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Abstract

This project involved the study of Monge-Kantorovich problem of optimally transporting

one distribution of mass to another. A cost is incurred while doing the transportation and

the optimality is measured against this cost function. The properties of solutions when the

solution to optimal transport exist is studied. An application to portfolio theory will be

discussed, which amounts to finding a portfolio strategy, a strategy, which depends only

on the current state of the market, which will give the investor a possibility of unbounded

profit with probability 1. We study the dual version of Monge - Kantorovich problem for

martingale measures which has a natural financial interpretation in terms of hedging options.
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Introduction

Foundation of Optimal mass transportation can be traced back to Gaspard Monge’s famous

paper of 1781:Memoire sur la theorie des d’eblais et des remblais. The problem here is to

minimize the cost of transporting a given distribution of mass from one location to another

both having the same volume. Since then it has become a classical subject in the field of

probability theory, economics and optimization. Following the seminal discoveries of Bre-

nier in his 1987 paper, optimal transportation has received a much renewed attention in the

last 20 years. It has become an increasingly powerful tool at the interface between partial

differential equations, geometry, fluid dynamics, probability theory and functional analysis.

Optimal Transportation theory has a wide range of important applications. In the context

of machine learning/signal processing, one often has to deal with collections of samples that

can be interpreted as probability distributions and Optimal transport is a perfect tool to

compare empirical probability distributions. It appears that Optimal Transport seems to be

an approach with a long mathematical tradition and with a rich enough set of mathematical

tools that may have an outsized impact on future deep learning theoretical work.

The standard approach in the pricing of options, the price of a contingent claim is cal-

culated using a postulated model as a suitably discounted, risk neutral expectation of the

payoff under that model. In practice we can observe the traded option prices, but know little

about the underlying model. If we know single price we can calculate the volatility using the

Black-Scholes model. But if we know the prices of multiple call options together, then they

will typically be inconsistent with the Black Scholes model. On the other hand, if we know

the vanilla option prices, for all strikes and maturities, then we can find a unique martingale

diffusion consistent with all those prices. A rather unconventional way of finance based pric-

ing has come up in the recent years, stream of model-free finance. The research attempts

1



to investigate prices that are consistent in the presence of arbitrage given the current prices

of traded options on the same underlying. The option bounds are obtained using methods

based on Skorokhod embedding [3] and the theory of optimal transport [9]. The motivation

of this project was to understand model free finance using optimal transportation theory.

The project started with the study of probability theory and then shifted focus on learning

Optimal transportation theory [9] and eventually moved on to study of geometric ideas

in probability theory. The interplay between portfolio theory and optimal transport was

explored in [4]. As an application of optimal transport, in [5] we studied how only finite

number of traded option prices as data input can be used to obtain model independent

option bounds using the duality theory for martingale measures.
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Chapter 1

Preliminaries

1.1 Polish Space

Polish spaces are complete separable metric spaces. More precisely, (X , d) is said to be a

Polish space if (X , d) is complete metric space and it has a countable dense subset.

1.2 Couplings

• Couplings

Definition 1.2.1. Let (X , µ) and Y , ν) be two probability spaces. A coupling measure

π is a probability measure on Z = X × Y such that π admits marginals µ and ν on X
and Y, respectively. Following ways to state this equivalent condition:

1. (ProjX )#π = µ, (ProjY)#π = ν; where ProjX and ProjY are the projection maps

(x, y)→ x and (x, y)→ y, respectively

2. For all measurable A ⊂ X , B ⊂ Y we have, π[A×Y ] = µ[A] and π[X ×B] = ν[B]

3. For all integrable measurbale functions φ, ψ on X ,Y,∫
X×Y

(φ(x) + ψ(y))dπ(x, y) =

∫
X
φ(x)dµ +

∫
Y
ψ(y)dν.
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The space of coupling measures of (µ, ν) is denoted by Π(µ.ν).

Remark 1.2.1. Couplings always exist, there is always at least a trivial coupling i.e;

π = µ× ν.

• Deterministic coupling

Definition 1.2.2. A coupling (X, Y ) is said to be deterministic if there exists a mea-

surable function T : X → Y such that Y = T (X) and (X, Y ) is a coipling of (µ, ν). To

say that (X, Y ) is a coupling of µ and ν it is equivalent to saying any of the following:

1. X has law µ and Y = T (X), where T#µ = ν.

2. X has law µ and Y = T (X), where T is a change of variables from µ to ν : for

all ν− integrable function φ,∫
Y
φ(y)dν(y) =

∫
X
φ(T (x))dµ(x);

3. π = (id, T )#µ

• Wasserstein Distance

Definition 1.2.3. Let (X , d) be a Polish metric space, and 1 ≤ p < ∞. For any two

probability measures µ and ν on X, the Wasserstein distance between the probability

measures of the order p is defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

{∫
d(x, y)pdπ(x, y)

} 1
p . (1.1)

• Wasserstein Space

Definition 1.2.4. The Wasserstein Space of order p ≥ 1 is defined as

Pp(X ) := {µ ∈ P (X );

∫
X
d(x0, x)pµ(dx) < +∞}, (1.2)

where x0 ∈ X is arbitrary. It is easy to see that the space is independent of the choice

of x0. Wp defines a distance on Pp(X ).
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1.3 Push forward maps

For a Borel measurable map T : X → Y , we define its corresponding push forward operator

T# : P (X )→ P (Y). In particular, for µ ∈ P (X ) we have

T#µ(B) = µ(T−1(B)), for all Borel setB ⊂ Y .

For discrete measures, push forward operations consists of simply moving the positions of

all the points in the support of the measures i.e. given α =
∑

i aiδxi we get

T#α :=
∑
i

aiδT (xi).

For more general measures, with density functions, the push forward measures is defined as

follows. For T : X → Y , the push-forward measure β = T#α ∈ P (Y) of some α ∈ P (X )

satisfies

∀h ∈ Cb(Y),

∫
Y

h(y)dβ(y) =

∫
X

h(T (x))dα(x),

where Cb denotes the collection of all bounded continuous functions. Equivalently, for any

measurable set B ⊂ Y, one has

β(B) = α({x ∈ X : T (x) ∈ B}) = α(T−1(B)).

Intuitively, the measurable map T : X → Y can be interpreted as a function moving a single

point from a measurable space to another. T# is an extension of T that can move the entire

probability measure on X toward a new probability measure on Y .

1.4 Transport Plans

Transport plan is a probability measure π(µ, ν) which is in Π(µ, ν), Where µ, ν are the

probability measures we are interested in transporting.
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1.5 Tools from convex analysis

1. (Convex functions.) Consider a function f : I → R, where I is an interval in R. We

say that the function f is a convex function if, for any points x and y in I and any

t ∈ [0, 1] we have,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

2. (Jensen’s inequality.) If f(x) is a convex function and X is a random variable then,

we have,

f(E[X]) 6 E[f(X)].

3. (c-concave functions.) Given a function φ : X → R ∪ {−∞} and a lower semi-

continuous cost function c : X × Y → [0,∞], ψ is called a c-concave on Y , if

ψ(y) = inf
x∈X

(c(x, y)− φ(x))

for y ∈ Y . Let φ : X → R ∪ {−∞} be a function not identical to −∞, then

φc(y) = inf
x∈X

(c(x, y)− φ(x))

is called a c-transform of φ, which is a c-concave on Y . We have that φ is a c-concave

function on X , if and only if φ = φcc. The c-superdifferential of ∂cφ ⊂ X × Y of a

c-concave function φ is defined as the set of all pairs (x, y) ∈ X × Y such that for all

z ∈ X
φ(z) 6 φ(x) + (c(z, y)− c(x, y)).

4. (C-monotone set.) A set Γ ⊂ X×Y is a c-monotone if and only if there is a c-concave

function φ such that Γ ⊂ ∂cφ.

1.6 Tools for portfolio theory

Definition 1.6.1. (Bregman Divergence) Given a convex function Ψ(x) defined on a convex

set Ω, we have

Ψ(u) +∇Ψ(u) · (u− v) > Ψ(v), (u, v) ∈ Ω. (1.3)

6



The difference assigns a non negative number (positive number if Ψ is strictly convex) to the

pair (u, v). Bregman divergence is like a metric but it satisfies neither the symmetry nor the

triangle inequality to be as a certified metric. The Bregman diverence associated with the

function Ψ(x) defined on the convex set Ω is given by:

BD(u, v) = Ψ(u) − Ψ(v) − 〈∇Ψ(v), u− v〉; u, v ∈ Ω. (1.4)

Kulback Leibler Divergence

When log function is used in Bregman divergence we get the kullback Leibler diver-

gence. It is also used as a notion for ”distance” between two probability distributions.

The Kullback Leibler divergence between two probability density f and g is given by:

KL(f ||g) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx (1.5)

The relative entropy is also known as Kullback Leibler divergence

Definition 1.6.2. (Exponentially concave functions). A function φ is called an exponentially

concave function if eφ is a concave function.

Definition 1.6.3. (l- divergence). A l− divergence of an exponentially concave function ψ

defined on a convex set ω is given as follows:

T (u|v) = log(1 + ψ(v) · (u− v))− (ψ(u)− ψ(v)) . . . u, v ∈ ω (1.6)

Definition 1.6.4. (Unit Simplex(∆n)). For n ≥ 2 we define the open unit simplex ∆n in

Rn by

∆n := {p = (p1, . . . , pn) ∈ (0, 1)n : p1 + · · ·+ pn = 1} (1.7)

The closure of ∆n is denoted by ∆n

Definition 1.6.5. (Relative Entropy).The relative entropy is the function H(· | ·) on ∆n×∆n

defined by

H(p | q) =
n∑
i=1

pi log
pi
qi
, p, q ∈ ∆n (1.8)

Definition 1.6.6. (Excess growth rate). Let π ∈ ∆n be fixed. We define the functional
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Tπ(·|·) on ∆×∆ by

Tπ(q|p) = log

( n∑
i=1

πi
qi
pi

)
−

n∑
i=1

πi log
qi
pi
, p, q ∈ ∆n (1.9)

1.7 Probability Theory

1.7.1 Conditional Expectation with respect to a sub σ-algebra

On a general probability space (Ω,F ,P), the conditional probability of an event B ∈ F
occurring given that an event A ∈ F has already occurred is defined by P (B | A) = P (A∩B)

P (A)

as long as P (A) 6= 0. For a fixed A, P (· | A) is the probability measure on (Ω,F) and that

P (A | A) = 1. Following this, if X is an random variable, the conditional expectation of X

given A is given by: ∫
Ω

XdP (· | A) = E[X | A].

Generalizing, to allow conditioning on an arbitrary σ− algebra G ⊂ F . Let (Ω,F ,P) be

a probability space. Suppose X is a real valued integrable random variable defined on

the probability space, then the conditional expectation of X given G is a G- measurable,

integrable random variable Y such that, for all A ∈ G

E[IAX] =

∫
A

XdP =

∫
A

Y dP = E[IAY ].

Y is denoted by E[X|G].

1.7.2 Properties of conditional expectation

1. For G ⊆ F , the conditional expectation E[X | G] exists for all X ∈ L1(Ω), and is

unique up to a set of probability zero.

2. (Linearity.) Suppose X and Y are integrable random variables, and α, β, γ ∈ R are

constants. Then

E[αA+ βY + γ|G] = αE[X|G] + βE[Y |G] + γ, a.s.
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3. Suppose X and Y are integrable random variables and X 6 Y a.s. then,

E[X|G] 6 E[Y |G] .

4. (Dominated/Monotone Convergence.) Suppose {Xn}n∈N is a sequence of inte-

grable random variables which converge almost surely to an integrable random variable

X. If either there exists a non-negative random variable Y with |Xn| 6 Y , or Xn is a

monotone increasing, or Xn is a monotone decreasing, then

E[X|G] = lim
n
E[Xn|G] a.s.

5. (Tower Property.) Suppose G1 and G2 are sub σ− algebras of F such that G2 ⊆ G1 ⊆
F . Then, for any integrable random variable X,

E [E[X|G1|G2]] = E[X|G2] a.s.

6. (Taking out the known.) Suppose X is an integrable random variable and Y an G−
measurable random variable, such that the productXY is integrable. Then E[XY |G] =

Y E[X|G] a.s.

1.7.3 Martingales

Definition 1.7.1. A real valued stochastic process {Xn} is called a super-martingale with

respect to the {Fn}n∈T where T = {0, 1, 2, 3, ...}, if,

1. each Xn is Fn measurable, i.e. {Xn}n∈T is adapted to {Fn}n∈T,

2. E[|Xn|] <∞, for all n ∈ T, and

3. Xn > E[Xm|Fn] almost surely, for all m > n,

When we replace ”>” in property (c) with ”6”, then X is called a submartingale. If the

sequence X is both a submartingale and a supermartingale, then it is called a martingale.

9
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Chapter 2

Optimal transport problem and

Kantorovich Duality

Like many other areas in mathematics the field of optimal transport was born several times.

In the eighteenth century, the geometer Gaspard Monge was the progenitor to formalize the

mass transport problem; and long later it was rediscovered by Leonoid Kantorovich. The

formalization of the transport problems are as follows:

2.1 Monge- Kantorovich formulation of Transport Prob-

lem

• Monge Formulation of optimal transport

Consider you have to extract a certain amount of sand from the ground and this sand is

to be transported to different places wherein it is to be incorporated in a construction.

The places where the sand is to be extracted from and the places where it is to be

transported to are known a priori. The assignment of certain extracted mass of soil

from the place of extraction to the place of construction is to be determined. The

assignment problem matters because the transportation of mass of sand from the place

of extraction to the place of construction is costly. Monge assumed that the cost of

transportation of a unit mass was given by the product of mass by a certain distance.

Also, the sand extracted from one site can be supplied to only one construction site.

11



There is no splitting of sand dug from one site. This makes the assignment a bijection

map between the extraction and construction sites. Let the sites of extraction be

modelled by µ and the sites of construction be modelled by ν. Let c(x, y) be the cost

function such that the cost of transportation for a particle of sand extracted from x to

the site of construction y. The Monge’s problem can be written as follows:

Minimize I[T ] =

∫
X
c(x, T (x))dµ(x) (2.1)

over the set of all measurable maps T such that T# µ = ν

• Kantorovich formulation of optimal transport

Long later Monge’s problem was rediscovered by a Russian mathematicain Leonoid

Kantorovich. Knatorovich made some changes to the restrictions of Monge’s formu-

lation. He stated that sand dug from one site can be supplied to more than one

construcion sites and similarly, one construction site can import sand from multiple

sites of extraction. Instead of optimizing on transport maps, Kantorovich proposed to

optimize over couplings of measures. Mathematically, it can written as:

Minimize I[π] =

∫
X×Y

c(x, y) dπ(x, y) for π ∈ Π(µ, ν) (2.2)

Kantorovich stated and proved, by means of functional analytical tools, a duality the-

orem which plays a crucial role in the problem of optimal coupling. He also devised

a convenient notion of distance between probability measures should be the optimal

transport cost from one measure to the other if the cost is chosen as distance function.

This distance is now-a-days called the Kantorovich - Rubinstein distance. Its was after

many years that Kantorovich made connections to Monge’s work and now the problem

of optimal coupling is jointly called Monge-Kantorovich problem

2.2 Kantorovich Duality

Theorem 2.2.1. Let X and Y be Polish spaces, let µ ∈ P (X ) and ν ∈ P (Y) and let

c : X × Y → [0,∞] be a lower semi-continuous cost function. Whenever µ ∈ P (X ) and

12



ν ∈ P (Y) and (φ, ψ) ∈ L1(dµ)× L1(dν), define

I[π] =

∫
X×Y

c(x, y) dπ(x, y), J(φ, ψ) =

∫
X
φ dµ+

∫
Y
ψ dν. (2.3)

Define Π(µ, ν) to be the set of all Borel probability measures π on X × Y such that for all

measurable sets A ⊂ X and B ⊂ Y ,

π[A× Y ] = µ[A], π[X ×B] = ν[B],

and define Φc to be the set of all measurable functions (φ.ψ) ∈ L1d(µ)× L1(dν) satisfying

φ(x) + ψ(y) 6 c(x, y)

for dµ-almost all x ∈ X, dν- almost all y ∈ Y.
Then,

inf
Π(µ,ν)

I[π] = sup
Φc

J(φ, ψ) (2.4)

Sketch of proof: The idea is to rewrite the constrained infimum problem as an infsup

problem and then apply minimax principle to exchange the two i.e, replacing a ”infsup” by

a ”supinf”.

We begin by writing the indicator function of Π as follows:

inf
π∈Π(µ,ν)

I[π] = inf
M+(X×Y)

(
I[π] +

{
0 if π ∈ Π(µ, ν)

+∞ else

)
, (2.5)

Where M+(X × Y) denotes the space of non-negative Borel measures on X × Y . Now,{
0 if π ∈ Π(µ, ν)

+∞ else

}
= sup

(φ,ψ)

[∫
X
φ(x)dµ+

∫
Y
ψ(y)dν −

∫
X×Y

[φ(x) + ψ(y)]dπ(x, y)

]
(2.6)

where the supremum runs over all (φ, ψ) ∈ Cb × Cb. Using this, we write the left hand side

of the equation (2.4) as

= inf
π∈M+(X×Y)

sup
(φ,ψ)

{∫
X×Y

c(x, y)dπ +

∫
X
φ(x)dµ+

∫
Y
ψ(y)dν −

∫
X×Y

[φ(x) + ψ(y)]dπ(x, y)

}
(2.7)

13



Taking for granted that we can apply the minimax principle.

= sup
φ,ψ

inf
π∈M+(X×Y)

{∫
X×Y

c(x, y)dπ +

∫
X
φ(x)dµ+

∫
Y
ψ(y)dν −

∫
X×Y

[φ(x) + ψ(y)]dπ(x, y)

}
(2.8)

Taking the infimum inside the brackets and rearranging the terms,

= sup
(φ,ψ)

{∫
X
φ(x)dµ+

∫
Y
ψ(y)dν − sup

π∈M+(X×Y)

∫
X×Y

[φ(x) + ψ(y)− c(x, y)]dπ(x, y)

}
(2.9)

Let us compute the supremum inside the curly brackets. The function ζ(x, y) = φ(x) +

ψ(y)− c(x, y) takes a positive value at some point (x0, y0). Then by choosing, π = λδ(x0,y0)

and letting λ→∞ we see the supremum is infinite. On the other hand, if ζ is non-positive,

(dµ⊗ dν -everywhere), the supremum is clearly obtained for π = 0. Thus,

sup
π∈M+(X×Y)

∫
X×Y

[φ(x) + ψ(y)− c(x, y)]dπ(x, y) =

{
0 if (φ, ψ) ∈ Φc

+∞ else

}
(2.10)

Plugging this into equation (2.9), we obtain,

(2.9) = sup
(φ,ψ)∈Φc

J(φ, ψ)

as desired.

Remark 2.2.1. It follows that when c is bounded, one can restrict the supremum of the right

hand side of 2.4 to those pairs (φcc, φc) where φ is bounded and,

φc(y) = infx∈X [c(x, y)− φ(x)] φcc(x) = inf
y∈Y

[c(x, y)− φc(y)] (2.11)

It is easy to show that (φcc)c = φc. The pair (φcc, φc) is called the pair of conjugate c-concave

functions. φc is measurable as it can be written as liml→∞ ψl where ψl

φl(y) = inf
x∈X

[c(x, y)− φ(x)]

where cl is an increasing family of uniformly bounded functions converging pointwise to c

14



2.3 Optimal Transportation theorem for quadratic cost

function

Let X = Y = Rn and let the cost function be the square of the Euclidean norm. We take

the cost function to be c(x, y) = |x−y|2
2

. So the cost function will be:

I[π] =

∫
Rn×Rn

|x− y|2

2
dπ(x, y) (2.12)

Let µ and ν be probability measures on Rn, both having finite second order moments, in the

following sense

M =

∫
Rn

|x|2

2
dµ(x) +

∫
Rn

|y|2

2
dν(y) <∞. (2.13)

This condition ensures that I[π] is always finite on Π(µ, ν). Next, we formulate the dual

problem with quadratic cost. The condition for (φ, ψ) to belong to Φc is:

φ(x) + ψ(y) ≤ |x− y|
2

2
(2.14)

holding for µ.− almost all x and ν.− almost all y in Rn. We expand the R.H.S of this equation

and rearranging the terms we have,

x · y ≤
(
|x|2

2
− φ(x)

)
+

(
|y|2

2
− ψ(y)

)
(2.15)

We consider the new unknown functions

φ̃(x) =
|x|2

2
− φ(x), ψ̃(y) =

|y|2

2
− ψ(y) (2.16)

We can then express the dual problem in the following manner.

inf
Π(µ,ν)

I[π] = M2 − sup{
∫

(x · y)dπ(x, y); π ∈ Π(µ, ν)} (2.17)

and

sup
Φc

J = M2 − inf{J(φ, ψ); (φ̃, ψ̃) ∈ Φ̃} (2.18)
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where Φ̃ is the set of all pairs φ̃, ψ̃ in L1(dµ)× L1(dν) such that for almost all x, y

x · y ≤ φ̃(x) + ψ̃(y) (2.19)

Then equation 2.4 becomes,

sup

{∫
(x · y)dπ(x, y); π ∈ Π(µ, ν)

}
= inf

{
J(φ, ψ); (φ, ψ) ∈ Φ̃

}
(2.20)

Here we state without proving an important theorem which uses convex conjugate function

in minimizing for the quadratic cost function.

Theorem 2.3.1. Let (µ, ν) be probability measures on Rn, with finite second order moments.

Let φ̃c be defined by equation (2.18). Then there exists a pair of lower semi-continuous

functions (φ, φc) on Rn, such that,

inf
Φ̃c

J = J(φ, φc)

Lemma 1. The minimization problem inf{I[π]; π ∈ (µ, ν)} admits a minimizer.

Proof. First of all, Π(µ, ν) is a non-empty set. Π(µ, ν) is compact for weak topology of

probability measures (topology induced by Cb(Rn × Rn). To show the tightness of the set

Π(µ, ν).(The tightness will imply relative compactness with respect to weak topology). Let

X = Y = Rn, let δ > 0, given a set K ⊂ X , L ⊂ Y such that,

µ[X \K] ≤ δ ν[Y \ L] ≤ δ.

Whenever π ∈ Π(µ, ν),

π[(X × Y ) \ (K × L)] ≤ π[X × (Y \ L)] + π[(X \K)× L] ≤ 2δ

Since conditions which define Π(µ, ν) are continuous with respect to weak topology, Π(µ, ν)

is weakly closed and hence compact. This implies that there exists a minimizer for I. Let

(πk)k∈N be a minimizing sequence; then it admits a cluster point π∗ ∈ Π(µ, ν). Given a cost

function c(x, y), it can be expressed as supremum of a sequence of bounded, non-decreasing

functions (cl)l∈N. By successively invoking monotone convergence theorem, the fact that π∗

is a cluster point, the inequality cl ≤ c and minimizing property of π∗ we have;
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∫
c(x, y)dπ∗(x, y) = lim

l→∞

∫
cl(x, y)dπ∗(x, y)

≤ lim
l→∞

lim sup
k→∞

∫
cl(x, y)dπk(x, y)

≤ lim sup
k→∞

∫
c(x, y)dπk(x, y) = inf I.

(2.21)

• Knott Smith Criterion. It states that π ∈ Π(µ, ν) is the optimal coupling if and

only if there exists a convex lower semi-contimnuous function φ such that

Supp(π) ⊂ Graph(∂φ) (2.22)

or equivalently,

for dπ − almost all (x, y), y ∈ ∂φ(x) (2.23)

Moreover, in that case, the pair (φ, φ∗) has to be the minimizer of the problem

inf

{∫
Rn

φdµ +

∫
Rn

ψdν; ∀(x, y), x · y 6 φ(x) + ψ(y)

}
Where

∂φ

is the sub-differential of the convex function φ defined by,

∂φ(x) := {y : φ(z) ≥ φ(x) + y · (z − x),∀z ∈ Rn} (2.24)

A sub-differential is in general a set. However if φ is differentiable at x then ∂φ(x) =

∇φ(x).

2.3.1 Breiner’s theorem

It turns out that Monge’s cost c(x, y) = |x−y| is much harder to deal with than the quadratic

cost. The situation for quadratic cost is much simpler as it mirrors the Hilbert space geom-
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etry of L2 among the Banach spaces Lp with p ≥ 1. Brenier proved that there is a unique

solution to the quadratic cost and characterized it as a convex gradient.

Theorem 2.3.2. If µ does not give mass to small sets then there is unique optimal π, which is

dπ(x, y) = dµ(x) δ[y = ∇φ(x)] (2.25)

or equivalently

π = (Id × ∇φ)#µ (2.26)

where dφ is the gradient of a convex function which pushes µ forward to ν: ∇φ#µ = ν.

Moreover,

Supp(ν) = ∇φ(supp(µ).

As a corollary, ∇φ is the unique solution to Monge transportation problem:∫
Rn
|x−∇φ(x)|2dµ(x) = inf

T#µ=ν

∫
Rn
|x− T (x)|2dµ(x),

or equivalently, ∫
Rn
x · ∇φ(X)dµ(x) = sup

T#µ=ν

∫
Rn
x · T (x)dµ(x).

Proof. We only provide the key steps involved in the proof. For more detail we cite [9].

1. By Lemma 1, there exists a minimizer. By Theorem 2.3.1, there exists a pair of convex

conjugate functions (φ, φc) optimal for the dual problem. Then writing the Kantorovich

duality for quadratic cost function in the form of equation 2.20 we have∫
Rn×Rn

(x · y)dπ(x, y) =

∫
Rn
φ(x)dµ+

∫
Rn
φc(y)dν

=

∫
Rn×Rn

[φ(x) + φc(y)]dπ(x, y)

Equivalently we have, ∫
Rn×Rn

[φ(x) + φc(y)− x · y]dπ(x, y) = 0

The functions inside the square bracket is non-negative. So, it has to vanish for dµ−
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almost all (x, y). Given a proper lower semicontinuous convex function φ on Rn, for

all (x, y) ∈ Rn we have the following

x · y = φ(x) + φc(y) ⇐⇒ y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φc(y) (2.27)

Using this we can say that

for dπ − almost all (x, y), y ∈ ∂φ(x) (2.28)

2. Conversely let π ∈ Π(µ, ν). Then by the same argument,∫
Rn×Rn

(x · y)dπ(x, y) =

∫
Rn
φ(x)dµ+

∫
Rn
φcdν (2.29)

So, π and (φ, φc) are optimal on both sides. This concludes the proof of Knott-Smith

criterion.

3. Assume that µ does not give mass to small sets, and let φ be as above. µ ∈ L1(dµ), it is

dµ− almost everywhere finite: µ[Dom(φ)]=1. The border of the convex set ∂Dom(φ) of

a convex set Dom(φ) is a small set. Therefore, µ[Int(Dom(φ)]=1. Now on Int(Dom(φ)),

the set of non-differentiability of φ is a small set. On the whole, dµ− almost every

point of X is a differentiability point for φ. So, for dµ− almost all x, the subdifferential

of φ at a point x is {∇φ(x)}. And, the statement true for dµ− almost all x is true for

dπ− almost all (x, y), we obtain that y = ∇φ(x) for dπ almost all(x, y).

We have so far proved that any optimal transference plan takes from (Id×∇φ)#µ, for

some convex φ such that ∇φ#µ = ν, and that there is atleast one such transference

plan.

4. Uniqueness. Let φ be another convex function such that ∇φ#µ = ν, and accordingly,

(φ, φc) is an optimal pair of dual problem. Therefore, we have,∫
Rn
φdµ+

∫
Rn
φcdν =

∫
Rn
φdµ+

∫
Rn
φcdν. (2.30)

Let π be the optimal transference plan associated with φ. We have,∫
Rn×Rn

[φ(x) + φc(y)]dπ(x, y) =

∫
Rn×Rn

[φ(x) + φc(y)]dπ(x, y)
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=

∫
Rn×Rn

(x · y)dπ(x, y).

Since, π = (Id×∇φ)#µ, the above can be written as,∫
Rn

[φ(x) + φc(∇φ(x))]dµ(x) =

∫
Rn
x · ∇φ(x)dµ(x).

Thus, ∫
Rn

[φ(x) + φc(∇φ(x))− x · ∇φ(x)]dµ(x) = 0.

Since the integrand is non-negative, it has to vanish dµ− almost everywhere. Using

2.27 we can conclude that,

∇φ(x) ∈ ∂φ(x)

for dµ− almost every x. Since φ is differentiable µ− almost everywhere, we have,

∇φ(x) = ∇φ(x)

We have shown the uniqueness of the solution of Monge-Kantorovich problem and also

the uniqueness of of gradient of a convex function ∇φ such that ∇φ#µ = ν

5. To prove that Supp(ν)=∇φ(Supp(µ)). Let x ∈ Supp(µ) be a differential point of φ, let

y = ∇φ(x). We know that for any ε > 0 with ∇φ(Bδ(x)) ⊂ Bδ(y), and in particular,

ν[Bε(y)] ≥ µ[∇φ−1(∇φ(Bδ(x)))] ≥ µ[Bδ(x)]

But µ[Bδ(x)] > 0, for all x lies in support of µ; therefore, ν[Bε(y)] > 0 too. Since, εis

arbitrary we deduce that y ∈ Supp(ν) We conclude that,

∇(Supp(µ)) ⊂ Supp(ν) (2.31)

6. On the other hand, ν[∇φSupp(µ))] ≥ µ[Supp(µ)] = 1. So, ν is concentrated on

∇φ(Supp µ). Therefore, by definition of support,

Supp(ν) ⊂ ∇φ(Supp(µ)) (2.32)
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Combining equations 2.31 and 2.32 we get

Supp(ν) = ∇φ(Supp(µ))

2.4 Kantorovich- Rubinstein Distance

Kantorovich and Rubinstein made the duality more explicit for the case when the cost

function is the distance function, i.e; c(x, y) = d(x, y). The Wasserstein distance W1,

distance is also called the Kantorovich Rubinstein distance.

Theorem 2.4.1. Let X = Y be Polish space and let d be a lower sem-continuous

metric on X. Let Vd be the cost of optimal transportation of cost c(x, y) = d(x, y), i.e;

Vd = inf
π∈Π(µ,ν)

∫
X×X

d(x, y)dπ(x, y).

Let Lip(X) denote the space of Lipschitz functions on X and,

|| φ || ≡ sup
x 6=y

| φ(x)− φ(y) |
d(x, y)

Then,

Vd = sup

{∫
X

φ(µ− ν); φ ∈ ∩L1(d | µ− ν |); || φ ||Lip 6 1

}

Proof. Define dn = d
1+n−1d

, this sequence satisfies dn ≤ d and for all x, y the quantity

dn(x, y) converges monotonically to d(x, y) as n → ∞. (The set of all 1-Lipschitz

functions for dn is included in the set for 1-Lipschitz functions for d. We are going to

assume that all Lipschitz functions are bounded and hence integrable with respect to

µ, ν. So, in the view of 2.3.1 we only need to check that

sup
(φ,ψ)∈Φd

J(φ, ψ) = sup

{∫
X

φd(µ− ν); ||φ||Lip ≤ 1

}
(2.33)
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From Remark 2.2.1 we know that,

sup
(φ,ψ)∈Φd

J(φ, ψ) = sup
φ∈L1(dµ)

J(φdd, φd),

where

φd(y) = inf
x∈X

[d(x, y)− φ(x)], φdd = inf
y∈Y

[d(x, y)− φd(y)]

φd, being an infimum of 1-Lipschitz functions, bounded from below at some point x0,

is Lipschitz. So,

−φd(x) ≤ inf
y

[d(x, y)− φd(y)] ≤ −φd

where the right inequality follows from the the choice x = y in the infimum and the

left inequality by the 1-Lipschitz property. This means that φdd = −φd and

sup
Φc

J(φ, ψ) ≤ sup
φ∈L1(dµ)

J(φdd, φd) = sup
φ∈L1dµ

J(−φd, φd)

≤ sup
||φ||Lip≤1

J(φ,−φ) ≤ sup
Φc

J(φ, ψ)
(2.34)

So there is equality everywhere and result follows.
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Chapter 3

Fundamental Theorem of Optimal

Transport

3.1 Optimal transport on real line

Let us consider two probability measures µ, ν ∈ P(R) with cumulative distribution

functions F and G respectively. The cumulative function for µ has the following form:

F (x) =

∫ x

−∞
dµ = µ((−∞, x]).

Here, F is right continuous, non-decreasing, F (+∞) = 1 and F (−∞) = 0. Also, the

inverse of F on [0,1] is,

F−1(t) = inf
{
x ∈ R : F (x) > t

}
.

In general, F−1(F (x)) ≥ x and F (F−1(t)) ≥ t. If F is invertible then F−1(F (x)) = x

and F (F−1(t)) = t.

For probability measures on product space R× R, the cumulative distribution can be

represented by joint two dimensional cumulative distribution functions:

H(x0, y0) =

∫
R(x0,y0)

dπ = π[R(x0, y0)],
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where R(x0, y0) is the rectangle made of all points (x, y) ∈ R2 with x 6 x0, y 6 y0.

The function H on R2 which is non-decreasing, right continuous in both the variables

x and y, and has limits 0 and 1 at (−∞,−∞) and (+∞,+∞) gives rise to a unique

probability measure on R2. To see this, note that H determines the mass of every

rectangles with sides parallel to the co-ordinate axes and that such rectangles generate

all Borel Sets in R2.

We now state the solution of optimal transport on real line in terms of the cumulative

distribution functions.

Theorem 3.1.1. Let µ, ν be two probability measures on R with respective cumulative

functions F and G. Let π be the probability measure on R2 with joint cumulative

distribution function

H(x, y) = min(F (x), G(y)). (3.1)

Then, π belongs to Π(µ, ν), and is optimal in Kantorovich transportation problem be-

tween µ and ν for the quadratic cost function c(x, y) = |x− y|2. Moreover the value of

optimal transportation cost is

T (µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|2dt (3.2)

Proof. For a cumulative function F, we shall denote by F (x−), the left limit

limz↑x F (z), which always exists because of monotonicity. There is no need to introduce

the right limits since it is always right continuous.

(a) We claim:

Supp(π) ⊂ {(x, y) ∈ R2; F (x−) 6 G(y) and G(y−) 6 F (x)} (3.3)

To prove this, assume that for instance F (x−) > G(y). From the fact that both

F and G are right continuous functions and the right continuity of G, we can

say that if x′ belongs to a small neighbourhood of x and y′ belongs to the small

neighbourhood of y, then F (x′) > G(y′). So,

H(x′, y′) = min[F (x′), G(y′)] = G(y′)

Thus, on a small rectangle centered at (x, y), the function H does not depend on

the first variable x′. This easily entails that dπ = dH assigns zero mass to this
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rectangle, so (x, y) 6∈ Supp(π) It does not follow that G−1 ◦ F (x−) 6 G−1 ◦ F (x)

But one can check that monotonicity condition holds for the support of π.

(Monotonicity:) Here by monotonicity we mean that, if Γ a subset of R2 is said

to be monotonous if

(x1, y1), (x2, y2) ∈ Γ =⇒ [x1 6 x2 and y1 6 y2]or[x1 > x2 and y1 > y2] (3.4)

On R gradients of a convex function coincide with non-decreasing functions. And

subgradients are complete nondecreasing graphs, or maximal monotone subsets

of R2.

Indeed, let (x1, y1), (x2, y2) be two points in the support of π. Assume that x1 >

x2; we will have to check if y1 > y2 We apply equation 3.3 and the fact that F is

a nondecreasing, we get that;

G(y1) > F (x−1 ) > F (x2) > G(y−2 ).

If G(y1) > G(y−2 ), then we are done. Otherwise, G(y1) = F (x−1 ) = F (x2) =

G(y−2 ). If y2 > y1, this means that F is constant on [x2, x1), and G on [y1, y2).

But this is impossible, in the sense that (x1, y1) and (x2, y2) cannot belong to the

support of π. Consider for instance (x2, y2). Introduce a small number ε > 0, then

the rectangle R, whose endpoints have respective first and second co-ordinates

equal to (x+ ε, y2 + ε) and (x− ε, y2 − ε) has zero measure for π. The expression

for the measure in terms of H is:

π[R] = H(x− ε, y2 − ε) +H(x+ ε, y2 + ε) +H(x− ε, y2 + ε) +H(x+ ε, y2 − ε)

Using the definition of H, the inequalities x2 < x1 and y2 > y1, and the nonde-

creasing properties of F and G, it is easy to show that the preceding expression

cancels if ε is chosen small enough; then π[R] = 0. This shows that the assumption

y2 > y1 is impossible and equation 3.3 holds true.

(b) Thus, π has its support included in the monotone subset of R2, hence it is in-

cluded in the subdifferential of a convex function. By the Knott-Smith optimality

criterion, π is the optimal transference plan. Next, we claim that,

π = (F−1 ×G−1)#L, (3.5)
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where, L stands for Lebesgue measure in [0,1]. It is enough to check this identity

on arbitrary rectangle of the form R(x, y) and the equation 3.5 becomes,

π[R(x, y)] =| {(F−1(t), G−1(t)) ∈ R(x, y)} |

(the notation used | A |= L[A]) The last quantity is

| {t ∈ R;F−1(t) 6 x} ∩ {t ∈ R;G−1(t) 6 y | (3.6)

Depending on the cases, {F−1(t) 6 x} is [0, F (x)) or [0, F (x)]. Anyway the set

whose Lebegue measure is taken is an interval with endpoints 0 and min[F (x), G(y)]

and its measure is equal to min[F (x), G(y)] = H(x, y). This proves the claim.

(c) As a consequence, for any nonnegative measurable function u on R2

∫
R2

u(x, y)dπ(x, y) =

∫ 1

0

u(F−1(t), G−1(t))dt

3.2 Cyclic Monotonicity

Definition 3.2.1. A subset Γ ⊂ Rn ×Rn is said to be cyclically monotone if it fulfills

the following condition: for all m > 1, and for all (x1, y1), (x2, y2), ....(xm, ym) in Γ

m∑
i=1

|xi − yi|2 6
m∑
i=1

|xi − yi−1|2 (3.7)

with the convention y0 = ym, or equivalently,

m∑
i=1

yi · (xi+1 − xi) 6 0 (3.8)

with the convention xm+1 = x1

Informally c-cyclic monotone plan is a plan that cannot be improved: it is not possible

to perturb it to get a more economical plan.
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3.2.1 Rockafellar’s Theorem:

Theorem 3.2.1. A nonempty subset Γ ⊂ Rn×Rn is cyclically monotone if and only if

it is included in the subdifferential of a proper lower semi-continuous convex function φ

on Rn. Moreover, maximal(with respect to inclusion) cyclically monotone subsets are

exactly the sub-differentials of proper lower semi-continuous convex functions.

3.3 Fundamental Theorem of optimal transport

Theorem 3.3.1. Consider a cost function c : X ×Y → [0,∞) that is continuous. Let

µ ∈ P(X ) and ν ∈ P(Y) be such that

c(x, y) 6 a(x) + b(y)

for some a ∈ L1(µ) and b ∈ L1(ν). Consider the Monge- Kantorovich problem

inf
γ∈Π(µ,ν)

∫
cdγ.

For a coupling γ ∈ Π(µ, ν), the following statements are equivalent:

(a) γ is an optimal transport plan.

(b) The support of γ is c-cyclically monotone.

(c) There exists a c-concave function φ on X such that max{φ, 0} ∈ L1(µ) and

supp(γ) ⊂ ∂cφ

We start the proof later. First we need the Theorem mentioned below in order to prove

the implication (a) =⇒ (b).

Theorem 3.3.2. Let X and Y be two Polish Spaces, and let c : X × Y → [0,∞) be

a continuous cost function. Consider Kantorovich problem for the pair µ ∈ P(X ) and

ν ∈ P(Y), and suppose that the optimal value inf
∫
cdγ is finite. If γ is an optimal

coupling, then the support of µ is c-cyclically monotone

Proof. (of Theorem 3.3.2) Proof by contradiction. Suppose that γ is the optimal

coupling but the support is not c-cyclically monotone. Then we have, for a non-trivial
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permutation σ on {1, 2, ..., N} where N > 2 such that,

N∑
i=1

c(xi, yi) >
N∑
i=1

c(xi, yσ(i))

This allows us to construct a perturbation such that the coupling γ̃ = γ + η that is

strictly better than γ, that is
∫
cdγ̃ <

∫
cdγ.

Since the cost function is continuous, there exists open neighbourhood of xi, Ui and

yi, Vi, i = 1, 2...., N , such that

N∑
i=1

c(ui, vi) >
N∑
i=1

c(ui, vσ(i)

for all ui ∈ Ui and vj ∈ Vj.

Now we want to move some mass in γ to a better permutation. The part to be removed

is a multiple of
N∑
i=1

1

mi

γ|Ui×Vi

where mi = γ(Ui × Vi). We want to add these masses to Ui × Vσ(i) while keeping the

marginals unchanged. Write γi = 1
mi
γ|Ui×Vi . We can do so by adding

m∑
i=1

((π1)#γi)⊗ ((π2)#γσ(i)
)

Each term is the product of the first marginal of γi and the second marginal of γσ(i).

Here πi are the projection maps. The perturbation is given by

η =
min16i6mmi

N

N∑
i=1

[γi − ((π1)#γi)⊗ ((π2)#γσ(i))]

The multiple is to ensure that the perturbation is still a probability measure. It is now

a routine exercise to check that the perturbed coupling gives a strictly smaller cost.

Proof. (of Theorem 3.3.1) The (a) =⇒ (b) is a direct consequence of the previous

proof. Now let us make an observation. If φ is a c-concave function on X and y ∈
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∂φc(x), then for any x′ ∈ X we have the following:

φ(x) + φc(y) = c(x, y)

φ(x′) + φc(y) 6 c(x′, y).

Taking the difference, we have

φ(x′) 6 φ(x) + c(x′, y)− c(x, y).

The cost of any transport plan is finite for any γ ∈ Π(µ, ν) as:∫
X×Y

cdγ 6
∫
X×Y

(a+ b)dγ =

∫
X
adµ+

∫
Y
bdν <∞

(b) =⇒ (c) (We refer Theorem 3.2.1 for this part).

Let Γ denote the support of γ. We want to show that the support of γ is contained

in the c-superdifferential of a c-concave function on X . Let us fixed an arbitrary pair

(x0, y0) ∈ Γ and consider function defined as follows:

φ(x) = inf

{N−1∑
i=0

(c(xi+1, yi)− c(xi, yi))
}

Where the infimum is taken over N > 1 and (xi, yi) ∈ Γ. To check that φ is a c-concave

and its superdifferential is contains the support of γ i.e; Γ, we see that max{φ, 0} ∈
L1(µ), and let (x1, y1) = (x0, y0) and N = 1. Then,

φ(x) 6 c(x, y0)− c(x0, y0),

As because of our assumption c(x, y) 6 a(x) + b(y) on the right hand side of the

equation we have,

a(x) + (b(y0)− c(x0, y0)),

which confirms that Γ is in the superdifferential of a c-concave function.

(c) =⇒ (a)

Let γ ∈ Π(µ, ν) be such that Γ is contained in the support of a c-superdifferential

function φ. Then for any (x, y) ∈ ∂φ we have,

φ(x) + φc(y) = c(x, y),
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and for any general (x, y) ∈ X × Y we have,

φ(x) + φc(y) 6 c(x, y).

And, to prove that γ is indeed optimal we need to show that for any γ̃ ∈ Π(µ, ν), we

need to prove that
∫
cdγ 6

∫
cdγ̃, which can be shown as follows:∫

cdγ =

∫
φ(x) + φc(y)dγ =

∫
φ(x) + φc(y)dγ̃ 6

∫
cdγ.

This completes the proof.
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Chapter 4

Portfolio Theory

Portfolio theory is a concrete application of the previous mathematical developments.

Although we begin this chapter with some financial motivations, the main focus here

is to study the geometry of probability distributions rather than the financial issues.

Nevertheless, the financial problem are interesting and very important indeed.

4.1 Introduction

Consider investing in stock market. The collection of stocks that a investor holds is

called the portfolio. Market portfolio is the collection of all these portfolios, it includes

all the stocks in the market. In the forthcoming section we are going to study and

compare two kinds of portfolio strategies viz. Capitalization weighted portfolio and

rebalancing portfolio strategy.

4.1.1 Capitalization weighted portfolio

It is customary to summarize the performance of a stock using a market index; its value

is average of collection of representative stocks in the market. Many of these indexes

are capitalization weighted, that is the influence of a given stock is proportional to its

market capitalization. Let’s consider a specific example where the index has only two

stocks (stock A and stock B). Suppose the prices at the moment are as follows:
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Stock Prices # of shares Market Cap Market Weight

A $40 20000 $ 8.0× 105 0.3076

B $60 30000 $ 1.8× 106 0.6923

Here the market capitalization is the product of the number of outstanding shares and

the rice of the stock. The market weight of stock A is, for example,

8 · 105

8 · 105 + 1.8 · 106 = 0.3076

Let’s assume for simplicity that the value of index today is 100.

Suppose the stock prices tomorrow are $42 for stock A and $55 for stock B The new

value of the index will be given by:

100 · (0.3076 · 42

40
+ 0.6923 · 55

60
) = 95.75 (−4.25%)

Note: The market weight of stocks also change. The new weight of stock A is:

42 · 20000

42 · 20000 + 55 · 30000
= 0.3373

We redo the above calculation to get current value of market index. Add real life

complications like dividends, split stocks and you will get how the real index works.

We also observe that the value of index can be replicated, in principle, by investing

according to the market weights. Because of its popularity in both practice and the-

ory, the market portfolio (approximated by market index) is frequently regarded as a

benchmark for portfolio managers ’beating the market’

4.1.2 Rebalancing:

Volitility harvesting attempts to capture profit by process called rebalancing. Let us

use the example above to expalin the idea of rebalancing. Suppose we start with a

initial capital of $2000. We spend the money equally to buy stocks of A and stocks of

B.

$2000 = $1000︸ ︷︷ ︸
Agets 50%

+ $1000︸ ︷︷ ︸
B gets 50%
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* here we assume that the stocks are infinitely divisible

Recall that stock A goes up from $40 to $42 and stock B drops from $60 to $55. Then,

the value of our portfolio now becomes,

$1000 · 42

40︸ ︷︷ ︸
A

+ $1000 · 55

60︸ ︷︷ ︸
B

= $1966.66.

The portfolio is no longer equal weighted

$1050︸ ︷︷ ︸
A:53.39%

+ $916.66︸ ︷︷ ︸
B:46.66%

= 1966.66

In order to restore equal balance between the two stocks we will need to rebalance the

1966.66 in between the two stocks by selling $66.67 of stock A to buy stock B. Here

we assume that there are no transaction costs.

The contrast between the two trading strategies is clearly visible in the example given

below. The following example is taken from [4]

Figure 4.1: Comparing returns of equi-weighted portfolio with 3 stocks

In this example the rebalanced portfolio outperforms the capitalization weighted one.

But, it is not the case always. In the following section we study the mathematical

conditions required for a rebalanced protfolio to outperform the capitalized weighted

one
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4.1.3 Two stock case: A simple example

The following example is taken from [4]. Consider 2 stocks, Stock X and stock Y. The

price of stock X is constant at $1 whereas, stock Y goes up by a factor or 2 or drops

by factor of 1
2
. A down movement is followed by up movement and vice versa.

Figure 4.2: Dynamics of two stocks

First consider a buy and hold portfolio. At time 0 investor buys a number of

stocks of X and Y, then the portfolio is kept with no further trades. Stock X is constant

at $1 while stock Y fluctuates between $1 and $0.5 it is clear that buy and hold will

not produce any long term growth.

Now consider equal weighted portfolio. At the begining of each time period the

investor rebalances in such a way that equal amount of capital is invested in each stock.

After first period we have,
1

2
× 1

2
+

1

2
× 1 =

3

4
,

The simple return is −25%

After the second period the growth is

1

2
× 2 +

1

2
× 1 =

3

2

Over these two periods, the portfolio has grown by a factor of 3
4
× 3

2
= 9

8
> 1. If

this pattern continues the portfolio will grow exponentially: at every even interval

of time the value of the portfolio is 9
8

t
2 times the initial value. Since the portfolio

invests equally in two stocks it does not earn money intuitively by anticipating the

price movements, rather, profit is generated through rebalancing from volatility of the

stocks. The buy-and-hold portfolio on the other hand fails to capture the volatility.
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Discussion:

• Market timing:

Since the price of stock Y has a predictable pattern, we should be holding stock

X at even times 0,2,4,... and hold stock Y at odd times 1,3,5,... This strategy

obviously maximizes the portfolio growth (assuming no shorting is allowed), but

the equal weighted portfolio does not aim to time the market. The market timing

strategy loses half of its value every time it holds stock Y when it drops, so,

it is not a good strategy unless one guesses correctly all or most of the time.

Volatility harvesting strategies does not assume price movements can

be predicted correctly

• Negative correlation

A misconception: rebalancing portfolio is only profitable when the stocks are

negatively correlated. This is false. Take the example above and let us derive a

formula for our rebalancing portfolio. Whenever the stock Y goes up the portfolio

growth is u = 3
2

and when it goes down d = 3
4

(we need ud > 1). At a given time

t the value of equal weighted portfolio is

V (t) = V (0)uNu(t)dNd(t) (4.1)

where Nu(t) and Nd(t) = t−Nu(t) are repectively the number of ups an downs of

stock Y up untll time t Note that This holds path by path and not by probability

(hence, its called pathwise approach). Observe that the value of the portfolio

depends only on the cumulative counts of upward and downward movements

regardless of their orderings. In particular the, V (t) remains unchanged if we

shuffle the upward and downward moves in a given time interval, so it is clear

that negative correlation does drive this.

• Perfect Matching

Does rebalancing only work when Nu(t) = Nd(t) i.e; when stock Y reverts back to

the starting point? The answer is NO. In fact, this brings up a important point.

For each t, let

Nmatch(t) = min{Nu(t), Nd(t)}

denote the number of pairs of up and down movements up to time t, rearranging

the terms in the equation (4.1), the logarithmic growth of the portfolio can be
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decomposed as following:

log
V (t)

V (0)
= Nmatch(t) log(ud) + δ(t), (4.2)

where ud > 1 and δ(t) = (Nu(t) − Nmatch) log u

4.2 Simplex Model

Now, consider a general case with more than two stocks. The main idea here is to

represent the state of the market by a probability vector in a unit simplex. This is a

highly idealized model of the stock market which has strict assumptions as follows:

• Assumptions:

(a) Time is discrete; t = 1, 2, 3 . . .

(b) The number of stocks involved i.e; n are fixed. (n > 2)

(c) Each stock has a single outstanding share (infinte divisibility). Thus, it’s stock

price is equal to its market capitalization. We will denote the capitalization

of stock i at time t by Xi(t)

(d) Stocks never die. i.e; Xi(t) > 0 ∀i, t
(e) Shorting of stocks is not allowed.

(f) Stocks do not pay dividends.

(g) Trading is immediate and frictionless at each point of time.

(h) The trading does not influence the price of the stocks, the investor is a ’small’

investor.

In this model the data is a path
{
X(t) = (X1(t), X2(t), . . . Xn(t)

}
with values in

(0,∞)n. We do not impose any assumptions on dynamics of {X(t)}; it need not neces-

sarily be a stochastic process, it is indeed some sequence in (0,∞)n whose components

unfold as time passes by to the investor.

Definition 4.2.1. (Market weights). The market weight of stock i at a time t > 0, is

defined by,

µ(i) :=
Xi(t)

X1(t) + · · ·+Xn(t)
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We let µ(t) = (µ1(t)+· · ·+µn(t)) be the vector of market weights at time t.
∑n

i=1 µi(t) =

1. Since we assumed that the stocks never die, the market weight vector is an element

of open unit simplex.

Definition 4.2.2. (Unit simplex). For n > 2 the open unit simplex ∆n in Rn by

∆n :=

{
p = (p1, . . . pn) ∈ (0, 1)n : p1 + p2 · · ·+ pn = 1

}
The closure of ∆n in Rn is denoted by ∆n. The unit simplex can be seen as a probability

distributions on a set with n atoms. The evolution of the market with respect to time is

given as the sequence {µ(t)}∞t=0. A portfolio vector is an element of closed unit simplex

∆n

Definition 4.2.3. (Portfolio strategy). The portfolio vector π(t) is chosen using the

information available at time t. This also includes the history of stock prices upto time

t. By a portfolio strategy, we mean the sequence π = {π(t)}∞t=0 taking values in the

closed unit simplex ∆n

4.3 From portfolio to optimal transport

Consider investing in an equity market. At each given time the investor allocates the

capital in stocks and forms a portfolio. We will only consider self financing strategies

where you are not allowed to borrow or lend any money and we only invest in stocks.

The portfolio at any given point is represented as

∆(n) =

{
p = (p1, . . . , pn) ∈ R, pi > 0 for all i, and

n∑
i=1

pi = 1

}
(4.3)

Market portfolio is of special importance. The market portfolio is the portfolio with

weights µ(t) = (µ1(t), . . . , µn(t) where, µi(t) and µ(t) have the meanings as defined

above. The market weight takes value in open unit simplex ∆(n) because of our as-

sumption that no stock dies. The value of this portfolio reflects the growth of entire

equity market and is called market index. Market portfolio is used as an investment

benchmark and a lot of effort has been put into developing strategies that outperform

it. We call a portfolio function to be a map. π : ∆(n) → ∆(n), where, if µ(t) ∈ ∆(n)
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is the current market weight, one chooses the portfolio, π(t) = π((µ(t)) ∈ ∆(n). This

portfolio under the conditions of sufficient volatility and diversity will outperform the

market portfolio in large but finite time with probability one. These portfolios are

called relative arbitrages with respect to the market. These portfolios are determinis-

tic functions of the current market weights and independent of past and future forecast.

We state some definitions used throughout the theory.

4.3.1 Characterizing Pseudo-arbitrage:

Let K ⊂ ∆(n). A portfolio function π is called a pseudo-arbitrage on K if the following

properties hold true

(a)

Definition 4.3.1. (Relative value).

V (t) =
Value at time t of $1 invested in portfolio π

Value at time t of $1 invested in portfolio µ
(4.4)

and,

V (0) = 1, V (t+ 1) = V (t)
n∑
i=1

πi(µ(t))
µi(t+ 1)

µi(t)
(4.5)

and, V (t) is strictly positive for all t. In order to beat the market we need want

to choose a π such that V (t) is large.

(b) There exists a constant C = C(K, π) ≥ 0 such that for all sequences of market

weight {µ(t)}∞t=0 taking values in K, we have, log V (t) ≥ −C for all t ≥ 0

(c) There exists some sequence {µ(t)}∞t=0 ⊂ K along which limt→∞ V (t) =∞

The first condition states that under generalized diversity condition the portfolio has

bounded downside risk regardless of market movement. The second condition states

that these is a possibility of unbounded upward gain. These conditions pose a restric-

tion on the portfolio map.
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4.3.2 Characterization of pseudo-arbitrages as portfolios that

are functionally generated.

Theorem 4.3.1. The portfolio π is a pseudo arbitrage on a convex subset K ⊂ ∆(n)

if and only if there exists a concave function Φ : ∆(n) → [0,∞), satisfying

(a) the restriction of Φ on K is not affine.

(b) there exists ε > 0 that infp∈K Φ(p) ≥ ε

(c) for any p ∈ K, the vector π(p)
p

of co-ordinate ratios define a super-gradient of

concave funtion log Φ at p

if π is continuous then on K it is necessarily given by,

πi(p) = pi
(
1 +De(i)−p log Φ(p)

)
for i = 1, 2 . . . , n (4.6)

Here De(i)−p is the one-sided directional derivative in the direction e(i)− p. e(i) is the

vector having all zeros except at ith position.

In the above system we say that π is generated by Φ

4.3.3 Pseudo-arbitrage via optimal transport problem:

Here we describe pseudo-arbitrages via solutions to Monge-Kantorovich optimal trans-

port problem: Given a pair of two probability measures P and Q on Rn−1 the optimal

coupling of these two probability measures with respect to above cost can be expressed

in terms of portfolio map of an exponentially concave function. We consider the Monge-

Kantorovich optimal transport problem with cost c by:

inf
R∈Π(P,Q)

E[c(X, Y )] (4.7)

A optimal coupling solves Monge problem if we have Y = F (X)is deterministic function

of X. Specialize to case X = ∆(n) and Y = [−∞,∞)n. Where P is the probability

measure on ∆(n) and Q is the probability measure on Rn, together with the cost

function:

c(µ, h) = log

( n∑
i=1

ehiµi

)
(4.8)
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Interpretation is that µ represents the market weight and h represents the deviation

of the portfolio vector from the market weight vector. For a given µ ∈ ∆(n) and

h ∈ [−∞,∞)n \ {(−∞, . . . ,−∞)}, we can define the portfolio vector π corresponding

to µ via the change of measure

πi
µi

=
1

Eµ[eh]
ehi , i = 1, . . . , n. (4.9)

where Eµ[eh] :=
∑n

i=1 e
hiµi.

Theorem 4.3.2. Let K ⊂ ∆(n) and suppose F : K → [−∞,∞)n \ {(−∞, . . . ,−∞)}
is a map such that (µ, F (µ)) ∈ R∀µ ∈ K. Define portfolio with h = F (µ). Then there

exists a concave function Φ : ∆(n) → [0,∞) such that part c of theorem 4.3.1 holds

true. Then π is a pseudo-arbitrage on K whenever K is an open convex subset and

condition (a), (c) of theorem 4.3.1 hold true.

Conversely, if π is a pseudo-arbitrage over a subset K ⊂ ∆(n). Suppose that {log π(p)
p
, p ∈

K} is co-ordinatewise bounded below. Define h = T (µ) as a function of µ via hi =

log πi(µ)
µi

and consider the coupling (µ, h). For any probability measure P on K and let

Q be the distribution of h(µ) when µ ∼ P . Then the coupling (µ, h) solves the transport

problem.

4.3.4 Optimal transport problem in term of exponential func-

tions:

We formulate optimal transport in terms of exponential co-ordinate systems of the

unit simplex ∆(n). The advantage of doing so is now we have the transport problem

in Euclidean space with strictly convex cost.

Definition 4.3.2. (Exponential Co-ordinate system). We define the exponential co-

ordinates for p ∈ ∆n by the co-ordinates θ = (θ1, . . . , θn−1) ∈ Rn and is given by

θi = log
pi
pn

i = 1, . . . , n− 1. (4.10)

We denote this map by θ : ∆n → Rn−1. While the inverse transformation p = θ−1 is

given by:

pi = pi(θ) = eθi−ψ(θ), 1 6 i 6 n, (4.11)
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where, ψ(θ) = log
(
1 +

∑n−1
i=1 e

θi
)

= log
(∑n

i=1 e
θi
)
.

By changing co-ordinate systems, any function on ∆n can be expressed as a function

on Rn−1 and vice versa. Any function φ on ∆n can be expressed in exponential co-

ordinates by θ → φ(p(θ)). To simplify the notations we will use, φ(p) or φ(θ) depending

on the co-ordinate system.

Formulating transport problem:

Let X = Y = Rn−1 be equipped with standard Euclidean metric topology. Let P and

Q be Borel probability measures on X and Y respectively. Let Π(P,Q) be probability

measures on X × Y whose marginals are P and Q respectively. We define the cost

function for (θ, φ) ∈ Rn−1 × Rn−1 by

c(θ, φ) := ψ(θ − φ), where ψ(x) := log

(
1 +

n−1∑
i=1

exi
)

(4.12)

The advantage of this formulation is that now the transport is on an Euclidean space

with strictly convex cost function. The function φ(θ) represents the negative shift in

exponential co-ordinates to go from µ to π. Given prior beliefs regarding the possible

market weights in future represented by P and a collection of portfolio weights to be

chosen from given by Q investor can solve the optimal transport problem to obtain a

functionally generated portfolio. The solutions are characterized by Theorem 4.3.1 and

Theorem 4.3.2. Both characterizations follow from a property called multiple cyclic

monotonicity. Intuitively, this property requires that portfolio does not under perform

the market if the market weight goes over any discrete cycle in unit simplex.

Definition 4.3.3. (Multiplicative cyclic monotonicity). Let π : ∆(n) → ∆(n) be a

portfolio. We say that π satisfies MCM if over any cycle {µ(t)}m+1
t=0 ⊂ ∆(n) we have

V (m+ 1) ≥ 1 i.e;

m∏
t=0

(
1 +

〈
π(µ(t))

µ(t)
, µ(t+ 1)− µ(t)

〉)
≥ 1 (4.13)

Proposition: Let π : ∆(n) → ∆(n) be a portfolio map. Then, pi satisfies MCM if and
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only if there is a concave function Φ : ∆(n) → (0,∞) such that

1 +

〈
π(p)

p
, q − p

〉
≥ Φ(q)

Φ(p)
, for all p, q ∈ ∆(n) (4.14)

Theorem 4.3.3. Consider the cost function

c1(p, q) = log

( n∑
i=1

piqi

)
= log(p · q) (4.15)

where p ∈ ∆(n) and q ∈ ∆(n). Given a portfolio mao π : ∆(n) → ∆(n). The map defined

by w : ∆(n) → ∆(n) via normalized weight ratios:

w(p) :=

( πi(p)
p1∑n

j=1 πj(p)

pj

, . . . ,

πn(p)
pn∑n

j=1 πj(p)

pj

)
(4.16)

then the graph of w is c-cyclically monotone if and only if π is multiplicatively cyclically

monotone.

Theorem 4.3.4. Using the notations in the previous theorem, suppose the exponential

co-ordinates of p is θ and the exponential co-ordinate of q is −φ. Then, the cost

function takes the form

c2(p, q) = log(p · q) = ψ(θ − φ)− ψ(θ)− φ(φ) θ, φ ∈ Rn−1 (4.17)

thus in exponential co-ordinates, the cost function is equivalent to ψ(θ− φ). In partic-

ular, the given portfolio map π, the exponential co-ordinates of π(p) is θ − φ and the

exponential co-ordinates of w(p) is −φ. Moreover we have,

φi = θi − log
πi(p)

πn(p)
, 1 = 1, . . . , n− 1. (4.18)

Via the exponential co=ordinate system we may regard the portfolio map as the func-

tion of θ

42



Chapter 5

Martingale Optimal Transport

The goal of this chapter is prove a Monge-Kantorovich type duality for discrete mar-

tingale measures. Such duality plays an important role mathematical finance and has

been widely studied very recently. See for instance [1, 2, 3] and references therein.

5.1 Martingale measures

Definition 5.1.1. (Martingale Measure.) We denote by M(µ1, . . . , µn) the set of all

martingale measures Q on Rn having marginals Q1 = µ1, . . . ,Qn = µn and mean s0.

We have, Q ∈M(µ1, . . . , µn) if and only if EQ[Si|S1, . . . , Si−1] = Si−1 for = 2, . . . , n.

Here (Si)
n
i=1 is a co-ordinate process

Si : Rn → R, Si(s1, . . . , sn) = si , i = 1, . . . , n.

5.2 Probability measures with given marginals

Let X and Y be complete separable metric spaces. Let ŷ and ẑ be positive and not

necessarily bounded above continuous functions on S and T respectively, bounded away

from 0. Put

x̂ = ŷ ◦ pS + ẑ ◦ pT ,
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where ps and pT are the projections of S × T on S and T respectively. Let X be the

Banach space of continuous functions of x on S × T such that,

||x|| = sup{|x(s, t)| \ x̂(s, t) : s ∈ S, t ∈ T} ≤ ∞

Similarly, let Y and Z be the Banach space of continuous functions y on S and z on T

respectively. And, ||y|| = sup(|y| \ ŷ)(S) ≤ ∞ and ||z|| = sup(|z| \ ẑ)(T ) ≤ ∞. Then,

e.g., y ∈ Y is equivalent to y ◦ pS ∈ X.

Let Let π be the set of all Borel probability measures π in S×T such that x̂ is π− inte-

grable, endowed with topology τ generated by the functional π →
∫
xdπ for x ∈ X. Let

Λ be a non-empty closed convex subset of Π and µ and ν be Borel probability measures

in S and T respectively such that ŷ and ẑ are µ− and ν− integrable, repectively

Theorem 5.2.1. A necessary and sufficient condition for the existence of a probability

measure λ inΛ such that ,

µ = λ ◦ p−1
S and ν = λ ◦ p−1

T (5.1)

is that ∫
ydµ+ zdν ≤ sup

{∫
(y ◦ ps + z ◦ pT )dγ :̇ γ ∈ Λ

}
(5.2)

for all y ∈ Y , z ∈ Z

Theorem 5.2.2. Let (µn)n>1 be a sequence of probability measures in Rk. Then a nec-

essary and sufficient condition for the existence of a k-dimensional martingale measure

(ξn)n>1 such that the distribution of ξn is µn for all n is that all µn have finite means

and for any concave function ϕ on Rk the sequence (
∫
ϕdµn)n>1 is non increasing.

Outline of proof. The necessity of the condition is well known from Jensen’s in-

equality. The sufficiency it is enough to prove that if two probability measures µ and

ν in Rk have finite means and satisfy
∫
ϕdµ ≥

∫
ϕdν for every concave function ϕ

then there is a probability measure λ in Rk × Rk with marginals µ and ν such that

the expectation of the first k co-ordinates given the last k co-ordinates is the first k

co-ordinates. If this is known to us we can construct a martingale (ηn)n≥1 as a Markov

process. To prove the existence of a measure λ we use theorem 5.2.1, set S = T = Rk,

ŷ(t) = ẑ(t) = 1 + |t|
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Where |t| is the Euclidean length of t and, let Λ be a set of all probability measures in

S × T which are the joint distribution of some k− dimensional martingale

Λ =
{
λ : λ ∈ Π and for all bounded continuous functions y on S∫

pT (y ◦ ps)dλ =

∫
pS(y ◦ pS)dλ

}
.

Because the assumptions before Theorem 5.2.1 are satisfied proof will be complete if

we cans show equation 5.1 holds true. Let z0 be the smallest concave function ≥ z,

i.e; z0 is the infimum of the set of the affine function on Rk which are ≥ z if this set is

non-empty and z0 =∞ otherwise. Then,∫
ydµ+

∫
zdν ≤

∫
ydµ+

∫
z0dν ≤

∫
(y + z0)dµ

≤ sup
s∈S

(y(s) + z0(s)),

where y + z0 = ∞ if z0 = ∞. Let r be any real number < sup{y(s) + z0(s) : s ∈ S}.
Then for some s ∈ S, r < y(s) + z0(s). We have to show,

r < sup

{∫
(y ◦ pS + z ◦ pT )dγ γ ∈ Λ

}
(5.3)

For any t ∈ T let Λt be the set of probability measures in T with expectation t. The

function z1 on T defined by

z1(t) = sup

{∫
zdα α ∈ Λt

}
is concave and ≥ z, so that z1 ≥ z0 and hence r < y(s) + z1(s). By the definition of

z1(s) there is an α ∈ Λs with,

r < y(s) +

∫
zdα =

∫
(y ◦ ps + z ◦ pT )dγ,

where γ = δs × α. This proves the theorem.
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5.3 Duality: Martingale Optimal Transport in two

dimensions.

5.3.1 Primal Formulation

In the current setting, we fix a exotic option depending only on the value of a single

asset S at discrete times t1, . . . , tn and denote by Φ(S1, . . . , Sn) its payoff, where Φ

is some measurable function. In no arbitrage framework, the standard approach is

to postulate a probability maeasure Q on Rn under which the co-ordinate process as

defined in Definition 5.1.1 is a discrete martingale in its own filtration. The fair value

of Φ is given as the expectation of the payoff

EQ[Φ].

Additionally, we impose that our model is calibrated to continuum of call options with

payoffs Φi,K(Si) = (Si −K)+ , K ∈ R at each date ti and price

C(ti, K) = EQ[Φi,K ] =

∫
R+

(s−K)+dLawsi(s).

One dimensional marginals of Q satisfy

Qi = Lawsi = µi for all i = 1, . . . , n.

We consider the primal problem by considering the lower bound:

P = inf

{
EQ[Φ] : Q ∈M(µ1, . . . , µn)

}
. (5.4)

5.3.2 Dual Formulation

Dual formulation corresponds to the construction of a semi-static hedging strategy

consisting of the static vanilla portfolio and a delta strategy. More precisely, we are
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interested in the payoffs of the form:

Ψ(ui),(∆j)(s1, . . . , sn) =
n∑
i=1

ui(si) +
n−1∑
j=1

∆j(s1, . . . , sj)(sj+1 − sj), s1, . . . , sn ∈ Rn,

(5.5)

where ui : R→ R are µi− integrable for (i = 1, . . . , n) and the functions ∆j : Rj → R
are assumed to be bounded mesurable for j = 1, . . . , n)

If these functions lead to a sub-hedging strategy in the sense

Φ ≥ Ψ(ui)(∆j), (5.6)

we have for every pricing measure Q the inequality

EQ[Φ] ≥ EQ[Ψ(ui)(∆j)] = EQ
[ n∑
i=1

ui(si)

]
=

n∑
i=1

Eµi [ui]. (5.7)

This leads us to consider the dual problem,

D = sup

{ n∑
i=1

Eµi [ui] : ∆1, . . . ,∆n−1 s.t.Ψ(ui),(∆j) 6 Φ

}
(5.8)

Which by (5.7) satisfies,

P > D (5.9)

(The dual problem can be realized by holding a static position in the European options

with respective maturity date ti and payoff ui.) We will prove that there does not

exist a duality gap for martingale measures for two dimensional case. For now, we

will state few corollaries and propositions needed to prove the duality for martingale

measures. We turn to multi-dimensional version of optimal transport which will be the

main tool for the duality proof of martingale measures. Consider probability measures

µ1, . . . , µn on real line, with finite moments. We have the set Π(µ1, . . . ,n ) the set of

transport plans of probability measures with marginals µ1, . . . , µn. The cost function

Φ : Rn → (−∞,∞] which is bounded from below by µi integrable functions in the

sense that

Φ ≥ u1 ⊕ . . . , un (5.10)

where u1⊕, . . . ,⊕un := u1(x1) + · · ·+ un(xn) Given a cost function Φ and a transport
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plan π the cost functional is defined as

Iπ(Φ) =

∫
Rn

Φdπ (5.11)

This would be our primal Monge-Kantorovich problem where we minimize Iπ(Φ) over

the set of all transport plans π ∈ Π(µ1, . . . , µn). Given µi integrable functions ui’s such

that Φ ≥ u1 ⊕ . . . , un holds true, the dual part of Monge-Kantorovich problem would

be to maximize the right hand side of the following equation over a suitable class of

functions which satisfy (5.10),∫
Φdπ ≥

∫
(u1 ⊕ · · · ⊕ un)dπ =

∫
u1dµ1 + · · ·+

∫
undµn

For the purpose of our application we are going to restrict the ui’s to the following

class of functions S. Here, S is the linear combination of call options known to us and

defined as follows:

S = {u : R→ R : u(x) = a+ bx+
m∑
i=1

ci(x− ki)+, a, b, c, ki ∈ R}

Corollary 5.3.1. Let Φ : Rn → (−∞,∞] be a lower semi-continuous function satis-

fying

Φ(s1, . . . , sn) > −K · (1 + |s1|+ · · ·+ |sn|) (5.12)

on Rn for some constant K and let µ1, . . . , µn br probability measurs on R having finite

moments. Then,

PMK(Φ) = inf
{
Iπ(Φ) : π ∈ Π(µ1, . . . , µn)

}
= sup

{ n∑
i=1

∫
uidµi : u1 ⊕ · · · ⊕ un 6 Φ, ui ∈ S

}
= DMK(Φ)

(5.13)

Lemma 2. Let c : Rn → R be a continuous cost function and assume that there exists

a constant K such that

|c(x1 + · · ·+ xn)| 6 K(1 + |x1|+ · · ·+ |xn|)
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for all x1 ∈ X1, . . . xn ∈ Xn. Then the mapping

π 7→
∫
Rn
cdπ

is continuous on Π(µ1, . . . , µn)

Proof. We assumed that the µ1, . . . , µn have finite moments,
∫
Rn\[−a,a]n

cdπ converges

to 0 uniformly in π ∈ Π(µ1, . . . , µn) as a→∞. Then the proof follows from the weak

convergence of measure.

Lemma 3. Let π ∈ Π(µ1, . . . , µn). Then the following statements are equivalent.

(a) π ∈M(µ1, . . . , µn)

(b) For 1 ≤ j ≤ n − 1 and for every continuous bounded function ∆ : Rj → R we

have ∫
Rn

∆(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn) = 0

Proof. (a) asserts that whenever A ⊆ Rj, i = 1, . . . , (n−1) is Borel measurable, then,∫
Rn
IA(x1, . . . , xn))(xj+1 − xj)dπ(x1, . . . , xn) = 0.

Using standard approximation we can obtain that this is equivalent to (b).

Lemma 4. The set M(µ1, . . . , µn) is compact in weak topology.

Proof. We know thatM(µ1, . . . , µn) is contained in compact set Π(µ1, . . . , µn), hence

it is sufficient to prove that it is closed. M(µ1, . . . , µn) is the intersection of sets{
π ∈ Π(µ1, . . . , µn) :

∫
Rn
f(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn) = 0

}
, (5.14)

where j = 1, . . . , n − 1 and f : Rj → R runs through all continuous bounded support

functions. By lemma 5, the sets in (5.14) are closed.

Theorem 5.3.2 (Min-Max). Let A and B be convex subsets of vector spaces V1 and

respectively V2, where V1 is locally convex and let f : A×B → R. If,

(a) A is compact,
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(b) f(·, y) is continuous and convex on A for every y ∈ B,

(c) f(x, ·) is concave on B for every x ∈ A then,

sup
y∈B

inf
x∈B

f(x, y) = inf
x∈A

sup
y∈B

f(x, y).

Theorem 5.3.3. (No Duality gap). Assume that µ1, . . . , µn are Borel probability mea-

sures on R such that M(µ1, ...., µn) is a non-empty set. Let Φ : Rn → (−∞,∞] be a

lower semi-continuous function such that

Φ(s1, . . . , sn) > −K · (1 + |s1|+ · · ·+ |sn|)

on Rn for some constant K. Then there is no duality gap, i.e. P = D. Moreover the

primal value P is attained, i.e, there exists a martingale measure Q ∈ M(µ1, . . . µn)

such that P = EQ[Φ]

For the existence of a martingale measure having marginals µ1, . . . , µn it is necessary

and sufficient that these measures possess the same finite first moments and increase

in convex order, i.e.,

Eµ1φ 6 . . .Eµnφ,

for each convex function φ : R→ R.

Proof. Since we are interested in showing that subhedging portfolios can be formed

using just call options, we will restrict the dual candidates Ψ(ui)(∆j) such that ui ∈
S, ∀i = 1, . . . , n and ∆j ∈ Cb(Rj), j = 1, . . . , n− 1 and let Φ be a continuous function.

We construct convex sets A = Π(µ1, . . . , µn) and B = Cb(R)×· · ·×Cb(Rn−1) of (n− 1)

tuples so that we can apply Theorem 5.3.2 on the following function:

f(π, (∆i)) =

∫
Φ(x1, . . . , xn)−

n−1∑
j=1

∆j(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn).

The assumptions of Theorem 5.3.2 are satisfied and continuity of f(·, (∆j)) on

Π(µ1, . . . , µn) being a consequence of Lemma 2 .

Then, we have,

D ≥ sup
ui∈S,∆j∈Cb(Rj),Ψ(ui)(∆j)≤Φ

n∑
i=1

∫
uidµi (5.15)
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= sup
∆j∈Cb(Rj)

sup
ui∈S,

∑n
i=1 ui(xi)≤Φ(x1,...xn)−

∑n−1
j=1 ∆j(x1,...,xn)(xj+1−xj)

n∑
i=1

∫
uidµi (5.16)

= sup
∆j∈Cb(Rj)

inf
π∈Π(µ1,...,µn)

∫
Φ(x1, . . . , xn) −

n−1∑
j=1

∆j(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn)

(5.17)

= inf
π∈Π(µ1,...,µn)

sup
∆j∈Cb(Rj)

∫
Φ(x1, . . . , xn) −

n−1∑
j=1

∆j(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn)

(5.18)

= inf
Q∈M(µ1,...,µn)

∫
Φ(x1, . . . , xn)dQ = P (5.19)

Here in step 2, Corollary 5.3.1 is applied on the cost function

∫
Φ(x1, . . . , xn) −

n−1∑
j=1

∆j(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn)

to show the inequality between (5.16) and (5.17). Theorem 5.3.2 is used to show the

inequality between (5.17) and (5.18) . The inequality in the final step is shown by the

fact that ( by using Lemma 3), for some j there is a function ∆j such that

B =

∫
Φ(x1, . . . , xn) −

n−1∑
j=1

∆j(x1, . . . , xn)(xj+1 − xj)dπ(x1, . . . , xn)

does not vanish if Q is not a martingale measure then by appropriately scaling ∆ the

value of B can be made arbitrarily large.

Next, since Φ : Rn → [0,∞) be a lower-semi continuous function. We can approximate

it by a increasing set of functions such that Φ1 6 Φ2 ≤ . . . and Φ = supk≥0Φk In

the following section we write P (Φ), D(Φ), P (Φk) and D(Φk) to emphasize on cost

function. For each k pick Qk ∈ Π(µ1, . . . , µn) such that,

P (Φk) ≥
∫

ΦdQk −
1

k
,

Passing to a subsequence if necessary, we may assume that (Qk) converges weakly to
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some Q ∈ Π(µ1, . . . , µn). Then,

P (Φ) ≤
∫

ΦdQ = lim
m→∞

∫
ΦmdQ

= lim
m→∞

( lim
k→∞

∫
ΦmdQk)

≤ lim
m→∞

( lim
k→∞

∫
ΦkdQk)

= lim
k→∞

P (Φk)

(5.20)

Since P (Φk) ≤ P (Φ) it follows that D(Φ) ≥ D(Φk) = P (Φk) ↑ P (Φ)

To show that the optimal value of the primal problem is indeed attained we use the

lower semi-continuity of
∫
φdπ on Π(µ1, . . . , µn) : if the sequence πk in Π(µ1, . . . , µn)

converges weakly to π then,∫
φdπ = lim

k→∞

∫
Φkdπ = lim

k→∞
( lim
m→∞

∫
Φkdπm) ≤ lim inf

m→∞

∫
Φdπm (5.21)

If P = ∞, the infimum is trivially attained. So assume, P < ∞ and pick a sequence

Qk in M(µ1, . . . , µn) such that P = limk

∫
ΦdQk. As M(µ1, . . . , µn) is compact (Qk)

will converge to some measure Q along a subsequence and Q is a primal minimizer by

(5.21). This completes the proof.
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