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Abstract

A non-interactive key exchange (NIKE) allows two parties to compute a unique shared
key without any interaction. Since the innovative work of Diffie and Hellman [10],
NIKE has become one of the fundamental problems of modern cryptography. Identity-
based NIKE (ID-NIKE) is a fundamental primitive of Identity Based Cryptography.
It allows a party to compute a shared key using its own secret key and the other
party’s identity. In the recent past, where identity-based encryption and signature have
been thoroughly explored, ID-NIKE didn’t get enough attention. At the moment, we
have only few ID-NIKE protocols available (with no fully secure Hierarchical-ID-NIKE
(H-ID-NIKE) protocol) in the literature.

Mobile Ad-hoc Networks (MANETs) are decentralized networks of mobile devices
with limited resources in terms of storage, power, computation, communication etc.
They encounter some serious security issues due to their high mobility and hierarchical
structure. H-ID-NIKE can be used to establish shared secret keys in MANETs using
minimal resources. Secure H-ID-NIKE protocols are highly appreciated for security
sensitive applications in MANETs such as in military or tactical networks.

In particular, key exchange protocols with the four functional properties (as posed by
Gennaro et al. in [16]) are considered well-suited for the MANET environment i.e., the
protocol should be non-interactive, identity-based, hierarchical and fully resilient against
arbitrary number of node compromises at any level. However, the proposed solution
for this problem in [16] does not really satisfy all four properties. Their protocol is
neither fully resilient nor allows a secure key exchange at any non-leaf level. Later in
2017, Tiwari proposed another H-ID-NIKE construction (named BIOS-SOK) [27] as a
possible solution for this problem. BIOS-SOK is a non-interactive, identity-based and
hierarchical key exchange protocol which allows multi-level shared key computations.
However, it is shown secure under a restricted security model and is not fully resilient
in practical scenarios. There are few more constructions available in the literature
([24, 11, 5, 23, 20, 25]) which contain three of these four properties. However, there is



no fully secure and practical key exchange protocol with all four properties.

In this thesis, we have proposed a key exchange protocol (named α-BSOK) as a possible
solution for this open problem. α-BSOK is non-interactive, identity-based, hierarchical,
efficient and fully resilient against arbitrary number of node corruptions. α-BSOK
is based on the idea of BIOS-SOK hybrid[27]. It is a hybrid of two non-hierarchical
protocols BIOS[20] and SOK[25]. Both of these protocols are non-interactive, identity-
based and fully resilient. In our work, we have made a hybrid of these protocols which
is hierarchical in nature. We have provided a rigorous security analysis for α-BSOK in
a stronger security model (compared to [12, 27, 16]). We have discussed two variants
of the α-BSOK protocol (named as β-BSOK and β-BSOK-KWT) that slightly traded
efficiency for better security. We have also done an implementation and simulation
data analysis of α-BSOK with other existing protocols to compare its efficiency.
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Chapter 1

Introduction

1.1 Motivation

Key exchange is a fundamental tool for secure communication. It is used to compute a
common secret between two parties over an untrusted channel. Such a common secret
can be used by the parties as a key for their secure communication. Traditional ways
of key exchange used to involve some secure physical channels, such as key tapes or
printed key lists which were transported by trusted couriers and diplomatic bags with
certain legal protections. This process used to require a lot of money and manpower
which was not always practical.

In 1976, Diffie and Hellman introduced the first secure and practical key exchange
protocol (known as the DH protocol) in their ground-breaking paper “New Directions
in Cryptography” [10]. The DH protocol allows two parties to agree on a common
secret key over a public channel. This protocol is also known as the first Non-Interactive
Key Exchange (NIKE) protocol in the public key setting. NIKE allows two parties to
compute a common secret key without any interaction. In DH protocol, Each party
maintains two different keys known as a public and a secret key. The public key of a
party is publicly available and is used by the other party to initiate a key exchange.
Each party is also required to exchange a public key certificate with a Certification
Authority (CA). A public key certificate is required to confirm the authenticity of
the corresponding party’s public key. However, management of these public key
certificates involves a complex Public Key Infrastructure (PKI). Certificate management
cost is one of the main disadvantages of public key cryptography.
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Later, in 1984, Shamir proposed the idea of Identity-based Cryptography (IBC) to avoid
the problem of expensive certificate management [26]. IBC is a type of public-key
cryptography which uses publicly known strings such as phone number, email or IP
address as a public key for the parties in the system. Thus, the authenticity of a public
key can be easily verified from the publicly available information. In IBC, a trusted
third party, called Private Key Generator (PKG) generates and distributes the secret
keys of the other parties.

The first identity-based NIKE (ID-NIKE) protocol (known as the SOK protocol) was
introduced by Sakai, Ohgishi and Kasahara in 2000 [25]. SOK is a non-interactive
protocol which uses bilinear pairing to compute shared secret keys between two parties.
SOK was followed by a few more ID-NIKE protocols including Trapdoor Discrete
Logarithm based protocol (TDL)[23] and Basic ID-based One-way-function Scheme
(BIOS)[20] which do not use pairing for the key exchange. However, all of these
ID-NIKE protocols are only applicable to a flat architecture network i.e., only PKG
can generate and distribute the secret keys in the network. On the other hand, in
hierarchical networks such as military organizations we expect a decentralized key
distribution i.e., every node should be able to generate and distribute secret keys to
any of its descendants. Thus, these ID-NIKE protocols are not directly applicable
to such applications. An ID-NIKE protocol is said to be hierarchical if it allows the
decentralized key distribution.

In networks like MANETs or military networks, nodes are mobile and are at a high risk
of being compromised. When a node is compromised, all the secret keys of that node
are revealed to the attacker. It is possible for a key exchange protocol that once the
number of compromised nodes grows above some threshold, an attacker can learn keys
of uncompromised nodes. We call a protocol to be fully resilient, if the communication
between any two uncompromised nodes remain secure even after arbitrary number of
node compromises. We expect an ideal ID-NIKE to be fully resilient.

The first hierarchical ID-NIKE (H-ID-NIKE) protocol (named as HHKAS) was pro-
posed by Gennaro et al. in 2008 [16]. Though HHKAS supports a proper hierarchical
key distribution, it only allows the nodes at leaf level to do a proper key-exchange.
For non-leaf level nodes, the key exchange is neither guaranteed nor shown secure.
Also HHKAS is fully resilient only at the leaf level and for the non-leaf levels it is
resilient against node compromises up to some defined thresholds. Later, in 2014,
Freire proposed another construction[12] for H-ID-NIKE which can be treated as
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a generalized version of SOK protocol. Freire’s protocol uses multilinear maps to
compute shared secret keys between two parties. However, there are serious security
issues with multilinear maps [8] and thus this protocol is not practical for real-life
applications. In 2017, Tiwari proposed BIOS-SOK hybrid as a possible solution for
the H-ID-NIKE problem. BIOS-SOK supports hierarchical key distribution and allows
multi-level shared key computations. However, it is shown secure under a restricted
security model and is not fully resilient in practical scenarios.

Our goal in this thesis is to propose a protocol that has all the above functional proper-
ties and is secure in a quite stronger sense i.e., it should be non-interactive (to reduce
communication and power costs), identity-based (to avoid the costs required for PKI
management), hierarchical (to allow decentralized key distribution) and fully resilient
against arbitrary number of node compromises at any level in the hierarchy.

In this thesis, we have proposed a new protocol (along with its two variants) based
on the idea of BIOS-SOK. Our proposed protocol contains all of these four properties
under a stronger security model. We have also presented a comparative analysis of
our proposed solution with other existing protocols.

1.2 Plan of the Thesis

Chapter 2 contains the preliminary topics and necessary definitions which are required
to understand the work presented in this thesis. In Chapter 3, we have reported a
literature survey about H-ID-NIKE protocols including their security models and some
limitations. This survey mainly covers two existing H-ID-NIKE protocols named as
HHKAS[16] and BIOS-SOK[27]. These protocols claim to possess the four functional
properties as posed by Gennaro et al. in [16]. However, in Chapter 3, we have explained
that the HHKAS and BIOS-SOK protocol satisfy a quite restricted definition of H-ID-
NIKE and their underlying security models are weaker than a general hierarchical
security model named as H-IND-SK model (see Section 3.2).

Chapters 4 and 5 are the main contribution of this thesis. In Chapter 4, we have
proposed a new hierarchical key exchange protocol using two existing non-hierarchical
protocols - BIOS[20] and SOK[25]. We claim that our proposed protocol contains all
four functional properties as mentioned in [16] and is also secure in the H-IND-SK
model. We have also presented two additional variants of this protocol that slightly
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traded efficiency for better security.

The prototype implementation and simulation part of our work is presented in the
Chapter 5. Here, we have provided an efficiency comparison between our designed
protocol and HHKAS in terms of time and storage requirements. We have also pre-
sented a simulation study on these two protocols using the network simulator NS2[17]
under a MANET model. In the end, we have summarized our work and the study
with an analytic comparison of relevant protocols over different types of essential prop-
erties. Based on all these comparison, we have concluded that our designed protocol
(named as α-BSOK) is a better choice over the existing protocols for most of the real-
life applications. We have also mentioned some of the remaining limitations of α-BSOK.

In Chapter 6, we have concluded this thesis with some open problems and future
directions for research in this area and related fields.
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Chapter 2

Preliminary Topics

2.1 Mobile Ad-hoc Networks

Mobile Ad-hoc Networks (MANETs) are decentralized, wireless networks of mobile
and resource-constrained devices. Usually these constraints are in terms of storage,
power, computation and communication. Laptops, smart phones, unmanned aerial
vehicles and military MANETs are some examples of MANET devices. In recent years,
there is a huge increase in the usage of MANETs for unmanned army system. They
are very useful in both surveillance and future combat systems. However, MANETs
encounter some real security issues due to their high mobility, dynamic topology
and hierarchical structure. Hierarchical Identity-based Non-interactive Key Exchange
(H-ID-NIKE) can be an interesting solution for secure communication between two
nodes in MANETs. Secure H-ID-NIKE protocols are highly appreciated for security
sensitive applications such as in military or tactical networks. For further details on
MANETs, we point the reader to [28].

2.2 Mathematical Background

Let us denote the set of natural numbers by N, the set of integers by Z and the set of
integers modulo n by Zn. We define Z∗

n ⊆ Zn as a set containing elements relatively
prime to n. It is easy to see that if n is a prime, then Z∗

n = Zn \ {0}. We hereby provide
some basic definitions which we have used in this thesis.

• Polynomial-time algorithm: A polynomial-time algorithm is an algorithm whose
running time can be bounded by a polynomial on the size of the input i.e., for
some given input size n and a constant k, the worst-case running time for such
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algorithm is of the form O(nk). All polynomial time algorithms are considered
to be “efficient” algorithms.

• Negligible function: A function ϵ(n) is said to be negligible if for all c ∈ N there
exists an integer N0 ∈ N such that for every n > N0, we have -

ϵ(n) <
1
nc .

In other words, we can say that a function is negligible if it grows slower than
inverse of all possible positive polynomials.

• Security parameter: In cryptography, a security parameter λ (generally expressed
as a unary string 1λ) is a measure which explains how ”hard” it is for an
adversary to break the underlying cryptographic protocol. Informally, the security
parameter measures the level of security in which a cryptographic protocol is
deployed. For example, if a protocol is deployed in λ-bit security level then an
adversary is required to do O(2λ) number of operations to break the protocol.

• Bilinear pairing: Let G1, G2, GT be three cyclic groups of prime order q. A map
e : G1 × G2 → GT is said to be an admissible pairing if the following conditions
are satisfied:

1. Bilinearity: for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zq, we have e(ga
1, gb

2) =

e(g1, g2)
ab.

2. Non-Degeneracy: For all pairs (g1, g2) with ⟨g1⟩ = G1, ⟨g2⟩ = G2, we have
⟨e(g1, g2)⟩ = GT.

3. Efficiently Computable: There exists an efficient algorithm which can com-
pute e(g1, g2), for all pairs (g1, g2) ∈ G1 × G2.

When G1 = G2, the pairing is said to be symmetric.

• Elliptic Curve (over finite field): Let Fq be a finite field of characteristic p > 3.
An elliptic curve E over Fq is a plane algebraic curve defined by an equation of
the form E : y2 = x3 + ax + b where a, b ∈ Fq and 4a3 + 27b2 ̸= 0. The curve E
can be considered as a set of points (x, y) satisfying the equation y2 = x3 + ax + b
with the special point O (the point at infinity). In other words, if the set of points
on E is given by E(Fq) then E(Fq) = {(x, y) ∈ Fq ×Fq | y2 = x3 + ax + b} ∪ {O}.

For further details on elliptic curves and pairings, we direct the reader to [14, 15].
Elliptic curves are some of the main structures which have been used in practice to
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construct efficient and cryptographically secure pairings. Weil and Tate pairings are
examples of bilinear pairings which are defined using elliptic curve groups over finite
fields [30, 13, 6].

Pairings have been used in Cryptography to design innovative protocols for various
purposes including key exchange. The first known bilinear pairing based key exchange
protocol named as the three-party one-round NIKE protocol was proposed by Antonie
Joux in 2000 [18]. Later, in the same year, Sakai, Ohgishi and Kasahara [25] proposed
the first identity-based NIKE protocol using bilinear pairing.

Symmetric pairings usually make protocol description and their security proofs simpler
to understand. For further work and discussion in this thesis, we will consider a
bilinear pairing to be a symmetric pairing defined as e : G × G → GT where GT is a
multiplicative group of prime order q and G is an elliptic curve group over Fq.

2.3 Hardness Assumptions

Security of the protocols described in this thesis rely on the hardness of the Com-
putational Bilinear Diffie-Hellman (CBDH) problem (introduced in [6]) or one of its
variants. In this section, we define the problems and their corresponding assumptions
which are relevant to our work.

1. Computational Bilinear Diffie-Hellman Assumption (CBDH)
Given a randomly chosen P ∈ G, as well as aP, bP, cP for unknown, randomly
chosen a, b, c ∈ Z∗

q , it is hard to compute e(P, P)abc . Formally, an algorithm A
has advantage ϵ in solving the CBDH in ⟨G, GT, e⟩ if

Pr[A(P, aP, bP, cP) = e(P, P)abc] ≥ ϵ

where the probability is over the random choice of a, b, c ∈ Z∗
q , P ∈ G and the

internal randomness of A.
The CBDH assumption (with respect to ⟨G, GT, e⟩) states that all probabilistic
polynomial time adversaries can have only negligible advantage against this
CBDH problem.

2. Decisional Bilinear Diffie-Hellman Assumption (DBDH)
Given a randomly chosen P ∈ G, as well as aP, bP, cP for unknown, randomly
chosen a, b, c ∈ Z∗

q and Q ∈ GT, it is hard to determine if Q = e(P, P)abc or
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Q = e(P, P)r for some r ∈R Z∗
q . Formally, an algorithm A has advantage ϵ in

solving DBDH in ⟨G, GT, e⟩ if

Pr[A(P, aP, bP, cP, e(P, P)abc) = 1]− Pr[A(P, aP, bP, cP, e(P, P)r) = 1] ≥ ϵ

where the probability is over the random choice of a, b, c, r ∈ Z∗
q , P ∈ G and the

internal randomness of A.
The DBDH assumption (with respect to ⟨G, GT, e⟩) states that all probabilistic
polynomial time adversaries can have only negligible advantage against this
DBDH problem.

3. Strong Decisional Bilinear Diffie-Hellman Assumption (S-DBDH)
Given a randomly chosen P ∈ G, as well as aP, cP for unknown, randomly chosen
a, c ∈ Z∗

q and Q ∈ GT, it is hard to determine if Q = e(P, P)a2c or Q = e(P, P)r

for some r ∈R Z∗
q . Formally, an algorithm A has advantage ϵ in solving S-DBDH

in ⟨G, GT, e⟩ if

Pr[A(P, aP, cP, e(P, P)a2c) = 1]− Pr[A(P, aP, cP, e(P, P)r) = 1] ≥ ϵ

where the probability is over the random choice of a, c, r ∈ Z∗
q , P ∈ G and the

internal randomness of A.
The S-DBDH assumption (with respect to ⟨G, GT, e⟩) states that all probabilistic
polynomial time adversaries can have only negligible advantage against this
S-DBDH problem.

2.4 Cryptographic Hash Function

A hash function or a message digest function is used to map an arbitrary length string
to a fixed length (say n-bit) string. The output of a hash function is generally referred
as hash value or digest of the input. A hash function H : {0, 1}∗ → {0, 1}n is called a
cryptographic hash function if it is efficiently computable and satisfies the following
conditions:

1. Pre-image resistance : For a given hash value y ∈ {0, 1}n, it is computationally
infeasible to find an input x ∈ {0, 1}∗ such that H(x) = y.

2. Second pre-image resistance : For a given input x ∈ {0, 1}∗, it is computationally
infeasible to find an input x′ ̸= x such that H(x) = H(x′).
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3. Collision resistance : It is computationally infeasible to find inputs x and x′ such
that x ̸= x′ and H(x) = H(x′).

Note that requirement of these conditions depends upon the role of a hash function in
the underlying protocol. Until unless stated otherwise, in this thesis, a hash function is
considered to be a cryptographic hash function.

2.5 Provable Security

Provable security is a part of modern cryptography which argues the security of cryp-
tographic protocols in a formal way. In provable security, we prove that a polynomial
time reduction exists between the difficulty of breaking the cryptographic protocol un-
der a specific security model and the difficulty of solving a hard problem. The security
of the protocol, possible underlying cryptographic primitives and the hard problem is
parameterized in terms of the security parameter whereas adversaries are modeled
using Probabilistic Polynomial time (PPT) Turing machines. Here PPT machines mean
that the adversaries can be considered as abstract computational devices that use
randomness and their running time is polynomially bounded by some polynomial in
security parameter. The provable security paradigm[2] can be described as follows:

• Define a cryptographic protocol formally by specifying the behavior of each
component algorithm in the protocol. Explain the inputs and outputs for these
algorithms. Mention their types i.e., deterministic or probabilistic. If required,
specify the correctness requirements.

• Specify a security model which can define the restrictions over a computationally
bounded adversary and can explain what it means to break the protocol. A very
common approach of specifying security models is to use a game-based definition.
Here the security model can be considered as a game between a challenger C and
an adversary A. A can make different queries to C which C responds accordingly.
The security of a cryptographic protocol with respect to the specified security
model is measured in terms of the advantage of an adversary in achieving the
goal specified by the security game.

• Provide a protocol construction which satisfies the formal definition of the
cryptographic protocol.

• Show a reduction from the construction to an underlying primitive or some other
computational hardness assumption. The reduction shows that an adversary can
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break the protocol with respect to the specified security model, only if it can
break the underlying primitive or hardness assumption.

2.5.1 Random Oracle Model

As mentioned earlier, security models are generally stated as a game between a chal-
lenger and an adversary. Let A be an adversary against the cryptographic protocol
that can break the protocol (“break” as defined in the security model). Now, using A,
we try to simulate another adversary B that can break the underlying hard problem.
Note that B must be able to respond queries of A correctly. Such a reduction with no
additional assumption is called a proof in standard model. However, designing crypto-
graphic protocols which can be proved secure in standard model is not easy. Basically,
generating a correct response for the adversary’s queries is what makes the proof some-
times difficult in the standard model. To overcome this difficulty Bellare and Rogaway
introduced the Random Oracle Model (ROM)[3]. This model assumes an existence of a
random oracle H, which can be considered as a black box that responds to queries with
values chosen uniformly at random from its output domain, except that for any specific
query the oracle always responds with the same value every time it receives the query.
Also, for an input x, the only way to get H(x) is by specifically querying x to the oracle.

In practice, we instantiate the random oracles (which are assumed in the security
proofs) by cryptographic hash functions.

2.6 Identity-based Non-interactive Key Exchange

The standard definition of Identity-based Non-interactive Key Exchange (ID-NIKE)
was proposed by Paterson and Srinivasan in 2009 [23]. According to this definition, an
ID-NIKE protocol can be described using the following three algorithms:

• Setup: This algorithm is executed by the Private Key Generator (PKG).

With input security parameter 1λ, this algorithm outputs a master public key
mpk and a master secret key msk. Note that msk is being kept secret by the PKG
to itself whilst mpk is publicly available to all nodes in the network.

• Extract (E): This algorithm is executed by the PKG to generate secret key for
the nodes in the network. With input mpk, msk and an identity ID ∈ ID, this
algorithm outputs a secret key SKID from some private key space SK. Here ID
represents the identity space.
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• Shared Key (SHK): This algorithm is executed by a node (say, IDa) in the
network to compute a shared secret key with another node (say, IDb) in the
network. With input mpk, the secret key of IDa i.e., SKIDa and the identity IDb,
this algorithm returns the shared secret key SHK(IDa, IDb) from the shared
secret key space.

Correctness requirement: Here, SHK algorithm is required to output the same shared
secret key for a pair when executed from any one of the nodes in the pair i.e., for any
two identities IDa, IDb with corresponding secret keys, SHK algorithm should satisfy
the following condition:

SHK(mpk, SKIDb , IDa) = SHK(mpk, SKIDa , IDb).

ID-NIKE Security Model

The standard definition of ID-NIKE security was introduced by Paterson and Srinivasan
[23] in 2009. They named their security model as Indistinguishability of Shared Key
(IND-SK) model. The IND-SK model is defined as a game between a challenger C and
an adversary A. With input security parameter 1λ, C runs the Setup algorithm of the
ID-NIKE protocol. C gives the master public key mpk to A and keeps the master secret
key msk to itself. A then makes queries of the following three types to C:

• Extract: A queries an identity IDj. C then runs the E algorithm to derive the
secret of IDj i.e., SKIDj and provides it to A.

• Reveal: A queries a pair of identities (IDa, IDb). C computes the SKIDa using the
E algorithm as above. It then computes the shared secret key SHK(mpk, SKIDa , IDb)

and provides it to A.

• Test: A provides two challenge identities IDx and IDy. C responds this by tossing
an unbiased coin δ ∈R {0, 1}. If δ = 1 then C gives SHK(mpk, SKIDx , IDy) to A;
otherwise, C gives a random element from the shared key space to A.

A can make arbitrary but polynomial number of Extract and Reveal queries. However,
A is allowed to make only one test query. Also the queries can be made adaptively
i.e., A can make Extract, Reveal and Test query in any order. However, the following
restrictions are required on the adversary to to prevent it from winning the security
game trivially:

1. A is not allowed to make Extract queries on the test identities.
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2. A is not allowed to make Reveal query on the test identities (in either order).

In the end, A outputs a bit δ′, and wins the security game if δ = δ′. The advantage of
the adversary A in the IND-SK model is given as:

AdvIND-SK
A (λ) = |Pr[δ = δ′]− 1/2|.

We say that an ID-NIKE protocol is IND-SK secure if for any polynomial time adversary
A, the function AdvIND-SK

A (λ) is negligible.

2.6.1 Sakai-Ohgishi-Kasahara Key Exchange Protocol (SOK)

The first identity based key exchange protocol (named as SOK) was proposed by Sakai,
Ohgishi and Kasahara in 2000 [25]. SOK protocol uses bilinear pairing for the key
exchange. It is non-interactive and fully resilient against arbitrary number of node
compromising. However it does not support hierarchical or decentralized networks.
We define SOK protocol using the following three algorithms:

• Setup: This algorithm is executed by the Private Key Generator (PKG).

With input security parameter 1λ, this algorithm generates two cyclic groups G

and GT of prime order q, a bilinear pairing e : G × G → GT and a hash function
H : {0, 1}∗ → G. Now, this algorithm chooses a random generator P of the
group G and a random element s ∈R Z∗

q . It then outputs the master public key
mpk as (G, GT, e, q, P, P0 = sP, H) and the master secret key msk as s. Note that
s (msk) is kept secret by the PKG to itself whilst mpk is published to all nodes
in the network. The identity space is defined here as ID = {0, 1}∗ (bit-strings
of arbitrary lengths) whereas secret key space and shared-secret key space are
G and GT respectively.

• Extract: This algorithm is executed by the PKG to generate secret key for the
nodes in the network. With input mpk, msk and an identity ID ∈ ID, this
algorithm outputs the secret key SKID = s · H(ID).

• Shared Key: This algorithm is executed by a node (say, IDa) to compute a shared
secret key with another node (say, IDb). With input mpk, the secret key of IDa

i.e., SKIDa and the identity IDb, this algorithm returns the shared secret key
SHK(IDa, IDb) = e

(
SKIDa , H(IDb)

)
.
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Correctness: Correctness of the Shared Key algorithm can be verified using the bilinear
property of pairing e i.e.,

SHKA,B = e
(
SIDA , H(IDB)

)
= e
(
s · H(IDA), H(IDB)

)
= e
(

H(IDA), s · H(IDB)
)
= e
(

H(IDA), SIDB

)
= SHKB,A.

Security of SOK-ID-NIKE Protocol

Theorem 2.1 SOK-ID-NIKE protocol is secure assuming DBDH assumption to be hard in
groups (G, GT, e). In other words, for any IND-SK adversary A against SOK-ID-NIKE
protocol that makes q queries to hash function H, there is an algorithm B that solves the DBDH
problem in (G, GT, e) with

AdvDBDH
B = AdvSOK-ID-NIKE

A (λ)/q2
H.

The claim is in the random oracle model, i.e. H should be modeled here as a random oracle.

Proof: Let us consider A as an adversary with advantage ϵ against SOK-ID-NIKE
protocol. We show how to construct an algorithm (a.k.a. simulator) B out of A which
can solve the DBDH problem in (G, GT, e).

Let (aP, bP, cP, Q) be the instance of a DBDH problem in (G, GT, e) and B is given the
input as (G, GT, e, q, P, aP, bP, cP, Q) with a task to distinguish whether Q = e(P, P)abc

or Q ∈R GT.

B first simulates A with the IND-SK experiment. It gives A the mpk as (G, GT, e, P, P0 =

cP, H). Here H is a random oracle controlled by B. Let qH be the total number of hash
queries done by A during the simulation. B chooses two indices I and J uniformly at
random from {1, 2, . . . , qH}. Now, A can make relevant queries which B responds as
follows:

• Hash queries: A queries an identity ID from the identity space. To Respond
these queries B maintains an H-table with entries of the form (ID, r, H(ID)). If
the queried ID is already there in the H-table, B responds with corresponding
H(ID) value. Otherwise, B responds to the i-th query of A as follows:

1. if i = I, then B adds entry (IDI ,⊥, aP) to the H-table and returns H(IDI) =

aP.
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2. if i = J, then B adds entry (IDJ ,⊥, bP) to the H-table and returns H(IDJ) =

bP.

3. Otherwise, B chooses ri uniformly at random from Z∗
q , adds (IDi, ri, riP) to

the H-table, and returns H(IDi) = riP.

• Extract queries: A queries an identity ID. B checks the H-table for the entry
corresponding to ID. If this hash query wasn’t done before then B makes an
Hash query on ID. If ID ∈ {IDI , IDJ} then B aborts the simulation. Otherwise
B finds the entry (ID, r, H(ID)) in the H-table and responds with SKID = r(cP).

• Reveal queries: A queries an identity pair {IDi, IDj}. B checks the H-table for
the entry corresponding to IDi and IDj. If these hash queries wasn’t done before
then B makes the Hash queries on IDi and IDj. B now responds to the query of
A in the following manner:

1. If {IDi, IDj} = {IDI , IDJ}, then B aborts the simulation.

2. If |{IDI , IDJ} ∩ {IDi, IDj}| = 1 then B first finds the r ∈ {ri, rj} such that
r ̸=⊥. It then responds with -

SHK(IDi, IDj) =

e(H(IDi), r(cP)), if r = rj

e(H(IDj), r(cP)), if r = ri

3. If |{IDI , IDJ} ∩ {IDi, IDj}| = 0, then B responds the query with -

SHK(IDi, IDj) = e(H(IDi), rj(cP)).

• Test Query: A provides two challenge identities IDx and IDy. If {IDx, IDy} ̸=
{IDI , IDJ} then B aborts the simulation. Otherwise B returns Q as the shared
secret key for the challenge identities.

In the end, A responds with a guess bit δ ∈ {0, 1}. Note that if the DBDH instance
really contained e(P, P)abc as Q, then -

Q = e(P, P)abc = e(aP, c(bP))

= e(H(IDI), msk · H(IDJ))

= e(H(IDI), SKIDJ ) = SHK(IDI , IDJ).
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i.e., Q corresponds to the real shared secret key between the challenge identities.
Therefore, in this case, δ = 1 in the simulation of A under B. On the other hand, if
Q = e(P, P)r, for some random r ∈ Z∗

q , then the test query response by B is a random
element from GT which corresponds to δ = 0.

In other words, δ is a correct response for the DBDH problem if it is a correct response
in the corresponding IND-SK experiment. Which means for the events when B does
not abort the simulation, the advantage of B against DBDH problem is same as the
advantage of A against the SOK-ID-NIKE.

Analysis: Let us consider U to be the event when B does not abort the simulation. It
is easy to see that Pr(U ) ≥ 1/q2

H. Thus if the advantage of A against SOK-ID-NIKE
protocol is ϵ, then the advantage of B against DBDH problem can be given as:

ϵ′(λ) ≥ ϵ(λ)

q2
H

.

Here qH is a polynomial in λ. Which means, if ϵ(λ) is a non-negligible function then
we can say that ϵ′(λ) is also non-negligible. □

2.6.2 Basic ID-based One-way-function Scheme (BIOS)

Basic Id One-way function Scheme (BIOS) was proposed by Lee and Stinson in 2003
[20]. BIOS is a deterministic key pre-distribution scheme. It is also non-interactive,
identity-based and fully resilient against arbitrary number of node compromising. The
original description of this protocol is based on Euler graphs. A simpler approach for
BIOS was later reported in [27]. This approach is based on modular arithmetic. It is
easy to understand and is better for implementing purposes. We define BIOS (with
modular arithmetic approach) using the following three algorithms:

• Setup: This algorithm is executed by the PKG.

With input security parameter 1λ and the number of nodes in the network (n),
this algorithm chooses a prime q and generates the msk as a key-ring K =

{K0, K1, K2, . . . . . . , Kn−1}. Here n is assumed to be odd and each key Ki ∈ Z∗
q

corresponds to the ith identity (IDi) in the network. The algorithm also outputs
mpk as (q, h) where h : {0, 1}∗ → Z∗

q is a hash function.

• Key Distribution (KD): This algorithm is executed by the PKG.
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With msk and a user’s identity IDj as input, this algorithm outputs a set contain-
ing ⌈n

2 ⌉ elements from Z∗
q (as shown below in the Table 2.1). We define this set

as the secret key set SKIDj .

Nodes (IDj) Secret-Key sets (SKIDj)

ID0 K0 h(K⌈ n
2 ⌉||ID0) h(K⌈ n

2 ⌉+1||ID0) · · · h(Kn−2||ID0) h(Kn−1||ID0)

ID1 K1 h(K⌈ n
2 ⌉+1||ID1) h(K⌈ n

2 ⌉+2||ID1) · · · h(Kn−1||ID1) h(K0||ID1)
...

...
...

...
...

...
...

IDn−1 Kn−1 h(K⌈ n
2 ⌉−1||IDn−1) h(K⌈ n

2 ⌉||IDn−1) · · · h(Kn−3||IDn−1) h(Kn−2||IDn−1)

Table 2.1 Key distribution in BIOS

To understand the pattern of this table, let us define a term called “window size”
as ω = ⌊n

2 ⌋. The key distribution is done in such a way that the node IDj can
compute the shared secret keys for node ID(j+1) mod n to node ID(j+ω) mod n (i.e.
exactly ω nodes). However, for remaining

[
(n − 1)− ω

]
nodes, IDj will have to

store the shared secret keys. The total number of keys stored per node (including
the key Kj) will be -

|SKIDj | = (n − 1)− ω + 1 = (n − ω) =
(

n −
⌊n

2

⌋)
=
⌈n

2

⌉
.

• Shared Key (SHK): This algorithm is executed by a node (say, IDa) to compute
a shared secret key with another node (say, IDb). With input the secret key set
SKIDa and the identity IDb, this algorithm outputs the shared secret key between
IDa and IDb in the following manner:

SHK(IDa, IDb) =

h(Ka||IDb) if (b − a) mod n ≤ ω,

h(Kb||IDa) if (b − a) mod n > ω.

Correctness: The correctness of this shared key algorithm can be verified by the fact
that if (b − a) mod n ≤ ω then the true shared key h(Ka||IDb) ∈ SKIDb which is
computed by IDa is already stored in IDb’s storage. Similarly, if (b − a) mod n ≤ ω

then the true shared key h(Kb||IDa) ∈ SKIDa which is computed by IDb is already
stored in IDa’s storage.

Remark - We can easily notice that the BIOS protocol works correctly only when the
number of nodes in the network is odd. However, new node admissions can make
the size of the network even. In such conditions, we add a dummy node. The shared
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secret keys of any node in the network with the dummy node is of no use and when a
new node joins this network again, we replace the dummy node by this new node.

Security of BIOS

A brief security analysis of BIOS was given by Lee and Stinson in [20]. A formal
security proof for BIOS was later provided by Tiwari in [27] using an assumption called
“Direct Computation of Secret Key”. This assumption is considered as a necessary
requirement for the security of any identity-based protocol.

Direct Computation of Secret Key (DCSK)

The security of any identity-based protocol depends upon an inherent underlying
assumption which says that the direct computation of a secret key for an uncom-
promised identity is hard. If an adversary can directly compute the secret key of
an uncompromised node then it can always break the corresponding identity-based
protocol. Therefore, we can say that DCSK is a necessary (but may not be sufficient)
condition for the security of any identity-based protocol.

DCSK can be represented as a security game between a challenger C and an adversary
A. The challenger C first give the public parameters to the adversary A. The adversary
is allowed to make arbitrary (but polynomial) number of Extract queries. In these
queries, A provides an identity to C, which C responds with the corresponding secret
key for the queried identity. In the end, A returns a secret key for an uncompromised
identity.

DCSK assumption states that all polynomial time adversaries have only negligible
advantage against DCSK i.e.,

AdvDCSK
A ≤ ϵ(λ)

where ϵ(λ) is a negligible function.

BIOS is an identity-based protocol, therfore, DCSK assumption is required. However,
we show that DCSK is a sufficient assumption for BIOS to be secure in the COMP-SK
model. COMP-SK is a weaker version of the IND-SK model. In COMP-SK model,
there is no Test query and to win the game, A is required to output the actual shared
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secret key SHK(IDa, IDb) between two identities IDa, IDb which are neither queried
in Extract query nor together queried in Reveal query.

Theorem 2.2 BIOS is secure under COMP-SK model, where h is modeled as random oracle,
provided DCSK is hard to break.

Proof:
Let us consider A be the adversary for BIOS. We show how to construct another
adversary B out of A which is capable to break DCSK. Let C be the challenger for
BIOS. C runs the “Setup” algorithm of BIOS and generates the mpk and the key-ring
K = {K0, . . . , Kn−1} ⊂ Z∗

q . The mpk is provided to A, however, the hash function h is
controlled by C as a random oracle. A can make relevant queries which C responds as
follows:

• Hash queries: A provides a query of the form (Ki||IDj). To respond this query C
maintains an h-table with entries as (Ki||IDj, h(Ki||IDj)). If the queried element
is already there in the h-table, C responds with the corresponding hash values.
Otherwise, C chooses a random element r from Z∗

q , adds this entry in the h-table
and gives r to A.

• Extract queries: A queries an identity ID to C. C checks the h-table for all
required entries and if needed makes new entries for ID. C now uses its key-ring
and h to generate a set of ⌈n

2 ⌉ random elements from Z∗
q . C responds this set to

A.

• Reveal queries: A queries an identity pair (IDi, IDj) to C. C checks the h-table
for all required entries and if needed makes new entries which are relevant to
IDi and IDj. C now uses its key-ring and h to choose a random element from Z∗

q .
C responds this element as the shared secret key to A.

A now outputs a shared secret key h(K∗
i ||ID∗

j ) between two identities ID∗
i and ID∗

j
which are neither queried in the Extract query, nor together queried in the Reveal
query.

Note that h is modeled here as a random oracle. Thus A can output a correct shared
secret key between ID∗

i and ID∗
j (i.e., h(K∗

i ||ID∗
j )) if and only if A has some way to

compute the key K∗
i . In this simulation, these are the only two remaining ways which

A can use to compute the secret key K∗
i :
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1. A can use some Extract or Reveal query outputs which contains K∗
i as a part of

their input (there are ∼ n
2 possible shared keys in the network which contains

K∗
i as a part of their input). However, these queries’ outputs are of the form

h(K∗
i ||ID) and since h is simulated as a true random function, finding K∗

i back
from it is hard.

2. A can break DCSK, i.e., it can directly compute K∗
i without compromising ID∗

i
and then by querying (K∗

i ||ID∗
j ) in Hash query it can output the correct shared

key. Which means this adversary with non-negligible advantage against BIOS
can act as an adversary against DCSK with same advantage.

□
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Chapter 3

Hierarchical Identity-based
Non-interactive Key Exchange

3.1 H-ID-NIKE Definition

The definition for Hierarchical Identity-based Non-interactive Key Exchange was ini-
tially proposed by Freire in 2014 [12]. However, the corresponding security model
for this definition contains an additional “non-trivial” restriction that the adversary
can not choose an ancestor-descendant pair as the target pair. Later, in 2017, Tiwari
[27] provided a modified version of this definition. In this thesis, we have used this
modified definition as the H-ID-NIKE definition.

Let us consider ID as the identity space and SK as the secret key space. Any node in
the system can be represented by IDi

j ∈ IDi ⊆ ID where i is the level of the node and
j is the rank of the node in the hierarchy. Any H-ID-NIKE protocol for an ℓ-levelled
hierarchy (with a root node or PKG at 0th level) can be described as follow:

• Setup : This algorithm is executed by the PKG.

With input security parameter 1λ and hierarchy depth ℓ ∈ N, this algorithm
computes a master secret key msk and a master public key mpk. Note that msk is
being kept secret by the PKG to itself whilst mpk is publicly available to all nodes
in the network.

• Key Delegation (D) : This algorithm is executed by a node (say, IDL
m) at level

L ∈ [0, ℓ− 1] in the hierarchy to generate secret keys for one of its child nodes
(say, IDL+1

j ). With input master public key mpk, secret key set of the parent node

SKIDL
m

and the identity of child node IDL+1
j , this algorithm outputs the secret
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key set for node IDL+1
j i.e.,

D(mpk, SKIDL
m

, IDL+1
j ) = SKIDL+1

j
.

We can easily see that any ancestor of IDL+1
j at level t can also compute the secret

key set of IDL+1
j by continually applying the D algorithm from level t to level L.

Note that for the first level nodes key delegation, msk is being used as SKroot.

• Shared Key Computation (SHK) : This algorithm is executed by a node (say,
IDL1

b ) at level L1 ∈ [1, ℓ] to generate a shared secret key with another node (say,
IDL2

a ) at level L2 ∈ [1, ℓ] in the hierarchy. With input master public key mpk,
secret key set SK

ID
L1
b

and the identity of the other node IDL2
a , this algorithm

computes a shared secret key as SHK(mpk, SK
ID

L1
b

, IDL2
a ).

Correctness requirement : Here, SHK algorithm is required to output the same
shared secret key for a pair when executed from any one of the nodes in the pair
i.e., for any two identities IDL1

b , IDL2
a with corresponding secret keys, SHK algorithm

should satisfy the following condition:

SHK(mpk, SK
ID

L1
b

, IDL2
a ) = SHK(mpk, SK

IDL2
a

, IDL1
b ).

3.2 H-ID-NIKE Security Model

The standard definition of ID-NIKE security was introduced by Paterson and Srinivasan
[23] in 2009. They named their security model as Indistinguishability of Shared Key
(IND-SK) model. Later, in 2014, Freire proposed an hierarchical version of this IND-SK
model [12]. However, there is an additional “non-trivial” restriction in their model
due to the underlying H-ID-NIKE definition. We refer Freire’s model as a weaker
variant of H-IND-SK model. Another variant of H-IND-SK model was later presented
by Tiwari in [27] which is called as M-H-IND-SK model. M-H-IND-SK model also
contains some restrictions which are not essential. We hereby describe the general,
adaptive H-IND-SK model and explain how it strengthens the models in [12, 27]

The H-IND-SK model is defined as a game between a challenger C and an adversary
A. With input security parameter 1λ and hierarchy depth ℓ ∈ N, C runs the Setup
algorithm of the H-ID-NIKE protocol. C gives the master public key mpk to A and
keeps the master secret key msk to itself. A then makes queries of the following three
types to C:
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• Extract: A queries an identity IDL
j . C then runs the D algorithm to derive the

secret of IDL
j i.e., SKIDL

j
and provides it to A.

• Reveal: A queries a pair of identities (IDL1
b , IDL2

a ) to C. C first computes the
SK

ID
L1
b

using the D algorithm as above. It then computes the shared secret key

SHK(mpk, SK
ID

L1
b

, IDL2
a ) and provides it to A.

• Test: A provides two challenge identities IDL3
x and IDL4

y . C responds this by toss-
ing an unbiased coin δ ∈R {0, 1}. If δ = 1 then C gives SHK(mpk, SK

IDL3
x

, IDL4
y )

to A; otherwise, C gives a random element from the shared key space to A.

A can make arbitrary but polynomial number of Extract and Reveal queries. However,
A is allowed to make only one test query. Also the queries can be made adaptively
i.e., A can make Extract, Reveal and Test query in any order. However, the following
restrictions are required on the adversary to to prevent it from winning the security
game trivially:

1. A is not allowed to make Extract queries on the test identities or any of their
ancestors.

2. A is not allowed to make Reveal query on the test identities (in either order).

In the end, A outputs a bit δ′, and wins the security game if δ = δ′. The advantage of
the adversary A in the H-IND-SK model is given as:

AdvH-IND-SK
A (λ) = |Pr[δ = δ′]− 1/2|.

We say that an H-ID-NIKE protocol is H-IND-SK secure if for any polynomial time
adversary A, the function AdvH-IND-SK

A (λ) is negligible.

3.3 Comparison with Existing Models

Our H-IND-SK model strengthens all three existing security models presented in
[12, 16, 27]. Here are the differences between our model and the mentioned models :

1. In our H-IND-SK model, test nodes can be chosen in a manner such that one is
ancestor of the other. However, in Freire’s model, adversary is restricted from
doing this. This restriction occurs in Freire’s model due to their underlying
definition of H-ID-NIKE where two nodes do not compute a shared secret key if
either of them is an ancestor of the other.
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2. The M-H-IND-SK model does not allow Reveal queries on the ancestors of the
target nodes. However, in our H-IND-SK model we allow all such queries.

3. The M-H-IND-SK model does not allow the adversary to make Extract queries on
the left most descendants of the higher levelled target node up to the parent level
of the lower level target node. This restriction occurs in M-H-IND-SK model due
to their underlying definition of H-ID-NIKE where these left most descendants
of the higher levelled target node can compute the shared secret key of the target
pair. However, there is no such restriction in our H-IND-SK model.

4. Unlikely to our H-IND-SK, the model given by Gennaro et al. does not allow the
adversary to make any kind of Reveal queries. Therefore this model does not
capture one of the basic security requirements which is an adversary, even after
compromising the shared secret keys for some pairs of nodes, should not be able
to compute the shared secret key between any two uncompromised nodes. The
importance of the adversarial access to the Reveal queries is closely discussed by
Paterson and Srinivasan in [23].

5. The model given by Gennaro et al. forces an adversary to make all of its non-leaf
node Extract queries before compromising a leaf level node. This restricts the
adaptiveness of an adversary and the possibilities of attacks. On the other hand,
in our model, there is no such restriction on the adversary.

6. In the model of Gennaro et al., target nodes can only be chosen from the leaf
level. Whereas in our H-IND-SK model, the target nodes can be at any level of
the hierarchy.

3.4 Hybrid Hierarchical Key Agreement Scheme

Hybrid Hierarchical Key Agreement Scheme (HHKAS) was introduced in 2008 by
Gennaro et al. [16] as a key exchange protocol for MANETs. This protocol is a hybrid
of two protocols, subset based key agreement scheme (SKAS)[11] and the SOK[25]
key exchange protocol. HHKAS is a hierarchical, identity-based and non-interactive
protocol. It is also fully resilient against any number of node compromising at the leaf
level. However, it is only resilient up to a threshold number of node compromising
in the non-leaf levels. Another important point to note in HHKAS is that the key
exchange is guaranteed and can be shown secure at the leaf level only.
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3.4.1 Construction of HHKAS

We can define HHKAS using the following algorithms:

• Setup: This algorithm is executed by the PKG (root node). With the number
of keys in the root’s key-ring M and the probabilities pi ∈ (0, 1) for each level
i in the hierarchy as input the algorithm outputs msk as a key-ring with M
randomly chosen secret keys for the root. These keys are chosen from Z∗

q for
a large prime q. Here pi determines the fraction of an ith level node’s key-ring
which is going to be forwarded to its children. This algorithm also runs the
Setup algorithm of SOK protocol and publishes the mpk which includes two
cyclic groups G, GT of prime order q, a hash function H : {0, 1}∗ → G and a
bilinear map e : G × G → GT. Finally, this algorithm outputs another public
hash function h : {0, 1}∗ × {x |1 ≤ x ≤ M} → (0, 1) where x is an array which
denotes the publicly known indices of root’s key-ring.

• Key Delegation at level L (DL; L ̸= ℓ): This algorithm is executed by a node at
level L − 1 to define secret keys for its children at level L. Let IDL−1

m is a node
at level L − 1 ∈ [0, ℓ− 2] in the hierarchy who wants to delegate secret keys to
its child IDL

j . With input the key-ring of IDL−1
m as RL−1

m = {K1, K2, . . . .} and the
hash function h, the algorithm outputs the key-ring of IDL

j as -

RL
j = {Kx ∈ RL−1

m |h(IDL−1
m , x) < pL} where 1 ≤ x ≤ M.

• Key Delegation at level ℓ (Dℓ): This algorithm is executed by a node at level
ℓ− 1 to define secret keys for its children in the leaf level. Let IDℓ−1

m is a node
at level ℓ − 1 in the hierarchy who wants to delegate secret keys to its child
IDℓ

j . With input the key-ring of IDℓ−1
m as Rℓ−1

m = {K1, K2, . . . , Kn} and the hash
function H, the algorithm outputs the secret key set of IDℓ

j as -

Kℓ
j = {Ki · H(IDℓ−1

m ) ∈ G | 1 ≤ i ≤ n}.

• Shared Key Computation at level ℓ (SHK): This algorithm is executed by a leaf
level node to compute a shared secret key with any other leaf level node. Let
a leaf node IDℓ

a wants to compute a shared secret key with another leaf node
IDℓ

b. With input the secret key set Kℓ
a and the identity IDℓ

b, this algorithm repeats
the hash calculations from the root level to the second last level to determine
the intersection of IDℓ

a and IDℓ
b’s parents’ key rings. Note that the secret key set

of leaf nodes contains elements from G corresponding to the elements of their
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parents’ key rings. Thus the algorithm can determine the intersection between
IDℓ

a and IDℓ
b’s secret key sets. Let the set of root’s key-ring indices for which

both the leaf nodes got the secret keys be I then the algorithm outputs the shared
secret key between IDℓ

a and IDℓ
b as -

SHK(IDℓ
a, IDℓ

b) = e(K · H(IDℓ
a), H(IDℓ

b)) where K = ∑
i∈I

Ki.

Correctness: The correctness of the shared secret keys can be argued using the bilinear
property of the pairing e i.e.,

SHK(IDℓ
a, IDℓ

b) = e(K · H(IDℓ
a), H(IDℓ

b))

= e(H(IDℓ
a), K · H(IDℓ

b)) = e(K · H(IDℓ
b), H(IDℓ

a))

= SHK(IDℓ
b, IDℓ

a)

The probability pi defined for the level i depends upon the threshold value ti associated
with that level in the hierarchy. In order to withstand up to ti number of node
compromises at level i, the optimal value for the parameter pi is 1/(ti + 1). The
number of keys in root’s key-ring can be determined based on hierarchy depth ℓ,
probability values pi, threshold values ti, the number of nodes in the network N and a
security parameter m as -

M =

{
m

ℓ−1
∏
i=1

pi
2(1 − pi)ti

}
+ 2 log N

≈ meℓ−1 ·
ℓ−1

∏
i=1

ti(ti + 1) + 2 log N.

Here m ensures that an attacker against the protocol which compromises up to ti

number of nodes in each level i will not have probability more than e−m of learning a
shared key between two uncompromised nodes.

3.4.2 Limitations in HHKAS

There are certain limitations in the HHKAS which are described as follows -

1. The protocol description of HHKAS provides key agreement only at leaf lev-
els. Freire [12] has described this limitation in HHKAS while discussing their
definition of an H-ID-NIKE protocol.
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2. In HHKAS, key agreement at leaf level is not 100% guaranteed due to the
randomized key pre-distribution in the non-leaf levels. In other words, there
is a possibility for existence of some nodes with no common elements in their
key-rings and therefore their corresponding leaf level nodes will not be able to
compute a shared secret key between them.

3. HHKAS has very bad scalability. Increasing the hierarchy depth or thresholds by
some moderate values, makes the shared key computation times and the storage
requirements impractical for the real life applications. To support this claim, we
have provided implementation results and comparative analysis of HHKAS with
our proposed solution in the Chapter 5.

4. As discussed in section 3.3, the underlying security model of HHKAS is a weaker
model. It neither allows the adversary to make any Reveal query nor it allows
the adversary to choose its target nodes from a non-leaf level in the hierarchy.

Remark - For applications which requires full resilience and inter-level key exchange,
HHKAS is not a good solution. This is because, with full resilience (i.e., ti = Ni ≥ bi

where Ni denotes the number of nodes at level i and b ≥ 2 is the minimum branching
factor in the hierarchy), the storage requirement of any node in the hierarchy grows
exponentially with the depth of the hierarchy. The key storage of a leaf node Klea f in a
fully resilient HHKAS network can be derived as shown below -
for B as the branching factor at second last level in the hierarchy, we have -

N ≥
ℓ−1

∑
i=1

bi + bℓ−1B =

[
b(bℓ−1 − 1)

b − 1
+ bℓ−1B

]
=⇒ N ≥ bℓ−1[(1 − b−1)−1 + B

]
− 2

=⇒ bℓ−1 ≥
[

N + 2
((1 − b−1)−1 + B)

]
.

Now, since Kroot = meℓ−1 ·
ℓ−1

∏
i=1

ti(ti + 1) + 2 log N

=⇒ Kroot ≥ meℓ−1 ·
ℓ−1

∏
i=1

ti(ti + 1)
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therefore, Klea f =

[
Kroot

ℓ−1
∏
i=1

(ti + 1)

]
≥ meℓ−1 ·

ℓ−1

∏
i=1

ti

=⇒ Klea f ≥ meℓ−1 ·
ℓ−1

∏
i=1

bi ≥ meℓ−1 · (bℓ−1)ℓ/2

=⇒ Klea f ≥ meℓ−1 ·
[

N + 2
((1 − b−1)−1 + B)

]ℓ/2

We can notice that in a hierarchy with N number of nodes, the key storage of a leaf
node with fully resilient HHKAS is O(Nℓ/2) which is worse than the trivial approach
of secret key distribution (discussed in Section 3.5). This bad scalability of HHKAS
was one of the main motivation for the new solution presented in this thesis.

3.5 Trivial Approach

In this section, we present a formal description of a trivial approach to distribute secret
keys in a hierarchical network. This trivial distribution is non-interactive, identity-
based, hierarchical and fully resilient against arbitrary number of node compromising.

3.5.1 Construction of the Trivial Solution

We can define the Trivial solution using the following algorithms:

• Setup: This algorithm is executed by the PKG (root node). With security pa-
rameter 1λ and the number of nodes in the hierarchy N as input, this algorithm
outputs msk as a key-ring with NC2 randomly chosen secret keys for the root.
These keys are chosen from Z∗

q for a large prime q. Each one of these secret
keys corresponds to a unique pair of nodes in the hierarchy. In other words, the
key-ring of the root can be written as -

Rroot = {KAB | A, B ∈ ID and A ̸= B}

Here ID represents the identity space and KAB = KBA.

• Key Delegation at level L (DL): This algorithm is executed by a node at level
L − 1 to delegate secret keys for its children at level L. Let IDL−1

m is a node at
level L − 1 in the hierarchy who wants to delegate secret keys to its child IDL

j .
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With input the key-ring of IDL−1
m as RL−1

m = {KAB | A ∨ B ∈ IDm(L−1)}, the
algorithm outputs the key-ring of IDL

j as -

RL
j = {KAB | A ∨ B ∈ ID jL}.

Here IDxy represents the identity space of IDy
x’s descendants (including itself).

• Shared Key: This algorithm is executed by a node (say, IDL1
b ) in the hierarchy to

generate a shared secret key with another node (say, IDL2
a ) in the hierarchy.

We know that each of the distributed secret keys corresponds to a pair of nodes in
the hierarchy. Thus, these keys can be used directly as the shared-secret key for
the corresponding pair. With input the key-ring of IDL1

b as RL1
b and the identity

IDL2
a , this algorithm outputs a secret key from RL1

b which corresponds to the pair
(IDL1

b , IDL2
a ). Note that there are no additional computations required in this

algorithm.

3.5.2 Limitations in the Trivial Solution

It seems that the Trivial solution is a better choice than the HHKAS for resource
constraint networks which require full resilience and inter-level key exchange. Trivial
solution also provides the four functional properties presented in [16] and can be
shown secure without any involvement of hardness assumptions. However, there are
also certain limitations in the Trivial solution which are needed to be resolved for the
real life applications -

1. From the protocol description, it is clear that the Trivial solution is not flexible
towards a direct node admission i.e., a parent can not generate valid secret-keys
for a new child without the help of its ancestors (including the PKG). Since in
real life applications, especially in military, it is difficult for all nodes to come
together and distribute the new keys whenever a new node gets admitted into the
network. Therefore, in such applications, flexibility of a key exchange protocol
towards a direct node admission is one of the must requirements.

2. In Trivial solution, all secret keys are generated only by the PKG. That means,
an intermediate node can not generate the keys for any of its descendants and
therefore all the keys of a lower level node are required to be transferred from
PKG to it through all of its ancestors. To exemplify, with Trivial solution in an
ℓ-levelled hierarchy, providing a secret key set of n elements to a leaf node will
require around ℓn elements to be transferred throughout the hierarchy. This
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“redundant” increase in the communication reflects in the performance and
power consumption of MANETs. Note that these communications should not
be considered as a “one-time cost” because these networks are exposed to cyber
attacks and therefore key-refreshments are needed to be done periodically. This
drawback is a good motivation for working towards H-ID-NIKE protocols with
better hierarchical key delegation ways.

3. In Trivial solution, the root node is required to generate and store N2

2 (1 − 1
N )

number of keys in its storage where N represents the total number of nodes in
the network. The storage of root here is O(N2) which is quite smaller in size
when compared with the corresponding storage requirements in fully resilient
HHKAS protocol. However, this storage requirement also increases polynomially
with N. Therefore, for moderate N values, this protocol imposes a high workload
on the root node (PKG). This drawback explains the necessity of an H-ID-NIKE
protocol with key storage which is independent (or less dependant) from N.

3.6 BIOS-SOK Key Exchange Protocol

BIOS-SOK Key Exchange Protocol was introduced in 2017 by Tiwari [27] as a possible
solution for the H-ID-NIKE problem. BIOS-SOK is a hybrid of two ID-NIKE protocols
named as BIOS and SOK (both are discussed in Section 2.6). BIOS-SOK is a hierarchical,
identity-based and non-interactive protocol which is shown to be secure under the
M-H-IND-SK model [27].

3.6.1 Construction of BIOS-SOK

We can define BIOS-SOK using the following algorithms -

1. Setup : This algorithm is executed by the root node. With input the number of
nodes n in level 1 and the length of the hierarchy ℓ, this algorithm runs the setup
algorithms of both BIOS and SOK protocols. The algorithm then outputs msk as
a key pool {K0, K1, . . . , Kn−1} and mpk as (G, GT, e, q, n, H, Hθ, h), where G and
GT are groups of prime order q, e is a bilinear pairing defined as e : G × G → GT

and H, Hθ, h are hash functions defined as -

H : {0, 1}∗ → G, Hθ : GT → Z∗
q , h : {0, 1}∗ → Z∗

q .
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2. (a) Key Delegation at level 1 (D1) : This algorithm works same as key distribu-
tion algorithm of BIOS. Using this algorithm, each node in level 1 gets its
secret key from the root node.

(b) Key Delegation at level L ̸= 1 (DL) : This algorithm is executed by a node
at level L − 1 (say, IDL−1

m ) to compute the secret keys for its child node
at level L (say, IDL

j ). With input the secret key set of IDL−1
m as SKm(L−1)

and the child identity IDL
j , this algorithm computes the tuple of IDL−1

m ’s
shared secret keys with all the peers at level L − 1 including itself. All these
shared keys belong to either GT or Z∗

q (depending upon the type of parent’s
shared secret keys). At this point, the algorithm maps these shared secret
keys to Z∗

q using the hash function Hθ. Let us represent this mapped set by
SSK(IDL−1

m ) = {d1, . . . , dnL−1}. Now, the algorithm outputs the secret key
set for the child node IDL

j from SSK(IDL−1
m ) as -

SKjL = {d1 · H(IDL
j ), . . . , dnL−1 · H(IDL

j )} where di ∈ Z∗
q

3. (a) Shared Key Computation between nodes at level 1 (SHK1) : This algo-
rithm works same as the Shared Key Computation algorithm of BIOS. Using
this algorithm, each node in level 1 can compute a shared secret key with
any other node at level 1.

(b) Shared Key Computation between nodes at level L ̸= 1 (SHKL) : This
algorithm works same as the Shared Key Computation algorithm of SOK. We
know that the secret key components of nodes beyond level 1 are elements
from the group G. That’s why it is easier to see that the algorithm can use
bilinear pairing (as in SOK) to compute a common shared key between the
nodes at level L > 1.

(c) Shared Key Computation between different level nodes : This algorithm
is also derived from the Shared Key Computation algorithm of SOK protocol.
To understand this algorithm, let us consider two nodes IDL1

b at level L1 and
IDL2

a at level L2 who want to compute a shared secret key between them.

i. At upper level node IDL1
b ’s end:

The algorithm computes the shared secret key between IDL1
b and the an-

cestor of IDL2
a at level L1. Then using this shared secret key it computes

the shared secret key between IDL1
b ’s left most descendant at level L1 + 1

and the ancestor of IDL2
a at level L1 + 1. This continues till the algorithm

computes a shared secret key x between IDL1
b ’s left most descendant
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at level L2 − 1 and the parent of IDL2
a . Note that this algorithm implic-

itly calls the corresponding SHKL algorithm to do these same levelled
shared key computations. Now, the algorithm outputs the shared secret
key between IDL1

b and IDL2
a using x as -

SHK(IDL1
b , IDL2

a ) = e(H(IDL1
b ), H(IDL2

a ))x.

ii. At lower level node IDj’s end:
The algorithm can directly compute SHK(IDL2

a , IDL1
b ) for the lower

level node IDL2
a . This is because the key delegation in BIOS-SOK (as

shown above) is done in such a way that IDL2
a contains x · H(IDL2

a ) as a
secret key in its secret key set SKaL2 . Thus the algorithm computes and
outputs -

SHK(IDL2
a , IDL1

b ) = e(x · H(IDL2
a ), H(IDL1

b )).

Correctness: The correctness of the shared secret keys can be argued using the bilinear
property of the pairing e i.e.,

SHK(IDL2
a , IDL1

b ) = e(x · H(IDL2
a ), H(IDL1

b ))

= e(H(IDL2
a ), H(IDL1

b ))x = e(H(IDL1
b ), H(IDL2

a ))x

= SHK(IDL1
b , IDL2

a )

3.6.2 Limitations in BIOS-SOK

It is easy to notice that the key storage of a leaf node in BIOS-SOK depends linearly
upon the number of nodes in the network (Klea f = O(N)) which makes it a better
choice than the HHKAS or the Trivial solution in terms of key set size. However, there
are some restrictions in the BIOS-SOK protocol which are not expected from an ideal
H-ID-NIKE in the real life applications -

1. BIOS-SOK is claimed to provide the four functional properties presented in [16].
However, the full resilience property is defined over a restricted model. Which
implies that in H-IND-SK model, BIOS-SOK is not fully resilient. In fact, in
H-IND-SK model, BIOS-SOK is not resilient against a single compromisation
from the set of left most descendants of the upper level target node up to the
parent level of the lower levelled target node. In other words, for a hierarchy
with N number of non-leaf nodes there are (N − nℓ−1) nodes in the network
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who when compromised, can leak shared secret keys of at least one of the “valid”
target pairs (as defined in H-IND-SK model). Here nℓ−1 denotes the number of
nodes in the last non-leaf level.

2. The underlying model of BIOS-SOK (M-H-IND-SK) does not allow the adversary
to make “Reveal” query on any of the ancestor pairs of the target nodes. Therefore
this model does not capture one of the basic security requirements which is an
adversary, even after compromising the shared secret keys for some ancestor
pairs of the target nodes, should not be able to compute the shared secret key
between the target nodes.

3. The key storage of a node in BIOS-SOK depends exponentially upon the hierar-
chical depth and polynomailly upon the branching factors up to level ℓ− 2 in
the hierarchy. Thus BIOS-SOK can only be a suitable choice for hierarchies with
moderate hierarchical depths and moderate branching factors up to level ℓ− 2.

4. BIOS-SOK supports both intra-level and inter-level shared key computations.
However, in BIOS-SOK, two nodes IDL1

b and IDL2
a at different levels (L1 > L2) can

compute a shared secret key between them if and only if there exists a set of left
most descendants of IDL1

b containing at least one node from each level in (L1 + 1)
to (L2 − 1). This condition limits the choices and varieties of the hierarchy. Due
to this restriction, BIOS-SOK is not a good choice for networks which require
extreme flexibility as well as inter-level key exchange.
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Chapter 4

α-BSOK Key Exchange Protocol

4.1 α-BSOK

In this section, we present α-BSOK key exchange protocol as a hybrid of BIOS and SOK
protocols. We claim that α-BSOK is a possible solution for the open problem posed by
Gennaro et al. [16] and it possesses the following properties:

1. Fully Resilient: The protocol is fully resilient against compromise of arbitrary
number of nodes at any level in the hierarchy.

2. Identity-based : A node requires its own secret key and the other node’s identity
to compute a shared secret key between them.

3. Non-Interactive: Any pair of nodes can compute their shared secret key without
any interaction.

4. Decentralized or Hierarchical: Any node in the hierarchy can generate secret keys
for its descendants.

4.1.1 Protocol description of α-BSOK

For the description below, we are considering an ℓ levelled hierarchy with n nodes at
level 1 and maximum branching factor bmax from level 1 to ℓ− 2. In other words, all
nodes in level 1 to ℓ− 2 can have at most bmax children whereas PKG has n children.
On the other hand, nodes at level ℓ− 1 have no branching restrictions i.e. they can
have arbitrarily large number of children (leaf nodes).
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Similar to BIOS-SOK, α-BSOK protocol uses BIOS at level 1 and SOK afterwards. We
provide the construction of α-BSOK protocol using the protocol description of BIOS
and SOK. We can define α-BSOK protocol using the following algorithms:

• Setup: This algorithm is executed by the PKG.

With input security parameter 1λ, number of nodes in level 1 (n) and hierarchy
depth (ℓ), this algorithm runs the Setup algorithms of BIOS and SOK protocols.
The algorithm outputs master secret key msk as a key pool {K0, K1, . . . , Kn−1}
from Z∗

q and public parameters mpk as (G, GT, e, q, n, h, H1, H2, H3), where -

e : G × G → GT, h : {0, 1}∗ → Z∗
q ,

H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z∗
q and H3 : {0, 1}∗ → Z∗

q .

• Key Delegation at Level 1 (D1): This algorithm is executed by the PKG.

Let us denote the identity of a jth node in level 1 as ID1
j . With msk and a user’s

identity ID1
j as input, this algorithm runs the key-distribution algorithm of BIOS

(as shown below in the Table 4.1) and outputs a set containing ⌈n
2 ⌉ elements from

Z∗
q . We define this set as the secret key set K1j.

Nodes (ID1
j ) Secret-Key sets (K1j)

ID1
0 K0 h(K⌈ n

2 ⌉||ID1
0) h(K⌈ n

2 ⌉+1||ID1
0) · · · h(Kn−2||ID1

0) h(Kn−1||ID1
0)

ID1
1 K1 h(K⌈ n

2 ⌉+1||ID1
1) h(K⌈ n

2 ⌉+2||ID1
1) · · · h(Kn−1||ID1

1) h(K0||ID1
1)

...
...

...
...

...
...

...
ID1

n−1 Kn−1 h(K⌈ n
2 ⌉−1||ID1

n−1) h(K⌈ n
2 ⌉||ID1

n−1) · · · h(Kn−3||ID1
n−1) h(Kn−2||ID1

n−1)

Table 4.1 Key delegation at level 1 in α-BSOK protocol

• Shared Key Computation at level 1 (SHK1): This algorithm works exactly as
Shared Key algorithm of BIOS over hash function h. Using this algorithm, a node
ID1

a at level 1 first computes the BIOS shared secret key SHK′
1(ID1

a , ID1
b) with

any other node ID1
b at level 1. Then the final shared key between these nodes is

defined using H3 hash function:

SHK′
1(ID1

a , ID1
b) =

h(Ka||ID1
b) if (b − a) mod n ≤ ⌊n

2 ⌋,

h(Kb||ID1
a) if (b − a) mod n > ⌊n

2 ⌋.

SHK1(ID1
a , ID1

b) = H3

[
SHK′

1(ID1
a , ID1

b)

]
.
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Note that SHK′
1 is used in key delegation for any lower level descendant.

Correctness of this shared key algorithm comes trivially from the correctness of
BIOS Shared Key algorithm.

• Key Delegation at level L (DL, 2 ≤ L ≤ ℓ): This algorithm is executed by a node
in the level L − 1 to generate keys for its children in level L. Let us assume mth

node in level L − 1 is the parent of the jth node in level L and ni represents total
number of nodes from first level to the ith level of the hierarchy (n0 = 0, n1 = n).
At first, with K(L−1)m, IDL−1

m and IDL
j as input, this algorithm computes involved

parent node IDL−1
m ’s shared secret key set say {d1, . . . , dnL−1} i.e., shared secret

keys of IDL−1
m with all the peers up to level L − 1 including itself. Here di is

defined as -

di =

SHK′
r(L−1)(IDL−1

m , IDr
i ) if i ∈ (nr−1, nr] and 1 ≤ r ̸= L − 1,

SHK′
L−1(IDL−1

m , IDL−1
i ) if i ∈ (nL−2, nL−1].

All these shared keys belong to either GT or Z∗
q (depending upon the type of

parent’s shared secret keys). At this point, the algorithm maps these shared secret
keys to Z∗

q using the hash function H2. Once it gets the set of these mapped
shared secret keys, it multiplies them to QIDL

j
which is the H1 hash of its child’s

identity IDL
j . The resultant set {H2(d1) · QIDL

j
, . . . , H2(dnL−1) · QIDL

j
} is provided

to the child as the secret key set KLj. This secret key set contains nL−1 elements
of group G.

• Shared Key Computation at level L (SHKL, 2 ≤ L ≤ ℓ): This algorithm is used
to compute shared secret key between a pair consisting nodes of level L ≥ 2. This
algorithm uses Shared Key algorithm of SOK protocol. (We know that the secret
keys of nodes for shared-key generation beyond level 1 are elements of G and
therefore this algorithm can use bilinear pairing to compute such shared secret
keys.)

Suppose two nodes at level L, say IDL
a and IDL

b want to compute a shared secret
key.

At IDL
a ’s end:

IDL
a checks its secret key set KLa for the group element it received by the DL

algorithm as a multiplication of their parent’s shared secret key’s H2 hash with
the H1 hash of its identity i.e.,

H2[SHK′
L−1(parent(IDL

a ), parent(IDL
b ))] · H1(IDL

a ).
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Now, the shared secret key is computed as -

SHK′
L(IDL

a , IDL
b ) = e(x1 · H1(IDL

a ), H1(IDL
b ))

where x1 = H2[SHK′
L−1(parent(IDL

a ), parent(IDL
b ))],

SHKL(IDL
a , IDL

b ) = H3

[
SHK′

L(IDL
a , IDL

b )

]
.

At IDL
b ’s end:

IDL
b checks its secret key set KLb for the group element it received by the DL

algorithm as a multiplication of their parent’s shared secret key’s H2 hash with
the H1 hash of its identity i.e.,

H2[SHK′
L−1(parent(IDL

b ), parent(IDL
a ))] · H1(IDL

b ).

Now, the shared secret key is computed as -

SHK′
L(IDL

b , IDL
a ) = e(x2 · H1(IDL

b ), H1(IDL
a ))

where x2 = H2[SHK′
L−1(parent(IDL

b ), parent(IDL
a ))],

SHKL(IDL
b , IDL

a ) = H3

[
SHK′

L(IDL
b , IDL

a )

]
.

Correctness: We have iterative correctness from SHK1 algorithm to SHKL−1.
Hence, we have, x1 = x2 and therefore using the bilinear property of the pairing
e, we have -

SHKL(IDL
a , IDL

b ) = SHKL(IDL
b , IDL

a ).

Note that SHK′
L is used as shared secret in key delegation for any lower level

descendant.

• Shared Key Computation between levels L1 and L2 (SHKL1L2): This algorithm
is used to compute shared secret key between a pair consisting one node from
level L1 and another from level L2 where 1 ≤ L1 < L2 ≤ ℓ. We know that the
secret keys of nodes for shared-key generation beyond level 1 are elements of
G and therefore this algorithm can use bilinear pairing to compute such shared
secret keys.

Suppose two nodes, say IDL2
a and IDL1

b want to compute a shared secret key.
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At IDL1
b ’s end: Since IDL1

b can generate SHK′
L1(IDL1

b , ancestorL1(IDL2
a )), its

shared secret key with IDL2
a can be computed as -

xL1 = H2[SHK′
L1(IDL1

b , ancestorL1(IDL2
a ))] · H1(IDL1

b )

xL1+1 = H2[e(xL1 , H1(ancestorL1+1(IDL2
a )))] · H1(IDL1

b )

. .

. .

xL2−1 = H2[e(xL2−2, H1(ancestorL2−1(IDL2
a )))] · H1(IDL1

b )

SHK′
L1L2(IDL1

b , IDL2
a ) = e(xL2−1, H1(IDL2

a ))

SHKL1L2(IDL1
b , IDL2

a ) = H3

[
SHK′

L1L2(IDL1
b , IDL2

a )

]
.

Here ancestori(X) represents ith levelled ancestor of the identity X.

At IDL2
a ’s end: IDL2

a checks its secret key set KL2a for the group element it received
by the DL2 algorithm as a multiplication of IDL1

b and its own parent’s shared
secret key’s H2 hash with the H1 hash of its identity i.e.,

H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )] · H1(IDL2

a ).

Now, the shared secret key is computed as -

SHK′
L1L2(IDL2

a , IDL1
b ) = e(x1 · H1(IDL2

a ), H1(IDL1
b ))

where x1 = H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )],

SHKL1L2(IDL2
a , IDL1

b ) = H3

[
SHK′

L1L2(IDL2
a , IDL1

b )

]
{

For L1 = L2 − 1, we define SHK′
L1(L2−1)(X, Y) = SHK′

L1(X, Y)

}
.

Correctness: In the above computation, we can notice that at IDa’s end, the
corresponding stored secret key was computed by its parent in a similar manner
to IDb’s computation of xL2−1. Therefore, from the correctness argument of the
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SHKL1 , we have -

xL2−1 = x1 · H1(IDL1
b )

SHKL1L2(IDL1
b , IDL2

a ) = SHKL1L2(IDL2
a , IDL1

b ).

Note that SHK′
L1L2 is used as shared secret in key delegation for any lower level

descendant.

Remark: In the α-BSOK protocol, we have used four hash functions and three of them
have same image sets. We can replace these three hash functions (h, H2, H3) by a single
hash function H : {0, 1}∗ → Z∗

q as described below:

h(x) = H(0||x) ∀ x ∈ {0, 1}∗,

H2(y) = H(1||y) ∀ y ∈ GT,

H3(z) = H(2||z) ∀ z ∈ Z∗
q or GT.

We can notice that in this protocol, any node can do the shared key computation with
any other node in the network. We can also see that for different level nodes’ shared
key computation, higher level node requires more pairing computations than the lower
level node. One way to eliminate these computations is by storing these keys in the
higher level node’s storage.

Trading Space with Time: Here we describe an optional algorithm to generate and
store these additional keys for faster shared key computations.

• Supplementary Key Generation at level L (D∗
L, 1 ≤ L < ℓ): This algorithm is

executed by a node in the level L. Let us assume that the set of additional keys
for a node IDL

j is denoted by K′
Lj then we define K′

Lj as -

K′
Lj =

ℓ−1⋃
i=L

ni⋃
k=ni−1

{H2[SHK′(IDL
j , IDi

k)] · QIDL
j
}.

Now the total number of keys in IDL
j ’s key space is -

|KLj|+ |K′
Lj| = nL−1 + (nℓ−1 − nL−1) = nℓ−1.

For security proof and further analysis, we have used α-BSOK with this traded space
over time.
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4.1.2 Security of α-BSOK

We argue the security for α-BSOK protocol in the H-IND-SK model.

Security Proof

Since α-BSOK is a hybrid of two different protocols, we show the proof of security
using the following two cases:

• Case 1: When both the target nodes are at level 1: We provide the proof for this
case using the security of BIOS, which is the underlying protocol at level 1.

• Case 2: When at least one of the target nodes lies beyond level 1: We provide the
proof for this case using the S-DBDH assumption.

It is easy to notice that these two cases contain all possible scenarios. As according
to these two cases, we consider two different types of adversaries against α-BSOK
protocol.

• Case 1: (Both the target nodes are at level 1) Let us describe the essential
restrictions on the adversary to prevent it from winning the game trivially in
Case 1:

1. Adversary is not allowed to compromise any of the target nodes.

2. Adversary is not allowed to ask for the shared secret key between the target
identities.

We show how to construct an efficient adversary B against BIOS, using an H-IND-SK
adversary A1 which has a non-negligible advantage against α-BSOK protocol in Case
1. The game between the BIOS challenger C and its adversary B starts with C first
providing B the public parameters for BIOS (mpkBIOS). C also computes a key-ring for
BIOS (mskBIOS) and keeps it to itself. C controls h as random oracle. Note that B does
not have any control over C. B only seeks the help of C to respond the queries which
are related to BIOS. Now, B who is the challenger for α-BSOK protocol interacts with
A1 in the following manner:

• Setup: B gives mpk = (G, GT, e, P, h, H1, H2, H3) to A1, where H2 and H3 are
random oracles controlled by B. A1 can make following queries:

• h-queries: B receives queries of the form xij = (Ki||ID1j) from A1. It forwards
such queries to C. C responds back the h(xij) to B. B then forwards this response
to A1.
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• H1-queries: B provides the description of this cryptographic hash function to
the adversary A1. With input an identity ID, this function outputs an element
from G.

• H2-queries: B receives an element γ from GT as query. In response to this
query, B maintains an H2-table with entries of the form (γ, H2(γ)). If the queried
argument is already there in H2-table, the corresponding hash value is given to
A1 as response. Else, an element is chosen uniformly at random from Z∗

q , the
entry is saved in H2-table and the chosen element is provided to A1 as response.

• H3-queries: B receives an element κ either from GT or from Z∗
q as query. In

response to this query, B maintains an H3-table with entries of the form (κ, H3(κ)).
If the queried argument is already there in H3-table, the corresponding hash
value is given to A1 as response. Otherwise, an element is chosen uniformly
at random from Z∗

q , the entry is saved in H3-table and the chosen element is
provided to A1 as response.

• Extract queries: A1 provides an identity IDi to B. B responds to this extract
query in the following manner:

1. If IDi ∈ ID1 then B forwards IDi to C who then responds back with an
appropriate secret key set Ki consisting n1+1

2 elements from Z∗
q . B generates

another key set consisting nℓ−1 elements from G either chosen uniformly at
random or defined using previous queries. It sends this set along with the
Ki to A1 as the secret key set of IDi.

2. If IDi ̸∈ ID1 then B responds with a key set consisting nℓ−1 elements from
G either chosen uniformly at random or defined using previous queries. For
that, it may need to check relevant entries in the H2 and H3 hash tables. If
the entries are not there, it may need to make relevant hash queries. B may
also need to perform relevant h-queries to C.

All extract queries are defined while maintaining consistency and correctness
with previous extract and reveal queries.

• Reveal queries: A1 provides an identity pair {IDi, IDj}. B responds to this
reveal query in the following manner:

1. If {IDi, IDj} ⊆ ID1 then B forwards the queried pair to C who then
responds back with an appropriate shared secret key. B forwards this
response to A1.
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2. If {IDi, IDj} ̸⊆ ID1, then in order to respond this query, B may need to
check relevant entries in the H2 and H3 hash tables. If the entries are not
there, it may need to make relevant hash queries. B may also need to
perform relevant h-queries to C. B responds with an element from Z∗

q either
chosen uniformly at random or defined using previous queries.

All reveal queries are defined while maintaining consistency and correctness with
previous extract and reveal queries.

• Test query: A1 makes a single Test query on a pair of identities (say, IDx and
IDy). Note that both target nodes are required to be in level 1 only. B forwards
this pair to C as the target pair. C responds back with either the real shared secret
key for this pair or a random element from Z∗

q . B forwards the response of C to
A1.

In the end, A1 outputs a guess bit δ′ ∈ {0, 1}. B forwards this guess bit as δ to C.

Here, one can see that B’s response is correct whenever A1’s response is correct, which
means the advantage of B against BIOS is same as the advantage of A1 against the
α-BSOK protocol.

Analysis : Formally, if the advantage of A1 against α-BSOK protocol is Advα-BSOK,
then the advantage AdvBIOS for B against BIOS can be given as:

AdvBIOS = Advα-BSOK.

Thus, if Advα-BSOK is non-negligible, then we can see that AdvBIOS is also non-
negligible which contradicts the assumption of DCSK problem (see Section 2.6.2).
Hence, Advα-BSOK must be negligible.

• Case 2: (When at least one of the target nodes lies beyond level 1; let the lower
levelled target node lies at level m in the hierarchy; 1 < m ≤ ℓ) We define the
restrictions over the adversary so that it does not win the security game trivially
in Case 2 as follows:

1. Adversary is not allowed to compromise the target nodes.

2. Adversary is not allowed to compromise any of the ancestors of the target
nodes.
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3. Adversary is not allowed to ask for the shared secret key between the target
nodes.

We show how to construct an efficient S-DBDH adversary B, using an H-IND-SK
adversary A2 which has a non-negligible advantage against α-BSOK protocol in Case
2. The game between the S-DBDH challenger C and its adversary B starts with C first
providing B the S-DBDH instance (aP, cP, Q) with (G, GT, e, q, P). Note that B does
not have any control over C. B only seeks the help of C to generate the instance of the
hard problem. Now, B who is the challenger for α-BSOK protocol interacts with A2 in
the following manner:

• Setup: B gives mpk = (G, GT, e, P, h, H1, H2, H3) to A2, where h, H1, H2 and H3

are random oracles controlled by B. Let qH1m and qH1m̄ be the number of H1

hash queries done by A2 in the level m and in the levels from 1 to m respectively
during the simulation. B chooses two indices I and J uniformly at random
from {1, 2, . . . , qH1m} and {1, 2, . . . , qH1m̄} respectively. A2 can make the following
queries:

• h-queries: B receives queries of the form xij = (Ki||ID1j) from A2. In response
to this query, B maintains an h-table with entries of the form (xij, h(xij)). If the
queried argument is already there in h-table, the corresponding hash value is
given to A2 as response. Otherwise, an element is chosen uniformly at random
from Z∗

q , the entry is saved in h-table and the chosen element is provided to A2

as response.

• H1-queries: A2 provides an identity ID from the identity space. To Respond such
queries B maintains an H1-table with entries (ID, r, t, H1(ID)). If the provided
ID is already there in the table, B responds with corresponding H1(ID) entry.
Otherwise i-th query by A2 is responded in the following manner:

1. if i = I, then for an integer s ∈R Z∗
q , B adds entries (IDI , s,⊥, saP) and

(IDJ , s−1,⊥, s−1aP) to the table and returns H1(IDI) = saP.

2. if i = J, then for an integer s ∈R Z∗
q , B adds entries (IDI , s,⊥, saP) and

(IDJ , s−1,⊥, s−1aP) to the table and returns H1(IDJ) = s−1aP.

3. if IDi is an ancestor of either IDI or IDJ at the (L ̸= 1)th level but not for both
then there exists some IDj in the level of IDi who is corresponding ancestor
of the other target node. For this query, B chooses integers tL, rL−1 ∈R Z∗

q

and adds entries (IDi, rL−1, tL, rL−1tLaP) and (IDj, rL−1, t−1
L , rL−1t−1

L aP) to
the table and returns H1(IDi) = rL−1tLaP.
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4. if IDi is a common ancestor of IDI and IDJ at the (L ̸= 1)th level then,
for this query, B chooses integer rL−1 ∈R Z∗

q , adds an entry (IDi, rL−1,⊥
, rL−1aP) to the table and returns H1(IDi) = rL−1aP.

5. Otherwise B chooses si uniformly at random from Z∗
q , adds (IDi, si,⊥, siP)

to the H1-table, and returns H1(IDi) = siP.

• H2-queries: B receives an element γ from GT as query. In response to this
query, B maintains an H2-table with entries of the form (γ, H2(γ)). If the queried
argument is already there in H2-table, the corresponding hash value is given to
A2 as response. Else, an element is chosen uniformly at random from Z∗

q , the
entry is saved in H2-table and the chosen element is provided to A2 as response.

• H3-queries: B receives an element κ either from GT or from Z∗
q as query. In

response to this query, B maintains an H3-table with entries of the form (κ, H3(κ)).
If the queried argument is already there in H3-table, the corresponding hash
value is given to A2 as response. Otherwise, an element is chosen uniformly
at random from Z∗

q , the entry is saved in H3-table and the chosen element is
provided to A2 as response.

• Extract queries: A2 provides an identity IDi. B makes an H1 hash query on
IDi, if this has not been queried already. B responds to the extract query in the
following manner:

1. If IDi ∈ {IDI , IDJ} or is an ancestor of IDI or IDJ then B aborts the
simulation.

2. If IDi is a sibling of either IDI or IDJ then B first finds an entry (IDi, si,⊥
, H1(IDi)) in the H1-table. It defines one of the secret key component of IDi

which corresponds to the shared secret key between the parent pair of IDI

and IDJ as k = si(cP). For remaining keys, B may need to check relevant
entries in the four hash tables (h, H1, H2 and H3-table). If the entries are not
there, it may need to make relevant hash queries. Finally, B responds with a
set of nℓ−1 elements (including k) from G.

3. If IDi is a sibling of either target identities’ (L ̸= 1)th level ancestor then
B first finds an entry (IDi, si,⊥, H1(IDi)) in the H1-table. It defines one of
the secret key component of IDi which corresponds to the shared secret
key between the (L − 1)th level ancestors of IDI and IDJ as k = sir−2

L−1(cP).
For remaining keys, B may need to check relevant entries in the four hash
tables. If the entries are not there, it may need to make relevant hash queries.
Finally, B responds with a set of nℓ−1 elements (including k) from G.
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4. For remaining IDis’, B follows the α-BSOK protocol. For that, it may need
to check relevant entries in the four hash tables. If the entries are not there,
it may need to make relevant hash queries. B responds these queries with a
set consisting elements from Z∗

q and G. These elements are either chosen
uniformly at random or defined using previous queries. Depending upon
the position of queried node in the hierarchy, the number of elements in the
response set is either nℓ−1 or

(
nℓ−1 +

n1+1
2

)
.

All extract queries are defined while maintaining consistency and correctness
with previous extract and reveal queries.

• Reveal queries: A2 provides an identity pair {IDi, IDj}. B makes H1 hash
queries on the identities IDi and IDj if this has not been already done. B
responds to the reveal query in the following manner:

1. If {IDi, IDj} = {IDI , IDJ}, then B aborts the simulation.

2. If both IDi and IDj are ancestors of IDI and IDJ respectively at Lth level
then B chooses an integer uL uniformly at random from Z∗

q and responds
with SHKL(IDi, IDj) = uL.

3. For L ̸= 1, if the identity IDi is a sibling of IDI’s Lth level ancestor and
IDj is either IDJ’s Lth level ancestor or a sibling of IDJ’s Lth level ancestor
then B first obtains the H1 hash query (IDi, si,⊥, siP). It then responds with
SHKL(IDi, IDj) = H3[e(sir−2

L−1(cP), H1(IDj))].

4. For L ̸= 1, if the identity IDi is a sibling of IDJ’s Lth level ancestor and
IDj is either IDI’s Lth level ancestor or a sibling of IDI’s Lth level ancestor
then B first obtains the H1 hash query (IDi, si,⊥, siP). It then responds with
SHKL(IDi, IDj) = H3[e(sir−2

L−1(cP), H1(IDj))].

5. If the identity IDi is a sibling of IDI and IDj is either IDJ or a sibling of
IDJ then B first obtains the H1 hash query (IDi, si,⊥, siP). It then responds
with SHKL(IDi, IDj) = H3[e(si(cP), H1(IDj))].

6. If the identity IDi is a sibling of IDJ and IDj is either IDI or a sibling of
IDI then B first obtains the H1 hash query (IDi, si,⊥, siP). It then responds
with SHKL(IDi, IDj) = H3[e(si(cP), H1(IDj))].

7. For all remaining pairs, B follows the α-BSOK protocol. For that, it may
need to check relevant entries in the four hash tables. If the entries are not
there, it may need to make relevant hash queries. B responds these queries
with an element from Z∗

q either chosen uniformly at random or defined
using previous queries.
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All reveal queries are defined while maintaining consistency and correctness with
previous extract and reveal queries.

• Test query: A2 makes a single Test query on a pair of identities. If A2 does not
choose IDI and IDJ as the challenge identities, then B aborts the simulation and
fails. Otherwise B outputs H3(Q) ∈ Z∗

q as the shared secret key for the challenge
identities.

In the end, A2 outputs a guess bit δ′ ∈ {0, 1}.

Note that if δ = 1 i.e., the S-DBDH instance really contained e(P, P)a2c as Q, then -

H3(Q) = H3

(
e
(

P, P
)a2c
)
= H3

(
e
(
aP, c(aP)

))
= H3

(
e
(
saP, c(s−1aP)

))
= H3

(
e
(

H(IDI), SKIDJ

))
= SHK(IDI , IDJ).

Also,

Q = e
(

P, P
)a2c

= e
(
aP, c(aP)

)
= e
(
rL−1tLaP, r−2

L−1c(rL−1t−1
L aP)

)
= e
(

H(AncestorL(IDI)), SKAncestorL(IDJ)

)
= SHK′

L(AncestorL(IDI), AncestorL(IDJ)) ∀ L ̸= 1,

here if AncestorL(IDI) = AncestorL(IDJ) then tL = t−1
L = 1.

In other words, here Q corresponds to the real shared secret key between the challenge
identities as well as to the key delegation shared key (SHK′) between any of their
ancestor pairs.

In this case, if the adversary does not target an ancestor pair of the challenge identities
to compute the shared secret between the challenge identities then to respond δ′ = 1
with non-negligible advantage, adversary has to query H3 hash of Q which can be
easily verified by the simulator.

However, if the adversary targets an ancestor pair of the challenge identities to compute
the shared secret between the challenge identities then it has to query H2(Q). Note
that H2 is modeled as a random oracle here, therefore, to query H2(Q) adversary must
be able to compute Q = e(P, P)a2c. If the adversary can compute e(P, P)a2c with some
non-negligible advantage and queries its hash during the simulation then the simulator
can output δ′ = 1 to the S-DBDH challenger with the same advantage by verifying
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H2(Q) with this hash query in the H2-table.

On the other hand, if Q = e(P, P)r, for some random r ∈ Z∗
q , then the test query

response by B is a random element from Z∗
q which corresponds to δ′ = δ = 0.

In this game, we say an adversary wins if H2(Q) is queried or δ′ = δ. Let U be the
event that B does not abort during its simulation under H-IND-SK model. Since
qH1m ≤ qH1m̄ ≤ qH1 . We can easily see that -

Pr(U ) ≤ 1
q2

H1

.

Analysis: To formally analyze the advantage of A2 against α-BSOK, let us first define
some events:

A = An event when adversary wins the security game.

B = An event when adversary queries H2(Q).

C = An event when adversary solves the S-DBDH at leaf level.

One can easily see that Pr(C) ≥ Pr(B). For simplicity, let us assume, m > 2. Now, the
probability that the adversary wins the security game can be defined as -

Pr(A) = Pr(A ∩ B) + Pr(A ∩ B̄)

Pr(A) = Pr(A ∩ B) + Pr(A ∩ B̄ ∩ C) + Pr(A ∩ B̄ ∩ C̄)

Pr(A) = Pr(A|B) · Pr(B) + Pr(A ∩ B̄|C) · Pr(C) + Pr(A|B̄ ∩ C̄) · Pr(B̄ ∩ C̄)

Pr(A) ≤ Pr(B) + Pr(C) + Pr(A|B̄ ∩ C̄)

Pr(A) ≤ 2Pr(C) + Pr(A|B̄ ∩ C̄)

Pr(A) ≤ 2AdvS-DBDH

Pr(U ) +
1
2

Pr(A)− 1
2

≤ 2q2
H1

(
AdvS-DBDH

)
Advα-BSOK ≤ 2q2

H1

(
AdvS-DBDH

)
.

Hence, we have,

1
2q2

H1

Advα-BSOK ≤ AdvS-DBDH.

Since qH1 is polynomial in number, if Advα-BSOK is non-negligible, then we can see
that AdvS-DBDH is also non-negligible which contradicts the hardness assumption of
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S-DBDH problem. Hence, Advα-BSOK must be negligible. □

Remark: Using Coron’s technique [9] for the Case 2 gives the security reduction as -

(
ℓ

eqE

)2ℓ

· Advα-BSOK ≤ AdvS-DBDH.

Here qE denotes the number of extract or reveal queries done by the adversary during
the simulation. We can write the final expression as -

max

{(
ℓ

eqE

)2ℓ

,
1

2q2
H1

}
Advα-BSOK ≤ AdvS-DBDH.

4.1.3 Key Escrow Problem

The problem of key escrow in ID-based protocols is known since the beginning of IBC
and has been studied for many years. By definition, key escrow is an authorized party
which can regenerate private keys for some other parties in the network. In α-BSOK,
every intermediate node in the hierarchy is a key escrow because it can regenerate
all private and shared keys used in the subtree of its descendants. This inherent key
escrow property of α-BSOK is desirable in some scenarios, such as governmental and
military applications (to monitor lower level nodes), but in many other applications
this property is considered as a limitation. In next section, we present a tweak in
α-BSOK to avoid the issue of key escrow for such applications.

4.2 β-BSOK : A variant of α-BSOK

In this section, we present a variant of α-BSOK key exchange protocol named as
β-BSOK to avoid the key escrow problem and to achieve a tighter proof of security
under the same H-IND-SK model.

4.2.1 Protocol description of β-BSOK

For the description below, we are considering an ℓ levelled hierarchy with n nodes at
level 1 and maximum branching factor bmax from level 1 to ℓ− 2. In other words, all
nodes in level 1 to ℓ− 2 can have at most bmax children whereas PKG has n children.
On the other hand, nodes at level ℓ− 1 have no branching restrictions i.e. they can
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have arbitrarily large number of children (leaf nodes).

We provide the construction of β-BSOK protocol using the protocol description of
α-BSOK. We can define β-BSOK protocol using the following algorithms:

• Setup: This algorithm is executed by the PKG.

With input security parameter 1λ, number of nodes in level 1 (n) and hier-
archy depth (ℓ), this algorithm runs the Setup algorithms of BIOS and SOK
protocols. The algorithm outputs master secret key msk as two key pools
{K0, K1, . . . , Kn−1} and {y1, y2, . . . , yℓ} from Z∗

q and public parameters mpk as
(G, GT, e, q, n, h, H1, H2, H3), where -

e : G × G → GT, h : {0, 1}∗ → Z∗
q ,

H1 : {0, 1}∗ → G, H2 : GT → Z∗
q and H3 : {0, 1}∗ → Z∗

q .

For the following algorithms, let us define a term called “fertility carriers” or
“spy nodes”. A fertility carrier or spy node Fi

j is the jth chosen node at level i who
is allowed to store the secret yi in its storage. A spy node is used by another
same level node to delegate “valid” keys for its descendants. There are at least ℓ
such chosen nodes (one at each level) in the hierarchy. A spy node is assumed to
be non-malicious and uncompromising like the PKG.

• Key Delegation in Spy nodes: This algorithm is executed by the PKG. With the
identity of a spy node FL

j (1 ≤ L ≤ ℓ) as input, this algorithm outputs the key yL.

• Key Delegation at Level 1 (D1): This algorithm is executed by the PKG. This
algorithm works exactly same as the D1 of α-BSOK.

• Shared Key Computation at level 1 (SHK1): This algorithm works exactly same
as Shared Key algorithm SHK1 of α-BSOK.

• Key Delegation at level L (DL, 2 ≤ L ≤ ℓ): This algorithm is executed by a node
in the level L − 1 to generate keys for its children in level L. Let us assume mth

node in level L − 1 is the parent of the jth node in level L. With input the secret
key set K(L−1)m and the identities IDL−1

m and IDL
j , this algorithm runs the DL

algorithm of α-BSOK which outputs a set K′′
Lj containing nL−1 elements from G.

Here ni represents total number of nodes from first level to the ith level of the
hierarchy (n0 = 0, n1 = n). Now, the algorithm chooses an r ∈R Z∗

q and returns r
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with a set -
K′

Lj = {r · k ∀ k ∈ K′′
Lj}.

At this point, IDL−1
m sends the set K′

Lj to a spy node (say, FL−1
u ) of its level. The

spy node FL−1
u responds back a set K̃Lj = {yL−1 · k ∀ k ∈ K′

Lj} to IDL−1
m .

The final secret key set of IDL
j is now defined as -

KLj = {r−1 · k ∀ k ∈ K̃Lj}.

This secret key set contains nL−1 elements of group G.

• Remaining Key Generation at level L (D∗
L, 1 ≤ L < ℓ): This algorithm is

executed by a node in the level L. Let us assume that the set of remaining keys
for a node IDL

j is denoted by K′
Lj then we define K′

Lj as -

K′
Lj =

ℓ−1⋃
i=L

ni⋃
k=ni−1

{H2[SHK′(IDL
j , IDi

k)] · yiQIDL
j
}

where SHK′ is the shared key algorithm of α-BSOK. Now the total number of
keys in IDL

j ’s key space is -

|KLj|+ |K′
Lj| = nL−1 + (nℓ−1 − nL−1) = nℓ−1

Note that any parent node at level L is required to communicate with lower
levelled spy nodes to successfully generate its remaining key set. However, this
is a one time cost and (ℓ − L) communications suffice this process. After a
successful key generation, a parent can do the shared key computation with any
other node in the network.

• Shared Key Computation at level L (SHKL, 2 ≤ L ≤ ℓ): This algorithm works
exactly same as Shared Key algorithm SHKL of α-BSOK.

• Shared Key Computation between levels L1 and L2 (SHKL1L2): This algorithm
is used to compute shared secret key between a pair consisting one node from
level L1 and another from level L2 where 1 ≤ L1 < L2 ≤ ℓ. Suppose two nodes,
say IDL2

a and IDL1
b want to compute a shared secret key.

At IDL2
a ’s end:

IDL2
a checks its secret key set KL2a for the group element it received by the DL2

algorithm as a multiplication of IDL1
b and its own parent’s shared secret key’s H2
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hash with the key yL2−1 and H1 hash of its identity i.e.,

H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )] · yL2−1Q

IDL2
a

.

Now, the shared secret key is computed as -

SHK′
L1L2(IDL2

a , IDL1
b ) = e(x1 · Q

IDL2
a

, Q
ID

L1
b
)

where x1 = H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )] · yL2−1

SHKL1L2(IDL2
a , IDL1

b ) = H3

[
SHK′

L1L2(IDL2
a , IDL1

b )

]
{

For L1 = L2 − 1, we define SHK′
L1(L2−1)(X, Y) = SHK′

L1(X, Y)

}

At IDL1
b ’s end:

Since IDL1
b have H2[SHK′

L1(L2−1)(IDL1
b , parent(IDL2

a ))] · yL2−1Q
ID

L1
b

stored in its

storage, therefore its shared secret key with IDL2
a can be computed as -

SHK′
L1L2(IDL1

b , IDL2
a ) = e(x2 · Q

ID
L1
b

, Q
IDL2

a
)

where x2 = H2[SHK′
L1(L2−1)(IDL1

b , parent(IDL2
a ))] · yL2−1

SHKL1L2(IDL1
b , IDL2

a ) = H3

[
SHK′

L1L2(IDL1
b , IDL2

a )

]
Correctness: In the above computation, we can notice that at IDa’s end, the
stored corresponding secret key was computed by its parent in a similar manner
to IDb’s computation of x2 ·Q

ID
L1
b

in D∗
L, therefore, from the correctness argument

of the SHKL1 , we have -

x1 = x2

SHKL1L2(IDL1
b , IDL2

a ) = SHKL1L2(IDL2
a , IDL1

b )

Note that SHK′
L1L2 is used as shared secret in key delegation for any lower level

descendant.

Remark: Similar to α-BSOK, here also we can replace h, H2, H3 hash functions by a
single hash function H.
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4.2.2 Security of β-BSOK

We argue the security for β-BSOK protocol in the H-IND-SK model.

Security Proof

Since β-BSOK is a hybrid of two different protocols, we show the proof of security
using the following two cases:

• Case 1: When both the target nodes are at level 1: We provide the proof for this
case using the security of BIOS, which is the underlying protocol at level 1.

• Case 2: When at least one of the target nodes lies beyond level 1: We provide the
proof for this case using the S-DBDH assumption.

It is easy to notice that these two cases contain all possible scenarios. As according
to these two cases, we consider two different types of adversaries against β-BSOK
protocol.

• Case 1: (Both the target nodes are at level 1) The proof for this case follows in a
similar way to the proof of Case 1 in the Security of α-BSOK (see Section 4.1.2).

• Case 2: (When at least one of the target nodes lies beyond level 1; let the lower
levelled target node lies at level m in the hierarchy; 1 < m ≤ ℓ) We define the
restrictions over the adversary so that it does not win the security game trivially
in Case 2 as follows:

1. Adversary is not allowed to compromise the target nodes.

2. Adversary is not allowed to compromise spy nodes from levels which are
higher than any of the target node’s level.

3. Adversary is not allowed to ask for the shared secret key between the target
nodes.

We show how to construct an efficient S-DBDH adversary B, using an H-IND-SK
adversary A2 which has a non-negligible advantage against β-BSOK protocol in Case
2. The game between the S-DBDH challenger C and its adversary B starts with C first
providing B the S-DBDH instance (aP, cP, Q) with (G, GT, e, q, P). Note that B does
not have any control over C. B only seeks the help of C to generate the instance of the
hard problem. Now, B who is the challenger for β-BSOK protocol interacts with A2 in
the following manner:
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• Setup: B gives mpk = (G, GT, e, P, h, H1, H2, H3) to A2, where h, H1, H2 and H3

are random oracles controlled by B. A2 can make the following queries:

• h-queries: B receives queries of the form xij = (Ki||ID1j) from A2. In response
to this query, B maintains an h-table with entries of the form (xij, h(xij)). If the
queried argument is already there in h-table, the corresponding hash value is
given to A2 as response. Otherwise, an element is chosen uniformly at random
from Z∗

q , the entry is saved in h-table and the chosen element is provided to A2

as response.

• H1-queries: A2 provides an identity IDi from the identity space. To Respond
such queries B maintains an H1-table with entries (IDi, si, ti, H1(IDi)) where
ti ∈ {0, 1}. If the provided IDi is already there in the table, B responds with
corresponding H1(IDi) entry. Otherwise for some fixed µ, it chooses ti from
{0, 1} with probability distribution defined as -

Pr(ti = 0) = (1 − µ) ∀ IDi ∈ ID
Pr(ti = 1) = µ ∀ IDi ∈ ID.

Now, the query by A2 is responded in the following manner:

1. If ti = 0 then B chooses an integer si ∈R Z∗
q , adds entries (IDi, si, 0, siP) to

the table and returns H1(IDi) = siP.

2. If ti = 1 then B chooses an integer si ∈R Z∗
q , adds entries (IDi, si, 1, siaP) to

the table and returns H1(IDi) = siaP.

• H2-queries: B receives an element γ from GT as query. In response to this
query, B maintains an H2-table with entries of the form (γ, H2(γ)). If the queried
argument is already there in H2-table, the corresponding hash value is given to
A2 as response. Else, an element is chosen uniformly at random from Z∗

q , the
entry is saved in H2-table and the chosen element is provided to A2 as response.

• H3-queries: B receives an element κ either from GT or from Z∗
q as query. In

response to this query, B maintains an H3-table with entries of the form (κ, H3(κ)).
If the queried argument is already there in H3-table, the corresponding hash
value is given to A2 as response. Otherwise, an element is chosen uniformly
at random from Z∗

q , the entry is saved in H3-table and the chosen element is
provided to A2 as response.
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• Extract queries: A2 provides an identity IDi. B makes an H1 hash query on IDi,
if this has not been queried already. B maintains an SK-table with entries of the
form ((IDu, IDv), ruv) and responds to the extract query in the following manner:

1. If ti = 1, then B aborts the simulation.

2. If ti = 0 and IDi ̸∈ ID1, then B first finds an entry (IDi, si, 0, siP) in the
H1-table. It then checks SK-table for ruv values corresponding to the pairs
whose shared keys are being used to compute secret keys of IDi in β-BSOK.
If such an entry is not there in the SK-table, B chooses an element uniformly
at random from Z∗

q and saves the entry in the table. Now, with these ruv

values, B computes the set {si(ruvcP)} and sends it to A2 as the secret key
set of IDi. Note that the number of keys in the output set is nℓ−1.

3. If ti = 0 and IDi ∈ ID1, then B first finds an entry (IDi, si, 0, siP) in the
H1-table. It then checks SK-table for ruv values corresponding to the pairs
whose shared keys are being used to compute secret keys of IDi in β-BSOK.
If such an entry is not there in the SK-table, B chooses an element uniformly
at random from Z∗

q and saves the entry in the table. Now, with these ruv

values, B computes the set {si(ruvcP)}. Note that the number of keys in this
set is nℓ−1. B also generate another set consisting n1+1

2 elements from Z∗
q

either chosen uniformly at random or defined using previous queries. It
sends these two sets to A2 as the secret key set of IDi.

All extract queries are defined while maintaining consistency and correctness
with previous extract and reveal queries.

• Reveal queries: A2 provides an identity pair {IDi, IDj}. B makes H1 hash
queries on the identities IDi and IDj if this has not been already done. B
responds to the reveal query in the following manner:

1. If ti = tj = 1, then B aborts the simulation.

2. If ti ̸= tj then B picks one identity (say, IDi) with ti = 0, extracts its secret
key set and finds the entry si(ruvcP) such that {parent(IDi), parent(IDj)} =

{IDu, IDv}. It then responds H3

(
e
(
si(ruvcP), H1(IDj)

))
to A2 as the shared

secret key.

All reveal queries are defined while maintaining consistency and correctness with
previous extract and reveal queries.

• Test query: A2 makes a single Test query on a pair of identities (say, IDx and
IDy). If {tx, ty} ̸= {1, 1} then B aborts the simulation and fails. Otherwise B
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first finds the entries (IDx, sx, 1, sxaP) and (IDy, sy, 1, syaP) in the H1-table and
then for the parent pair of the target identities, say (ID f , IDg), it finds the entry
((ID f , IDg), r f g) in the SK-table and outputs H3(Qsxsyr f g) ∈ Z∗

q as the shared
secret key for the challenge identities.

In the end, A2 outputs a guess bit δ′ ∈ {0, 1}.

Note that if δ = 1 i.e., the S-DBDH instance really contained e(P, P)a2c as Q, then

H3(Qsxsyr f g) = H3

(
e
(

P, P
)a2csxsyr f g

)
= H3

(
e
(
sxaP, r f gc(syaP)

))
= SHK(IDx, IDy).

i.e., here Q corresponds to the real shared secret key between the challenge identities.

On the other hand, if Q = e(P, P)r, for some random r ∈ Z∗
q , then the test query

response by B is a random element from Z∗
q which corresponds to δ′ = δ = 0.

In other words, B’s response is correct whenever A2’s response is correct, which means
the advantage of B against S-DBDH problem is same as the advantage of A2 against
the β-BSOK protocol, except in the events of abort of B.

Analysis: Let U be the event that B does not abort during its simulation under H-
IND-SK model. Let us denote the number of Extract and Reveal queries by qE and qR

respectively. To formally analyze the advantage of A2 against β-BSOK, we define the
following events:

U1 =
∧qE

i=1(ti = 0),

U2 =
∧qR

j=1

(
(tj1 = 0) ∨ (tj2 = 0)

)
where (IDj1, IDj2) is the jth reveal query,

U3 =
(
(tx = 1) ∧ (ty = 1)

)
.

One can easily see that Pr(U ) = Pr(U1 ∩ U2 ∩ U3). Thus, we have -

Pr(U ) = Pr(U1) · Pr(U2 ∩ U3|U1)

=⇒ Pr(U ) ≥ µqE · µqR(1 − µ)2.
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For f (µ) = µqE · µqR(1 − µ)2, it is easy to show that f achieves its maximum value at
µ0 = 1 − 2

2+qE+qR
. Therefore, for µ = µ0, we have -

Pr(U ) ≥ 4
(2 + qE + qR)2

(
1 − 2

2 + qE + qR

)qE+qR

=⇒ Pr(U ) ≥ 4
(qE + qR)2

[(
1 − 2

2 + qE + qR

)− 2+qE+qR
2

]−2

.

Using the estimation limx→0(1 + x)
1
x = e and assuming qE ≈ qR, we can define the

maximum value of this lower bound for Pr(U ) as -

=⇒ Pr(U ) ≥ 4
e2(qE + qR)2 ≈ 1

(eqE)2 .

If the advantage of A2 against β-BSOK protocol is Advβ-BSOK, then the advantage
AdvS-DBDH for B against S-DBDH problem can be given as:

AdvS-DBDH ≥
Advβ-BSOK

(eqE)2 .

Since qE is polynomial in number, if Advβ-BSOK is non-negligible, then we can see
that AdvS-DBDH is also non-negligible which contradicts the hardness assumption of
S-DBDH problem. Hence, Advβ-BSOK must be negligible. □

4.2.3 Tighter Security Reductions

A proof of security for a given protocol usually begins by a reduction showing how an
adversary breaking the protocol in polynomial time can be used to solve some underly-
ing hard problem in polynomial time. These reductions can be asymptotic i.e., they only
guarantee that, as the security parameter increases, no polynomial time adversary can
break the protocol with a non-negligible probability. However, such a result provides
limited information about the security of a protocol in practice with a specific key size
and against adversaries with certain amount of computational capabilities. Thus, for
practical considerations it is important to focus on concrete security reductions which
give precise bounds on an adversary’s success probability as a function of its expended
resources.
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The most efficient reduction what we expect is one in which an adversary who breaks
a protocol in time t with probability ϵ can be used to construct another adversary who
can break the underlying hard problem in time t′ ≈ t with probability ϵ′ ≈ ϵ. Such a
reduction is called a tight reduction. A protocol with a non-tight security reduction
will definitely require larger parameter sizes to provide the same security guarantee
compared to the case where a tight reduction is known for the same protocol. In fact,
it is possible in some cases when a reasonable security assurance from a protocol with
a non-tight reduction requires very large key length which is totally impractical.

Katz and Wang provided a modification technique in [19] for some protocols to get
a tighter reduction. Full domain hash [3, 4], BLS signatures [7] and Boneh-Franklin
ID-based encryption [6] are some examples of such protocols. We have realized that
the Katz-Wang technique is not directly applicable in the security models where key
escrows are allowed to be compromised, therefore, we can not use this technique on
α-BSOK to get a tighter reduction. However, the same is applicable on β-BSOK. In
next section, we present the variant of β-BSOK with a tighter security reduction using
Katz-Wang technique.

4.3 β-BSOK with Katz-Wang Technique

In this section, we show how to apply Katz-Wang technique on β-BSOK to achieve
tighter security reduction on the S-DBDH problem under H-IND-SK model. We also
describe benefits and issues in using Katz-Wang technique.

4.3.1 Protocol description of β-BSOK-KWT

For the description below, we are considering an ℓ levelled hierarchy with n nodes at
level 1 and maximum branching factor bmax from level 1 to ℓ− 2. In other words, all
nodes in level 1 to ℓ− 2 can have at most bmax children whereas PKG has n children.
On the other hand, nodes at level ℓ− 1 have no branching restrictions i.e. they can
have arbitrarily large number of children (leaf nodes).

We provide the construction of β-BSOK-KWT protocol using the protocol description
of α-BSOK and β-BSOK. We can define β-BSOK-KWT protocol using the following
algorithms:

• Setup: This algorithm is executed by the PKG.
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With input security parameter 1λ, number of nodes in level 1 (n) and hier-
archy depth (ℓ), this algorithm runs the Setup algorithms of BIOS and SOK
protocols. The algorithm outputs master secret key msk as two key pools
{K0, K1, . . . , Kn−1} and {y1, y2, . . . , yℓ} from Z∗

q and public parameters mpk as
(G, GT, e, q, n, h, H1, H2, H3), where -

e : G × G → GT, h : {0, 1}∗ → Z∗
q ,

H1 : {0, 1}∗ → G, H2 : GT → Z∗
q and H3 : {0, 1}∗ → Z∗

q .

• Key Delegation in Spy nodes: This algorithm is executed by the PKG. With the
identity of a spy node FL

j (1 ≤ L ≤ ℓ) as input, this algorithm outputs the key yL.

• Key Delegation at Level 1 (D1): This algorithm is executed by the PKG. This
algorithm works exactly same as the D1 of β-BSOK.

• Shared Key Computation at level 1 (SHK1): This algorithm works exactly same
as Shared Key algorithm SHK1 of β-BSOK.

• Key Delegation at level L (DL, 2 ≤ L < ℓ): This algorithm is executed by
a node in the level L − 1 to generate keys for its children in level L. Let us
assume mth node in level L − 1 is the parent of the jth node in level L and ni

represents total number of nodes from first level to the ith level of the hierarchy
(n0 = 0, n1 = n). Let us consider QIDL

j
and QIDL

j,t
as primary and secondary hashes

of IDL
j respectively. We define QIDL

j
and QIDL

j,t
as -

QIDL
j
= H1(IDL

j )

QIDL
j,t
=

H1(0||IDL
j ) if t = 0

H1(1||IDL
j ) if t = 1

At first, with K(L−1)m, IDL−1
m and IDL

j as input, this algorithm runs shared key
algorithm SHK′ of β-BSOK to generate involved parent node IDL−1

m ’s temp-shared
key set say {d1, . . . , dnL−1} where di is defined as -

di =

SHK′
r(L−1)(IDL−1

m , IDr
i ) if i ∈ (nr−1, nr] and 1 ≤ r ̸= L − 1,

SHK′
L−1(IDL−1

m , IDL−1
i ) if i ∈ (nL−2, nL−1].
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All these temp-shared keys belong to GT or Z∗
q (depending upon the type of

parent’s shared secret keys). At this point, the algorithm maps these shared secret
keys to Z∗

q using the hash function H2. Once it gets the set of these mapped
shared secret keys, it chooses a random element r ∈ Z∗

q , a random bit t ∈ {0, 1}
and outputs r and t with two sets {rH2(d1)QIDL

j
, . . . . . . , rH2(dnL−1)QIDL

j
} and

{rH2(d1)QIDL
j,t

, . . . . . . , rH2(dnL−1)QIDL
j,t
}. These sets are then converted into two

final (primary and secondary) secret key sets with the help of any spy node at
level L − 1. The primary secret key set of IDL

j is defined as { yL−1H2(d1)QIDL
j
, . . .

. . . , yL−1H2(dnL−1)QIDL
j
} and the secondary secret key set of IDL

j is defined as

{t, yL−1H2(d1)QIDL
j,t

, . . . . . . , yL−1H2(dnL−1)QIDL
j,t
}. These secret key sets contain

a total of 2nL−1 elements from group G and a random bit t. We define these sets
as the secret key sets KLj and KL(j,t) respectively. Note that here t is redefined
for each delegation.

• Key Delegation at level ℓ (Dℓ): This algorithm is executed by a node in the level
ℓ− 1 to generate keys for its children in level ℓ. Let us assume mth node in level
ℓ− 1 is the parent of the jth node in level ℓ. At first, with K(ℓ−1)m, IDℓ−1

m and IDℓ
j

as input, this algorithm runs shared key algorithm SHK′ of β-BSOK to generate
involved parent node IDℓ−1

m ’s temp-shared key set say {d1, . . . , dnℓ−1} where di is
defined as -

di =

SHK′
r(ℓ−1)(IDℓ−1

m , IDr
i ) if i ∈ (nr−1, nr] and 1 ≤ r ̸= ℓ− 1,

SHK′
ℓ−1(IDℓ−1

m , IDℓ−1
i ) if i ∈ (nℓ−2, nℓ−1].

All these temp-shared keys belong to GT or Z∗
q (depending upon the type of

parent’s shared secret keys). At this point, the algorithm maps these shared secret
keys to Z∗

q using the hash function H2. Once it gets the set of these mapped
shared secret keys, it chooses a random element r ∈ Z∗

q , a random bit t ∈ {0, 1}
and outputs r and t with a set {rH2(d1)QIDℓ

j,t
, . . . . . . , rH2(dnℓ−1)QIDℓ

j,t
}. This set

is then converted into a final secret key set with the help of any spy node at level
ℓ− 1. The final secret key set of IDℓ

j is defined as {t, yℓ−1H2(d1)QIDℓ
j,t

, . . . . . . ,

yℓ−1H2(dnℓ−1)QIDℓ
j,t
}. This secret key set contains nℓ−1 elements from group G

and a random bit t. We define this set as the secret key set Kℓ(j,t). Note that t is
redefined for each delegation.

• Remaining Key Generation at level L (D∗
L, 1 ≤ L < ℓ): This algorithm is

executed by a node in the level L. Let us assume that the set of remaining keys
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for a node IDL
j is denoted by K′

Lj then we define K′
Lj as -

K′
Lj =

ℓ−1⋃
i=L

ni⋃
k=ni−1

{H2[SHK′(IDL
j , IDi

k)] · yiQIDL
j,tj
}

where SHK′ is the shared key algorithm of α-BSOK. Now the total number of
keys in IDL

j ’s key space is -

|KLj|+ |KL(j,tj)
|+ |K′

Lj| = 2nL−1 + (nℓ−1 − nL−1) = nℓ−1 + nL−1.

Note that any parent node at level L is required to communicate with lower
levelled spy nodes to successfully generate its remaining key set. However, this
is a one time cost and (ℓ− L) communications suffice this process.

• Shared Key Computation at level L (SHKL, 2 ≤ L ≤ ℓ): This algorithm is used
to compute shared secret key between a pair consisting nodes of level L ≥ 2.
Suppose two nodes at level L, say IDL

a and IDL
b want to compute a shared secret

key.

At IDL
a ’s end:

IDL
a checks its secondary secret key set KL(a,ta) for the group element it received

by the DL algorithm as a multiplication of their parent’s temp-shared key’s H2

hash and yL−1 with the H1 hash of its identity concatenated with its random bit
ta i.e.,

H2[SHK′
L−1(parent(IDL

a ), parent(IDL
b ))] · yL−1QIDL

a,ta

where SHK′ is the shared key algorithm of α-BSOK. Now, the possible shared
secret keys are computed as -

SHKL(IDL
a , IDL

b )|(ta,0) = H3[e(QIDL
a,ta

, QIDL
b,0
)x1 ]

SHKL(IDL
a , IDL

b )|(ta,1) = H3[e(QIDL
a,ta

, QIDL
b,1
)x1 ]

where x1 = H2[SHK′
L−1(parent(IDL

a ), parent(IDL
b ))] · yL−1

At IDL
b ’s end:

IDL
b checks its secondary secret key set KL(b,tb)

for the group element it received
by the DL algorithm as a multiplication of their parent’s temp-shared key’s H2

hash and yL−1 with the H1 hash of its identity concatenated with its random bit
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tb i.e.,
H2[SHK′

L−1(parent(IDL
b ), parent(IDL

a ))] · yL−1QIDL
b,tb

where SHK′ is the shared key algorithm of α-BSOK. Now, the possible shared
secret keys are computed as -

SHKL(IDL
b , IDL

a )|(0,tb)
= H3[e(QIDL

b,tb
, QIDL

a,0
)x2 ]

SHKL(IDL
b , IDL

a )|(1,tb)
= H3[e(QIDL

b,tb
, QIDL

a,1
)x2 ]

where x2 = H2[SHK′
L−1(parent(IDL

b ), parent(IDL
a ))] · yL−1

Correctness: From the correctness argument of BIOS, we have, x1 = x2 and
therefore using the bilinearity property of the pairing e, we have -

ta = tb ⇐⇒ SHKL(IDL
a , IDL

b )|(ta,ta) = SHKL(IDL
b , IDL

a )|(tb,tb)

ta = (1 − tb) ⇐⇒ SHKL(IDL
a , IDL

b )|(ta,1−ta) = SHKL(IDL
b , IDL

a )|(1−tb,tb)

This implies that irrespective to the knowledge of ta
?
= tb, both parties can always

compute a pair of keys including a valid shared-secret key. Confirmation of this
valid key can be done by sending and verifying digest values of their generated
key pairs.

• Shared Key Computation between levels L1 and L2 (SHKL1L2): This algorithm
is used to compute shared secret key between a pair consisting one node from
level L1 and another from level L2 where 1 ≤ L1 < L2 ≤ ℓ. Suppose two nodes,
say IDL2

a and IDL1
b want to compute a shared secret key.

At IDL2
a ’s end:

IDL2
a checks its secondary secret key set KL2a,ta for the group element it received

by the DL2 algorithm as a multiplication of IDL1
b and its own parent’s temp-

shared key’s H2 hash and yL2−1 with H1 hash of its identity concatenated with
its random bit ta i.e.,

H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )] · yL2−1Q

IDL2
a,ta
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where SHK′ is the shared key algorithm of α-BSOK. Now, the possible shared
secret keys are computed as -

SHKL1L2(IDL2
a , IDL1

b )|(ta,0) = H3[e(QIDL2
a,ta

, Q
ID

L1
b,0
)x1 ]

SHKL1L2(IDL2
a , IDL1

b )|(ta,1) = H3[e(QIDL2
a,ta

, Q
ID

L1
b,1
)x1 ]

where x1 = H2[SHK′
L1(L2−1)(parent(IDL2

a ), IDL1
b )] · yL2−1{

For L1 = L2 − 1, we define SHK′
L1(L2−1)(X, Y) = SHK′

L1(X, Y)

}

At IDL1
b ’s end:

Since IDL1
b have H2[SHK′

L1(L2−1)(IDL1
b , parent(IDL2

a ))]yL2−1 · Q
ID

L1
b,tb

stored in its

storage, therefore, its possible shared secret keys with IDL2
a can be computed as -

SHKL1L2(IDL1
b , IDL2

a )|(0,tb)
= H3[e(QID

L1
b,tb

, Q
IDL2

a,0
)x2 ]

SHKL1L2(IDL1
b , IDL2

a )|(1,tb)
= H3[e(QID

L1
b,tb

, Q
IDL2

a,1
)x2 ]

where x2 = H2[SHK′
L1(L2−1)(IDL1

b , parent(IDL2
a ))] · yL−1

Correctness: In the above computation, we can notice that at IDa’s end, the stored
corresponding secret key was computed by its parent in a similar manner to
IDb’s computation of x2 · Q

ID
L1
b,tb

in D∗
L1

, therefore, from the correctness argument

of the SHKL1 , we have -

ta = tb ⇐⇒ SHKL1L2(IDL2
a , IDL1

b )|(ta,ta) = SHKL1L2(IDL1
b , IDL2

a )|(tb,tb)

ta = (1 − tb) ⇐⇒ SHKL1L2(IDL2
a , IDL1

b )|(ta,1−ta) = SHKL1L2(IDL1
b , IDL2

a )|(1−tb,tb)

This implies that irrespective to the knowledge of ta
?
= tb, both parties can always

compute a pair of keys including a valid shared-secret key. Confirmation of this
valid key can be done by sending and verifying digest values of their generated
key pairs.

Remark: Similar to α-BSOK, here also we can replace h, H2, H3 hash functions by a
single hash function H.
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4.3.2 Security of β-BSOK-KWT

We argue the security for β-BSOK-KWT protocol in the H-IND-SK model.

Security Proof

Since β-BSOK-KWT is a hybrid of two different protocols, we show the proof of security
using the following two cases:

• Case 1: When both the target nodes are at level 1: We provide the proof for this
case using the security of BIOS, which is the underlying protocol at level 1.

• Case 2: When at least one of the target nodes lies beyond level 1: We provide the
proof for this case using the S-DBDH assumption.

It is easy to notice that these two cases contain all possible scenarios. As according to
these two cases, we consider two different types of adversaries against β-BSOK-KWT
protocol.

• Case 1: (Both the target nodes are at level 1) The proof for this case follows in a
similar way to the proof of Case 1 in the Security of α-BSOK (see Section 4.1.2).

• Case 2: (When at least one of the target nodes lies beyond level 1; let the lower
levelled target node lies at level m in the hierarchy; 1 < m ≤ ℓ) We define the
restrictions over the adversary so that it does not win the security game trivially
in Case 2 as follows:

1. Adversary is not allowed to compromise the target nodes.

2. Adversary is not allowed to compromise spy nodes from levels which are
higher than any of the target node’s level.

3. Adversary is not allowed to ask for the shared secret key between the target
nodes.

We show how to construct an efficient S-DBDH adversary B, using an H-IND-SK
adversary A2 which has a non-negligible advantage against β-BSOK-KWT protocol in
Case 2. The game between the S-DBDH challenger C and its adversary B starts with
C first providing B the S-DBDH instance (aP, cP, Q) with (G, GT, e, q, P). Note that B
does not have any control over C. B only seeks the help of C to generate the instance of
the hard problem. Now, B who is the challenger for β-BSOK-KWT protocol interacts
with A2 in the following manner:
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• Setup: B gives mpk = (G, GT, e, P, h, H1, H2, H3) to A2, where h, H1, H2 and H3

are random oracles controlled by B. A2 can make the following queries:

• h-queries: B receives queries of the form xij = (Ki||ID1j) from A2. In response
to this query, B maintains an h-table with entries of the form (xij, h(xij)). If the
queried argument is already there in h-table, the corresponding hash value is
given to A2 as response. Otherwise, an element is chosen uniformly at random
from Z∗

q , the entry is saved in h-table and the chosen element is provided to A2

as response.

• H1-queries: A2 provides an identity IDi from the identity space. To Respond
such queries B maintains an H1-table with entries (IDi, ti, H1(0||IDi), H1(1||IDi))

where ti ∈ {0, 1}. If the provided IDi is already there in the H1-table, B responds
with corresponding H1(0||IDi) and H1(1||IDi) entries. Otherwise it chooses two
random values si ∈R Z∗

q and ti ∈R {0, 1} and based on the ti output it store the
hash entries in the H1-table as shown below -

If ti = 0 then the entries are (IDi, 0, siP, siP + aP).

If ti = 1 then the entries are (IDi, 1, siP + aP, siP).

Now, the stored H1(0||IDi) and H1(1||IDi)) entries are provided to A.

• H2-queries: B receives an element γ from GT as query. In response to this
query, B maintains an H2-table with entries of the form (γ, H2(γ)). If the queried
argument is already there in H2-table, the corresponding hash value is given to
A2 as response. Else, an element is chosen uniformly at random from Z∗

q , the
entry is saved in H2-table and the chosen element is provided to A2 as response.

• H3-queries: B receives an element κ either from GT or from Z∗
q as query. In

response to this query, B maintains an H3-table with entries of the form (κ, H3(κ)).
If the queried argument is already there in H3-table, the corresponding hash
value is given to A2 as response. Otherwise, an element is chosen uniformly
at random from Z∗

q , the entry is saved in H3-table and the chosen element is
provided to A2 as response.

• Extract queries: A2 provides an identity IDi. B makes an H1 hash query on IDi,
if this has not been queried already. B maintains an SK-table with entries of the
form ((IDu, IDv), ruv) and responds to the extract query in the following manner:

1. If IDi ̸∈ ID1, then B first finds the corresponding values of ti and si from
the entry of IDi in the H1-table. It then checks SK-table for ruv values
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corresponding to the pairs whose shared keys are being used to compute
secret keys of IDi in β-BSOK-KWT. If such an entry is not there in the
SK-table, B chooses an element uniformly at random from Z∗

q and saves
the entry in the table. Now, with these ruv values, B computes the set
{si(ruvcP)} and sends it to A2 as the secret key set of IDi. Note that the
number of keys in the output set is nℓ−1. B also provides ti to A.

2. If IDi ∈ ID1, then B first finds the corresponding values of ti and si from
the entry of IDi in the H1-table. It then checks SK-table for ruv values
corresponding to the pairs whose shared keys are being used to compute
secret keys of IDi in β-BSOK-KWT. If such an entry is not there in the
SK-table, B chooses an element uniformly at random from Z∗

q and saves
the entry in the table. Now, with these ruv values, B computes the set
{si(ruvcP)}. Note that the number of keys in this set is nℓ−1. B also generate
another set consisting n1+1

2 elements from Z∗
q either chosen uniformly at

random or defined using previous queries. It sends these two sets along
with ti to A2 as the secret key set of IDi.

All extract queries are defined while maintaining consistency and correctness
with previous extract and reveal queries.

• Reveal queries: A2 provides an identity pair {IDi, IDj}. B makes H1 hash
queries on the identities IDi and IDj if this has not been already done. B picks
any one of the two queried identity (say, IDj), extracts its secret key set and finds
the entry sj(ruvcP) such that {IDu, IDv} = {parent(IDi), parent(IDj)}. B then

responds to the reveal query with SHK(IDi, IDj) = H3

(
e
(
siP, sj(ruvcP)

))
.

Note that SHK(IDi, IDj) = H3

(
e
(
siP, sj(ruvcP)

))
is always one of the correct

responses disregarding of whether any previous extractions are done on IDi and
IDj or not. However, if a Reveal query on an identity pair is made before the
Extract query on either of them, then B first makes Extract queries on them and
updates all the relevant tables to maintain consistency and correctness among its
responses.

All reveal queries are defined while maintaining consistency and correctness with
previous extract and reveal queries.

• Test query: A2 makes a single Test query on a pair of identities (say, IDx and
IDy). B first finds the values of sx and sy from the corresponding entries of IDx

and IDy in the H1-table and then for the parent pair of the target identities, say
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(ID f , IDg), it finds the entry ((ID f , IDg), r f g) in the SK-table. B uses sxP + aP
as the H1 hash for IDx and syP + aP as H1 hash for IDy and responds with
SHK(IDx, IDy) = H3

(
Qr f g · e(P, cP)r f gsxsy · e(aP, cP)r f g(sx+sy)

)
.

In the end, A2 outputs a guess bit δ′ ∈ {0, 1}.

Note that if δ = 1 i.e., the S-DBDH instance really contained e(P, P)a2c as Q, then

H3
(
Qr f g · e(P, cP)r f gsxsy · e(aP, cP)r f g(sx+sy)

)
= H3

(
e(P, P)a2cr f g · e(P, P)cr f gsxsy · e(P, P)acr f g(sx+sy)

)
= H3

(
e(P, P)cr f g(a2+sxsy+a(sx+sy))

)
= H3

(
e
(
(sx + a)P, r f gc(sy + a)P

))
= H3

(
e
(
(sxP + aP), r f gc(syP + aP)

))
= SHK(IDx, IDy).

i.e., here Q corresponds to the real shared secret key between the challenge identities.

On the other hand, if Q = e(P, P)r, for some random r ∈ Z∗
q , then the test query

response by B is a random element from Z∗
q which corresponds to δ′ = δ = 0.

In other words, B’s response is correct whenever A2’s response is correct, which means
the advantage of B against S-DBDH problem is same as the advantage of A2 against
the β-BSOK-KWT protocol. Formally, if the advantage of A2 against β-BSOK-KWT
protocol is Advβ-BSOK-KWT, then the advantage AdvS-DBDH for B against S-DBDH
problem can be given as:

AdvS-DBDH = Advβ-BSOK-KWT.

If Advβ-BSOK-KWT is non-negligible, then we can see that AdvS-DBDH is also non-
negligible which contradicts the hardness assumption of S-DBDH problem. Hence,
Advβ-BSOK-KWT must be negligible. □

4.3.3 Pros and Cons of using Katz-Wang Technique

We can notice that degradation in the security reduction of β-BSOK differs from
β-BSOK-KWT by a factor of e2q2

E. The number of extract queries (qE) is normally con-
sidered around 230 and therefore the degradation is ≈ 263. This means if there exists an
adversary against S-DBDH problem with an advantage of 2−64 then it can be used to

67



create an adversary with an advantage ≈ 1/2 against β-BSOK protocol. This implies β-
BSOK is not secure under such group settings (the security parameter) and to improve
this we need to increase the size of underlying public parameters. In other words, to
achieve a certain level of security, we need to compromise the efficiency of the protocol.
On the other hand, in β-BSOK-KWT, we get the tightest reduction, i.e. for the same
adversary against S-DBDH problem with an advantage of 2−64, we can construct an ad-
versary with at most advantage of 2−64 (i.e. 64-bit security assurance) for β-BSOK-KWT.

It is clear that Katz-Wang technique helps to improve the efficiency of β-BSOK. However,
this benefit comes with the price of double key-storage requirement in non-leaf nodes.
Here we also need to do one extra computation and one extra communication to
compute and confirm the final shared-secret key between any two involved parties.
Still this is a one-time cost and after this confirmation of the shared-key (which can
be done by sending and verifying the hash of computed pairs of shared-keys) both
parties can directly use the final shared-key for their future communications.

4.4 Summary

In this chapter, we have proposed α-BSOK; a key exchange protocol which is fully re-
silient, identity-based, non-interactive and decentralized. We have also proved that α-BSOK
is secure under H-IND-SK model. We have defined β-BSOK as a modified version
of α-BSOK to avoid hierarchical key-escrow. We have also showed that Katz-Wang
technique can be used over β-BSOK to give a tighter reduction. Thus, we can argue that
α-BSOK (including its variants) can be a perfect solution for H-ID-NIKE in MANETs.

In upcoming chapters, we will analyze implementation and simulation data of α-BSOK
and will do a comparative analysis with HHKAS and other related protocols for
efficiency comparison.
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Chapter 5

Comparative Analysis

In this chapter, we present a comparative analysis of α-BSOK with HHKAS and other
related protocols. From this analysis, we can conclude that α-BSOK performs better in
both time and storage requirements among existing H-ID-NIKE protocols.

5.1 Prototype Implementation

Implementation of α-BSOK is done in Python. Akinyele et al. introduced a free Python
language library known as the Charm-crypto [1] which allows elliptic curve arithmetic
and pairing computation for implementation of pairing-based cryptographic protocols.
We have used Charm-crypto over ‘SS512’ pairing (commonly known as Type A pairing
which was introduced by Lynn in his Ph.D. thesis [21]) to implement α-BSOK and
to analyze its requirements of storage and time. We have also implemented HHKAS
over the same security parameters and system configurations to do a fair efficiency
comparison between α-BSOK and HHKAS. ‘SS512’ pairing is a symmetric pairing
e : G × G → GT constructed on the elliptic curve y2 = x3 + x over the field Fq for some
prime q = 3 mod 4. Here G is the group of points E(Fq) and GT is a subgroup of Fq2 .
The test machine which we used had the following system configuration:

Parameter Value Parameter Value
Vendor GenuineIntel Cache size (L1, L2, L3), in KB (32, 256, 8192)
Model 58 CPU(s) 8
Model name Intel(R) Core(TM) i7-3770 Core(s)/socket 4
Total Memory (MB) 15800 Architecture 64-bit
VGA Memory (MB) 256+4 Bogomips 6784.85
Max CPU MHz 3400 MHz OS Kubuntu 18.04
Avg CPU MHz 2700 MHz Kernal Linux, 4.15.0-36-generic

Table 5.1 Test machine configuration.
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We have used ‘SHA-256’[22] to compute time for all hashings into Z∗
q whereas

‘SS512’[21] pairing is used to compute time for addition in G, hashing into G and pair-
ing computation into GT. The storage and time requirements for these computations
are shown in the Table 5.2.

Characteristics of Elliptic Curves Experimental Results
(Used in implementation) (Python-3.6.x ,Charm-0.50)

Bitlength of an element in G 128 B
Bitlength of an element in GT 128 B
Bitlength of an element in Zq 20 B

Time taken by an addition in G 0.008 ms
Time taken by a hashing into G (H1) 2.74 ms

Time taken by a pairing to GT 0.97 ms
Time taken by a hashing into Zq (h) 0.05 ms

Time taken by a hashing into Zq (H2, H3) 0.14 ms
Time taken by a group element serialization 0.05 ms

Table 5.2 Requirements for operations in ‘SS512’ pairing.

In HHKAS, ith level threshold ti is defined as 2xi − 1 for some xi ∈ N+ and to make it
equally resilient to α-BSOK, we need to put ti = Ni − 2 (i.e. full resilience) where Ni

represents number of nodes in ith level. This way we can obtain a special collection H
of hierarchies to do a fair comparison between HHKAS and α-BSOK. We can notice
that in all these hierarchies, Ni = 2xi + 1 for some xi ∈ N+.

For all type of analysis below, we have used binary hierarchies up to 5 levels from the
collection H with xi = (2 + i) i.e the number of nodes in corresponding levels (if exist)
are defined as N1 = 9, N2 = 17, N3 = 33, N4 = 65 and N5 = 129. A complete image of
this tree structure is shown in the Appendix A.

5.2 HHKAS vs α-BSOK

Efficiency comparison between HHKAS and α-BSOK is presented in the following
subsections. The same tree structure is used in HHKAS and α-BSOK’s implementation
and all factors are analyzed over the same machine with same security parameters
therefore the comparison of these data is invariant of platform.
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5.2.1 HHKAS vs α-BSOK: Key-Storage

Data in Table 5.3 shows that in comparison to HHKAS, α-BSOK requires very less
amount of storage to store the secret keys for nodes in the hierarchy. Here we can infer
that in HHKAS, key-storage of a node at any fixed level is exponentially dependant on
the length of the hierarchy and drastically increases with the number of levels whereas
for α-BSOK key-storage at any fixed level increases by a constant factor C = bℓ−1 − 1
(here bℓ−1 is the branching factor at level ℓ− 1) with an increase in the number of levels.
In this hierarchy C = 1. Also, for a fixed hierarchy, α-BSOK key-storage remains same
from first level nodes to leaves. This property can be useful in a network containing
identical devices for all level nodes.

Hierarchical depth → 2 3 4 5
Node at level ↓ α-BSOK HHKAS α-BSOK HHKAS α-BSOK HHKAS α-BSOK HHKAS

0 (Root) 252 B 64.9 KB 252 B 42.85 MB 252 B 123.2 GB 252 B Impractical
1 0.98 KB 10.5 KB 2.6 KB 7.5 MB 5.6 KB 19.8 GB 11.7 KB Impractical
2 0.84 KB 41.7 KB 2.4 KB 485 KB 5.5 KB 1.26 GB 11.5 KB Impractical
3 ×1 × 2.4 KB 1.74 MB 5.5 KB 36.78 MB 11.5 KB Impractical
4 × × × × 5.5 KB 145.09 MB 11.5 KB Impractical
5 × × × × × × 11.5 KB Impractical

Table 5.3 HHKAS vs α-BSOK: Node Key-Storage requirements for different levelled
hierarchies.

5.2.2 HHKAS vs α-BSOK: Key-Generation Time

Similar to key-storage, data in Table 5.4 shows that in comparison to HHKAS, at
any parent level, a node in α-BSOK requires very less time to generate keys for its
child nodes. We can also infer that in HHKAS, key-generation time for a node at any
fixed level is exponentially dependant on the length of the hierarchy and drastically
increases with the number of levels whereas for α-BSOK key-generation time at any
fixed level increases by the same constant factor C(= 1) defined in the last subsection.
Also, for a fixed hierarchy, α-BSOK key-generation time is almost same from first level
nodes to leaves whereas in HHKAS key-generation time requirements for first level
nodes and for leaves is very high. In fact, HHKAS becomes impractical for moderate
hierarchies containing 5 or more levels.

1‘×’ means such node and level doesn’t exist in the corresponding hierarchy.
In Table 5.3, red (respectively blue) entry represents the maximum (respectively the minimum)

storage requirements for a node in the network.
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Hierarchical depth → 2 3 4 5
Node at level ↓ α-BSOK HHKAS α-BSOK HHKAS α-BSOK HHKAS α-BSOK HHKAS

0 (Root) 0.0002 Sec 0.0036 Sec 0.0002 Sec 2.7251 Sec 0.0002 Sec 1.69 Hours 0.0002 Sec Memory Error
1 0.0083 Sec 0.0103 Sec 0.0768 Sec 6.6453 Sec 0.2118 Sec 5.48 Hours 0.4759 Sec Memory Error
2 0.0067 Sec 1.2360 Sec 0.0821 Sec 0.8385 Sec 0.2173 Sec 40.3 Min 0.4763 Sec Memory Error
3 × × 0.1071 Sec 53.3623 Sec 0.2450 Sec 2.42 Min 0.5074 Sec Memory Error
4 × × × × 0.2478 Sec 1.21 Hours 0.5197 Sec Memory Error
5 × × × × × × 0.5235 Sec Memory Error

Table 5.4 HHKAS vs α-BSOK: Node Key-Generation Time requirements for different
levelled hierarchies.

5.2.3 HHKAS vs α-BSOK: Shared-Key Computation Time

Table 5.5 represents shared-key computation times taken by different type of node
pairs for different levelled hierarchies under the two H-ID-NIKE protocols, HHKAS
and α-BSOK.
We can clearly see that with α-BSOK, a leaf level node requires comparatively very less
time to compute the shared-key with any other leaf node in the network.

Hierarchical depth Type of shared-key α-BSOK HHKAS
Leaves Intra-level 0.0040 Sec 7.08 Sec

3 Non-leaves Intra-level (max) 0.0040 Sec –2

Inter-level (max) 0.0041 Sec –
Leaves Intra-level 0.0040 Sec 9.81 Hours

4 Non-leaves Intra-level (max) 0.0040 Sec –
Inter-level (max) 0.0043 Sec –
Leaves Intra-level 0.0040 Sec Memory Error

5 Non-leaves Intra-level (max) 0.0040 Sec –
Inter-level (max) 0.0046 Sec –

Table 5.5 HHKAS vs α-BSOK: Shared-Key Computation Time for different levelled
hierarchies.

Additionally, α-BSOK also supports non-leaves intra-level and all type of inter-level
communications. Time requirements for these multi-level shared-key computations
in the 5-levelled hierarchy (see Appendix A) are shown in the Table 5.6. Here we can
notice that similar to leaf intra-level, all of the non-leaf intra level and inter-level time
requirements are very less and feasible.

In Table 5.4, red (respectively blue) entry represents the maximum (respectively the minimum) time
requirements to generate secret-keys for a node in the network.

2‘–’ means such shared-key computation in HHKAS is either not possible or not shown to be secure
under their presented security model [16].
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Node j at level → 1 2 3 4 5
Node i at level ↓ (in Sec) (in Sec) (in Sec) (in Sec) (in Sec)

1 0.0002 0.0041 0.0041 0.0040 0.0041
2 0.0036 0.0036 0.0041 0.0041 0.0041
3 0.0041 0.0041 0.0040 0.0041 0.0041
4 0.0041 0.0043 0.0041 0.0040 0.0041
5 0.0040 0.0043 0.0046 0.0041 0.0040

Table 5.6 Shared-Key Computation Time on different levels in the 5-levelled hierarchy.

5.3 MANET Simulation: Data and Analysis

The primitive parameters for efficiency comparison between two key exchange proto-
cols include key generation time, key storage, shared key computation time and key
distribution time. In the Section 5.2, we have done an efficiency analysis of α-BSOK for
the first three of four parameters mentioned above. Although the fourth parameter can
be eliminated by distributing the keys off-line, there are still many applications such
as new node admission or node updation where we need to refresh the keys in the
field to ensure the security and connectivity of the network. To analyze likelihood of
our protocol in such a MANET scenario, we have done a simulation of α-BSOK using
the network simulatior NS-2 [17]. In this section, we present our MANET model and
simulation data to analyze key distribution (or refreshment) timings for α-BSOK.

5.3.1 Model
We have defined a general deterministic model for node movement as shown below in
Figure 5.1 to mimic the underlying real scenarios. On top of that, we have used the
following network parameters which is close to the general MANET configurations.

Parameter Value Parameter Value
Channel type Wireless FTP max flow 256 packets

Radio-propagation model Two-Ray Ground FTP window size 50 packets
Network interface type Wireless Interface max flow 20 packets

MAC type 802 11 Routing protocols DSR, None
Interface queue type CMUPriQueue, DropTail Data packet size (main) 512 bytes

Bandwidth 0.25 M/s Data packet size (with header) 572 bytes
Frequency 0.4 GHz Antenna, gain (T, R) Omni Antenna, (1, 1)

Internet protocol FTP over TCP Wireless system loss factor 0.1
TCP window size 20 packets Mobile nodes Allowed

Node communication range 250 meter Simulation topology (698,500) ∼ 0.35 km2

Simulation time 60 Sec Network size 16 nodes

Table 5.7 Mobile Ad-hoc Network configuration.
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Fig. 5.1 Nodes’ mobility model with their hierarchical positions

In this model, we have used a small tactical MANET over three levelled hierarchy.
Here a stable central authority is fixed in the center of the MANET deployed region
whereas remaining nodes are mobile as shown in the Figure 5.1. Here mobility of the
nodes is represented by the curly arrows and rectangular box represents groups with
same mobility. Note that in this model, each color represents a 2-levelled subtree of the
main hierarchy and mobility is defined in the shown ways just to cover the following
possibilities of the real scenarios.

1. After receiving its own keys, a second level node can generate and distribute the
new child keys to its children (leaves).

2. Leaf nodes are required to be in the range of their parent or the central authority
to receive the new keys.

3. A child node who is out of the range of its parent, can receive its keys whenever
it will come in the range of its parent or the central authority.

4. Since these nodes are mobile, some of them may stay in the range for very small
time and therefore they have to receive their new keys in the given time only.

5. No node is allowed to receive keys of other nodes.
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The set of new keys is transferred to the corresponding node using “data packets” over
the specified internet protocol suite. An internet protocol suite is a collection of four
layers. They are defined as application layer, transport layer, internet layer and link
layer. We are using the internet protocol suite containing layers as File Transfer Protocol
(FTP), Transmission Control Protocol (TCP), Internet Protocol (IP) and Medium Access
Control (MAC-802 11) respectively.

Data packet - When a file is sent from one place to another on a network, the Transmis-
sion Control Protocol (TCP) layer divides the file into packets. Each of these packets is
labelled along with an address of their destination. These labelled packets are called
data packets. Such packets can follow different paths to reach their destination and
once they all arrive to the other end, TCP reassembles them back into the original file.

Routing protocol - A routing protocol is used to determine optimal data transfer by
defining specific communication paths between nodes of the network. It uses routing
algorithms and distributing information which helps it to select optimized routes
between any two nodes on a network. Ad-hoc On-Demand Vector Routing (AODV),
Dynamic Source Routing (DSR) and Destination-Sequenced Distance-Vector Routing
(DSDV) are some examples of MANET routing protocols. DSR uses a route-table of
the source node to create new routes (when needed) for transmission of packets. For
lower mobility models, DSR performs better than other routing protocols therefore we
have used DSR as the routing protocol for our simulation.

5.3.2 Simulation Data

For this simulation, scripts are written using TCL (to generate trace files), Perl (to
extract relevant data from the trace files) and Python (to organize data and plot graphs).
The simulation is done using the network simulator NS-2 [17]. This simulation ran for
60 seconds with DSR routing protocol and returned the following data as shown in
the Figure 5.2 and Table 5.8.
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Fig. 5.2 HHKAS vs α-BSOK; Key distribution time with DSR routing.

α-BSOK HHKAS
Reached nodes (out of 15) 15 (all of them) 12

Time elapsed (out of 60 sec) 17.28 41.73

Packets information -
Data packets (∼ 572 bytes) DSR packets (∼ 48 bytes)

Total packets sent: 9295 (only AGT) 868 (only AGT)
Total packets received: 13437 (AGT + RTR) 2146 (AGT + RTR)
Total packets dropped: 126 41

Table 5.8 HHKAS vs α-BSOK (with DSR); Number of nodes which got their complete
keys and the time taken till the last completed node.

In Figure 5.2, we can clearly see that during a key-refreshment, α-BSOK requires less
time to distribute keys in the network than HHKAS. This behaviour can be explained
from the difference of the key set sizes in α-BSOK and HHKAS. In our model, key set
size for a leaf node is 55,040 bytes and 384 bytes for HHKAS and α-BSOK respectively.
A typical packet size in MANET is 512 bytes. That means we need to transfer 108
packets to pass a complete key set to a child with HHKAS whereas with α-BSOK, this
can be done within a single packet transfer.

Another observation which can be inferred from these data is that in the 60 seconds
of the simulation, α-BSOK takes 17.28 seconds to distribute key sets to all 15 nodes
whereas HHKAS takes 41.73 seconds to transfer key sets of only 12 nodes.
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Remark - In our network, data packets contains information about the secret keys of
destination node, therefore, packet routing is not always a good choice.

In 2004, Joerg Widmer proposed a no routing protocol named NOAH [31]. We have
replaced DSR with NOAH in the same simulation to analyze the performance of
α-BSOK with no routing involved. This simulation also ran for 60 seconds with no
routing protocol and returned the following data as shown in the Figure 5.3 and
Table 5.9.

Fig. 5.3 HHKAS vs α-BSOK; Key distribution time without routing.

α-BSOK HHKAS
Reached nodes (out of 15) 15 (all of them) 12

Time elapsed (out of 60 sec) 6.72 45

Packets information -
Data packets (∼ 572 bytes) Routed packets

Total packets sent: 10580 0
Total packets received: 10123 0
Total packets dropped: 422 0

Table 5.9 HHKAS vs α-BSOK (without routing); Number of nodes which got their
complete keys and the time taken till the last completed node.

From Table 5.9, we can notice that when there is no routing, α-BSOK performs even
better. In the 60 seconds of the simulation, α-BSOK takes 6.72 seconds to distribute key
sets to all 15 nodes whereas HHKAS takes 45 seconds to transfer key sets of only 12
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nodes.

In α-BSOK, due to smaller key set sizes, number of packets to be transferred is small per
node and therefore a large number of nodes can get their keys at same time without the
problem of high traffic loads or other issues of general sophisticated communications.
Remarks -

1. The simulation model given in HHKAS [16] uses the fact that during a key-
refreshment, if a parent gets its new keys, it can instantly pass the corresponding
new children-keys to its children and other descendants in range. Which means
their model implicitly assumes that the time taken by a parent to generate
children-keys from its own keys is negligible. But from the data shown in
Table 5.4, we know that with HHKAS a parent requires very large amount of
time to generate keys for its children. Whereas for α-BSOK, the time of key
generation can be considered negligible than the time taken in transferring the
packets. Hence we can say that in comparison to HHKAS, simulation results of
α-BSOK are more reliable and close to the real scenario.

2. Time taken to transfer the packets does not only depend on key exchange protocol
but also depend on network parameters, traffic loads and other factors like total
time a node stays in the range of its ancestors during the key refreshment period.

5.4 α-BSOK vs β-BSOK

In Section 4.2, we have presented a variant of α-BSOK protocol named as β-BSOK to
avoid the key escrow problem. In this section, we present an analytical comparison
between α-BSOK and β-BSOK protocol to list out the pros and cons of β-BSOK protocol.

β-BSOK differs from α-BSOK by an additional component defined as “spy” nodes
which are assumed to be non-malicious and uncompromising. Remember that min-
imum security provided by β-BSOK is always same as α-BSOK (i.e. secure under
H-IND-SK) and if the spy nodes follow the protocol as described then β-BSOK can
provide a stronger security.

From the descriptions of these protocols, we can notice that the key-storage and shared
key computation time requirements of β-BSOK are identical to the corresponding
requirements of α-BSOK because these parameters are invariant of the “spy” nodes.
Whereas the key-generation time increases from α-BSOK to β-BSOK by a very small
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constant i.e., if in an ℓ-levelled hierarchy, a node at Lth level requires Tα time to
generate keys for its (L + 1)th level child using α-BSOK protocol then it will require
Tα + (nℓ−1 · τ) time to generate keys for the same child node using β-BSOK where
τ (∼ 4.7 × 10−7sec) is the time required to do a multiplication in Z∗

q and ni is the total
number of nodes from first level to the ith level of the hierarchy (note that time required
to send and receive keys from a spy node is already counted in communication cost
below and thus is not included in the key generation time). Since key distribution time
depends upon key generation time and key-storage of the corresponding parent-child
pair, therefore, we can say key distribution time of α-BSOK and β-BSOK will also be
almost same.

Only cons so far of the β-BSOK protocol is that it requires additional communications
with fertility carriers to generate remaining keys for a node and to add new children
in the network. However, we would like to emphasize a point in β-BSOK that it is not
necessary to separately communicate for each new node admission i.e., a parent can
ask the corresponding fertility carrier to convert the keys for all of its new children in
a single communication.

5.5 α-BSOK vs Trivial Approach

Using α-BSOK over the Trivial solution has certain gains and losses. In this section, we
describe these pros and cons in details.
Pros :

1. PKG workload - From Section 3.5, we know that in Trivial solution, the root
node is required to generate and store N2

2 (1 − 1
N ) number of keys in its storage

where N represents the total number of nodes in the network. This creates a high
workload on the root node (PKG). Whereas in α-BSOK, the same root node is
required to generate and store only b1 number of keys where b1 represents the
number of nodes in the first level.

2. Flexibility - Trivial solution is not flexible towards a direct node admission i.e., a
parent can not generate valid secret-keys for a new child without the help of its
ancestors (including the PKG). Whereas α-BSOK is flexible in both length wise
and width wise (branching wise) direct admissions of new nodes.

3. Communication cost - In Trivial solution, all secret keys are generated only by
the PKG. That means, an intermediate node can not generate the keys for any of
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its descendants and therefore all the keys of a lower level node are required to be
transferred from PKG to it through all of its ancestors. To exemplify, with Trivial
solution in an ℓ-levelled hierarchy, providing the secret key set of n elements
to a leaf node generally requires ℓn elements to be transferred throughout the
hierarchy. However, in α-BSOK, this can be done with the communication cost of
transferring only the n elements.

Cons :

1. SHK computation time - α-BSOK requires one pairing computation to generate
the shared secret key between a pair of nodes whereas in the Trivial solution,
no such computations are required. Which makes the Trivial solution a good
choice for negligible computing powered devices but if we can bare the cost of
one pairing computation then α-BSOK can be considered as a better option for
H-ID-NIKE.

2. Bit-size of key-storage - Although in terms of keys, the key storage of a node
in α-BSOK is always smaller in comparison to the corresponding key-storage
in the Trivial solution but when it comes to the bit-size of the key storage, we
can not make the same statement always. This is because the bit-size of a key
depends upon the underlying security parameters which differ with protocols.
Note that certain thresholds can be defined to ensure that the “bit-size” of a key
set is smaller in α-BSOK than in the Trivial solution.

For example, in an ℓ-levelled hierarchy, we can define a threshold on the second last
level’s branching factor (B) as follows to ensure that the “bit-size” of a key set is smaller
in α-BSOK in comparison to the Trivial solution -
let us consider K, s and b respectively as the key set of a node, bit-size of a key in the
key set and the minimum branching factor in the hierarchy then we want the following
inequality to hold for all values of N,

min[bit-size{KTrivial}] ≥ max[bit-size{Kα-BSOK}]

=⇒ sT · [N − 1] ≥ max
[

sα ·
{

N
1 + (1 − b−1)B

}]
; b ≥ 2

=⇒ sT · [N − 1] ≥ sα ·
[

N
1 + B/2

]
=⇒ B ≥ 2

[
sα

sT
·
{

N
N − 1

}
− 1
]

. · · · · · · (1)
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We can further simplify this by saying that if N takes moderate to large values then we
can assume that -

N − 1 ≥ sα

sT

=⇒ 2 ≥ 2sα

sT(N − 1)

=⇒ 2sα

sT
≥ 2

[
sα

sT
·
{

N
N − 1

}
− 1
]

.

Hence, in such cases, the following inequality can take care of (1) -

B ≥ 2sα

sT
.

That means, for a given hierarchy, if B satisfies this inequality then we can say that
α-BSOK is a better choice for that hierarchy in terms of key storage also.

5.6 α-BSOK and β-BSOK vs Existing Solutions

Apart from HHKAS, we have also studied and analyzed other existing protocols which
were defined for the fulfillment of the same purpose i.e. key exchange. In Table 5.10,
we present some comparisons of α-BSOK and β-BSOK with these protocols on different
important features including flexibility towards new node admission, computational
efficiency and leaf storage requirement for full resilience. Notations used in Table 5.10
are described as follows :

N - Total number of nodes in the network

NA - Feature not applicable

ℓ - Number of levels in the hierarchy

b - Minimum branching factor up to level
ℓ− 2 with b ≥ 2

b1 - Number of nodes at level 1

B - Branching factor at level ℓ− 1

W - Protocol is flexible with new node ad-
missions at any level of the hierarchy

L - Protocol is flexible with a new level ad-
mission in the hierarchy

e - Euler’s number

✓ - Protocol contains the feature

✗ - Protocol does not contain the feature

LD - A left most descendant of relatively
higher levelled target node.

m - Security parameter required to ensure
(m log2 e)-bit security

h - Hash computation into Z∗
q

a - Addition in Z∗
q

p - Multiplication in Z∗
q

H - Hash computation into G

A - Addition in G

P - Pairing into GT

M - Secure multilinear mapping into some
G′

T with |G′
T | = q

81



Protocols
→

BIO
S[20]

SO
K

[25]
Freire[12]

Pert.poly[29]
H

H
K

A
S[16]

BIO
S-SO

K
[27]

α-BSO
K

β-BSO
K

Trivial

H
ierarchical

✗
✗

✓
✓

✓
✓

✓
✓

✓

ID
-based

✓
✓

✓
✓

✓
✓

✓
✓

✓

N
on-interactive

✓
✓

✓
✓

✓
✓

✓
✓

✓

R
esiliency

Fully
Fully

Fully
t-threshold

t-threshold
LD

-threshold
Fully

Fully
Fully

H
IN

D
SK

-secure
[3.2]

N
A

✓
✓

✗
✗

✗
✓

✓
✓

K
ey-escrow

free
[4.1.3]

✗
✗

✗
✗

✗
✗

✗
✓

✗

Intra-levelS
H
K

[4.1.1]
✓

✓
✓

✓
Leaf-levelonly

✓
✓

✓
✓

Inter-levelS
H
K

[4.1.1]
N

A
N

A
✓

✓
✗

✓
✓

✓
✓

Flexibility
W

W
W

+
L

W
W

W
+

L
W

+
L

W
+

L
✗

M
axim

um
required

1h
1H

1H
2ℓh

+
[ 2ℓ+

tC
2ℓ −

1]a
[ 2mt

(et)
ℓ−

1(1
+

t)
ℓ]h

+
1H

1h
+

1H
1H

1H
N

egligible

shared-key
op

ns
+

1P
+

1M
+
[(

2tℓ
2ℓ+

1 ) 2ℓ+
tC

2ℓ ]p
+
[m

(et)
ℓ−

1]A
+

1P
+
[ℓ−

1]P
+

1P
+

1P

R
oot

key-storage
N

1
1

2ℓ+
tC

2ℓ
m
[et(1

+
t)] ℓ−

1
+

2
log

N
b

1
b

1
b

1
+

1
N

22
(1−

1N
)

K
ey-storage

at
leveli̸=

ℓ
–

–
1

2ℓ−
i+

tC
2ℓ−

i
m
[et(1+

t)] ℓ−
1

(1+
t) i

+
2

log
N

(1+
t) i

<
b12
+ [

N
+

2
(1−

b −
1) −

1+
B ]

i−
1

ℓ−
1

<
N

1+
(1−

b −
1)B

<
N

1+
(1−

b −
1)B

N
2

b i [1−
1

N
(ℓ−

i+
1)/

ℓ ]
Leaf

key-storage
⌈

N2 ⌉
1

1
ℓ+

tC
ℓ

m
(et)

ℓ−
1
+

2
log

N
(1+

t)
ℓ−

1
<

N
+

2
(1−

b −
1) −

1+
B

<
N

1+
(1−

b −
1)B

<
N

1+
(1−

b −
1)B

N
−

1

Leaf
key-sto.for

fullresi. ⌈
N2 ⌉

1
1

>
N

2

4(1+
B
−

1) 2
>

m
e
ℓ−

1 [
N
+

2
(1−

b −
1) −

1+
B ]

ℓ/
2

–
<

N
1+

(1−
b −

1)B
<

N
1+

(1−
b −

1)B
N
−

1

C
om

p.efficiency
M

edium
H

igh
Im

practical
M

edium
Low

M
edium

M
edium

M
edium

M
edium

Table
5.10

α-BSO
K

and
β-BSO

K
vs

Existing
Solutions.

82



From the Table 5.10, we can say that all over α-BSOK (or β-BSOK; depending upon
the application) is the best available choice for key-exchange in resource-constraint
networks.

5.7 Summary

We have presented a comparative analysis of α-BSOK protocol with other existing
protocols. From these implementation data, simulation data and the data presented in
the Table 5.10, we can conclude that α-BSOK is the only available practical protocol
which is flexible and secure under HINDSK model and not only provides the four
functional properties posed by Gennaro et al.[16] but also allows multi-level shared-key
computations.

5.8 Limitations of α-BSOK Protocol

Some of the observed limitations of α-BSOK are described as follows :

1. For an ℓ-levelled hierarchy, the key-storage of a node in α-BSOK is polynomially
dependant upon the branching factors up to level ℓ− 2. In particular, adding a
non-leaf node in the network increases the key storage of each node by one key.
On the other hand, this key storage is invariant of any increase in leaf nodes (i.e.,
the branching factor at level ℓ− 1). Therefore, α-BSOK may perform poorly for
large hierarchies which contain most of its nodes in non-leaf levels. However, we
believe in most of the real life applications such as in military, α-BSOK may be
adequate. This is because usually in such applications branching factors up to
level ℓ− 2 are modest and comparatively small than the branching factor at level
ℓ− 1.

2. Key storage in α-BSOK depends exponentially upon the hierarchical depth. In
particular, the number of keys per node gets multiplied by the branching factor
of the previous second last level as we add a new level in the hierarchy.

Thus α-BSOK can only be a suitable choice for hierarchies with moderate hierarchical
depths and moderate branching factors up to level ℓ− 2.
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Chapter 6

Conclusion

Key exchange is a fundamental functionality for secure communication. Using a key
exchange protocol, any pair of nodes can agree on a shared-key which can be used
to protect their secret communications over insecure channels. Furthermore, in real
life applications such as in military, we also desire the key exchange protocol to be
decentralized, non-interactive, flexible, efficient and fully resilient. Thus a Hierarchical
Identity-based Non-interactive Key Exchange (H-ID-NIKE) with full resilience and
flexible structure can be a perfect solution for such applications.

In this thesis, we have proposed α-BSOK as a H-ID-NIKE protocol which contains all
the properties mentioned above. From the data analysis and comparisons shown in
Chapter 5, we can conclude that α-BSOK is the best available, practical solution for real
life hierarchical networks with moderate depth and branching factors. We also claim
that α-BSOK is the only practical key exchange protocol which not only provides the
four functional properties presented in [16] but also supports multi-level shared-key
computations and new node admissions. The security guarantee of α-BSOK is claimed
with a rigorous proof of security under a more practical and stronger security model
than the existing protocols [27, 16, 12].

Some of the take away open problems from this thesis are described as follows :

1. In α-BSOK, key storage of a node directly depends upon the two parameters
- hierarchical depth and branching factor. Thus it is still an open problem to
construct an H-ID-NIKE protocol which is not only secure and efficient but can
also easily accommodate arbitrary number of levels with no branching limit i.e.,
the storage requirements are independent of either or both of these parameters.
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2. α-BSOK is shown adaptive secure under the random oracle model. However, it is
still an open problem to construct an H-ID-NIKE protocol which can be shown
adaptive secure in the standard model i.e., without assuming the existence of
random oracle (see Section 2.5.1) .
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Appendix A

Tree Structure

In the Section 5.1, we have defined a class of hierarchies H. Any tree structure from this
class can be used to do a fair efficiency comparison between fully resilient HHKAS and
α-BSOK. For our analysis, We have used a 5-levelled hierarchy H ∈ H. The number of
nodes Ni in the corresponding level i of H is defined as -

N1 = 9, N2 = 17, N3 = 33, N4 = 65 and N5 = 129.

The hierarchical positions of the nodes in H are shown (with labels and ranks) in the
following figure.
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