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Abstract

The standard model of particle physics is able to explain the structure of the universe very
successfully. It has been proven very effective in understanding the processes of elementary
particles. But there are scenarios which lie beyond the scope of SM. This project considers Lepton-
Quark contact interaction in addition to the existing interaction in the SM. This project required
learning QED and QCD as prerequisites for the later work which involved the analytical calculations
of the differential cross-section including this LLQQ interactions which are parameterized in terms
of six-dimensional operators. The project focused on appending these operators to the existing
codes and comparing the output with the existing experimental data.
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Chapter 1

Introduction

The Standard Model of Particle Physics has been proven extremely successful in understanding
the dynamics of elementary particles. There are still many more phenomena which are out of the
scope of the standard model. Many models have been proposed to explain such phenomena in
the last few decades. Our attempt is to provide a framework to study physics Beyond Standard
Model(BSM). The project is intended towards using available data DY process to investigate new
physics scenarios.

Drell-Yan Process or Drell-Yan Pair production a standard process to probe physics at higher
energies at Large Hadron Collider(LHC). It occurs in high energy Hadron-Hadron scattering. Quark
and anti-quark from either of hadrons annihilate to form a boson which then forms a pair of lepton
and anti-lepton. In 1970 Sidney Drell and Tung-Mow Yan first discussed this process and was later
observed by J.H. Christenson.

The quark-lepton compositeness [4,5,6] implies that quarks and leptons share some common
constituents. This leads to the interaction between quark and leptons which is beyond the scope
of the existing standard model. But the four-fermion contact interaction is not just limited to the
quark-lepton compositeness but also the four-fermion interactions mediated by the massive particle
having a mass much greater than the energy transfer is approximated by such contact interaction
terms. The effective interaction term in the Lagrangian, well below the scale Λ given in [4],

L = 4π

Λ

�
ηi j (q̄γµPi q)(l̄γµPi l )+ζi j (q̄γµq)(l̄γµl )

�

3
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where i , j = L,R andPi are Chirality projection operators. QCD corrections can affect cross-section
significantly. Even for simple processes like Drell-Yan including these interaction terms can
play a crucial rule in increasing accuracy of the experiment. Correction terms of these contact
interaction up to the next-to-leading order are discussed in Ref. [4]. This inspires us to include
next-next-to-leading order corrections for the Hadronic processes.
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Chapter 2

Methodology

The theory of quantum electrodynamics and quantum chromodynamics(QCD) is an integral part of
the Standard Model of elementary particles as it successfully explains hadron properties, nuclear
structure and various phenomena. Learning the elementary processes of quantum electrodynamics
have crucial contributions to the processes which occur in QCD thus at the beginning of this project
I studied these processes their helicity structures and significance and the basic analytic structures
of scattering amplitudes.

The Project commenced by revising Quantum Electrodynamics. Various topics were studied in-
cluding Elementary processes such as e+e− →µ+µ−, Radiative Corrections, Divergences occurring
in various processes, cancellation of divergences.

Later reading involved introduction to the Non-Abelian gauge theories and their quantization. In
this spell of the project, I learned Lie algebras, Yang-Mills Lagrangian, Fadeev-Poppov Lagrangian
and one loop divergences of Non-Abelian gauge theories. For an understanding of the Hadron
structure and their dynamical properties learning QCD was crucial. I read Parton model, Deep
inelastic scattering and Hard scattering processes in Hadron collisions.

The Standard Model Effective Field theory predicts the general form of the cross-section to be,

σi =σi
SM +

�
n

ai
ncn +

�
n≤m

bnmcncm (2.1)

Our goal is to express such experimental observable as the function which depend on the wilson

5
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coefficients cn of the relevant four-fermion operators. One of the challenge is to determine the
coefficients ai

n and bi
nm which are discussed analytically in Ref. [2].

The next to leading order corrections to lepton pair production with the introduction of relevant
operators for four-fermion contact interaction is discussed in Ref. [4]. The code for these calculations
was developed by Dr Debajyoti Choudhury, Dr Swapan Majhi and Dr V. Ravindran. The aim of
the project is to calculate next next to leading order correction to the Drell-Yan process. To get the
result up to the one more order of correction the plan was to use the code developed by Dr Swapan
Majhi and Dr V. Ravindran for the QCD corrections up to the next-next-to leading order corrections
to the slepton production through annihilation of quarks.

The project focused on learning the analytic structures of these corrections and the structure
of the higher dimensional operators which play a major role and developing code to include these
corrections to the existing model.

Page 6 of 25



Chapter 3

Theory

Calculations of cross-sections for elementary process in QED is straight forward. One of the easiest
method is to use Feynman rules of QED. One of the Most discussed process is

e+e− →µ+µ− (3.1)

p p �

k k �

≡ |M | = v̄ s�(p �)(−i eγµ)us(p)
�−i gµν

q2

�
ūr (k)(−i eγν)vr �

(k �)

The differential cross-section is proportional to the square of matrix square element M .

dσ

dΩ
= const .|M |2 (3.2)

But, The divergence arises when we take into account first order corrections. To present an
example it can be thought of the QED vertex. The first order correction leads to the cross section
given by eq.(4)

7
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Figure 3.1: Image Source: The Standard Model of Electroweak Interactions - Pich, Antonio arXiv:1201.0537
[hep-ph] IFIC-11-73, FTUV-12-0102

dσ

dΩ
(p → p �) =

� dσ

dΩ

�
0

�
1− α

π
log

�−q2

m2

�
log

�−q2

µ2

�
+O(α2)

�
(3.3)

And, from the cross section for the process of emitting photon, we obtain that

dσ

dΩ
(p → p �+γ) =

� dσ

dΩ

�
0

�α
π

log
�−q2

m2

�
log

�−q2

µ2

�
+O(α2)

�
(3.4)

dσ

dΩ
(p → p �)+ dσ

dΩ
(p → p �+γ) ≡

� dσ

dΩ

�
measur ed

(3.5)

Neither the elastic cross section nor the so0ft bremsstrahlung cross-sections measured individu-
ally. The separate cross-sections are divergent, but their sum is finite which is physically observable.
In any real experiment if the sensitivity of the detector is El then, We obtain the result

� dσ

dΩ

�
measur ed

≈
� dσ

dΩ

�
0

�
1− α

π
log

�−q2

m2

�
log

�−q2

E 2
l

�
+O(α2)

�
(3.6)

More examples of loop divergences can be discussed. I will discuss Vacuum polarization or
photon self-energy. The observable is a sum of all possible diagrams of all orders. But here I will
show calculation till first order correction. Defining iΠµν(q) = (q2gµν− qµqν)Π(q2) to be sum
of all 1-Particle-irreducible insertions into the photon propagator. Then exact photon two-point
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function is −i gµν

q2(1−Π(q2))
The propagator has pole at q2 = 0 and residue of the pole is 1

1−Π(0) ≡ Z3

The amplitude for scattering process will be shifted by this factor, relative to tree-level approxi-
mation.

e2gµν

q2
→ Z3e2gµν

q2
(3.7)

we can account for this shift by replacing e →�
Z3e. This replacement is called charge renormal-

ization. (physical charge)= e =�
Z3e0 =

�
Z3(bare charge) the effective electromagnetic coupling

constant is

αe f f (q2) = e2
0/4π

1−Π(q2)
(3.8)

Restricting ourselves to first order

αe f f (q2) = α

1− [Π2(q2)−Π2(0)]
(3.9)

Computation of Π2(q2)−Π2(0) = Π̂2(q2) :

q k +q

k

iΠµν2 (q) = (−i e)2(−1)
�

d 4k

(2π)4
tr

�
γµ

i (/k +m)

k2 −m2
γν

i (/k + /q +m)

(k +q)2 −m2

�
(3.10)

Using Feynman Parameters, substituting l = k +xq and performing Wick rotation we find,

iΠµν2 (q) =−4i e2
�

d x
�

d 4lE

(2π)4

−1
2 gµνl 2

E + gµνl 2
E −2x(1−x)qµqν+ gµν(m2 +x(1−x)q2)

(l 2
E +Δ)2

(3.11)

where Δ= m2 −x(1−x)q2. The ultra-violate divergences in this equation are removed by dimen-
sional regularization. From the calculations we obtain iΠµν is proportional to the factor(q2gµν−
qµqν). This is in agreement with ward identity.

iΠµν2 (q) = (q2gµν−qµqν)iΠµν2 (q) (3.12)
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where,

iΠµν2 (q) = −8e2

(4π)2

�1

0
d xx(1−x)

Γ
�
2− d

2

�

Δ2−d/2
(3.13)

hence,

Π̂2(q2) =Π2(q2)−Π2(0) = −2α

π

�1

0
d xx(1−x) log

� m2

m2 −x(1−x)q2

�
(3.14)

Last three decades of 20th century, it has been believed that fermions the elementary particles
that make up all the matter we experience and interact through the exchange of bosons. Elementary
fermions consist of quark and leptons(e−,µ,τ and neutrinos corresponding to all three particles).
Quarks bound states are responsible for the formation of Hadrons(mesons and baryons). Fermions
interact with each other through strong, weak and electromagnetic forces. Electromagnetic in-
teraction is understood in QED. While strong interaction is responsible for nucleon binding and
interaction between constituents of nuclei. To explain the nature of Hadrons Bjorken and Feynman
developed a model called The Parton Model. Which claims Hadrons are bound states of partons
which are quarks and antiquarks which interact weakly at short distances. This peculiar property
was called asymptotic freedom. To explain such behaviours we have to include the notion of
non-Abelian gauge theories.

The symmetry group of QED is an Abelian group. But, this might not be the case all the time.
The theories having non-Abelian symmetry group are more general. Thus we need to study similar
calculations mathematical tools for such theories as well.

Calculation of gauge boson self-energy was studied. The g 2 order contributions come from four
diagrams.

= + + + +

(3.15)

First let us start with fermion loop diagram. The color factors are already taken care of, and the
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amplitudes of these diagrams are shown.

≡ i (q2gµν−qµqν)δab
� −g 2

(4π)d/2
.
4

3
n f C (r )Γ

�
2− d

2

��
(3.16)

The next two diagrams are from pure gauge sector. We will work in Feynman-’t Hooft gauge.

≡ i
g 2

(4π)d/2
C2(G)δab

�
d x

1

Δ2−d/2
.

�
Γ
�
1− d

2

�
gµνq2

�3

2
(d −1)x(1−x)

�

+Γ
�
2− d

2

�
gµνq2

�1

2
(2−x)2 + 1

2
(1+x)2

�
(3.17)

−Γ
�
2− d

2

�
qµqν

�
(1−d/2)(1−2x)+ (1+x)(2−x)

��

≡ i
g 2

(4π)d/2
C2(G)δab

�
d x

1

Δ2−d/2
.

�
−Γ

�
1− d

2

�
gµνq2

�1

2
d(d −1)x(1−x)

�
(3.18)

+Γ
�
2− d

2

�
gµνq2

�
(d −1)(1−x)2

��

And the last diagram consists of ghost loop.

≡ i
g 2

(4π)d/2
C2(G)δab

�
d x

1

Δ2−d/2
.

�
−Γ

�
1− d

2

�
gµνq2

�1

2
x(1−x)

�
+Γ

�
2− d

2

�
gµqν

�
x(1−x)

��

(3.19)
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The Last three diagrams sum up to be

+ +

≡ i (q2gµν−qµqν)δab
� −g 2

(4π)d/2
.
−5

3
C (r )Γ

�
(2− d

2

��
(3.20)

Further calculations leads us to Beta function
�
β(g )

�
One loop beta function for QCD is given by

β(g ) =− g 3

(4π)2

�
11

3
C2(G)− 4

3
n f C (r )

�
(3.21)

The β-function gives the rate at which the renormalized coupling constant changes. For small values
of n f the β-function is negative agreeing with our requirement of asymptotic freedom.

The most important concept required for future project was to learn Kinematics of Deep inelastic
scattering. This included calculation of partonic cross section and their relations with total Hadronic
cross section. This being understood, I calculated cross-sections for various hard scattering processes
in Hadron collisions.

P (p1)+P (p2) → l (l1)+ l̄ (l2)+X (3.22)

The total cross-section for Proton-Proton collision involving quark-antiquark coming from either of
the protons and carrying x1, x2 fractions of total momentum of proton i.e. the parton momentum ki

is ki = xi pi ; scattering into leptonic final state(l l̄ ) takes the form

σ
�
P (p1)+P (p2) → l l̄ +X

�
=

�1

0
d x1

�1

0
d x2

�

f
f f (x1) f f̄ (x2).σ

�
q(x1P )+ q̄(x2P ) → l l̄

�
(3.23)

where X is any Hadronic final state, f (x) are parton distribution functions and the sum runs over all
flavours of quarks and antiquarks. The proton level process is shown in the diagram and partonic
cross-section calculations are similar to the cross-sections of e+e− →µ+µ− process.
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Figure 3.2: Image Source: www.resarchgate.net

The differetal cross-sections are expressed by the relation Ref. [4],

2S
dσP1P2

dQ2
=

�

ab=q,q̄ ,g

�1

0
d x1

�1

0
d x2 f P1

a (x1) f P2
b (x2)

�1

0
d z2ŝ

dσab

dQ2
δ(τ− zx1x2) (3.24)

The variables denote the following quantities.

S ≡ (p1 +p2)2 ŝ ≡ (k1 +k2)2 Q2 ≡ (l1 + l2)2

τ≡ Q2

S
z ≡ Q2

ŝ
τ≡ zx1x2 (3.25)

2S
dσP1P2

dQ2
(τ,Q2) = 1

2π

�

j , j �=γ,Z ,V A,SP

P̃ j (Q2)P̃∗
j �(Q

2)L j j �(Q
2)W P1P2

j j � (τ,Q2) (3.26)

Where W is Hadronic structure function given by,

W P1P2
j j � (τ,Q2) =

�

j , j �,a,b

�1

0
d x1

�1

0
d x2 f P1

a (x1) f P2
b (x2)

�1

0
d zδ(τ− zx1x2)Δ̄ j j �

ab (z,Q2,�) (3.27)

The bare partonic coefficient function Δ̄ is,

Δ̄
j j �

ab (z,Q2,�) =
�

dPSm+1

���M a→ j j �
���
2
T j j �(q). (3.28)
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With dependence on the spin of the current through T j j � as discussed in Ref. [4].

We encounter singularities in the bare partonic coefficient function Δ̄ with ultraviolet, collinear
and soft divergences. To deal with this problem we use the dimensional regularization. We add all
the contributions fro gluon emission diagrams for renormalization and collinear divergences are
later removed by the mass factorization. Thus, the bare partonic coefficient function Δ̄ is expressed
in terms of Drell-Yan coefficient function after the mass factorization as,

Δ̄
j j �

ab (z,Q2,�) =
�

c,d
Γca(z,µF ,1/�)

�
Γdb(z,µF ,1/�)

�
Δ

j j �

ab (z,Q2,�) (3.29)

The µF is the factorization scale and the
�

stands for the operation

f
�

g (x) =
�1

x

d y

y
f (y)g (x/y) (3.30)

and Γca(z,µF ,1/�’s are the singular transition functions called Altarelli-Parisi kernels. These
functions have perturbative expansion in powers of as s =αs/4π.

Γab(z,µF ,1/�=
∞�

i=0
ai

s(µ2
F )Γi

ab(z,µ) (3.31)

The M̄S mass factorization scheme we find these functions to be

Γ0
ab(z,µ) = δabδ(1− z)Γ1

ab(z,µ) =−1

�
P (0)

ab (z) (3.32)

with P i ’s being the Altarelli-Parisi splitting functions. Writing eq. 28 up to the order as s =αs/4π

we can see the relations,

Δ̄
j j �

qq̄ =Δ(o), j j �

qq̄ +as
2

�
Γ(1)

qq̄

�
Δ

(0), j j �

qq̄ +Δ(1), j j �

qq̄

Δ̄
j j �
qg = as

2

�
Γ(1)

qg

�
Δ

(0), j j �
qg +Δ(1), j j �

qg (3.33)

which is finite coefficient function. These coefficient functions helps us in finding the physical
hadronic cross-section when integrted with parton distribution functions. According to Ref. [4] the
renormalized parton-parton fluxes are given by the relations,
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Hqq̄ (x1, x2,µ2
F ) = f P1

q (x1,µ2
F ) f P2

q̄ (x2,µ2
F )+ f P1

q̄ (x1,µ2
F ) f P2

q (x2,µ2
F )

Hg q (x1, x2,µ2
F ) = f P1

g (x1,µ2
F )( f P2

q (x2,µ2
F )+ f P 2

q̄ (x2,µ2
F )) (3.34)

Hqg (x1, x2,µ2
F ) = Hg q (x1, x2,µ2

F )

This makes the inclusive differential cross-section to be

2S
dσP1P2

dQ2
(τ,Q2) =

�
q

�1

0
d x1

�1

0
d x2

�1

0
d zδ(τ− zx1x2)

�
FSM+V A,qGSM+V A,q +FSP,qGSP,q

�

GSM+V A,q = Hqq̄ (x1, x2,µ2
F )

�
Δ(0),SM

qq̄ (z,Q2,µ2
F )+asΔ

(1),SM
qq̄ (z,Q2,µ2

F )
�

+�
Hqg (x1, x2,µ2

F )+Hg q (x1, x2,µ2
F )

�
asΔ

(1),SM
qq̄ (z,µ2

F ) (3.35)

GSP,q = Hqq̄ (x1, x2,µ2
F )

�
Δ(0),SP

qq̄ (z,Q2,µ2
F )+asΔ

(1),SP
qq̄ (z,Q2,µ2

F )
�

+�
Hqg (x1, x2,µ2

F )+Hg q (x1, x2,µ2
F )

�
asΔ

(1),SP
qq̄ (z,µ2

F )

and constants FSP,q and FSM+V A,q are completely dependent on the coupling constants and propaga-
tors,
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FSM+V A,q = 4α2

3

�� e2
q

Q2
−2eq g V

l g V
q ZQ

Q2 −M 2
Z

Q2
+ 1

4

�
(g R

l )2 + (g L
l )2��(g R

q )2 + (g L
q )2�ZQ

�

+ 2

αΛ2

�
−eq

�

i , j=L,R
ηi j +ZQ (Q2 −M 2

Z )
�

i , j=L,R
ηi j g i

q g j
l +

Q2

α2Λ4

�

i , j=L,R
|ηi j |2

��
(3.36)

FSP,q = Q2

Λ4

�

i , j=L,R
|ζi j |2

where, Z ≡ Q2

(Q2−M 2
Z )2+Γ2

Z M 2
Z

We need the expressions for the termsΔ(0),V A
qq̄ , Δ(1),V A

qq̄ , Δ(1),V A
q(q̄)g which are coefficient functions in

the case vector-axial vector couplings. Simultaneously, we need coefficient functions for Scalar-
pseudoscalar couplings which are Δ(0),SP

qq̄ , Δ(1),SP
qq̄ , Δ(1),SP

q(q̄)g . These terms are discussed in details in
Ref.[4].

Till now we have discussed only till the oder next to leadg orders. But, the calculation of next
next to leading order QCD correction requires the highers orders for Altarelli-Parisi kernels and its
expression can foung in the Ref. [3].

Γ2
ab(z,µ) = 1

2�2

�
c

�
P (0)

ac (z)
�

P (0)
cb (z)+2β0P (0)

ab (z)
�
+ 1

�
P (1)

ab (z) (3.37)

and we determine the coefficient functions of the order a2
s (suppressing the argument z and �) to be,

¯
Δ(2)

q
q̄ =Δ(2)

qq̄ +2Γ(1)
qq̄

�
Δ(0)

qq̄ +
2

�
P 0

qq

�
Δ(1)

qq̄ +
2

�
P 0

qg

�
Δ(2) + 1

�2
P 0

qq

�
P 0

qq

�
Δ(0)

qq̄

¯
Δ(2)

qg =Δ(2)
qg +Γ(1)

q̄g

�
Δ(2)

qq̄ +
1

�
P 0

qq

�
Δ(0)

qg +
1

�
P 0

qg

�
Δ(1)

qq̄ +
1

�
P 0

g g

�
Δ(1)

qg +
1

�2
P 0

qq

�
P 0

qg

�
Δ(0)

qq̄

¯
Δ(2)

g g =Δ(2)
g g +

4

�
P 0

qg

�
Δ(1)

qg +
1

�2
P 0

qg

�
P 0

qg

�
Δ(0)

qq̄ (3.38)
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To get the full expressions for the coefficient functions of order a2
s we convolute the above equations

by substituting the expressions for the lower order coefficients. The complete expressions can be
found in Ref. [3].

The corrections beyond the Standard Model can be systematically calculated by effective La-
grangians. As discussed in Ref. [2], "Making few assumptions like particle content and symmetries
and neglecting lepton number violation", significant correction terms are given by dimension
six-operators.

Le f f = LSM +
�

i

ci

v2
Oi (3.39)

The four-fermion contact interactions of the form LLQQ where Leptons(electron, muon, tau)
are denoted by L and Quarks(up, down, charm, strange, top, bottom) are denoted by Q, which are
absent in SM are taken into account in this effective Lagrangian as dimension six operators. The
most general parameterization of lepton-quark four-fermion is achieved as mentioned in the Ref.
[2].

Chirality Conserving,

O(1)
l q = (l̄γµl )(q̄γµq) O(3)

l q = (l̄σIγ
µl )(q̄σIγµq)

Ol u = (l̄γµl )(ūγµu) Old = (l̄γµl )(d̄γµd)

Oeq = (ēγµe)(q̄γµq) Oeu = (ēγµe)(ūγµu)

Oed = (ēγµe)(d̄γµd) (3.40)

and Chirality violating,

Oqd� = (l̄ e)(d̄ q) Ol q� = (l̄ e)�(q̄T u) Oql� = (q̄e)�(l̄ T u) (3.41)

Where e,u and d are SM lepton and quark singletes; σI are Pauli matrices; l denotes SM lepton
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doublet and q denotes quark doublets andd �= iσ2.

These operators contribute to the differential cross-section of Drell-Yan process. The partonic
level cross-sections are,

48π
dσ̂

d t̂
(ūu → l̄ l ) =

����ASM
uLlR

+ cqe

v2

���
2
+

���ASM
uR lL

+ clu

v2

���
2
+ 1

2v4

�
|cql�|2 +Re(cl q�c

∗
ql�)

�� t̂ 2

ŝ2

+
����ASM

uLlL
+ c(1)l q −c (3)l q

v2

���
2
+

���ASM
uR lR

+ ceu

v2

���
2
− 1

2v4
Re(cl q�c

∗
ql�)

�
û2

ŝ2

+ 1

2v4

�
|cql�|2 +Re(cl q�c

∗
ql�)

�
, (3.42)

48π
dσ̂

d t̂
(d̄d → l̄ l ) =

����ASM
dLlR

+ cqe

v2

���
2
+

���ASM
dR lL

+ cld

v2

���
2
�

t̂ 2

ŝ2
+

����ASM
dLlL

+ c(1)l q −c (3)l q

v2

���
2
+

���ASM
dR lR

+ ced

v2

���
2
�

û2

ŝ2

+|cqd�|2
2v4

, (3.43)

where, ASM
dψlφ

= e2QψQφ

ŝ + gψgφ
ŝ−m2

Z+i mZΓZ

with gψ = g
cw

[T 3
ψ− s2

W Qψ], Q is electric charge, T 3 weak isosopin component and g ,mZ ,ΓZ are
the SU (2)L coupling, Z -boson mass and width respectively. sW (cW ) are trignometric sine(cosine)
function of the weak angle. Neglecting corrections of order m2

Z /ŝ << 1

σ=σSM + 1

Λ2

�

q=u,d
[F q

1 Aq
1 +F q

2 Aq
2 ]+ 1

Λ4

�

q=u,d
[G q

1 B q
1 +G q

2 B q
2 +Gq

3 B q
3 ], (3.44)

With the coefficients Au,d
1,2,3 and B u,d

1,2,3 expressed as,

Au
1 = [e2QuQe + guL geL ](c (1)

l q −c (3)
l q )+ [e2QuQe + guR ge R ](ceu)
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Au
2 = [e2QuQe + guL geR ](cqe )+ [e2QuQe + guR geL ](clu)

Ad
1 = [e2QdQe + gdL geL ](c (1)

l q +c (3)
l q )+ [e2QdQe + gdR geR ](ced )

Ad
2 = [e2QdQe + gdL geR ](cqe )+ [e2QdQe + gdR geL ](cld ) (3.45)

B u
1 = 4(c(1)

l q −c (3)
l q )2 +c2

eu −2Re(cl q�c
∗
ql�) B d

1 = (c(1)
l q −+c(3)

l q )2 +4c2
qd

B u
2 = 4c2

qe +4c2
l u +|cql�|2 +2Re(cl q�c

∗
ql�) B d

2 = 4c2
qe +4c2

ld

B u
3 = 2|cql�|2 +2Re(cl q�c

∗
ql�) B d

3 = 2|cqde |2

From these equation it is clear that the coefficients Au,d
1,2,3 and B u,d

1,2,3 are dependent on four-fermion
operators.
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Chapter 4

Discussion

As discussed earlier we have achieved in 3.44, to express the cross-section as per the form σi =
σi

SM+�
n ai

ncn+
�

n≤m bnmcncm .Having obtained the analytic structure of six-dimensional operators
corresponding to the Lepton-Quark contact interaction we can proceed to developing code which
can calculate the differential cross-section for the Drell-Yan pair production. The NLO corrections
for Drell-Yan pair production are performed in the Ref. [4] and NNLO corrections for Slepton
production are performed in Ref. [3]. Modifying existing code for NLO correction of Lepton-Quark
with the referring these NNLO QCD corrections we hope to obtain desired result.
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Chapter 5

Summary and Future Plan

In the first half, the project was focused on learning the non-Abelian gauge theories, studying loop
divergences in QCD and calculation of cross section for different processes involving electromag-
netic and strong interactions. Latter half involved the review of the literature in the field of Standard
Model Effective Field theory and NLO and NNLO QCD corrections to the processes at hadron
colliders and the analytical modifications to existing model and development of the FORTRAN
code to include the six-dimensional operators. In the future, we plan to find the matrix square
elements for the process which involves with the help of the developed code including these beyond
standard model interactions.
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