
Survey of Algorithms for Di↵erent
Matchings

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Mitali Thatte

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

May, 2019

Supervisor: Dr Meena Mahajan

c� Mitali Thatte 2019

All rights reserved

Certificate

This is to certify that this dissertation entitled Survey of Algorithms for Di↵erent

Matchings towards the partial fulfilment of the BS-MS dual degree programme at the

Indian Institute of Science Education and Research, Pune represents study/work carried

out by Mitali Thatte at Indian Institute of Science Education and Research under the

supervision of Dr Meena Mahajan, Professor, Institute of Mathematical Sciences , during

the academic year 2018-2019.

Dr Meena Mahajan

Committee:

Dr Meena Mahajan

Dr Soumen Maity

This thesis is dedicated to Saurabh

Declaration

I hereby declare that the matter embodied in the report entitled Survey of Algorithms for

Di↵erent Matchings are the results of the work carried out by me at the Institute of

Mathematical Sciences, Indian Institute of Science Education and Research, Pune, under

the supervision of Dr Meena Mahajan and the same has not been submitted elsewhere for

any other degree.

Mitali Thatte

Acknowledgments

I would like to thank Dr Meena Mahajan for being a wonderful guide and mentor. I would

also like to thank Dr Soumen Maity, The Institute of Mathematical Sciences, IISER Pune

and all my friends and family for supporting me.

ix

x

Abstract

The main aim of this project is to survey some techniques used to develop algorithms to

find di↵erent types of matchings. The three main papers that we survey are:

1. Bipartite Perfect Matching is in quasi-NC- Stephen A. Fenner, Rohit Gurjar, Thomas

Thierauf. This paper gave a technique to derandomize the famous isolation lemma

using (n6 logn) processors working in parallel to find a perfect matching in a bipartite

Graph

2. The Matching Problem in General Graphs is in Quasi-NC- Ola Svensson, Jakub Tar-

nawski. This paper built on the tecniques of the previous paper to give a quasi-NC

algorithm to find a perfect matching in General graphs.

3. Popular Matchings.- David J. Abraham, Robert W. Irving, Telikepalli Kavitha, Kurt

Mehlhorn. This was one of the first papers to give a polynomial time algorithm to find

popular matching in bipartite graphs where nodes in one partition have preferences

regarding which node in the other partition to be matched to .

xi

xii

Contents

Abstract xi

1 Preliminaries 3

1.1 The Perfect Matching Polytope . 3

1.2 RNC Algorithm for Perfect Matching . 5

2 Perfect Matching: Bipartite Graphs 13

3 Pseudo-deterministic Bipartite Perfect Matching 19

4 Perfect Matching: General Graphs 25

5 Popular Matchings 31

5.1 Characterization . 31

5.2 The Algorithm . 36

5.3 Strict Preferences . 37

6 Conclusions 39

xiii

xiv

Introduction

Let G(V,E) be a graph with |V | = n, |E| = m. A matching M of a graph G(V,E) is a

subset of the set of edges satisfying the property that no two edges in M have an endpoint

in common. A matching M is said to be maximum if for all matchings M 0 of G we have

|M | � |M 0|. A polynomial time algorithm to find a maximum matching in a graph was

given by Edmonds in 1965 [1]. A more e�cient algorithm to find a maximum matching for

bipartite graphs was given by Hopcraft and Karp in 1978 [2].

A matching which covers every vertex is called a perfect matching. We can see that if a

perfect matching exists, Edmond’s algorithm will find in in polynomial time. An interesting

problem is to find a perfect matching using polynomially many processors working in parallel

in poly-log time. This is the class NC. In the papers we surveyed about perfect matchings,

the edges of the graphs are given weights so as to enable us to find a perfect matching. The

core problem essentially is to find a clever weight function on the set of edges so that the

minimum weight perfect matching is unique. The famous Isolation Lemma by Mulmuley,

Vazirani and Vazirani [3] gives us a way to find a weight function with high probability.

We can isolate the minimum weight perfect matching in the graph if it exists using the

Tutte matrix of the graph without using randomization in poly-log time using polynomially

many processors. We don’t know how to derandomize the isolation lemma to find a perfect

matching in NC. Several modified instances have been solved though, for example, if it is

known that the number of perfect matchings in a graph is polynomially bounded, then it is

possible to compute all of these matchings by a deterministic NC algorithm. One algorithm

for the same was given by D Grigoriev and M Karpinski [4] and another by Agrawal, Hoang

and Thierauf [5].

Fenner, Gurjar and Thierauf gave a way to derandomize the isolation lemma for bipartite

graphs [6] with a slightly extra allowance. They gave a way to find a set of n6 logn weight

1

functions with weights bounded by n6 logn such that at least one weight function in this

set is Isolating (minimum weight perfect matching is unique). We call such an algorithm

quasi-NC because the number of processors involved is not polynomial in n but nO(logn). The

important tools they used to find such a weight function were; the perfect matching polytope

of bipartite graphs, the fact that all the cycles have even length. They essentially ensured

that at least one weight function among these gives non-zero circulation to all the cycles in

the graph so that the minimum weight perfect matching is unique. Svensson and Tarnawski

[7] dealt with the limitations of the preceding problems to give a quasi-NC algorithm for

general graphs. They introduced the notion of a cycle respecting the face of a polytope to

deal with cycles which are contained in the symmetric di↵erence of two perfect matchings.

David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn [8] gave

a characterization for popular matchings in bipartite graphs so as to allow for a polynomial

time algorithm to find one. A vertex v is said to prefer a matching M over M 0 if either it is

matched in M but unmatched in M 0 or if it matched to a vertex w in M and w0 in M 0 with

w being strictly higher than w0 on v’s preference list. v is said to indi↵erent between M and

M 0 if it is unmatched in both or matched in both to vertices which tie on v’s preference list.

A matching M is said to be popular if for all matchings M 0, the number of vertices that

prefer M over M 0 is greater than or equal to the number of vertices that prefer M 0 over M .

2

Chapter 1

Preliminaries

1.1 The Perfect Matching Polytope

Let G(V,E) be a graph with |V | = n, |E|  n2. A subset of R|E| is called the perfect

matching polytope of the graph G if it is the convex hull of all its perfect matching points.

A point �!x 2 R|E| with entries in {0, 1} is a representation of a subset S ✓ E such that

xe =

8
<

:
1 if e 2 S

0 otherwise

�!x is said to be a perfect matching point representing the perfect matching M if

xe =

8
<

:
1 if e 2M

0 otherwise

We claim that for a bipartite graph G(V,E), the perfect matching polytope is given by the

following constraints.

P
e2�(v) xe = 1 8v 2 V (1.1)

xe � 0 (1.2)

3

We can see that any convex combination of some perfect matching points will be vector

satisfying the above constraints. It remains to be shown that any point satisfying the above

constraints can be expressed as a convex combination of some perfect matching points.

Let �!x 2 R|E| be a point satisfying the above constraints such that xe > 0 for some subset

S ⇢ E. Then the graph G(V, S) is a perfect matching or it contains a cycle.

Suppose not.

Equation 1.1 ensures that every vertex in G(V, S) has degree at least one. Therefore |S| � n

2 .

As G(V, S) is not a perfect matching, |S| > n

2 . Further as G(V, S) does not contain a cycle,

there are two vertices v1, v2 of degree 1 such that there exist a path of length at least two

between v1 and v2 say (v1v3...v2). But as v1 has degree 1, the edge incident on v1 say e1 will

have corresponding value 1 in �!x . But this means that v3 cannot have any more neighbors

again due to constrain 1.1. Therefore the path of length greater than or equal to two cannot

exist.

Therefore G(V, S) is a perfect matching or contains a cycle.

If �!x is a perfect matching point, then we are done ie, we can obviously express it as a

convex combination of itself.

Therefore,we assume that �!x is not a perfect matching point so that the corresponding set

S contains a cycle C = (e1e2...e2l) where xei > 0 where i 2 {1, 2, ..., 2l}. Because G is a

bipartite graph, C will always be even. Now we consider another vector �!y such that

ye =

8
<

:
xe � (�1)i✏ if e = ei 2 C

xe otherwise

Here ✏ = min{xe1 , xe2 , ...xe2l
} We can see that �!y satisfies constraints 1.1 and 1.2. So now

either �!y is a perfect matching point or corresponds to a set containing a cycle in which case

we proceed as before. This process is finite as the edges for which we have made xe zero will

never be given non-zero value again. Therefore we can eventually reach a perfect matching

point.This is equivalent to moving towards a vertex of a convex hull of perfect matchings while

staying within the hull. Therefore the perfect matching polytope is completely described by

1.1 and 1.2.

4

1.2 RNC Algorithm for Perfect Matching

An NC algorithm is one where polynomially many processors work in parallel to give an

output in poly-log time. It remains an open problem to determine whether there exists an

NC algorithm to find a perfect matching. An RNC algorithm has the additional allowance

of using polynomially many random bits and should satisfy the following two properties:

1. If the correct answer is ’Yes’, it returns ’Yes’ with probability � 1/2. In our context it

should return a perfect matching, if one exists, with probability � 1/2

2. If the correct answer is ’No’ it returns ’No’ with probability 1. That is, if no per-

fect matching exists we should be able to get the output; ’This graph has no perfect

matching’ with probability 1.

It has been shown that both the decision and the search version of the perfect matching

problem are in RNC.

1.2.1 Bipartite Graphs - Decision

Let An⇥n be the bipartite adjacency matrix of graph G(V [U,E) with |V | = |U | = n, |E| =
m  n2.

aij =

8
<

:
1 if 9 an edge between vertices i and j

0 otherwise

We define a matrix B such that

bij = aijxij (1.3)

The determinant of this matrix will be

|B| =
X

�2Sn

Sign(�)
nY

i=1

bi�(i) (1.4)

Where Sign(�) 2 {1,�1} is associated with the permutation � and equals (�1)k where k is

the number of inversions in the permutation. An inversion is a pair (x, y) such that x < y

and �(x) > �(y). We can see that every perfect matching in the graph G can be expressed

5

as a permutation of Sn and every permutation can be associated to a perfect matching. As

xij are indeterminates, no term cancels out any other term in the expansion of determinant

of |B|. Some of the bij may be zero but every non-zero term represents one perfect matching

in the graph. From this, the next theorem follows easily

Theorem 1.1. |B| not identically zero () G has a perfect matching

Proof. =) if |B| is not identically zero, then it has a permutation � as a monomial in its

expansion. This term corresponds to the perfect matching M = {(i, �(i)) 2 E}
(= If G has a perfect matching, then the permutation corresponding to this perfect match-

ing, that is 8i, �(i) = M(i) is present. And as no term gets canceled in the expansion of the

determinant, |B| is not identically zero.

We know that the problem of calculating the determinant of matrix with integer entries

is in NC [9] But here the number of monomials in the expansion of |B| may be at most n!

which is not polynomially many. xij being indeterminates, these monomials cannot be further

reduced to manageable number of terms. This is where we need to evoke randomization to

check of |B| is identically zero. We will need to make use of following result.

Theorem 1.2 (Schwartz Zippel). Let p be a polynomial of degree n on m variables. Let Q =

{1, 2, ..., N} such that N � n. Let bi, i 2 {1, 2, ..,m} be chosen randomly and independently

from the set Q. Let
�!
b = (b1, b2, ..., bm). Then

P (p(
�!
b) 6= 0) � 1� n

N
(1.5)

Here p(
�!
b) is the polynomial p with bi substituted in place of the m variables.

So now we have an algorithm of check of the bipartite graph G has a perfect matching.

We assign values to every xij independently and randomly from {1, 2, ..., 2n} to get the

modified matrix B0. It is easy to see that |B| = 0 =) |B0| = 0 That is, if our graph does

not contain any perfect matching, then |B0| will always be evaluated to zero. However if

|B| 6= 0 then |B0| will not be evaluated to zero with probability � 1� n

2n = 1
2 . Therefore, if

the correct answer is ’Yes’, that is if G does contain a perfect matching, we will be able to

say that it does with probability greater than half. Therefore this is an RNC algorithm to

determine if a perfect matching exists in a bipartite graph G.

6

1.2.2 General Graph - Decision

We follow similar techniques to determine the existence of a perfect matching in a general

graph G(V,E) with |V | = 2n and |E| = m  4n2

Let A2n⇥2n be the adjacency matrix of G such that

aij =

8
<

:
1 if 9 an edge between vertices i and j

0 otherwise

Note that unlike the bipartite adjacency matrix, this matrix is always symmetric. We define

the Tutte matrix T of G such that

tij =

8
<

:
aijxij if i  j

�aijxji if i > j
(1.6)

This matrix T is skew symmetric. The determinant of this matrix is

|T | =
X

�2S2n

Sign(�)
nY

i=1

ti�(i) (1.7)

Unlike the bipartite case, because of the nature of our matrix T , some of the non-zero

terms may cancel each other in the expansion of determinant of T . Every even permutation

(permutation without any odd cycle) of S2nin the expansion of the determinant corresponds

to one or more perfect matchings in graph G. Given an even permutation � 2 S2n, we can

extract a perfect matching M from it by considering the alternate terms tij from every even

cycle of �. Therefore if a cycle has length greater than two, we can extract two di↵erent

perfect matchings from it by alternating on it.

We will now show that if a permutation � contains at least one odd cycle (� is not an

even permutation), then � gets canceled by some other term in the expansion of determinant

of T

Theorem 1.3. For every � 2 S2n containing an odd cycle, 9 �0 2 S2n such that in the

expansion of determinant of T the monomial corresponding to � will di↵er from the monomial

corresponding to �0 only in its sign and therefore they will cancel each other.

7

Proof. Let � be the permutation in the expansion of |T | such that � contains an odd cycle.

Let this odd cycle be C. Because our matrix is skew-symmetric, it is easy to see that

9 �0 2 S2n such that �0 is same as � everywhere except on the C where it is reversed. That

is, we flip the cycle C to get �0 from �. As we have seen before, the sign of permutation is the

(�1)k where k is the number of inversions in the permutation. It can also be shown that sign

of a permutation is (�1)n�l where l is the number of disjoint cycles in the permutation. As

both � and �0 have the same number of cycles, they have the same sign. Again, because of the

way we have constructed T , sign of every term composing the cycle C is flipped (1 ! �1)
while flipping the cycle. Therefore the sign of the monomial corresponding to � will di↵er

from the monomial corresponding to �0 and therefore they will cancel each other.

Therefore only the even permutations of S2n may be retained during the expansion of

|T |.

Theorem 1.4. |T | not identically zero () G has a perfect matching

Proof. =) if |T | is non-zero, it contains an even permutation as all the odd permutations get

canceled. We have already seen how to extract a perfect matching from an even permutation.

(= if G has a perfect matching, then the permutation � 2 S2n consisting of only 2-cycles

of the form (tiM(i)tM(i)i) corresponding to the edges of the matching M will not be canceled

by any other permutation and will persist in the expansion of |T |. Therefore |T | will not be
identically zero.

Now we can use the Schwartz-Zippel theorem to proceed like we did for bipartite graphs.

1.2.3 General Graphs - Search

We will now look at an algorithm on how to output a perfect matching if one exists. For

this we need a famous result proved by Mulmuley Vazirani and Vazirani [3]

Lemma 1.5 (Isolation Lemma). Let A = {a1, a2, ..., an}. Let F be a family of subsets of

A. Let w : A ! {1, 2, ..., 2n} be a weight function which assigns weights independently and

at random to elements of A. The weight of a set S ⇢ A, w(S) =
P

a2S w(a). The weight

8

function is said to be isolating if the set in F having the minimum weight is unique. Isolation

lemma states that

P (w is isolating) � 1

2
(1.8)

Proof. We shall call an element ai 2 A, singular with respect to a weight function w, if

9 Sj, Sk 2 F such that both Sj, Sk have minimum weight in F and ai 2 Sj and ai /2 Sk. We

can see that if there is no singular element in A then the minimum weight set in F is unique.

We shall now find the probability for the element ai to be singular.

We first fix the weights of all the elements other than ai. We define a real number �i to be

the threshold for ai such that if w(ai)  �i then ai is contained in some minimum weight set

of F . It is easy to see that if w(ai) < �i then ai is contained in every minimum weight set of

F . In this case the set having minimum weight in F is isolating after giving weight to ai if

the minimum weight set is isolating before giving weight to ai. (The weight of a set before

giving weight to ai w(Sj) =
P

ak2Sj , k 6=i
w(ak)). If w(ai) � �i then ai is not contained in any

minimum weight set of F . Therefore, ai is singular if and only if w(ai) = �i

It is crucial to note that the threshold �i was defined for ai without taking into consideration

the weight of ai. Therefore, once the threshold for ai is fixed,

P (w(ai) = �i) 
1

2n

As the weights for ai are chosen randomly and independently from {1, 2, ..., 2n},

P (at least one element is isolating)  n⇥ 1

2n
= 1/2

Therefore the set having the minimum weight in F is unique (weight function is isolating)

with probability � 1
2

We shall now prove that if the weight function w on the set of edges of the graph G

is indeed isolating and if a perfect matching exists, then it is possible to output a perfect

matching in NC. For this, we define a modified Tutte matrix T 0 such that

t0
ij
=

8
>>><

>>>:

2w(i,j) if i  j, 9 an edge(i, j) 2 E

�2w(i,j) if i > j, 9 an edge(i, j) 2 E

0 Otherwise

(1.9)

9

Here w(i, j) is the weight of the edge (i, j) 2 E. All the terms in the expansion of |T 0| are
of the form ±2w(M1)+w(M2). M1,M2 may or may not be the same matching. We can see that

all the odd permutations cancel out because |T 0| is just a special case of the Tutte matrix T .

Theorem 1.6. If the matching M having the minimum weight w(M) is unique, that is, if

the weight function is isolating, then the determinant of |T 0| 6= 0. Further the highest power

of 2 that divides |T 0| is 2w(M)

Proof. M is the unique minimum weight perfect matching with weight w(M). Then the term

corresponding to this matching, that is, � with only 2-cycles corresponding to the edges of

this matching will be ±22w(M). There will be only one such term as M is unique. This term

cannot be canceled by any other term or the di↵erence of any other terms as everything

else will be sum or di↵erence of higher powers of 2. All the other terms will be of the form

±2w(M1)+w(M2) where at least one of M1 or M2 is not equal to M and have weight at least

w(M) + 1. Therefore 22w(M)+1 will divide all the other terms. The expansion of |T 0| will be
of the form

|T 0| = ±22w(M) ± 22w(M)+1(y) (1.10)

where y is an integer strictly greater than 1. Therefore, regardless of what value y takes,

|T 0| 6= 0 and the highest power of 2 that divides |T 0| will be 2w(M)

Given that the minimum weight perfect matching is unique, we will now check for each

edge (i, j) 2 E if it belongs to the minimum weight perfect matching.

Theorem 1.7. Let B be the modified Tutte matrix of G(V,E) with unique minimum weight

perfect matching M with weight w(M). Then for every edge (i, j) 2 E

|Bi,j|
22w(M)

22w(i,j) mod 2 ⌘

8
<

:
0 if (i, j) /2M

1 if (i, j) 2M
(1.11)

Where Bi,j is the modified Tutte matrix of the graph Gi,j which is obtained by removing the

ith and the jth vertices in G along with all the edges incident on these two vertices.

Proof. It is important to note that the only perfect matchings of Gi,j are the perfect match-

ings of G that contain (i, j) (with the edge (i, j) removed). If M1 is a perfect matching of G

then the corresponding matching in Gi,j will be M1 � (i, j)

10

1. If (i, j) /2M , then the matchings in Gi,j will be of the form M1� (i, j) where w(M1) >

w(M). As the weights of all the matchings are integers

|Bi,j| = (2w(M)�w(i,j)+w(M)�w(i,j)+1)(y)(22w(i,j))

|Bi,j| = (22w(M)+1)(y)

|Bi,j| = 2(22w(M))(y)

Where y is an integer. Therefore

|Bi,j|
22w(M)

mod 2 ⌘ 0

2. If (i, j) 2M , then the matchings in Gi,j will be of the form M1� (i, j) where w(M1) �
w(M). Further, the matching M � (i, j) will be contained in Gi,j and this will be the

unique minimum weight matching of Gi,j due to the way Gi,j is constructed. Therefore

the highest power of 2 that divides |Bi,j| will be 22w(M)�2w(i,j). Therefore,

|Bi,j| = (22w(M)�2w(i,j))(z)

Where z ⌘ 1 mod 2. Therefore

|Bi,j|
22w(M)

22w(i,j) = z ⌘ 1 mod 2

Hence proved

We now have an algorithm to output a perfect matching if one exists. We assign weights

randomly and independently to all the edges from the set {1, 2, ..., 2|E|}. We then construct

the modified Tutte matrix B for the graph G. We will compute the highest power of 2

that divides |B| and call it 2w(M). In parallel, we compute the quantity k = |Bi,j |
22w(M)2

2w(i,j)

mod 2 for all the edges (i, j) 2 E. We output the set S ✓ E of all the edges for which

k = 1. We check if S is a perfect matching. S will be a perfect matching if the weight

function is isolating. However the weight function will the isolating with the probability

� 1/2. Therefore our algorithm will output a perfect matching with the probability � 1/2

if one exists. Therefore this algorithm is in RNC. We can compute the determinant of a

11

matrix in O(log2 n) time in NC and this is the only critical step in our algorithm. Therefore,

the algorithm to find a perfect matching is in RNC and takes O(log2 n) time.

12

Chapter 2

Perfect Matching: Bipartite Graphs

The algorithm in the previous chapter shows that if the weight function is isolating, finding

a perfect matching can be done in NC. The only randomized step was to find such a suitable

weight function. We would ideally like to construct a set of at most polynomially many

weight functions, such that amongst them at least one is isolating. But this remains an open

problem. A quasi-NC algorithm to find a perfect matching in a bipartite graph was given

by Fenner, Gurjar and Thierauf in 2016 [6]. They gave a way to assign weights to the edges

of a graph such that among O(n6 logn) weight assignments at least one is isolating. An NC

algorithm would have polynomially many processors working in parallel but this quasi-NC

algorithm has O(n6 logn) processors. Their main theorem is as follows.

Theorem 2.1. 9 n6 logn weight assignments with weights bounded by O(n6 logn) such that at

least one assignment isolates a minimum weight perfect matching.

The weight assignment for a graph G(V,E) is given as follows. Let j be a number such

that j = j0 + j126 logn + j222⇤6 logn + ...+ jk26k logn where k = dlog ne� 1 and all ji are 6 log n

bit long. The jth weight is as follows (done in parallel for all possible j)

wj(ei) = Bk(2i mod j0) + Bk�1(2i mod j1) + ...+B0(2i mod jk) (2.1)

Here B � n7

The number of possible j is n6 logn which is equal to the number of processors needed.

13

We will ensure that at least one among these j assignments is isolating by ensuring that

at least one weight assignment gives non zero circulation to all the cycles in the graph

G. The circulation of a cycle C = {e1e2...e2m} with respect to weight w is defined as

cw(C) = |w(e1)�w(e2)+w(e3)� ...�w(e2m)|. It is important to note that G being bipartite

implies that all cycles in G are of even length. For this section, we will assume G to be

bipartite unless otherwise stated.

Theorem 2.2. All cycles in graph G have non-zero circulation) the minimum weight

perfect matching is unique.

Proof. Suppose not

Suppose there are two distinct minimum weight perfect matchings M1 and M2. Then

their symmetric di↵erence M1�M2 contains a cycle C. (The graph M1�M2 has edges

E(M1�M2) = E(M1) [E(M2) � E(M1 \ M2)). By our assumption, C has non-zero

circulation. We can therefore alternate on C to obtain a matching M3 with weight less than

the minimum weight, leading to a contradiction. Therefore M1 and M2 are not distinct.

Therefore the minimum weight perfect matching is unique.

If we can somehow ensure that all cycles in G will have non-zero circulation then the

minimum weight perfect matching will be unique. One way to do this would be to give

weight w(ei) = 2i to all the edges. We want the weights to be polynomially bounded even

though the number of cycles may be exponential. We will therefore successively consider the

graph Gi which is the union of minimum weight perfect matchings of Gi�1 with G0 = G in

such a way that Gi will have considerably less number of cycles than Gi�1. We can show

that if the number if cycles is polynomially bounded we can find a weight function with

polynomially bounded weights such that all of these cycles have non-zero circulation.

Theorem 2.3. If G is a graph with n vertices, then for any number s, there is a way for us

to construct O(n2s) weight assignments with weights bounded by O(n2s) such that at least

one of the weight assignments gives non-zero circulation to all s cycles for any set of s cycles.

Proof. As we have seen before, the weight function w(ei) = 2i will work but the weights are

exponential. We claim that for a given set of s cycles, at least one of the weight functions

wk(ei) = 2i mod k, k 2 {1, 2, ..., t} (2.2)

14

will assign non-zero circulation to all s cycles if t is large enough. That is, we want to show

that 9k  t such that

8i  s, cw mod k(Ci) 6= 0

This will be true provided that 9k  t such that

sY

1

cw(Ci) 6= 0 mod k

For this to be true, it is enough to ensure that

lcm(2, 3, ..., t) -
sY

1

cw(Ci)

This will be true if we ensure that lcm(2, 3, ..., t) is greater than
Q

s

1 cw(Ci) which is bounded

above by 2n
2
s. Furthermore we have that lcm(2, 3, ..., t) � 2t for t � 7. Therefore t = n2s is

large enough for our purpose. As we are taking the weights modulo k with k  t the weights

are bound by t = n2s.

This theorem tells us that if s, the number of cycles, is polynomially bound, we can find

an acceptable weight function. The motivation to work with successive graphs Gis is that

we will eliminate polynomially many cycles every time we go from Gi�1 to Gi. To do this we

will need to show that every cycle which has been given non-zero circulation in Gi�1 will not

have all of its edges present in Gi which is the union of all minimum weight perfect matchings

of Gi�1. In other words at least one edge of any cycle C which has non-zero circulation in

Gi�1 will be absent in Gi. However, to prove this statement, we need another result about

perfect matchings in a bipartite graph.

Theorem 2.4. Let G(V,E) be a bipartite graph with a weight function w. Let E1 be the

union of all the edges of G which are present in at least one minimum weight perfect matching

of G. Then the only perfect matchings of the graph G(V,E1) are the minimum weight perfect

matchings of G(V,E). In other words the weight of all the perfect matchings of G(V,E1) is

the same.

Proof. As we saw earlier, the description of the perfect matching polytope of a bipartite

15

graph G(V,E) is given by the following conditions. A vector �!x = (xe)e2E 2 Rm belongs to

PM(G) if and only if:

X

e2�(v)

xe = 1 (2.3)

xe � 0 (2.4)

A face of this polytope is given by setting some of the inequalities to equalities. In other

words a face F of the polytope is characterized by a subset S of E. For the face F we have,

xe = 0, e 2 S

xe � 0, e 2 E � S

Therefore, if we take E�S = E1 as defined in the statement of the theorem, then we get the

face of the polytope spanned by the minimum weight perfect matchings of G. Since all the

matchings in this face have equal weight, we get that the only perfect matchings of G(V,E1)

are the minimum weight perfect matchings of G

Theorem 2.5. If C is a cycle in the graph H(V,E1) which is the graph of union of minimum

weight perfect matchings of G(V,E), then the circulation of C is zero

Proof. By our previous theorem, we know that all the perfect matchings of H have equal

weight. Therefore the convex hull of the perfect matchings of H equals the convex hull of

minimum weight perfect matchings of G. Let �!x be a vector in the PM(H) such that

�!x = (�!x1 +
�!x2 + ...+�!xt)/t (2.5)

where �!xi are the perfect matching points of PM(H). Let w(�!x) = w(�!xi) = p. For �!x =

(xe)e2E1 we have 8e 2 E1, xe 6= 0 as every edge of H features in some minimum weight

perfect matching. Further xe � 1/t. Let C = (e1e2...e2k) be a cycle in H with the edges ei

are in order. We define a new vector �!y such that

ye =

8
<

:
xe + (�1)i✏, if e = ei for i 2 {1, 2, ..., 2k}

xe, otherwise

So we are alternately increasing and decreasing the value of xe along the cycle C while leaving

16

the value of xe untouched on the non-C edges. For every vertex v of the cycle C, we increase

the weight of one of the edges of C incident on it by ✏ and decrease the weight of one of the

edges of C incident on it by ✏, thus maintaining
P

e2�(v) ye = 1. Also, ye � 0 for a su�ciently

small ✏. Therefore �!y 2 PM(H) and w(�!y) = p. We have w(�!x ��!y) = w(�!x)�w(�!y) = 0.

But �!x � �!y is non-zero only along the edges of C. Therefore w(�!x � �!y) = ✏ ⇤ cw(C) = 0.

Therefore cw(C) = 0

The above theorem guarantees that if the circulation of a cycle C is non-zero in Gi�1 then

at least one of its edges is absent in Gi. So we will proceed by giving non-zero circulation to

all cycles of length 4 in G0 so that at least one edge from all of these 4-cycles will be absent

in G1. We will then give non-zero circulation to all cycles of length 8 in G1 and construct G2

and so on. We will double the length of the target cycles every time while going from Gi�1

to Gi so that we are done in dlog ne� 1 stages. We can ensure that we have to give non-zero

circulation to at most polynomially many cycles in every stage with the help of following

theorem.

Theorem 2.6. If a bipartite graph G has no cycles of length  r, then the number of cycles

of length  2r is bounded by n4

Proof. Let C be a cycle on the vertices (v1, v2, ..., vl) such that l  2r. We can successively as-

sociate four vertices (u0, u1, u2, u3) with C such that the distance (u0, u1), (u1, u2), (u2, u3), (u3, u0)

l/4. There is not a unique way to select these four vertices, but we claim that once the ver-

tices are selected, they uniquely determine C.

Suppose not

Suppose there are two cycles of C and C 0 of length  2r that pass through (u0, u1, u2, u3).

Therefore 9(ui, uj), a pair of successively chosen vertices such that there are two distinct

paths between ui, uj. As distance between ui and uj is  l/4, it follows that there exists

a cycle C 00 contained in the walk (ui, ..., uj, ...ui) of length  l/4 + l/4 = l/2 = r in the

graph G which contradicts our condition on G. Hence (u0, u1, u2, u3) once chosen, uniquely

determine C. The number of ways we can choose these four vertices can be at most n ⇤ (n�
1) ⇤ (n� 2) ⇤ (n� 3) which is  n4. Therefore the number of cycles of length at most 2r is

at most n4 provided that the graph does not contain any cycle of length  r

We will start by taking G = G0 and then selecting a weight function such that all cycles

17

of length four (the smallest cycles in the graph) have non-zero circulation and are not present

in G1. Then we modify the weight function slightly such that all 8-cycles in G1 get non-zero

circulation so that they are not present in G2 and so on. We give non-zero circulation to

cycles of length 2i+2 (polynomially many from last theorem) in Gi so that we are done in

dlog ne stages. It is important to note that we do not actually compute Gi in our algorithm,

we assign weights (in one go) to the edges such that among n6 logn weight assignments done in

parallel, at least one gives non-zero circulation to all cycles. Recall that our weight function

is:

wj(ei) = Bk(2i mod j0) + Bk�1(2i mod j1) + ...+B0(2i mod jk)

Here k = dlog ne � 1. The weight function can be thought of as having dlog ne di↵erent
parts, one part each for cycles of length 2i+2, , 0  i  dlog ne � 1. Each part has n6 many

possibilities for weights, at least one of which gives non-zero circulation to all of the at most

n4 cycles. Our choice of B = n7 ensures that one part of the weight function does not

interfere with the other. Given a weight function wj among n6 logn functions, we can define

a partial function wp
j of w such that

wp
j =

pX

l=0

Bk�l(2i mod jl) (2.6)

Here p  k and j, k, B are as defined in the main weight function. Our choice of B = n7

ensures that

wp
j(M1) � wp

j(M2) �! wp+1
j(M1) � wp+1

j(M2)

This statement implies that only the matchings which have minimum weight with respect

to wp
j can also have minimum weight with respect to wp+1

j. In other words, while going

from wp
j to wp+1

j, we only need to consider the graph of union of minimum weight perfect

matchings with respect to wp
j. This is what we mean while talking about going from Gi to

Gi+1.

Once we have assigned weights to the edges, we follow the algorithm given my Mulmuley,

Vazirani and Vazirani to output a perfect matching in at least one among the O(n6 logn)

instances. Therefore the algorithm takes O(log2 n) time to run.

18

Chapter 3

Pseudo-deterministic Bipartite

Perfect Matching

This algorithm uses polynomially many processors working in parallel and poly-log many

random bits to give an output in poly-log time. Pseudo-determinism means that the output

that we get, if we run the algorithm several times, is the same except in negligible number

of cases. A pseudo-deterministic algorithm to find a perfect matching in a bipartite graph

was given by Goldwasser and Grossman in 2016 [10]

We will first introduce some techniques to understand this algorithm.

Theorem 3.1. Let G1(V,E1) be the graph of union of minimum weight perfect matchings

of bipartite graph G(V,E) with respect to a weight function w. We can construct G1(V,E1)

in RNC.

Proof. We will check for every edge ei if it belongs to some minimum weight perfect matching

with respect to w. We will do this in parallel for all edges ei 2 E

To check if ei belongs to some minimum weight perfect matching, we will define

wi(ej) =

8
<

:
2ej if i 6= j

2ej � 1 if i = j

This weight function wi implies that ei is in some minimum weight perfect matching with

19

respect to w if and only if it is in every minimum weight perfect matching with respect to

wi. We have already seen how to find a minimum weight perfect matching in a weighted

graph in RNC using the isolation lemma. We therefore compute a minimum weight perfect

matching with respect to wi and check if ei belongs to that matching. If it does, we say

that ei 2 E1. We can therefore compute G1(V,E1), the graph of union of minimum weight

perfect matchings of bipartite graph G(V,E) in O(log2 n) time.

Next, we shall describe some properties of a particular weight function.

Theorem 3.2. Let w be a weight function on the ordered set of edges E such that the ith

element has the weight

w(i) = p2ki+ p2(k�1)(i2 mod p) + p2(k�2)(i3 mod p) + ...+ p0(ik+1 mod p) (3.1)

Here p is a prime greater than n2 and k = d2 log ne. Let the weight of a subset S ✓ E be

w(S) =
P

e2S w(e)

Then no two subsets A,B ✓ E of size at most k have the same weight.

Proof. Let A = {a1, a2, ...ak} and B = {b1, b2, ...bk} be subsets of E such that w(A) = w(B).

If the sizes of A or B are not exactly k, we can add zeros to the sets to make them exactly

k.

Note that p � n2 which means that by shifting the powers in the weight function by p2, we

ensure that no coe�cient will interact with any other coe�cient in the weight function as i

can be at most n2. Even the coe�cients of powers of p in the sum

w(A) = p2k(a1 + a2 + ...+ ak) + ...+ (ak+1
1 mod p+ ak+1

2 mod p+ ...+ ak+1
k

mod p)

will be kn2 which is strictly less than p2 and therefore will not interact with each other.

Therefore w(A) = w(B) implies that all of the following equivalences hold modulo p

a1 + a2 + ...+ ak ⌘ b1 + b2 + ...+ bk

a21 + a22 + ...+ a2
k
⌘ b21 + b22 + ...+ b2

k

...

ak+1
1 + ak+1

2 + ...+ ak+1
k
⌘ bk+1

1 + bk+1
2 + ...+ bk+1

k

20

Newton’s identities tell us the equations

q1 = a1 + a2 + ...+ ak

q2 = a21 + a22 + ...+ a2
k

...

qk = ak1 + ak2 + ...+ ak
k

uniquely determine the polynomial of degree k of which ai are the roots. Therefore they

uniquely determine ai. But this same polynomial also uniquely determines bi. Therefore we

get that for some � 2 Sk

8i, ai ⌘ b�(i) mod p

But as ai, bi < p, 8i, we get that for some � 2 Sk,

8i, ai = b�(i)

) A = B

The above theorem ensures that with the weight function w as defined above, no cycles

of circulation less than or equal to d4 log ne have zero circulation. We shall now prove that

each of these cycles will have non-zero circulation for the weight function w mod j for some

j 2 {2, 3, ...t} for a small enough t

Theorem 3.3. 9 O(s log n) weight assignments with weights bounded by O(s log n) such that

all cycles of length less than or equal to s have non-zero circulation in at least one of the

weight assignments.

Proof. Let w be as defined in the previous theorem. That is

w(i) = p2ki+ p2(k�1)(i2 mod p) + p2(k�2)(i3 mod p) + ...+ p0(ik+1 mod p)

Let wj = w mod j. We need to show that for a cycle C there exists a j  t such that

cwj(C) 6= 0. From previous theorem, we know that cw(C) 6= 0 (s = 2k). Therefore it is

enough to ensure that

lcm(2, 3, ..., t) - cw(C)

21

The right side of this equation is bounded by 2O(s logn). We know that for t � 7, lcm(2, 3, ..., t) �
2t. Therefore t = O(s log n) su�ces for our purpose. That is for every cycle C of length less

than or equal to S 9j 2 {2, 3, ...O(s log n)} such that cwj(C) 6= 0

We now have an algorithm to construct the graph Gt from G such that Gt has girth

greater than 4 log n. We do this by constructing a graph Gj from Gj�1 (with G = G1, j  t)

such that Gj is the union of minimum weight perfect matchings of Gj�1 with respect to the

weight function wj = w mod j. We have already seen that if a cycle has non-zero circulation

in a bipartite graph H then it has at least one of its edges absent in the graph of union of

minimum weight perfect matchings of H. Our previous algorithm ensures that a cycle of

length less than or equal to 4 log n will be eliminated at some point while going from G to

Gt where t = O(log2 n). Therefore Gt will have girth greater than 4 log n. We have already

seen how to compute Gj from Gj�1 in RNC in O(log2 n) time. Therefore calculating Gt from

G can be done in RNC in O(log4 n) time.

We know that if a graph H has girth greater than or equal to 4 log n, then it has average

degree less that or equal to 2.5. That is, it has at least n

10 vertices of degree 2 or less. [11]

So now that we have computed Gt, we have a way to contract it.

It is easy to see that any vertex v of degree 2 or less in a graph H can be contracted

along the edges incident on it to get a graph H 0 such that H 0 has at least 2 vertices less

than H and a perfect matching in H 0 easily extends to a perfect matching in H. If v has

degree 0, then H has no perfect matching as our algorithm terminates. If v has degree 1,

then the edge incident on v, ev has to be in every perfect matching and therefore we can

remove that edge along with both the vertices on which it is incident. If v has degree 2, then

we can contract v along with both of its neighbors to a single vertex v0 and a matching in

H 0 extends to a matching in H. It remains to be seen how we can apply this procedure for

several vertices in parallel.

We shall now see how to construct a graph G0
t
from Gt such that G0

t
has at most 39

40n

vertices of Gt. We know that Gt has
n

10 vertices of degree 2 or less. We first check if Gt has

any vertices of degree 0. If it does we need proceed no further. We then check of Gt had
n

20

or more vertices of degree 1. If yes, we can easily shrink all of them in parallel to get our

required graph G0
t
. If not, then Gt has at least

n

20 vertices of degree 2. Gt being a bipartite

graph, one partition of Gt has at least n

40 vertices of degree 2. Let us call the set of these

22

vertices V 0. We shall now consider the graph H such that H is the graph consisting of all

the vertices in V 0 along with all the edges adjacent to all of these vertices.

We can construct the connected components of H in NC by computing in parallel for all

vertices v 2 V 0 the uv connectivity for all u 2 V 0 (again done in parallel). Let us say that a

connected component C of H has l vertices from V 0. The number of edges in C will be 2l

as every vertex in V 0 has degree exactly 2. If C has less than 2l vertices there will not be a

perfect matching in C by Hall’s theorem. There cannot be more than 2l+1 vertices in C as

it is connected and number of edges is 2l. Therefore C has 2l or 2l + 1 vertices.

If C has 2l vertices (if C is an even component), it can have only one cycle because of

the degree constraint on the vertices in in V 0 and because C is connected. Therefore C can

have a maximum of two matchings as the symmetric di↵erence of any two distinct matchings

always contains a cycle. We know that if the number of matchings in a graph is bounded,

we can compute all of them in NC [5]. Note that any perfect matching in Gt restricted to

C has to be a perfect matching in C. Therefore a perfect matching in Gt breaks down into

a perfect matching in C and a perfect matching in Gt\C. Therefore we can find a perfect

matching in all the connected even components of H in parallel (in NC) and then remove

all of them to get our required graph G0
t
.

If C has 2l + 1 vertices (if C is an odd component), it is a tree because it is connected

and has 2l edges. A tree can have at most one perfect matching. Therefore we can shrink C

to a single vertex c and make c adjacent to all the vertices which are adjacent to any vertex

in C but are not in C. The contracted graph is still bipartite as the only vertices in C which

can have neighbors outside of C are the vertices of C which are not in V 0. Therefore we

can put c is the partition opposite to V 0 and all of its neighbors in the same partition as V 0.

Similar to the previous case, we can shrink all of these odd components in parallel to get our

required graph G0
t
.

Therefore, we can construct a graph G0
t
from Gt such that G0

t
has at most 39

40n vertices

as that of Gt. The critical step here is constructing the connected components which take

O(log2 n) time

To summarize, we construct the graph Gt from G in RNC in O(log4 n) time and then we

construct the graph G0
t
from Gt in NC in O(log2 n) . After that take G0

t
= G and recurse. As

we are reducing a fixed fraction of vertices in every iteration, the number of iterations that

23

we have to perform is log n. Therefore the entire algorithm to construct a perfect matching

takes O(log5 n) time to run.

We note that randomization is only needed while computing the graph of union of min-

imum weight perfect matchings. As there can be only one such graph, correctness implies

uniqueness.

24

Chapter 4

Perfect Matching: General Graphs

The problem of searching for a perfect matching in a general graph G is more complicated

than the bipartite case. This is mostly due to the fact that giving a cycle non-zero circulation

does not ensure that it is not present in the graph of union of minimum weight perfect

matchings of G. For example consider the following graph G.

In this graph, the cycle C has been given non-zero circulation. We can see that the

graph contains three minimum weight perfect matchings of weight 1. The the graph of

union of all the minimum weight perfect matchings of the graph G is G itself. The cycle C

is not eliminated as it would have been in the bipartite case. We used the perfect matching

25

polytope of a graph to ensure that C will be eliminated. In the bipartite case, this polytope

is given by the following constraints.

P
e2�(v) xe = 1 8v 2 V (4.1)

xe � 0 (4.2)

However these constraints are not enough in the general case. The perfect matching polytope

for general graphs is given by:[12]

X

e2�(v)

xe = 1 8v 2 V (4.3)

xe � 0 (4.4)
X

e2�(S)

xe � 1 S ⇢ V, |S| is odd (4.5)

In the bipartite case, when we say that the cycle C has been eliminated in the graph of

union of minimum weight perfect matchings of G, we mean that we have moved from a face

of a polytope to one of its subfaces because we have essentially set one of the inequality in

xe � 0 to an equality. This is what we mean by removing an edge. If we remove enough

edges, the subface that we obtain is essentially a perfect matching point. And the number

of edges that we can remove is polynomially bounded.

In general graphs however, we have an additional set of inequalities called the odd set

constraints. While moving to a subface of a face, even if we do remove an edge, some more

odd set constraints might become tight. That is,

X

e2�(S)

xe = 1 S ⇢ V, |S| is odd

And the number of such odd sets may not be polynomially bounded. So we need to figure

out a way to deal with such constraints. A quasi NC algorithm to find a perfect matching

in a general graph was given by Svensson and Tarnowski in 2017 [7]. They dealt with the

two main problems regarding generalizing the FGT algorithm for the general case. The first

problem is the one we discussed that giving a cycle non-zero circulation does not ensure

that it disappears in the graph of union of minimum weight perfect matchings. The second

problem is that the graph being a bipartite one was crucial towards proving that if there

26

are no cycles of length up to l, then the number of cycles of length up to 2l will be at most

n4 where n is the number of vertices of the graph G. It is the first problem which requires

majority of the e↵ort while the second problem remains a technical one. We prove that, if a

graph contains no cycles of length upto l, then the number of cycles of length up to 2l is at

most n17 for a particular set of weight functions.

The main problem (departure from the bipartite case) occurs when a cycle crosses a tight

odd set,that is when it enters the odd set on an odd numbered vertex in the cycle and leaves

it on an even numbered vertex or vice versa. (where all the vertices of a cycle of length 2l

are ordered from 1 to l). Here our bipartite case strategy to remove the cycle does not work

because alternately increasing and decreasing the weights of all the edges in the cycle by a

small quantity ✏ will make X

e2�(S)

xe < 1

Where S is the tight odd set crossed by the cycle.

This will violate the constraints on the perfect matching polytope.

Considering that this is the main problem, it is important to note that if in our general

graph G, no cycle crossed a tight odd set, our problem of finding a perfect matching would

be essentially similar to the bipartite case. That is, we can remove a cycle which does not

cross any tight odd set in the same way we would have removed it in the bipartite case by

giving it non-zero circulation. Which means that we can apply log n weight functions one

after another to ensure that after this the only cycles which are present in our graph G are

the cycles which cross some tight odd set. If at this point, there were no tight odd sets, then

we would be done which is not necessarily true in general graphs.

While dealing with tight odd sets, we would like the property that, for any tight odd set

S, once we fix an edge e 2 �(S), it induces a unique perfect matching within S. We shall

call such a S for which this property holds, as contractible. It is important to note that if

S is a tight odd set, then V � S is also a tight odd set. So if we make all the tight odd sets

contractible, then for any tight odd set S and a e 2 �(S), a matching M in a graph reduces

to two subinstances; a unique matching inside S, a unique matching inside V � S and the

edge e. The number of ways we can choose such an e is n2 so all we need to do is ensure

di↵erent weights to all these matchings. This is equivalent to having a set of n4 inequalities

on the weight function w and it is possible to find a single weight function w satisfying this.

27

As we mentioned earlier, we will essentially talk in the terms of moving to a subface

of a face of the perfect matching polytope to isolate a perfect matching. A face F in the

polytope for general graphs is completely characterized by two things; a subset A ✓ E such

that xe = 0, 8 e 2 A and a family S(F) of tight odd sets. An important property of the

perfect matching polytope is that the family S(F) is completely characterized by a maximal

laminar family ⇤ of S(F). A family ⇤ of sets is said to be laminar if for any two sets

A,B ✓ ⇤, either A \ B = � or A ✓ B or B ✓ A. It has also been shown that any maximal

laminar family of subsets of S(F) is enough to describe a face. When we move to the subface

of a face, we do not need to consider an entirely new maximal laminar family, we can just

add a few sets to our existing family to make it a maximal laminar family for that subface.

If, after applying a series of weight functions according to the bipartite case, we get a laminar

family describing a face to be a chain (S1 ⇢ S2 ⇢ S3...), then we see that there is no cycle

contained within any single layer and so that case is easy to solve. However, we have no

reason to assume that our family will be a chain.

Our strategy will be to make all sets of size less than four contractible while giving non-

zero circulation to all cycles of length up to four, then make all sets of size less than eight

contractible while e giving non-zero circulation to all cycles of length upto eight and so on.

We shall call this parameter as l� goodness. We call a face laminar pair (F,⇤) to be l good

for some parameter l if ⇤ is a maximal laminar subset of S(F) and

1. All subsets of ⇤ of size up to l are F contractible.

2. In (F,⇤, l) contraction of the graph G, there are no cycles of node weight up to l.

We contract contractible sets the same way that we shrink blossoms in edmonds algorithm

[1], that is, contract the sets to a single vertex v and �(v) = �(S). In order to remove cycles

from (F,⇤, l) contraction of the graph G, we want the certain cycles to not respect the face

F . For this, we will use a series of weight functions for t � 7

wk(ej) = (4n2 + 1)j mod k, k 2 {2, 3, ..., t} (4.6)

Where t = O(n20). We call F [w] the subface of F minimized with respect to w. So instead

of minimizing with respect to one weight function at a time we will concatenate the weight

28

function such that F [w � w0] = F [w][w0] where

w � w0(e) = n21w(e) + w0(e) (4.7)

In order to remove cycles in the general case, it is not enough to just give non-zero

circulation to all even cycles, we also have to give non-zero circulation to all even walks

because the symmetric di↵erence of even cycles may also contain odd cycles. We will define

a vector (±1)C on a walk C such that (±1)C has value 1 on even numbered edges of C, -1

on the odd numbered edges of C and zero elsewhere. We say that C respects a face if

1. edges of C belong to the edges of F [w]

2. h(±1)C , 1�(S)i = 0 for S 2 S(F [w])

Two of the important results of this paper is that;

Theorem 4.1. If a alternating walk C has been given non-zero circulation in F with respect

to w, then it will not respect the face F[w].

Theorem 4.2. We can find a set of O(n3s) weight functions with polynomially bounded

weights such that for any s-set of alternating walks, we can give non-zero circulation to all

s walks.

Now that we have these two theorems, we will think about contracting sets in faces. We

recall that we want all tight odd sets to be contractible, that is, once we fix an edge coming

out of that set, the entire matching within the set is uniquely determined. However instead

of making all the tight odd sets in a face F contractible, we will make some sets contractible

and then move to a subface of F . We are helped in this course by a result:

Theorem 4.3. If S is a set tight for a face F, if F’ is a subface of F and if S is F contractible,

then S is F’ contractible.

For any face laminar pair (F,⇤), where ⇤ is a maximal laminar family of sets tight for

F , we have that (F,⇤) is always 1-good, because single vertices are trivially contractible and

there is no cycle of node- weight up to 1. In fact, (F,⇤) is 2-good. We will successively try

to get a face laminar pair (F 0,⇤0) which is 2l-good from a face laminar pair (F,⇤) which is

29

l-good where F 0 is a subface of F and ⇤ ✓ ⇤0. If l � n, where n is the number of vertices

in the graph, then |F | = 1 and were are done. Now we come to one of the most important

theorems in this paper

Theorem 4.4. There exists a weight function w among (log2 n+log n) weight functions such

that PM[w] = 1

Here w is obtained by concatenation of log n weight function, concatenated in the way

as defined before in 4.7. Therefore we need an (n21 log2 n+logn) weight functions to guarantee

a weight function which is isolating. The number of times we have to move from l-good to

2l-good is log n and therefore the algorithm runs in poly-log time using (n21 log2 n+logn) many

processors.

30

Chapter 5

Popular Matchings

5.1 Characterization

Popular matchings can be defined on graphs whose vertices have preferences regarding who

to be matched to in a matching. These preferences may be with or without ties. A vertex

v is said to prefer a matching M over M 0 if either it is matched in M but unmatched in

M 0 or if it matched to a vertex w in M and w0 in M 0 with w being strictly higher than w0

on v’s preference list. v is said to indi↵erent between M and M 0 if it is unmatched in both

or matched in both to vertices which tie on v’s preference list. A matching M is said to

be popular if for all matchings M 0, the number of vertices that prefer M over M 0 is greater

than or equal to the number of vertices that prefer M 0 over M .

A polynomial time algorithm to find a popular matching in a bipartite graph where only

one partition has preferences regarding who to be matched to, was given by Abhraham,

Irving, Telikepalli and Mehlhorn in 2007 [8].

Throughout this chapter, we consider the bipartite graph G(A [P,E) where vertices

a 2 A (also known as applicants) have preferences about vertices p 2 P (also known as

posts). A brute force method to find a popular matching is to compare all the matchings in

a graph G. But the number of matchings in a graph may be exponential. We therefore need

to find a characterization for popular matchings.

31

We shall first introduce some conventions which we will use throughout. G is always a

bipartite graph unless stated otherwise. We will denote ai ! {pk1 , (pk2 , pk3), pk4 , ..., pkj} as

the preference list of applicant ai. The round brackets indicates that pk2 and pk3 are ranked

the same in the preference list of ai. It is important to note that j need not be equal to

|P |, that is, the preference list for ai need not be a complete preference list for the all posts

in P ai will only give preferences between those vertices to which it is connected in G. We

shall denote Ej to be the set of rank j edges such 8 ai, Ej consists of edges from ai to all the

posts which are ranked jth on the preference list of ai. It is important to note that because

of ties, ai can have multiple edges of rank j incident on it. We can now take the first step

towards characterizing popular matchings. We add a last resort post li unique to each ai,

which, as its name suggests is last without any ties on a0
i
s preference list. We do this so

that it is always possible to find an applicant complete matching in G(A [P,E). Therefore

the preference list of ai is ai ! {pk1 , (pk2 , pk3), pk4 , ..., pkj , li}. We are now ready to begin to

characterize popular matchings.

Theorem 5.1. A matching M is a popular matching of G(A [P,E) if M restricted to

G1 = G(A [P,E1) is a maximum matching of G1.

Proof. We shall call M restricted to G1 as M1. Suppose that M1 is not a maximum matching

of G1. Then there exists an M1 augmenting path Q in G1. Let this path be (a1p1...akpk)

where both a1 and pk are free vertices in G1 with respect to the matching M1. Because we

have added last resort posts, a1 has to be matched by M in G. But pk can be either matched

or remain unmatched by M .

• Suppose that pk is unmatched by M in G. Then we can alternate along the augmenting

path Q to get a new matching M 0 which is more popular than M . That is, all the

non-matched edges of Q become the matched edges in M 0 and matched edges in Q

become unmatched in M 0. Everything else remains the same. This is possible pk is

free in M . Due to the nature of the graph G1, a1 prefers M 0 over M but all the other

applicants in the path Q are indi↵erent between M 0 and M . Therefore M 0 is more

popular than M . Therefore M is not a popular matching.

• Suppose that pk is matched by M in G to M(pk). Clearly pk is not a first ranked post

in M(pk) as it is unmatched by M1. To construct M 0, we again alternate along Q ie

32

assign a1 to p1 ... ak to pk. We assign M(pk) to any of its first ranked posts say pk+1.

At worst pk+1 would already have been matched in M and so M(pk+1) will become

free in M 0 and we therefore match it to its last resort post. But a1 and M(pk) will

both prefer M 0 over M and M(pk+1) may prefer M over M 0. In any case M 0 is more

popular than M . Therefore M is not a popular matching.

Therefore M restricted to G1 is a maximum matching of G1. The notations M1 and G1 will

mean the same thing throughout this chapter.

Next, we shall divide all of the vertices of the graph G(A [P,E) into three categories,

EV EN,ODD,UR. Consider a maximum matching M1 of G1. Then M1 partitions the

vertices of G into three categories EV EN(M1), ODD(M1), UR(M1). The set EV EN(M1)

consists of all those vertices vi such that there is an M1 alternating path of even length

between vi and any free vertex with respect to M1 in G1. The set ODD(M1) consists of

vertices vi such that there is an M1 alternating path of odd length between vi and any free

vertex with respect to M1 in G1. The set UR(M1) consists of vertices vi that are unreachable

from all free vertices with respect to M1.

Theorem 5.2 (Gallai-Edmonds). [13] This theorem states that:

1. the sets EV EN(M1), ODD(M1), UR(M1) are pairwise disjoint and they are the same

for any maximum matching M1 of G1 (they are a property of the graph and not the

maximum matching). Therefore we can divide the vertices of graph G into three sets.

EV EN , ODD, UR

2. In any maximum cardinality matching (of G1), every vertex in ODD is matched to to

some vertex in EV EN and every vertex in UR is matched to another vertex in UR.

3. In any maximum cardinality matching no vertex in EVEN can be matched to another

vertex in EVEN. Therefore the size of a maximum cardinality matching is |ODD|+ UR

2

4. There can be no edge in G1 between a node in UR and a node in EV EN

We also consider two important subsets for posts in the set P in G(A[P,E). We call P1

the set of first ranked posts. That is pi 2 P1 if pi is top preference post for some applicant

33

a 2 A. We call P2 the set of second ranked posts. That is pi 2 P2 if pi a top ranked even post

for some applicant a 2 A. (a post p 2 P2 if p 2 EV EN and there exists a 2 A such that all

posts p0 which are higher on a0s preference list than p do not belong to the set EV EN). It

is important to note that P1 \P2 need not be empty. P1(a) is the set of first ranked posts of

a (all the top preference posts). P2(a) are the top ranked posts in a0s preference list which

belong to the set EV EN . P1(a) \ P2(a) can also be non empty.

We now come to an important characterization for popular matchings.

Theorem 5.3. M is a popular matching for the graph G(A[P,E) =) all applicants a 2 A

are either matched to a post in P1(a) or in P2(a)

Proof. Suppose not

Suppose an applicant a is matched by M to a post M(a) which ranks strictly higher

than P2(a) but strictly lower than P1(a) in the preference list of a. Therefore M(a) has to

be an odd or unreachable post in G1. But M(a) is not a first ranked post of a. Therefore

M(a) has to be unmatched in G1. But all odd or unreachable posts have to be matched in

any maximum matching of G1. Therefore M restricted to G1 is not a maximum matching.

Therefore M is not a popular matching which is a contradiction.

Suppose an applicant a is matched by M to a post M(a) which ranks strictly lower than

P2(a) on the preference list of a. Let p be any post in P2(a). If p is unmatched by M , then

we can promote a to p to get a more popular matching, leading to a contradiction. Therefore

suppose M matches p to an applicant a0. Then there can be two cases:

• Suppose p /2 P1(a0). Then we can promote a to p, a0 to some post p0 2 P1(a0) and the

applicant M(p0) to its last resort post, to obtain a matching M 0 more popular than M .

Therefore M is not a popular matching.

• Suppose p 2 P1(a0). As p 2 P2(a), p is an even post. Therefore there exists an even

length alternating path Q0 in G1 from p = p1 to a vertex pk which is free in G1. Here

Note that pk might still be matched by M . Note that a is free in G1. Therefore we can

define an M1 augmenting path Q in G1 such that Q = aQ0 = (ap...pk). Therefore we

can define a new matching M 0 such that the non-matching edges of Q become matched

34

in M 0 and the matched edges become unmatched. We also promote M(pk) (if it exists)

to its first preference post say pk+1 and and M(pk+1) to its last resort post. Therefore

a,M(pk) prefer M 0 to M while M(pk+1) prefers M to M 0. (If M(pk) does not exist

then a prefers M 0 to M while no applicant prefers M to M 0) Therefore M 0 is more

popular than M which is a contradiction.

Therefore p cannot be strictly worse than P2(a)

Therefore p 2 P1(a) [P2(a)

We are now ready to give a complete characterization for popular matchings.

Theorem 5.4. M is a popular matching of the graph G(A [P,E)()

1. M restricted to G1 is a maximum matching of G1.

2. 8 a 2 A,M(a) 2 P1(a) [P2(a)

Proof. =) We have already proved this in the last two theorems

(= Suppose not. Suppose there is a matching M 0 more popular than M . We are going

to show that for every applicant a that prefers M 0 to M , there is a unique applicant a0 that

prefers M to M 0. Let a be an applicant that prefers M 0 to M . So M(a) 2 P2(a), otherwise

it never would have preferred M 0. Therefore M 0(a) has to be an odd or a unreachable post.

Let M � M 0 be the symmetric di↵erence of M and M 0. Then M � M 0 restricted to E1

consists of disjoint paths and cycles. We are going to show that M 0(a) is always contained

in a non-empty path of (M �M 0) \ E1. a is not matched by M in G1 ie (a,M(a)) /2 E1

as M(a) 2 P2(a). Therefore a is definitely not contained in a cycle. Now M 0(a) being an

odd or unreachable vertex is contained in every maximum matching of G1. Therefore it is

contained in a non-empty path or cycle of (M �M 0)\E1. But M 0(a) is matched to a in M 0

and a is not contained in any cycle. Therefore M 0(a) is contained in a non-empty path in

(M �M 0) \E1 with one endpoint as either a or M 0(a). It is a if M 0(a) 2 P1(a), it is M 0(a)

otherwise (In which case a is isolated).

So for every applicant a that prefers M 0 to M , there is a distinct non-empty path Q in

(M �M 0) \ E1. Since M 0(a) is an odd or unreachable post, it follows that every post in Q

must be odd or unreachable as well and has to be matched in every maximum matching. So

35

the other end of Q must be an applicant a0 which prefers M to M 0 since Q is alternating.

Therefore for every applicant a that prefers M 0 to M , there is a unique applicant a0 that

prefers M to M 0

Therefore M 0 is not more popular than M . Therefore M is a popular matching.

We now have a characterization for popular matchings. We shall now see an algorithm

to find a popular matching.

5.2 The Algorithm

1. Given a graph G(A [P,E), find a maximum matching M1 in the graph G1.

2. With the help of M1, partition the vertices of G into three sets EV EN , ODD, UR.

3. Compute P1(a), P2(a) for every vertex a to find the sets P1 and P2.

4. Find the induced subgraph G0 of G on the vertex set A [P1 [P2

5. In G0 remove all the edges connecting two nodes in ODD or a node in ODD to a node

in UR.

6. Find a maximum matching M in G0 by augmenting M1.

7. If M is not applicant complete, return that ’No popular matching exists. Otherwise,

return M .

This algorithm is pretty straightforward. Step 5 is necessary so as to ensure that after

successively augmenting M1, any maximum matching we obtain is a maximum matching

when restricted to G1. Therefore in a popular matching M , no two nodes in ODD or a node

in ODD and a node in UR can have an edge between them. Also by the fourth condition of

Gallai-Edmonds theorem, there can be no edge between an unreachable and a even node in

G1. Therefore unreachable nodes will only be matched to other unreachable nodes and as

all of them are matched in M1, all of them will be matched in M . Because we obtain M by

36

successive augmentation M has |ODD|+ |UR|
2 edges of rank 1. Therefore M is a maximum

matching when restricted to G1. Therefore M is a popular matching.

The crucial time consuming steps in the algorithm are steps 1 and 6 both of which will

take O(
p
nm) time by the algorithm given by Hopcraft-Karp. Therefore the running time

of the algorithm is O(
p
nm).

We can find a maximum cardinality popular matching using a similar algorithm. We

find a popular matching M in G0 by following the previous algorithm. Then from M and

G0 we remove all the edges of the form (a, l(a)) where l(a) is the last resort post of a to get

a matching M 0. Note that M 0 is still a maximum matching of G1 as no edges of the form

(a, l(a)) are of rank 1. We then successively augment M 0 to get a matching N which will be

our maximum cardinality popular matching.

5.3 Strict Preferences

If we consider a simplified version of the same popular matching problem when all the

applicants a have strict preferences between the posts that they are matched to, we can find

a popular matching in linear time. Here for an applicant a, the only post in P1(a) is the

post at the top of a0s preference list and the only post in P2(a) is the post highest in the

preference list of a that is not a first preference post for any other applicant (This has degree

0 in G1 and therefore even). Therefore P1\P2 = � As the first preference post is unique, we

get that every post in P1 has to be matched. Further, it has to be matched to an applicant

for which it is a first preference post as a popular matching M restricted to G1 is maximum

matching.

In G0 all the applicants have degree 2. Also, the number of edges is twice the number

of applicants in G0. To find an applicant complete matching, we first successively remove

all degree 1 posts in G0 along with the edges incident on them (and their endpoints) as

these have to be contained in any applicant complete matching. We put these edges in our

required matching M 0. We remove all isolated posts after this process is complete. All of this

takes linear time. G0 then splits into various connected components. Then for any connected

component C we can use Hall’s theorem to check if an applicant complete matching exists.

Such an applicant complete matching has to exist for every component C. All applicants

37

in any component will still have degree two and therefore the number of edges will be twice

as that of the applicants in that component. As the average degree is 2, and no vertices of

degree 1 in C, all vertices will have degree exactly 2 and will be a cycle. We therefore take

the alternate edges in this cycle for our required matching M 0 which is applicant complete.

This too takes linear time. If any p 2 P1 is unmatched in this matching M 0, we match p to

any applicant for which it is a first preference post to get our required popular matching M .

We can do this in linear time.

38

Chapter 6

Conclusions

Abhraham, Irving, Telikepalli and Mehlhorn gave a novel way to characterize popular match-

ings. The problem of finding an NC algorithm for computing a popular matching remains

an open one.

In case of perfect matchings, a major open problem is finding a perfect matching using

polynomially many processors working in parallel. It is not clear if we can do this by

extending the techniques introduced by Fenner, Gurjar and Thierauf. This is because we

need log n iterations to eliminate all the desirable cycles. Some new insights will be needed

to circumvent this to get an NC algorithm to find a perfect matching.

39

40

Bibliography

[1] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics, vol. 17,
no. 3, pp. 449–467, 1965.

[2] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum matchings in bi-
partite graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.

[3] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Matching is as easy as matrix inver-
sion,” in Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pp. 345–354, ACM, 1987.

[4] D. Y. Grigoriev and M. Karpinski, “The matching problem for bipartite graphs with
polynomially bounded permanents is in nc,” in Foundations of Computer Science, 1987.,
28th Annual Symposium on, pp. 166–172, IEEE, 1987.

[5] M. Agrawal, T. M. Hoang, and T. Thierauf, “The polynomially bounded perfect match-
ing problem is in nc 2,” in Annual Symposium on Theoretical Aspects of Computer
Science, pp. 489–499, Springer, 2007.

[6] S. Fenner, R. Gurjar, and T. Thierauf, “Bipartite perfect matching is in quasi-nc,”
in Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pp. 754–763, ACM, 2016.

[7] O. Svensson and J. Tarnawski, “The matching problem in general graphs is in quasi-nc,”
in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 696–707, Oct 2017.

[8] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, “Popular matchings,”
SIAM Journal on Computing, vol. 37, no. 4, pp. 1030–1045, 2007.

[9] S. J. Berkowitz, “On computing the determinant in small parallel time using a small
number of processors,” Information processing letters, vol. 18, no. 3, pp. 147–150, 1984.

[10] S. Goldwasser and O. Grossman, “Perfect bipartite matching in pseudo-deterministic
rnc.,” in Electronic Colloquium on Computational Complexity (ECCC), vol. 22, p. 208,
2015.

41

[11] N. Alon, S. Hoory, and N. Linial, “The moore bound for irregular graphs,” Graphs and
Combinatorics, vol. 18, no. 1, pp. 53–57, 2002.

[12] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of
research of the National Bureau of Standards B, vol. 69, no. 125-130, pp. 55–56, 1965.

[13] L. Lov, “z, md plummer, matching theory,” Annals of discrete mathematics, vol. 29,
1986.

42

