that

on deletion yields a bipartite graph, d being a constant, 2-role colouring becomes NP-

Complete on such a graph even for a small constant d.

This thesis comprises a survey of known results about the complexity of k-role colour-

ing on some hereditary classes of graphs, as well as, detailed proofs of our results on bipartite

graphs, chordal graphs, bipartite chain graphs and graphs that are a constant number ver-

tices (or edges) away from bipartite and split graphs.
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1.2 Organization

In Chapter 2, we include definitions of important concepts used throughout the thesis. These

concepts range over a variety of topics like Graph theory, Hyper-graph theory and Complexity

theory.

Chapter 3 is a primer on role colouring with formal definitions and properties.

In Chapter 4, we survey the known results on complexity of the k-role colouring problem

on classes of graphs like Trees, Cographs, Chordal graphs, Proper Interval graphs and Split

graphs.

Chapter 5 discusses in detail the proof of NP-Completeness of the k-role colouring problem

on bipartite graphs. The proof is divided into four parts. We separately prove the claim for

the cases k = 3, k = 4, k = 5 and k > 5.

We slightly modify our proofs in Chapter 5, to give an alternate proof of NP-Completeness

of the k-role colouring problem, k ≥ 4 on Chordal graphs. We discuss this proof in Chapter

6.

Finally, in Chapter 7 we study graphs that are a constant number of vertices (or edges)

away from bipartite graphs and split graphs, respectively. We show that 2-role colouring

which is easy on both bipartite and split graphs becomes NP-Complete on such graphs.
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Chapter 2

Preliminaries

2.1 Graph theoretic terminology

All the definitions in this section have been taken from [4].

Definition 2.1.1. An undirected simple graph is a pair, G = (V,E), where V ∩ E = φ and

E ⊆ V 2.

All graphs considered in this paper are simple and undirected, unless specified otherwise.

The vertex set and the edge set of a graph G are denoted by V (G) and E(G) respectively.

An edge between vertices u and v is denoted as uv or vu or (u, v).

Definition 2.1.2. Two vertices u and v are adjacent or neighbours if uv is an edge of G.

For a vertex v ∈ V (G), its neighborhood NG(v) is the set of all vertices adjacent to it and

its closed neighborhood NG[v] is the set NG(v)∪{v}. This notation is extended to subsets of

vertices as NG[S] =
⋃

v∈S NG[v] and NG(S) = NG[S] \ S where S ⊆ V (G). An independent

set is a set of pairwise non-adjacent vertices and a clique is a set of pairwise adjacent vertices.

A complete graph on q vertices is denoted by Kq.

Definition 2.1.3. The degree of a vertex v ∈ V (G), denoted by degG(v), is the size of

NG(v).
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A pendant vertex is a vertex v ∈ V (G) with degG(v) = 1.

Definition 2.1.4. A bipartite graph G(U, V,E) is a graph whose vertex set can be partitioned

into two independent sets U and V .

Definition 2.1.5. A split graph G(C, I, E) is a graph whose vertex set can be partitioned

an induced clique C and an induced independent set I.

Definition 2.1.6. A path in a simple graph is a sequence of distinct vertices with an edge

between every pair of consecutive vertices.

The length of a path is the number of vertices in a path. We denote a path on n vertices

by Pn. If P = x0, ..., xk−1 is a path and k ≥ 3, then the graph C = P + xk−1x0 is called a

cycle. A graph is connected if there exists a path between any pair of vertices in the graph.

Definition 2.1.7. A graph that does not contain any cycle is called a forest. A connected

forest is called a tree.

Definition 2.1.8. A class of graphs that is closed under isomorphism is called a graph

property.

Definition 2.1.9. A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We

say that G contains G′, or G′ ⊆ G. If G′ 6= G then, G′ is a proper subgraph of G.

Definition 2.1.10. An induced subgraph of G is a subgraph G′ such that E(G′) = {(x, y)|∀x, y ∈
V (G′)}∩E(G). Hence, if U ⊆ V (G) then the induced graph on U , denoted by G[U ], contains

all those edges of G that have both their end points in U .

Definition 2.1.11. A hereditary class of graphs is a collection of graphs that is closed under

vertex deletion. Therefore, if a graph G belongs to a hereditary class, all its induced subgraphs

also belong to it.

For further details on graphs, refer [4].

2.2 Colouring of graphs

Definition 2.2.1. A vertex colouring of a graph G, is a map f : V (G) −→ C, where C is

the set of available colours, such that f(u) 6= f(v) if uv ∈ E(G).
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Definition 2.2.2. A homomorphism between two graphs G and H is a map φ : V (G) −→
V (H) such that if uv ∈ E(G), then φ(u)φ(v) ∈ E(H).

Let f be a map from set A to set B, and let A′ ⊆ A. We denote by f(A′) the set

{f(a)|∀a ∈ A′}.

2.3 Hyper-graphs

Definition 2.3.1. A hyper-graph is a pair H = (Q,S) where Q is a finite set of vertices

and S is a collection of non-empty subsets of Q called hyper-edges.

The canonical incidence graph of a a hyper-graph H = (Q,S) is a bipartite graph

G(Q,S,E) with Q and S as the two parts of the bipartition, and for all q ∈ Q and s ∈ S,

(q, s) ∈ E(G) if and only if q belongs to the hyper-edge in H corresponding to the vertex

s ∈ S.

In Hyper-graph 2-coloring, we are given a hyper-graph H = (Q,S). The goal is to

determine whether the vertices in Q of H can be coloured with two colors such that in each

hyper-edge, there is a vertex of either colour. Hyper-graph 2-coloring is known to be

NP-Complete, [9].

2.4 Computational Complexity

For a background in computational complexity, refer [2]. Here, we give a few important

definitions.

Definition 2.4.1. An algorithm A accepts a string x ∈ Σ∗, if given input x, the algorithm’s

output, A(x) = 1.

Definition 2.4.2. A language L is accepted by an algorithm A if for all x ∈ L, A(x) = 1.

A language L is decided by A, if for all x ∈ L, A(x) = 1 and for all y /∈ L, A(y) = 0.
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Definition 2.4.3. The complexity class P is the set of all languages L, such that there exists

an algorithm A that decides L in time bounded by O(nc), where n is the length of the input

string and c is a constant.

Definition 2.4.4. A verification algorithm A, is a two-argument algorithm, where the first

argument is the input string x and the second argument is a certificate y. A language L

is verified by A, if for any input string x ∈ L, there exists a binary string y, such that

A(x, y) = 1.

Definition 2.4.5. A language L belongs to the class NP if for all x ∈ L, there exists a

certificate y, where |y| = O(|x|c), such that A(x, y) = 1. We say that the language L is

verified in polynomial time.

Definition 2.4.6. A language L1 is polynomial-time reducible to a language L2, if there

exists a polynomial-time computable function f : {0, 1}∗ −→ {0, 1}∗, such that for all x ∈
{0, 1}∗, x ∈ L1 if and only if f(x) ∈ L2. The polynomial-time algorithm F that computes

the function f is called a reduction algorithm.

Definition 2.4.7. A language L ⊆ {0, 1}∗ is NP-Hard if for all L′ ∈ NP, L′ is polynomial-

time reducible to L. In addition, if L ∈ NP, then L is NP-Complete.
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Chapter 3

Role colouring

3.1 Introduction

Let G=(V , E) be an undirected graph without multiple edges or loops. Role colouring is an

assignment f of colours, say, {1,2...k} to the vertices of G such that

∀u, v ∈ V, f(u) = f(v) =⇒ f(N(u)) = f(N(v))

It is to be noted that if G admits a k-role colouring, then vertices of the same colour need

not form an independent set in G. In that, role colouring is different from proper colouring

of graphs, where any two adjacent vertices must receive different colours.

From the algorithmic viewpoint, the notion of role colouring poses an interesting question,

that is, given a graph G and an integer k, does there exist a role colouring such that vertices

of G can be role coloured in exactly k colours? Determining the minimum or maximum

number k to k-role colour an arbitrary graph G is trivial. We can colour all the vertices in

just one colour, so the minimum number of colours is needed is 1. Similarly, we can colour

all the n vertices with n different colours and the maximum number of colours to role colour

G is |V | = n.
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Figure 3.1: G

Figure 3.2: R1

3.2 Role Graph and its properties

Given a role colouring assignment f : V (G) −→ {1, 2, ..., k} the role graph R of G, cor-

responding to f is a graph such that V (R) = {1, 2..., k} and E(R) = {(i, j)|∃(u, v) ∈
E(G); f(u) = i, f(v) = j}

For example, consider the graph G below:

G has a valid 2-role colouring, as the blue vertex is adjacent to the red vertices and the

red vertices are all adjacent to atleast one red and one blue vertex. For this role assignment

to the vertices of G, the role graph R1 is:
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3.2.1 Properties of the role graph R

Notice that degG(u)= |NG(u)| ≥ |f(NG(u))| = |NR(f(u))|= degR(f(u)), where f is the role

assignment. It is easily seen that δ(R) ≤ δ(G) and ∆(R) ≤ ∆(G).

Lemma 2. ([7]) If G is a connected graph with role assignment f , then the corresponding

role graph R is also connected.

Proof. Suppose that R is not connected. Then there must be a pair of vertices i, j ∈ V (R)

such that there does not exist a path between i and j. Assume that there exist vertices

u, v ∈ V (G) such that f(u) = i and f(v) = j. Since G is connected, we know that there

exists a path between u and v. Let {u, x1, x2, ..., xk, v} be a path in G. Then, there must

exist an edge between f(u) and f(x1) in R. Similarly, there must exist an edge between

f(xn) and f(xn+1) in R ∀ 1 ≤ n ≤ k, as well as an edge between f(xk)and f(v) = j. This

gives us a path in R, namely, {i, f(x1), f(x2), ..f(xk), j}. This contradicts the assumption

that there is no path between i and j. Since, i, j are arbitrary vertices in R , we can conclude

that every pair of vertices in R is connected by a path. Therefore, R is connected.

Lemma 3. ([14]) Suppose that G is a graph isomorphic to Pn, that is, a path on n vertices

with n−1 edges. If G is k-role colourable with the role assignment f , then the corresponding

role graph R is isomorphic to Pk with at most one self loop.

Proof. To show that the role graph R is a path, we will first show that no vertex in R has

degree greater than 2. This would imply that R ∈ {Ck, Pk, P
∗
k , P

∗∗
k } where P ∗k , P

∗∗
k are paths

on k vertices with a self loop on one leaf and self loops on each of the two leaves, respectively.

We will then show that R has at least one leaf, which will prove the lemma.

Suppose that there exist vertices u in G and j in R, such that f(u) = j. Let degR(j) ≥ 3.

As degR(j) ≤ degG(u), we have that degG(u) ≥ 3. This contradicts the fact that G is a path.

Therefore, ∆(R) ≤ 2. Hence, R ∈ {Ck, Pk, P
∗
k , P

∗∗
k }. Now, suppose that R has no leaves.

Then the degree of all the vertices in R is equal to 2. However, G has exactly 2 vertices

of degree equal to 1, as G is a path. So, the colour assigned to the leaves of G must be of

degree equal to 1. Hence, R ∈ {Pk, P
∗
k }. This completes the proof.

Lemma 4. ([5]) The distance between two vertices in the graph G is at least the distance

between their corresponding colours in the role graph R.
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Proof. Let i, j ∈ R. Also, let the distance between i, j, d(i, j) = k. So, there exists a shortest

path in R, {i, y1, y2, ..., yk−2, j}. Let u, v ∈ G such that f(u) = i and f(v) = j. Then u

must have a neighbour of colour y1 and v must have a neighbour of colour yk−2. We call

these neighbours x1 and xk−2, respectively. By similar reasoning, x1 must have at least one

neighbour, say x2 of colour y2. Suppose for some n, such that 2 ≤ n ≤ k − 3, xn−1 has a

neighbour xn of colour yn. Then, as yn has a neighbour yn+1, xn must have a neighbour,

xn+1 of colour yn+1. Hence, we have proved by induction that there exists a path in G,

{u, x1, x2, ...xk−2, v}. We now need to show that does not exist a shorter path between u and

v in G. Suppose, {u, z1, z2, ..., zk−3, v} is a path in G. Starting with vertex u, its neighbour

should clearly have the colour y1, as the shortest path in R between i, j goes through y1.

Following the same argument we have that each zn, 1 ≤ n ≤ k − 4 has a neighbour zn+1

of colour yn+1. So, f(zk−3) = yk−3. Now, since zk−3 is adjacent to v, we have that yk−3 is

adjacent to j. However, this is a contradiction. So, the minimum length of a path between

u and v must be k.

Lemma 5. ([14]) The role graph of a k-role colourable tree T , is a tree TR on k vertices

with at most one loop.

Proof. By Lemma 2, we know that the role graph TR of T , is connected. Also, by the

property that degR(f(v)) ≤ degG(v) ∀ v ∈ V (G), we know that TR must have at least one

leaf. (It has exactly one leaf when all the leaves of T are monochromatic). Therefore, TR

cannot be isomorphic to Ck. Suppose TR has a cycle of length n < k, say , {c1, c2, ..., cn}.
Then, there must be a path in T , say, P= {x1, x2, ...xj} such that its vertices have the

colour scheme c1, c2..., cn, c1, .... Since, the degree of each ci, 1 ≤ i ≤ n, is equal to 2, the

degree of each vertex of P is at least 2. Suppose f(xj) = ci, then xj must have at least one

neighbour of colour ci−1 and one of colour ci+1. Since, T has no cycle, it would mean that

there exists an infinite sequence of vertices in T having the aforesaid colouring scheme. This

is a contradiction as T has a finite number of vertices.

Lemma 6. ([5]) Let G be a connected graph and f be a k-role assignment of G. Then, for

every v ∈ V (G) there is a set S ⊆ V (G) containing v, such that |S|=k, f(u) 6= f(u′) ∀ u, u′

∈ S and G[S] is connected.

Proof. To construct S, pick a vertex v ∈ V (G), add it to S and mark it. While there are

vertices unmarked in N(v) ∀u ∈ N(v), if u is unmarked and f(u) ∈ N(f(v)) such that S

does not contain a vertex with role f(u), add u to S.
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We need to show that S is the desired set. G[S] is clearly connected, as at every stage

we added a vertex which was adjacent to the vertex previously added. Also |S| ≤ k because

no colour is repeated in S. For a contradiction,assume that |S| < k. By Lemma 1.1, we

know that the role graph of G, say R is connected. There exists a pair of vertices x, x′ in

V (R) such that there exists w ∈ V (G) such that f(w) = x belongs to S but there does

not belong any vertex of G in S with role x′. But if we consider the iteration of the above

algorithm when w was added to S, in the next iteration, we would come across a vertex of

role x′ unmarked by S and hence it would be added to S. This is a contradiction to the fact

that |S| < k.

3.3 The k-Role colouring problem

k-Role colouring is the problem where given an undirected and simple graph G and an

integer k, we want to decide if there exists a colouring assignment α : V (G) −→ {1, 2, ..., k},
satisfying the property α(u) = α(v) implies α(N(u)) = α(N(v)) for all u and v in V (G).

Roberts and Sheng ([16]) proved that 2-Role colouring was NP-Complete on arbitrary

graphs. Later, Paulusma et al. ([7]) showed that on arbitrary graphs, k-Role colouring

is NP-Complete when k ≥ 3. Hence, this problem is NP-Complete on the class of all graphs,

for all k ≥ 2.

Hence, it is interesting to determine how hard it is on smaller graph classes. The only

classes of graphs where k-Role colouring is known to be polynomial time solvable, for

all k, are trees, cographs and proper interval graphs ([1], [14], [12]).

3.4 The R-Role colouring problem

Another variant of the role colouring problem is R-Role colouring. In this problem, given

graphs G and R, we want to decide if G has a role colouring assignment α : V (G) −→ V (R),

such that for all u in V (G), α(NG(u)) = NR(α(u)).

This problem is equivalent to deciding if there exists a locally surjective homomorphism
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between G and R. This problem has been proved to be NP-Complete when R is a connected

graph on at least 3 vertices ([7]).

The following theorem exists due to Paulusma et al.

Theorem 3.4.1. ([7]) R-Role colouring is in P if and only if:

• R has no edges, or

• one of the components of R is a single loop incident vertex, or

• R is bipartite and has at least one component isomorphic to a K2.

In every other case, it is NP-Complete.
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Chapter 4

Complexity of k-Role colouring on

some graph classes

In the previous chapter we saw that k-role colouring is NP-Complete on the class of all

graphs, when k ≥ 2. However, when restricted to some smaller graph classes the problem

may be tractable. Therefore, an interesting goal is to characterize the graph classes on which

the problem may be solvable in polynomial time.

In this chapter, we discuss some known results on k-role colouring restricted to

specific hereditary classes of graphs.

4.1 Trees

Definition 4.1.1. ([3]) A tree decomposition of a graph G is a pair T = (T ; {X}t∈V (T )),

where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag,

such that the following three conditions hold:

1
⋃

t∈V (T )Xt = V (G). In other words, every vertex of G is in at least one bag.

2 For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u and

v.
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3 For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the set of nodes whose

corresponding bags contain u, induces a connected subtree of T .

The width of tree decomposition T = (T ; {Xt}t∈V (T )) equals maxt∈V (T )|Xt| − 1, that is,

the maximum size of its bag minus 1. The treewidth of a graph G, denoted by tw(G), is the

minimum possible width of a tree decomposition of G.

Chaplick et al. [1] showed that on graphs of bounded treewidth, R-role colouring is

polynomial time solvable if either the graph G or R has bounded degree. As a corollary to

this theorem, we know that the problem is polynomial time solvable on trees, as trees have

a treewidth equal to 1. k-role colouring can be solved on trees in polynomial time if

either k or n− k is a constant [14].

4.2 Cographs

Definition 4.2.1. A cograph is a simple graph that satisfies the following criteria:

• K1 is a cograph.

• If G is a cograph, then so is Ḡ

• If X and Y are cographs, then so is X ∪ Y

Cographs are the smallest family of graphs that include K1. A family of cographs is also

characterised as P4-free class of graphs [17].

Theorem 4.2.1. [14] Any cograph G with |V (G)| ≥ k is k-role colourable and k-role

colouring is in P, for k ≥ 2.

4.3 Chordal Graphs

Definition 4.3.1. A chordal graph is a simple graph in which every cycle Cm, of length

m ≥ 4, has a chord, that is, an edge between non-consecutive vertices of the cycle.
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Chordal graphs are also called triangulated graphs.

A simplical vertex is one whose neighbourhood induces a clique. In other words, if

v ∈ V (G) is a simplical vertex, then G[N(v)] is a complete graph. Dirac [1961], and Lekkerk-

erker and Boland [1962] proved that every chordal graph has a simplical vertex. In fact, if

the chordal graph is not a complete graph, it has two simplical vertices [10]. In 1965, Fulk-

erson and Gross exploited this hereditary property of chordal graphs, to give a recognition

algorithm for such graphs. For further details on the algorithm, refer [10].

An ordering σ = [v1, ..., vn] on the vertices of an undirected graph G, is called a perfect

elimination scheme if for all i, the graph induced on Xi = {vj ∈ N(vi)|j > i} is a complete

graph. Any simplical vertex can start a perfect elimination scheme.

Using the hereditary property that the vertices of chordal graphs can be ordered in a

perfect elimination scheme, Sheng [18] gave an elegant greedy algorithm to 2-role colour

chordal graphs.

Theorem 4.3.1. [18] If G is a connected, non-bipartite chordal graph with at most one

pendant vertex and no isolated vertices, then G is 2-role colorable if and only if G is R1-role

colourable, R1 being isomorphic to the graph in Figure 3.2.

Later, Paulusma et al.[19] resolved the complexity of 2-role colouring on chordal

graphs and proved the following:

Theorem 4.3.2. [19] 2-role colouring can be solved in linear time on the class of chordal

graphs.

Theorem 4.3.3. [19] For k ≥ 3, k-role colouring is NP-Complete on chordal graphs.

4.4 Proper Interval graphs

A graph is an interval graph if the intervals of a real line can be mapped onto its vertices and

two vertices are adjacent if and only if the corresponding intervals overlap. Interval graphs

are a subclass of chordal graphs. Several equivalent characterizations of interval graphs exist

[10] due to Lekkerkerker and Boland [1962], Gilmore and Hoffman [1964], and Fulkerson and

Gross [1965]. We shall consider the following definition:
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Figure 4.1: R2

Definition 4.4.1. A chordal graph is an interval graph if and only if it does not contain any

asteroidal triples.

Asteroidal triples are any three vertices of a graph that cannot be ordered in a way such

that a path from the first to the third vertex passes through a neighbour of the second vertex.

Definition 4.4.2. A proper interval graph is an interval graph if and only if none of its

induced subgraphs is isomorphic to a claw, that is, a K1,3.

Theorem 4.4.1. [12] Given a proper interval graph G with n vertices and m edges and a

graph R with cR connected components, R-role colouring can be solved on G in time

O(cR.(n+m)).

4.5 Split Graphs

Definition 4.5.1. Let G = (V,E) be a simple graph. G is a split graph if its vertex set

V can be partitioned into two disjoint sets I and C such that the graph induced on I is an

independent set in G and the one induced on C is a clique in G.

2-role colouring can be trivially solved on split graphs by assigning one colour to the

set I and the other to the set C. However, R2-role colouring, where R2 is isomorphic to

the graph in Figure 4.1, is NP-Complete on such graphs.

It was shown by M.C Dourado [5] that 3-role colouring is polynomial time solvable

on split graphs, whereas k-role colouring is NP-Complete, for k ≥ 4. The author also

gave a characterization of split graphs that admitted a 3-role colouring.

Definition 4.5.2. [5] A good vertex of a split graph is a vertex v ∈ C, N(v) ⊆ (C\twins(v))

and every vertex of (C \ twins(v)) has a neighbour in I \NI(v).
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Theorem 4.5.1. [5] A split graph G has a 3-role colouring if and only if at least one of

these conditions holds:

• G is disconnected

• G has a good vertex

• G has no pendant vertices

• G admits a unique split partition (C, I), and |NI(v)| ≥ 2, for all v ∈ C.

Corollary 4.5.2. [5] 3-role colouring can be solved in linear time on split graphs.
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Chapter 5

Role colouring bipartite graphs

We restrict our input graph G to the class of bipartite graphs. R-Role colouring is

known to be NP-Complete on bipartite graphs when

• |ER| ≥ 2 and

• R does not have a component isomorphic to a single loop-incident vertex, and

• R is not bipartite with at least one component isomorphic to K2 [7].

We build on this result and focus on the more general problem of k-Role colouring

bipartite graphs. Our primary result is that k-Role colouring is NP-Complete on the

class of bipartite graphs for all k ≥ 3.

Note that the NP-completeness of k-Role colouring does not follow from the NP-

completeness of R-Role colouring where R is a graph on k vertices satisfying the char-

acterization in [7]. To exemplify this, let us consider the two variants of the problem with

respect to the class of split graphs. We have seen in Section 4.5 that R2-Role colour-

ing is NP-Complete on split graphs. However, 2-Role colouring is trivially solvable in

polynomial time on split graphs with the corresponding role graph isomorphic to R1.
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5.1 NP-Completeness of k-Role colouring, k ≥ 3, on

bipartite graphs

In this section we prove that k-Role colouring is NP-Complete on connected bipartite

graphs, when k ≥ 3. We show a reduction from Hyper-graph 2-colouring (which is

known to be NP-Complete [9]).

In that endeavour, we first address the problem of R-Role colouring on bipartite

graphs with pendants in only one partition, where R = P3, an induced path on three vertices.

Lemma 7. Let G be a bipartite graph where exactly one partition of the vertex set has

pendant vertices. Then P3-Role colouring is NP-Complete on such graphs.

Proof. We show a reduction from Hyper-graph 2-colouring. Let H = (Q,S) be an

instance of Hyper-graph 2-colouring. We assume that H has no hyper-edges with less

than two vertices, else H would trivially be a no instance of the problem.

Let G(Q,S,E) be the canonical incidence graph of the hyper-graph H, with bipartition

(Q,S). Then for all q ∈ Q and s ∈ S, (q, s) ∈ E(G) if and only if q belongs to the hyper-

edge in H corresponding to vertex s ∈ S. Since every hyper-edge in S contains at least

two vertices, no vertex in S can be a pendant vertex. We construct the instance G′ from

G by adding an edge (a, b), and joining it to some q ∈ Q via the edge (b, q) (refer to figure

5.1). Therefore, G′ has pendant vertices in exactly one partition. Moreover, G and G′ are

connected, else we could consider the problem on a connected component of G.

We claim that H is a yes instance of Hyper-graph 2-colouring if and only if G′ is

a yes instance of P3-Role colouring. First, we suppose that H is a yes instance. Let

β : Q → {1, 2} be an assignment of colors to the vertices in Q. Then, the role assignment

α : V (G′)→ {1, 2, 3} can be defined as follows:

α(u) = β(u) for all u ∈ Q; α(s) = 3, for every s ∈ S; α(a) = 2, if α(q) = 1 and α(a) = 1

otherwise ; α(b) = 3.

Let R(VR, ER) be the role graph corresponding to α. We claim that

ER = {(1, 3), (2, 3)}. To prove that α indeed respects R, notice that the colour 3 is assigned

only to the vertices in S and the vertex b. As H is a yes instance of Hyper-graph 2-

colouring and β(u) = α(u), for all u ∈ Q, every vertex coloured 3 is adjacent to some

22



S

Q
q

b

a

s1 s2 sm

qn

Figure 5.1: Construction in the proof of Lemma 7

vertex coloured 1 and some vertex coloured 2. Also, every vertex in Q is adjacent to a

vertex in S and a is adjacent to b. Thus, every vertex coloured 1 or 2 is adjacent to a vertex

coloured 3. As R is isomorphic to P3, G
′ is a yes instance of P3-Role colouring.

Conversely, suppose that G′ is a yes instance of P3-Role colouring with the role

assignment α. Let V (P3) = {1, 2, 3} and E(P3) = {(1, 3), (2, 3)}. Since the degG′(a) = 1,

α(a) ∈ {1, 2}. Without loss of generality, suppose that α(a) = 1. Then the neighbour of a,

that is, b must be coloured 3. The other neighbour of b, which is q must be coloured 2 as

per the P3-role colouring assignment of G′. Now consider a path P in G′ that starts at q

and ends at some s ∈ S. As P starts in one partition of G′ and ends in the other, it must

be of even length as G′ is bipartite. Since α(q) = 2, its neighbour can only be coloured 3.

This implies that every even numbered vertex in P gets the colour 3, because any vertex of

colour 3 must be followed by a vertex coloured either 1 or 2, which in turn, must be followed

by some vertex coloured 3. This ensures that every vertex s ∈ S is assigned the colour 3.

Therefore, the vertices in G′ corresponding to the vertices of Q can only be coloured either

1 or 2. Moreover, since α is a P3-role colouring of G′, we know that every vertex coloured

3 is adjacent to at least one vertex each of colors 1 and 2. Now, we define the following

colouring for the hyper-graph H. Let β : Q → {1, 2} such that β(u) = α(u) for all u ∈ Q.

No hyper-edge of H is monochromatic as the corresponding vertices in G′ have at least one

neighbour of each colour. Hence, H is a yes instance of Hyper-graph 2-colouring.

Theorem 5.1.1. Given a connected bipartite graph G, 3-Role colouring is NP-Complete

on G.
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Proof. We show a reduction from P3-Role colouring on bipartite graphs. By Lemma 7,

P3-Role colouring is NP-Complete on the class of bipartite graphs with pendants in only

one partition.

Let G(X, Y,E) be a connected bipartite graph with pendant vertices occurring in Y . We

add to each vertex y ∈ Y , a path on 2 vertices called py, such that the sub-graph induced

on y ∪ py is a path of length 3 (refer to figure 5.2 in Section ?? of the appendix). We call

these paths “pendant paths” and the new graph thus obtained G′. We claim that G is a yes

instance of P3-Role colouring if and only if G′ is a yes instance of 3-Role colouring.

X

Yy yn

x1 xm

py1

py2

pyn1

pyn2

Figure 5.2: Construction in the proof of Theorem 5.1.1

To prove the forward direction, let α be the P3-role colouring assignment of G. Let the

corresponding role graph R(VR, ER) be defined as VR = {1, 2, 3} and ER= {(1, 2), (2, 3)}.
We show that α can be extended to vertices of G′. By the construction in Lemma 7, we

know that X is monochromatic with α(x) = 2 for all x ∈ X. This ensures that Y does not

have any vertex coloured 2, else there would be a vertex in G with role colour 2 that has no

neighbours with role colour 1 and 3, which is not possible.

Now, we can easily extend the role assignment in G to G′, as follows. Let py = {p1y, p2y}
be the pendant path attached to y ∈ Y , with an edge between y and p1

y. Let α(p1
y) = 2;

α(p2
y) = 1 if α(y) = 3, and α(p2

y) = 3 if α(y) = 1, for all y ∈ Y . Therefore, α is a P3 role

colouring of G′.

Conversely, suppose that G′ has a 3-role colouring. Then we prove that G has a P3-role
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colouring. Let us consider the path py attached to y ∈ Y . Let the vertex with degree 1 be p2
y

and without loss of generality, let α(p2
y) = 1. Then, if the neighbour of p2

y, that is p1
y gets

the role colour 1, then in the role graph, 1 is adjacent to itself only. Thus, all the vertices in

G′ must be role coloured 1, as G′ is connected. This is not possible as α is a 3-role colouring

of G′. Without loss of generality, assume α(p1
y) = 2. In the role graph R, 2 must be adjacent

to 3, or else R would be disconnected, which is not possible as G is connected. So, α(y) = 3.

Suppose that y had a neighbour x ∈ X, such that α(x) = 3. Then, x must have had a

neighbour y′ ∈ Y such that α(y′) = 2. However, since NR(2) = {1, 3}, α(p1
y′) ∈ {1, 3}.

This in turn would mean that α(p2
y′) = 2, which is not possible as degG′(p2

y′) = 1 but

degR(2) = 2. Therefore, NR(1) = NR(3) = {2} and the role graph corresponding to α is

isomorphic to P3.

Theorem 5.1.2. Let G be a connected bipartite graph. Then, 4-Role colouring is NP-

Complete on G.

Proof. Once again, we show a reduction from Hyper-graph 2-colouring. Let H =

(Q,S) be an instance of Hyper-graph 2-colouring. The incidence graph G(Q,S,E) is

a connected bipartite graph, with the bipartition (Q,S). To construct the graph G′ from G,

we add a pendant vertex ps to every vertex s ∈ S (refer to Figure 5.3). Let P s = {ps|s ∈ S}.

S

Q
q

s1 s2 sm

qn

ps1 ps2 psm

Figure 5.3: Construction in Theorem 5.1.2

We now claim that the hyper-graph H = (Q,S) is 2-colourable if and only if G′ is

4-role colourable. Suppose that H has a 2-colouring, β : Q → {1, 2}. Then the role

25



assignment for G′ is defined as: For each q ∈ Q, α(q)=β(q); for all s ∈ S, α(s) = 3 and

α(ps) = 4. Corresponding to α, the role graph R is defined as V (R) = {1, 2, 3, 4} and

E(R) = {(1, 3), (2, 3), (3, 4)}. As H is a yes instance of Hyper-graph 2-colouring, every

vertex s ∈ S coloured 3 is adjacent to vertices coloured 1 and 2 in Q and the vertex ps

coloured 4. Thus, α is consistent with R.

Conversely, suppose that G′ has a 4-role colouring α : V (G) −→ {1, 2, 3, 4}.

Case 1. Q is monochromatic. Without loss of generality, let α(q) = 1, for each q ∈ Q.

Claim. No vertex in S is assigned a colour same as that of the vertices in Q.

Proof. Towards a contradiction, suppose that there exists s ∈ S coloured 1. Then, 1 has a

self-loop incident on it in the role graph R. If the pendant attached to s gets coloured 1, then

by connectivity of G′, all the vertices of G′ get assigned the colour 1, which is a contradiction

to α being a 4-role colouring of G′. Therefore, suppose that α(ps) = 2. So, NR(2) = {1}.
As the neighbour of s in Q, say q, is a vertex coloured 1, it must have another neighbour

coloured 2. So, every vertex in Q is adjacent to some vertex coloured 1 and some vertex

coloured 2. As vertices of Q have neighbours only in S, there must exist a vertex s′ ∈ S

such that α(s′) = 2. This in turn would force α(ps
′
) to be equal to 1, which is not possible,

as degR(1) = 2. Hence, S cannot have a vertex with the same colour as that assigned to the

vertices of Q.

Claim. None of the pendant vertices in P s gets the colour 1.

Proof. Suppose that there exists a vertex ps of P s coloured 1. By the previous claim, no

vertex in S is coloured 1. Without loss of generality, suppose that α(s) = 2. Since the

vertices coloured 1 are only adjacent to vertices coloured 2, S must be monochromatic with

the colour 2, as Q is monochromatic with the colour 1. Therefore, P s must be monochromatic

with the colour 1 assigned to its vertices, a contradiction to α being a 4-role colouring of G′.

Therefore, it follows that 1 /∈ α(P s ∪ S).

Claim: P s must be monochromatic.
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Proof. Towards a contradiction, suppose that there exist vertices ps and ps
′

coloured 2 and

3, respectively. Then α(s) 6= 2 and α(s′) 6= 3, else every vertex coloured 2 or 3 could only

have neighbours of the same colour. As every s ∈ S has a neighbour in Q coloured 1, we

know that is not possible. This implies that some vertices in S are adjacent to vertices

coloured 1 and 2, whereas the others have neighbours coloured 1 and 3. Therefore, there

is no colour that can be assigned to the vertices of S, which is a contradiction to G′ being

4-role colourable. Hence, P s must be monochromatic.

Let α(P s)={2}. That forces S to be monochromatic with a third colour, say 3, which

again contradicts the assumption thatG′ is 4-role colourable. Therefore, whenQ is monochro-

matic, G′ is not 4-role colourable, which contradicts our assumption.

Case 2: Q is bi-chromatic. Without loss of generality, let the colors assigned to vertices in

Q by α be 1 and 2.

Claim: The vertices in S are not assigned the colors 1 and 2.

Proof. We assume the contrary. Suppose that there exists s ∈ S such that α(s) = 1. If α(ps)

= 1, then 1 would only be adjacent to itself and the role graph corresponding to α would

be disconnected, which is not possible as G′ is connected. Suppose that α(ps) = 2. Then

NR(2) = {1}. For the role graph to be connected, 1 must be adjacent to a third colour, say

3. However, the neighbours of s in Q are coloured either 1 or 2, which is a contradiction.

Similarly, no s ∈ S gets coloured 2.

Claim: The pendants in P s are not assigned any colour same as the vertices in Q.

Proof. Suppose that there exists a pendant vertex ps coloured 1. Let its neighbour s in S

have role 3 (from the previous claim we know that it can get neither role 1 nor role 2). Also, 3

must be adjacent to a different colour, say 2, otherwise the role graph would be disconnected

with 1 and 3 forming an induced K2. This means that no pendant receives the colour 3 as

the degree of 3 is at least equal to 2. If there exists a pendant coloured 2, then its neighbour

must be coloured 3 as well. So, NR(1) = NR(2) = {3}. Hence, S is monochromatic with

the role 3, all the vertices in Q are adjacent to some vertex in S. This is a contradiction to

α being a 4-role assignment. This implies that 1 /∈ α(P s) and 2 /∈ α(P s). This proves our

claim that α(Q) ∩ α(P s) = φ.
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Therefore, the only possible role assignment in this case is : α(Q) ∈ {1, 2}, α(S) = {3},
and α(P s) = {4}. So, every vertex in S is forced to be adjacent to at least one vertex of

role 1 and at least one vertex of role 2. The corresponding hyper-graph vertices in Q are

coloured as follows: β(q) = α(q) for all q ∈ Q.

Having dealt with the cases when Q is monochromatic and bi-chromatic respectively, we

now show that |α(Q)| = 2.

Claim: If G′ has a 4-role colouring, |α(Q)| = 2.

Proof. For |α(Q)| = 1, we have already seen that no 4-role colouring exists for G′. Suppose

that |α(Q)| ≥ 3. By the previous claims α(Q)∩α({P s ∪ S}) = φ. Therefore, the set P s ∪ S
is monochromatic. That is not possible because every vertex in S is adjacent to vertices of

at least 2 different role colors, whereas the vertices in P s can only be adjacent to one vertex.

Therefore, |α(Q)| = 2.

Theorem 5.1.3. Let G be a connected bipartite graph. 5-Role colouring is NP-Complete

on G.

Proof. We again show a reduction from Hyper-graph 2-colouring.The construction is

mostly the same as in the proof of Theorem 5.1.2. To the bipartite graph G′(Q ∪ P s, S, E),

we add a vertex u and make it adjacent to all the vertices in Q.The resulting graph G′′ is

bipartite, as u has no neighbours in S (refer to Figure 5.4).

We now show that H = (Q,S) has a 2-colouring if and only if G′′ has a 5-role colouring.

Suppose that the hyper-graph H = (Q,S) has a 2-colouring assignment, β : Q −→ {1, 2}.
Let the role assignment for G′′ be the following:

• α(q)=β(q), for every q ∈ Q.

• α(u)= 3
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Figure 5.4: Construction in Theorem 5.1.3

• α(s)= 4, for all s ∈ S

• α(ps)= 5, for all ps ∈ P s

The role graph R(VR, ER), corresponding to the 5-role colouring α, is defined as: VR =

{1, 2, 3, 4, 5} and ER = {(1, 3), (1, 4), (2, 3), (2, 4), (4, 5)}.

Conversely, suppose that G′′ has a 5-role colouring, α : V (G′′) −→ {1, 2, 3, 4, 5}. We first

argue that the set X ⊆ V (G) can not be monochromatic.

Case 1. Q is monochromatic. Without loss of generality, let α(Q) = 1.

Claim: The vertex u must not be assigned the colour 1.

Proof. If α(u) = 1, then every vertex with role 1 can only be adjacent to vertices coloured

1. This would mean that the set S and the pendant vertices would be given role 1 as G′′ is
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connected, which contradicts the hypothesis that α is a 5-role colouring.

Without loss of generality, let α(u)=2. So, NR(2) = {1}.

Claim: Neither the vertices in S nor the pendants in P s are assigned the colors 1 and 2.

Proof. Suppose that there exists s ∈ S, such that α(s) = 1. Then s is adjacent to vertices

coloured 1 in Q as well as a pendant vertex ps. Then, α(ps)= 2, as 1 is adjacent to 1 and 2,

but all the other neighbours of s are coloured 1. This however implies that all the vertices in

the set S must get coloured 1 because N(Q)= S ∪{u} and u is coloured 2. This forces every

ps to be coloured 2. This is a contradiction to the hypothesis that α is a 5-role colouring of

G′′.

Since each s ∈ S is adjacent to a pendant vertex, α(s) 6= 2, else α(ps) = 1. Since 1 is

adjacent to both 1 and 2 but degG′′(ps) = 1, this is not possible. So, the pendant vertices

cannot receive the role 1. Therefore, each element of S ∪ P s must be assigned one of the

three colors, 3, 4 and 5.

Claim: P s is monochromatic.

Proof. Suppose that P s has vertices with role 3 and 4. Then no vertex of S gets the colors

3 and 4 as these vertices are adjacent to vertices in Q coloured 1, whereas the pendants are

not. This leaves us with the role 5 for S but, some vertices of S are adjacent to pendants

coloured 3 whereas some others to pendants coloured 4. Thus, there is no role that can be

given to S which contradicts the assumption that G′′ has a 5-role colouring.

Hence, we assume that P s is monochromatic with the role 3. However, this forces S

to be monochromatic with the role 4. This again contradicts α being a 5-role colouring.

Therefore, when X is monochromatic, G′′ does not have any 5-role colouring.

Case 2. Q is bi-chromatic. Without loss of generality, assume that α(Q) = {1, 2}.
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Claim: α(u) /∈ {1, 2}.

Proof. Suppose that α(u) = 1. Then, NR(1) = {1, 2}. This implies that the vertices in Q

coloured 1 must be adjacent to some vertex coloured 2. That is only possible if some vertices

in S receive the colour 2. Let Q1 be the set of vertices in Q coloured 1 and S2 be the set of

vertices in S coloured 2. Then, vertices in P s ∩ N(S2) cannot be coloured 1 (degR(1)= 2).

It cannot be coloured 2 either, as 2 must be adjacent to some vertex coloured 1. Suppose

that these vertices get coloured 3. The vertices in Q \ Q1 must be adjacent to some vertex

with role 3, as well. This would imply that some vertices in S get the role 3. However, this

is not possible, as 3 is only adjacent to 2 but the pendants attached to these vertices cannot

be given the role 2. Therefore, α(u) 6= 1. Similarly, α(u) 6= 2.

Therefore, let α(u) = 3.

Claim: α(Q ∪ {u}) ∩ α(S ∪ P s) = φ.

Proof. Suppose that there exists s ∈ S coloured 1. Then s must be adjacent to a vertex

coloured 3 as 3 ∈ NR(1). However, the neighbours of s include some vertices in Q, which

have roles 1 or 2, as well as the pendant vertex ps, which cannot be given role 3 because

degR(3) = 2. Similarly, no vertex of S can be given the role 2. Suppose that some s′ ∈ S
gets the role 3, then as 3 is only adjacent to 1 and 2, the pendant ps

′
must get assigned the

colors 1 or 2. This would force all the vertices in S to be coloured 3 and all the vertices of

P s to get the role α(ps
′
). This is a contradiction to α being a 5-role colouring.

Now, the vertices in S ∪ P s can be coloured with 4 and 5. Suppose that ps gets the role

4. Then, α(s) 6= 4 because s is adjacent to vertices of role 1 and 2 whereas ps is not. So,

α(s) = 5. This implies that no pendant vertex gets the role 5, so P s is monochromatic with

the role 4 and S is monochromatic with role 5. Also, each vertex of S must be adjacent to

at least one vertex with role 1 and one vertex of role 2.

In this case, we assign colors to the vertices of the hyper-graph as β(q)= α(q) for all

q ∈ Q.

Claim: If G′′ is 5-role colourable, then |α(Q)| = 2.
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Proof. We have seen that when Q is monochromatic, there is no possible 5-role assignment

for G′′. Suppose that |α(S)| ≥ 3. By the previous claim, α(Q∪{u}) ∩ α(S ∪P s) = φ. That

would leave us with at most one role colour for the vertices in S ∪ P s. However, we have

also shown that S ∪ P s cannot be monochromatic. So, G′′ does not have a 5-role colouring,

which is a contradiction. Hence, |α(Q)| = 2.

Corollary 5.1.4. k-Role colouring is NP-Complete on connected bipartite graphs, for

all k > 5.

Proof. We use the same reduction as above. Consider the graph G′′. In G′′, we tweak the

set P s to include “pendant paths” instead of vertices, defined as P s = {[ps1, ..., psk−4] : for

all s ∈ S}. Each path in P s is attached to the corresponding s through the edge (psk−4, s).

Refer to Figure 5.5

S

Q
q

s1 sm

qn

ps11 psm1

u

ps12

pS1k−4 psmk−4

ps1 psm

Figure 5.5: Construction in Theorem 5.1.4

Claim: H = (Q,S) has a 2-colouring assignment if and only if G′′ has a k-role colouring.
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Proof. Suppose that the hyper-graph H = Q,S has a 2-colouring, β : Q −→ {1, 2}. Let the

role assignment for G′′ be the following:

• α(q) =β(q), for each q ∈ Q,

• α(u)= 3,

• α(s)= 4, for all s ∈ S

• α(psk−4) = 5, for all s ∈ S

• α(psj)= k − j + 1, where 1 ≤ j ≤ k − 5

This gives us a k-role colouring of G′′, α with the corresponding role-graph R(VR, ER)

defined as: VR = {1, 2, . . . , k} and

ER = {(1, 3), (2, 3), (1, 4), (2, 4), (4, 5), (j, j + 1)}, for all 5 ≤ j ≤ k − 1.

To prove the converse, we have already shown that Q cannot be monochromatic and that

|α(Q)| = 2. We have also shown that α(Q ∪ {u}) ∩ α(S ∪ P s) = φ. Hence, the only thing

left to show is that α(Q ∪ S ∪ {u}) ∩ α(P s) = φ.

Claim: α(Q ∪ S ∪ {u}) ∩ α(P s) = φ.

Proof. To see this, consider the path attached to s. For convenience, we remove the super-

script and denote the path as [p1, ..., pk−4]. Towards a contradiction, suppose that α(pk−4)=

α(s) = 4. Then, NR(4)= {1, 2, 4}. However, the degree of pk−4 is 2, hence it cannot be

assigned a colour with degree greater than or equal to 3.

α(pk−4) 6= 3 as 3 is not adjacent to 4. Its colour cannot be equal to 1 or 2 because that

would force pk−3 to get role 3, contradicting G′′ having a k-role assignment, k > 5. So, let

α(pk−4) = 5. Since, 1, 2 and 3 are not adjacent to 5, α(pk−5) /∈ {1, 2, 3}. Since 4 is adjacent

to 1, 2 and 5 in R, no vertex in the path can be assigned the role 4 , as these vertices have

degree = 2 which is less than the degree of 4 in the role graph. If α(pk−5) = 5 then α(pk−6)

is forced to be 4, which is not possible. Hence, pk−5 must receive a fresh colour, say 6. By

induction on j, we can show that each pk−j receives a fresh colour j, j ≥ 4. This completes

the proof.
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5.2 3-role colouring bipartite chain graphs

Definition 5.2.1. ( [11], [21]) A bipartite graph is a chain graph if and only if the neigh-

bourhoods of the vertices of each partition can be linearly ordered with respect to inclusion.

Equivalently, a bipartite graph is a chain graph if and only if it is 2K2-free.

A pendant is a vertex of degree 1. A universal vertex1 is a vertex in one partition of a

bipartite graph that is adjacent to every vertex in the other partition.

Theorem 5.2.1. A bipartite chain graph is 3-role colourable.

Proof. Let G = (X, Y,E) be a connected bipartite chain graph and let |X| ≥ 3, |Y | ≥ 3. P3

and C4 are trivially 3-role colourable whereas K2 and P4 are not 3-role colourable. Hence,

our assumption makes sense. We demonstrate a 3-role colouring for each of the following

cases:

Case 1. The graph G has no pendant vertex.

As there are no isolated vertices in G, the linear ordering on the neighbourhoods of

vertices ensures that the largest neighborhood contains all the vertices in the partition.

Hence, each partition has at least one universal vertex. Let u be a universal vertex of G.

We define a role colouring α : V (G) −→ {1, 2, 3} as, α(u) = 1, α(v) = 2 for all v ∈ N(u)

and α(w) = 3 for all w ∈ G \N [u].

We claim that α is a valid role-colouring of G. We need to show that every vertex coloured

2 is adjacent to some vertex of colour 1 and some vertex coloured 3. As, we have coloured

only the neighbours of u with the colour 2, each of them has a neighbour of role 1. Since

there are no pendants in G, each of them has at least one other neighbour in the partition

containing u. This ensures that each vertex coloured 2 has a neighbour coloured 3.

Case 2. Pendants occur in exactly one partition.

1Our definition of “universal vertex” is different from the standard definition.
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Let X be the partition containing the pendants and Y be the other partition.

Observation 1. The unique neighbour of a pendant must be a universal vertex.

Proof. Let v be a pendant and let u be its unique neighbour. If u is not a universal vertex,

then there exists a vertex x in X, that is not adjacent to u. However, since no isolated

vertices exist in G, x must be adjacent to some other vertex in G, say y. Therefore, (x,y)

and (u, v) induce a 2K2 which contradicts the assumption that G is a bipartite chain graph.

Observation 2. There is exactly one universal vertex in Y .

Proof. Suppose there were 2 universal vertices in Y , then every vertex in X would have

degree at least 2. This contradicts our assumption that X contains pendants.

Now, we define the role colouring of vertices in G as follows: α : V (G) −→ {1, 2, 3},
α(v) = 1, for all v in Y ; α(w) = 2, where w is a universal vertex in X and α(X\{w}) = 3.

Every vertex coloured 1 is adjacent to the vertex coloured 2 (that is w) and a vertex coloured

3. The edges in the role graph are ER = {(1, 2), (1, 3)}.

Case 3.Pendants occur in both the partitions.

Let u and v be the universal vertices in X and Y respectively. We first assume that

N(u) ∪N(v) does not induce an independent set.

Observation 1. Each partition X and Y has a unique universal vertex, namely, u and v.

Proof. Follows by Observation 2 of Case 2.

In this case, we colour all the pendants with colour 1. The universal vertices adjacent

to the pendants can be coloured 2. The remaining vertices are given the role 3. Therefore,

every vertex coloured 1 is adjacent only to vertices coloured 2. The two vertices coloured 2

are adjacent to all the vertices in each partition and hence adjacent to both 1 and 3. Since

the neighbourhoods of u and v do not form an independent set, we have that at least one

vertex in each partition is not a pendant. Hence, there are vertices coloured 3 which are

adjacent to each other and the universal vertices.

Now, suppose that N(u)∪N(v) is an independent set. Then, |N(u)| ≥ 2 and |N(v)| ≥ 2,

as we assumed that each partition has at least 3 vertices. So, colour u and v with the colour

2. As none of the neighbours of u and v are adjacent to each other, all of them are pendants.

Colour any one neighbour of both u and v with colour 1 and another neighbour with the
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colour 3. The remaining vertices can be arbitrarily given the colors 1 or 3. Hence, the role

graph is defined by: E(R) = {(1, 2), (2, 3)}.

36



Chapter 6

Role colouring chordal graphs

Paulusma et al. [19] had first given a proof of NP-Completeness of k-Role colouring on

chordal graphs for k ≥ 3. With slight modification to our proof of Theorem 5.1.2, we were

able to give an alternate, simpler proof for the case k ≥ 4.

6.1 NP-Completeness of k-Role colouring on chordal

graphs

Theorem 6.1.1. k-Role colouring is NP-Complete on chordal graphs, when k ≥ 4.

Proof. Case 1. k = 4.

Once again, we show a reduction from Hyper-graph 2-colouring. Let G be the

graph proposed in Theorem 5.1.2. We construct G′ from G by making Q ⊆ V (G) a clique

by adding the required edges.

We show that H = (Q,S) has a 2 colouring if and only if G′(Q,S,E) has a 4-role

colouring. Suppose the hyper-graph H has a 2-colouring, β : Q −→ {1, 2}. Let the role

assignment for G′ be the following:

• α(q) = β(q) for all q ∈ Q
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• α(s) = 3, for all s ∈ S

• α(ps) = 4, for all s ∈ S

Hence the role graph R(VR, ER) corresponding to α can be described as: VR = {1, 2, 3, 4}
and ER = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 4)}.

Conversely, suppose G′ has a 4-role colouring.

Case 1.a. Q is monochromatic. Without loss of generality, assume α(Q) = 1.

Claim: No vertex in S is coloured 1.

Proof. Suppose the contrary. Let there exists s ∈ S such that α(s) = 1. Then, α(ps) 6= 1,

otherwise 1 would only be adjacent to itself in the role graph. As G′ is connected, every

vertex would have to be coloured 1. This is a contradiction to G′ having a 4-role colouring.

Suppose that α(ps) = 2. Then NR(2) = {1}. Every vertex coloured 1 in the clique Q must

have a neighbour coloured 2. This implies that there exists some vertex s in S coloured 2.

However, since 2 is adjacent only to 1, ps must be coloured 1. This is not possible as the

degree of 1 in R is 2. Therefore, S has no vertex with role 1.

Claim: There is no vertex in P s coloured 1.

Proof. Q is a monochromatic clique with vertices coloured 1. This implies 1 is adjacent to

itself in R. If a pendant vertex was coloured 1, 1 would have only been adjacent to itself.

That would force S and P s to be monochromatic with role 1, a contradiction to α being a

4-role colouring.

Claim: P s is monochromatic.

Proof. We assume the contrary. Let α(ps) = 2 and α(ps
′
) = 3. Then, no vertex in S

gets coloured 2 or 3 as the vertices in S have a neighbourhood coloured with at least 2

colors, but 2 and 3 are vertices of degree equal to 1 in the role graph, R. So, S must be

monochromatic and coloured 4. This, however, is not possible as some vertices of S have
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neighbours with coloured 1 and 2, whereas the others have neighbours coloured 1 and 3.

Hence, P s is monochromatic.

Without loss of generality, let α(P s) = 2. Since P s is monochromatic, S is forced to

be monochromatic with a colour different from 1 and 2. Therefore, let α(S) = 3. We have

shown that when Q is monochromatic, G′ cannot have a 4-role colouring.

Case 1.b. Q is bi-chromatic. Without loss of generality, assume α(Q) = {1, 2}.

Claim. α(Q) ∩ α(P s ∪ S) = φ.

Proof. Since both 1 and 2 have deg = 2 in the role graph, clearly the pendant vertices do

not get coloured 1 or 2. Suppose that there exists s ∈ S, such that α(s) = 1. Then s is

adjacent to vertices coloured 1 and 2 in Q, as well as a pendant vertex ps. Suppose that

α(ps) = 3. Then the vertices in Q coloured 1 are not adjacent to any vertex coloured 3 but

s is, which is not possible. Hence, no vertex in S gets coloured 1. Similarly, no vertex in S

gets coloured 2.

Since we have shown that vertices in S and P s cannot be assigned the same colors, we

must have that each of these sets is monochromatic with a different colour. Let α(S) = 3

and α(P s) = 4 The corresponding colouring assignment for the hyper-graph H in this case

is : β(q) = α(q) for all q ∈ Q.

Claim: If G′ has a 4-role colouring, |α(Q)| = 2.

Proof. Follows from the previous claims and the observation that the set P s ∪ S cannot be

monochromatic.

Case 2 k > 4.

Consider the same graph G′ as above. In G′, we tweak the set P s to include “pendant

paths” instead of vertices. Let P s be the set of paths {ps1, ..., psk−4} for all s ∈ S. Each
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path in P s is attached to the corresponding s through the edge (psk−4, s).

In order to prove that H has a 2 colouring if and only if G′ has a k-role colouring, we

argue on the same lines as above. Suppose that the hyper-graph H has a 2-colouring, β :

Q −→ {1, 2}. Let the role assignment for G′ be the following:

• α(q)= β(q), for all q ∈ Q

• α(s)= 3, for all s ∈ S

• α(psk−4) = 4, s ∈ S

• α(psj) = k − j + 1 for all 1 ≤ j ≤ k − 5 and s ∈ S

This gives us a k-role colouring of G′, with the role graph R(VR, ER) defined as: VR =

{1, 2, ..., k} and ER = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 4), (j, j + 1)} for all 4 ≤ j ≤ k− 1.

To prove the converse, we argue as in Case 1 above. The only thing left to show is that

the paths in the set P s do not get assigned any of the 3 colors assigned to Q and S.

Claim: α(Q ∪ S) ∩ α(P s) = φ.

Proof. To see this, consider the path attached to s. For convenience, we remove the super-

script and denote the path as [p1, ..., pk−4]. None of the path vertices get coloured 1 or 2

because both 1 and 2 are adjacent to 3 different colors in the role graph, whereas the degree

of the path vertices is equal to 2. Towards a contradiction, suppose that α(pk−4)= α(s) =

3. This means that 3 is adjacent to 1, 2 and 3. However, this is a contradiction as the path

vertices cannot have neighbors of 3 different colors.
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Chapter 7

Role colouring almost bipartite and

almost split graphs

An “almost bipartite” graph is a graph that has a set of at most d vertices or d edges, d being

a constant, which on deletion yield a bipartite graph. Similarly, an “almost split” graph is

one that is d-away from being a split graph. Here, we prove that 2-Role colouring is

NP-Complete on the class of almost bipartite graphs and almost split graphs, even if d is a

small constant.

7.1 Almost Bipartite Graphs

Theorem 7.1.1. 2-Role colouring is NP-Complete on the class of almost bipartite

graphs.

Proof. We know from [7] that given a connected bipartite graph G and a role graph R

isomorphic to an edge with a self loop incident on one of its end points, deciding if G is

2-role colourable, is NP-Complete. Thus, we show a reduction from this problem to 2-Role

colouring on almost bipartite graphs with d= 2.

Construction Let R = (VR, ER) be defined as VR = {1, 2} and

ER = {(1, 1), (1, 2)}. Let G be a connected bipartite graph and let x ∈ V (G). We construct
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G′ from G by adding to it 2 vertices a and b and the edges (a, b), (x, a), (x, b). G′ is not

bipartite as it has a triangle, namely, abx. It is 2 vertices and 3 edges away from the graph

G. Refer to Figure 7.1.

Y

Q
x

b

a

y1 y2 yq

xp

Figure 7.1: Construction in Theorem 7.1.1

Suppose that G is a yes instance. Then, it has a role assignment α, with the role graph

being isomorphic to R. Then we can extend α to the vertices of G′ as follows: If α(x) = 1,

then colour a with 1 and b with 2. If α(x) = 2 then colour both a and b with 1. Thus, G′

has an R-role colouring and therefore a 2-role colouring.

Conversely, suppose that G′ has a 2-role colouring α′. First assume that α′(a) = 1. If

both x and b received the colour 1, then the role graph would be disconnected, as 1 could

only be adjacent to itself. Hence, at least one of them gets the colour 2. The colour of a

forces the role graph to be isomorphic to R. Similarly, if α′(a) = 2, the role graph is again

isomorphic to R. Hence, if G′ has a 2-role colouring it has an R-role colouring and therefore

G is R-role colourable.

7.2 Almost Split Graphs

Theorem 7.2.1. 2-Role colouring is NP-Complete on almost split graphs.

Proof. It was shown in [19] that R-Role colouring is NP-Complete on split graphs when R

is isomorphic to an edge with self loops incident on both its end points. We show a reduction

from this problem to the problem 2-Role colouring on graphs that are d vertices away

from split graphs, where d= 7.
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Construction. Let R be the graph defined as R = (VR, ER), VR = {1, 2} and ER =

{(1, 1), (1, 2), (2, 2)}. Let G be a split graph with the split partition (C, I). We may also

assume that the minimum degree in G is greater than or equal to 2. If there exists a vertex

of degree 1 in G, then G is a no instance of R-Role colouring. Let x ∈ C be a vertex of

G. We construct G′ by adding to G a C7, C
′ = {p, q, s, t, u, v, w} and the edge (p, x). Refer

to Figure 7.2.

I

Cx

i1 i2 iq

xpClique

p
w

v

ut
s

q

Figure 7.2: Construction in Theorem 7.2.1

Suppose that G is a yes instance of R-Role colouring. Let α : V (G) −→ {1, 2} be

the role colouring of G. Since 1 and 2 are symmetrical in R, without loss of generality, let

α(x) = 1. We extend α to the vertices of C ′ as follows: α(p) = 1 , α(q) = 2, α(s) = 2,

α(t) = 1, α(u) = 1, α(v) = 2, α(w) = 2. Since every vertex of C coloured 1 is adjacent

to some vertex coloured 1 and some vertex coloured 2 and vice-versa, α is an R-Role

colouring of G′. Hence, G′ is a yes-instance of 2-Role colouring.

Conversely, suppose that G′ is a yes instance of 2-Role colouring and α′ is the role

colouring of G′. Let us first consider the vertices of C ′. Without loss of generality, let

α(t) = 1. Then, either s or u gets coloured 2, else the role graph would be disconnected.

Suppose that α′(s) = 1 and α′(u) = 2. Then α′(q) = 2, as s must have a neighbour coloured

2. We claim that p must be coloured 2. Towards a contradiction, suppose that α′(p) = 1.

Then α′(w) = 1, as p needs a neighbour coloured 1. However, v must be coloured 1, as its

neighbour u is coloured 2, which is only adjacent to 1. But, w needs a neighbour coloured
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2, so v must be coloured 2. Hence, we run into a contradiction. Thus α′(p) = 2 and G′ is

R-role colourable. Alternatively, suppose that α′(s) = r′(u) = 2. Then neither q nor v can

be coloured 1 or else the role graph would be isomorphic to a K2. We know from [7] that

a graph is K2-role colourable if and only if it is bipartite. Hence, α′(q) = r′(v) = 2. Both

q and v need a neighbour coloured 1, hence α′(p)= α′(w)= 1, which is a contradiction as t

does not have a neighbour coloured 1, hence, 1 cannot be adjacent to itself in the role graph.

Therefore α′(s) 6= α′(u).

What remains to show is that G is a yes instance of R-Role colouring. Suppose that

α′(x) = 1, then x already has a neighbour coloured 2, namely, p. Suppose that its neighbours

in G are all coloured 1. Then, the whole clique C is coloured 1, which implies that no vertex

in I is adjacent to a vertex coloured 2. This is a contradiction to α′ being an R-role colouring

of G′. So, x must have a neighbour in G coloured 1 and a neighbour coloured 2. As 1 and 2

are symmetric in R, the same argument holds good if α′(x) = 2. Thus we have shown that

G is a yes instance of R-Role colouring.

7.3 Para-NP-Hardness

A parametrized problem is a language L ⊆ Σ∗×N. For a problem instance I = (x, k) ∈ Σ∗×N,

k is referred to as the parameter.

A parametrized problem is fixed parameter tractable (FPT), if there exists an algorithm

A, a computable function f , and a constant c such that given an instance I = (x, k), A
correctly decides if I ∈ L in time bounded by f(k).|x|c.

A parametrized problem is in XP if there exists an algorithm A, computable functions f

and g, such that given an instance I = (x, k), A correctly decides whether I ∈ L, in time

bounded by f(k).|x|g(k)

In order to classify parametrized problems the W-hierarchy is defined as:

FPT ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ XP
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It is believed that all the subset relations in this sequence are strict and a parametrized

problem that is hard for some complexity class above FPT in this hierarchy, is said to be

fixed parameter intractable.

A parametrized problem with instances of the form I = (x, k) is para-NP-Hard if for a

fixed constant value of k, it is NP-Hard. Unless P = NP, para-NP-Hard problems do not

belong to the class XP and therefore, cannot be FPT.

For a background in parametrized complexity, refer [3], [6], [8].

Clearly, on general graphs k-role colouring is para-NP-Hard when parametrized by

k. In the previous sections, we had explored the complexity of the problem using a different

parameter, that is, distance from a graph class. We slightly modify the definition of almost

bipartite and almost split graphs for the parametrized version of 2-role colouring. An

almost bipartite graph G is one that has a set S of at most d vertices (or edges) such that

G \ S is a bipartite graph. We define almost split graphs similarly.

Theorem 7.3.1. On the class of almost bipartite graphs and almost split graphs, 2-role

colouring is para-NP-Hard, when parametrized by d.

Proof. Follows from Theorems 7.1.1 and 7.2.1.
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Chapter 8

Conclusion

Theorems 5.1.1, 5.1.2, 5.1.3 along with Corollary 5.1.4 completely resolve the complexity of

k-role colouring on bipartite graphs. Theorem 6.1.1 reiterates the NP-Completeness of

the problem on chordal graphs for all k ≥ 4. The underlying idea in our proofs of these

theorems was that we can exploit the structure of the given graph to pin down its possible

role assignments. Special features of a graph like pendants, induced paths, cycles, cliques,

etc are specially helpful in restricting the degrees of the roles assigned to their vertices.

Consequently, by such analysis we can limit our attention to typically a constant number of

possible role graphs, as opposed to all possible role graphs on k vertices.

Fiala and Paulusma [1] had shown that R-role colouring is para-NP-Hard when

parametrized by either the treewidth of the given graph G or its maximum degree. Due

to Theorems 7.1.1 and 7.2.1, we have shown that 2-role colouring is para-NP-Hard

when parametrized by the distance of G from bipartite and split graphs, respectively. We

have, therefore, shown another parameter for which the problem remains para-NP-Hard on

a smaller graph class. An interesting question that remains to be solved is whether 3-role

colouring is para-NP-Hard on graphs d-away from split graphs using the same parameter.

Along similar lines, we ask if k-role colouring is in XP if the input graph G is d-away

from a tree or a proper interval graph, when parametrized by d.
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