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Abstract

Localization of interacting many-body quantum systems i.e. many-body localisation (MBL),

is a topic of current interest. The kicked rotor system is a paradigmatic model of chaos and

the quantum kicked rotor system is not only a tool to study MBL in other quantum systems,

but is itself, experimentally realizable. Less progress has been made in the study of a system

of coupled kicked rotors. In this thesis, the aim is to study the indicators of MBL in a variant

of a system of two coupled kicked rotors.
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Chapter 1

Invitation to Quantum Chaos

Natural systems exhibit chaotic behaviour which can be sourced to the non-linearity of the

description of their dynamics. A system is deterministic if its dynamics can be described

mathematically. Intuitively, the loss of predictability of the dynamics of a system is associ-

ated with chaos. It is important to note that determinism does not equate to predictability.

“Deterministic chaos” is the study of the chaotic behaviour exhibited by deterministic sys-

tems. Deterministic chaos originated from the efforts of Henri Poincaré towards obtaining

an analytical solution to the three-body problem. Since then, deterministic chaos has been

a popular topic of scientific research. Consequently, it has been well understood that even

simple deterministic natural systems can exhibit chaotic behaviour. Aided by the fast growth

of computing facilities/capabilities, the authenticity and ubiquity of deterministic chaos has

been appreciated across scientific disciplines.

In the context of classical mechanics (classically), if a system exhibits chaotic behaviour,

then two trajectories describing its dynamics, originating at two neighbouring point in its

phase space, will diverge exponentially with time. “The dynamics of the system is extremely

sensitive to its initial conditions.”

According to Bohr’s correspondence principle, classical physics emerges as the ~→ 0 limit of

quantum physics. Therefore, it would not be surprising if quantum systems fundamentally

exhibited chaotic behaviour. However, the Schrödinger equation describing the dynamics of

a quantum system is linear i.e. it does not uphold the extreme sensitivity of the dynamics of

the quantum system to its initial conditions. Moreover, the concept of trajectories describing
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the dynamics of a quantum system in its phase space, is undefined in quantum mechanics due

to Heisenberg’s uncertainty principle. Therefore, it is not sensible to develop a mathematical

theory of chaos in the context of quantum mechanics like it has been done classically. One

can then ask the question: “Is there a quantum analogue of classically deterministic chaos?”

This question was seriously revisited only after the development of semi-classical mechan-

ics by M Gutzwiller and M V Berry. Although many physicists have studied the chaotic

behaviour of quantum systems, there yet does not exist a mathematical theory of chaos in

the context of quantum mechanics. What is now referred to as “quantum chaos” is truly,

the study of the dynamics of quantum systems whose classical analogues exhibit chaotic be-

haviour. M V Berry preferred the phrase “quantum chaology” over quantum chaos, since the

object under investigation was the presence of “universal signatures” in quantum systems

whose classical analogues exhibited chaotic behaviour, that typical quantum systems did

not have. Nevertheless, it is a study that endeavours to find a relation between classically

deterministic chaos and quantum mechanics.
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Chapter 2

Preliminary Concepts

A deterministic system that can be described by a Hamiltonian is a Hamiltonian system.

The phase space of a Hamiltonian system S that has d degrees of freedom (DOF) is 2d

dimensional; labelled by its canonical position and momentum variables qi and pi respectively.

The Hamilton’s equations of motion describing its dynamics are:

ṗi = −∂H
∂qi

; q̇i =
∂H

∂pi

If S is conservative, then H is independent of time. If S is conservative, then its energy

E = H is constant (constant of motion). Moreover, E corresponds to a surface in the phase

space of S on which its dynamics is restricted.

Visualization of the dynamics of S in its phase space is simplified by studying Poincaré

surface sections. Instead of studying the dynamics of S restricted on the surface in its phase

space corresponding to a constant of its motion, its dynamics on the intersection of this

surface and a surface having a lower dimension is studied. Consider a Hamiltonian system

that has 2 DOF. Its phase space is 4 dimensional. The dynamics of this system is studied

with mappings between intersection points of a trajectory of its dynamics and the chosen

surface section, in its phase space. In the case of a periodically kicked Hamiltonian system

that has 1 DOF, there exists a mapping between two such intersection points that differ with

time by the kicking time period. This is an example of a stroboscopic area-preserving map.

Every deterministic system has a flow map from its phase space to its phase space. A
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deterministic system is volume-preserving if the volume of a set in its phase space is invariant

under its flow map. Every Hamiltonian system is volume-preserving (Liouville’s theorem).

The Poincaré recurrence theorem states that certain volume-preserving deterministic systems

will eventually return to a state very close to their initial states. This implies that a trajectory

describing the dynamics of such a system in its phase space will eventually return to the

neighbourhood of its initial point. The Poincaré recurrence time Tr is the length of time

until this (first) return. The volume of this neighbourhood is finite in numerical calculations

and its decrease causes computational difficulties. For systems exhibiting chaotic mixing, for

sufficiently large Poincaré recurrence times: P (Tr) ∝ e−Tr [1].

Refer to [2][3] for a more detailed presentation of the theory of dynamical systems.

Floquet Theory

Deterministic natural systems can exhibit chaotic behaviour when they are acted upon by

a time-dependent force (driven systems). Driven systems undergo a transition of state from

a regime in which they exhibit regular behaviour to a regime in which they exhibit chaotic

behaviour. In the class of driven systems are periodically kicked Hamiltonian systems. These

systems have discrete time-translation invariance and the quantum analogues of some of these

systems, exhibit regular behaviour, during and after the aforementioned transition of state.

Consider a Hamiltonian system S descried by the Hamiltonian:

H(t) = H0 + V (t)

where H0 is its time-independent part and V (t) is its time-dependent part. The Hamiltonian

describing quantum S is:

Ĥ(t) = Ĥ0 + V̂ (t)

The Schrödinger equation describing the dynamics of quantum S is:

i~
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 ; H(t) = H0 + V(t) (2.1)

Let:

V̂ (t+ sτ) = V̂ (t) (∀s ∈ Z)

4



Assumption: the following vectors are solutions of 2.

|ψα(t)〉 = e−
iΩαt

~ |Φα(t)〉

where

|Φα(t+ sτ)〉 = |Φα(t)〉 . (s ∈ Z)

Define:

ĤF := Ĥ(t)− i~ ∂
∂t

Then:

HF |Φα(t)〉 = Ωα |Φα(t)〉

Therefore, |Φα(t)〉 is the αth eigenstate of HF whose corresponding eigenvalue is Ωα. Every

Ωα is real since HF is hermitian. Moreover, these eigenstates are orthonormal and form a

complete basis for the Hilbert space of quantum S. Therefore:

|ψ(t)〉 =
∑
α

Aαe
− iΩαt~ |Φα(t)〉 ; Aα = 〈Φα(0)|ψ(0)〉

|ψ(t)〉 =
∑
α

e−
iΩαt

~ |Φα(t)〉 〈Φα(0)|ψ(0)〉

|ψ(τ)〉 =
∑
α

e−
iΩατ

~ |Φα(0)〉 〈Φα(0)|ψ(0)〉

Let {|m〉} be a complete set of orthonormal eigenstates of H0. Let ψm(t) = 〈m|ψ(t)〉. Then:

ψm(τ) =
∑
n

Umn(τ)ψn(0)

where U(τ) is the Floquet matrix of quantum S and:

Umn(τ) =
∑
α

e−
iΩατ

~ 〈m|Φα(0)〉 〈Φα(0)|n〉

Once U(τ) is obtained, then ψn(Nτ) can be obtained:

ψn(Nτ) =
∑
m

[(U(τ))N ]nmψm(0) (N ∈ N)
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Succinctly:

|ψ(Nτ)〉 = [U(τ)]N |ψ(0)〉

Random Matrix Theory

A class of quantum Hamiltonian systems that have no classical analogues are the compound

nuclei of atoms. These systems have the earlier mentioned “universal signatures” of quan-

tum chaos. Eugene Wigner, from his study of the eigenspectra of the Hamiltonian matrices

corresponding to the compound nuclei of atoms, hypothesized that the fluctuations in these

eigenspectra must be related to the fluctuations in the eigenspectra of large matrices (subject

to some symmetry conditions) whose entries are random numbers. This profound hypothesis

resulted in the development of Random Matrix Theory (RMT), which has scope for appli-

cation in any discipline involving the study of stochastic processes.

If the entries of a random matrix are Gaussian distributed random numbers, then that ran-

dom matrix belongs to the Gaussian ensemble of random matrices. A Gaussian orthogonal

ensemble matrix is symmetric and its entries are real numbers. A Gaussian unitary ensemble

matrix is Hermitian and its entries are complex numbers. A Gaussian sympletic ensemble

matrix is self-dual and its entries are quaternions. The Hamiltonian matrices of many quan-

tum Hamiltonian systems belong to one of these ensembles. From the study of the phases

of the eigenvalues of unitary random matrices, circular ensembles of random matrices have

be defined. These ensembles are described as “circular” since these are ensembles of unitary

matrices; the eigenvalues of a unitary matrix are uniformly distributed on a circle of unit

radius in the Argand plane. The Floquet matrices of quantum Hamiltonian systems belong

to one of these ensembles.

The characteristics of the dynamics of a quantum system can be inferred only from its

observables. The normalised probability distribution of the distance between the phases of

the eigenvalues of the Floquet matrix of a quantum system (arranged in increasing order

and scaled by the their average) provides information on the dynamics of the system (level

spacing distribution) [4][5]:

• If this distribution is Poissonian, then the system exhibits regular behaviour.

• If this distribution is Wigner-Dyson, then the system exhibits chaotic behaviour.
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Chapter 3

Kicked Rotor System

Simple Hamiltonian systems have been important models in chaos and quantum chaos. A

periodically kicked Hamiltonian systems is described by a Hamiltonian that is periodic with

time. Simple periodically kicked Hamiltonian systems are special. A simple periodically

kicked Hamiltonian system is the kicked rotor system. The Hamiltonian describing the

kicked rotor system is:

H(t) =
L2

2I
+ k cos(θ)δτ (t)

where L is its angular momentum, I is its moment of inertia and k is the amplitude of the

“kick”, which is a periodic impulse represented by:

δτ (t) =
∞∑
n=0

δ(t− nτ)

where τ is the kicking time period. The Hamilton’s equations of motion describing its

dynamics are:

L̇ = −∂H
∂θ

= k sin(θ)
∞∑
n=0

δ(t− nτ)

θ̇ =
∂H

∂L
=
L

I

Let θn and Ln be the values of θ and L just before the (n + 1)th kick. Immediately after

the (n + 1)th kick, L → Ln+1 = Ln + k sin(θn) while θ is constant. In the interval of time
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between two successive kicks L is constant while θ increases linearly with time. Therefore:

Ln+1 = Ln + k sin(θn)

θn+1 = θn +
τ

I
Ln+1

The standard map is:

L̃n+1 = L̃n +K sin(θn)

θn+1 = θn + L̃n+1

where L̃n = τ
I
Ln and K = kτ

I
. If k = 1 and τ = 1, then L̃n = Ln and K = k. Henceforth,

k = 1 and τ = 1.
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Figure 3.1: This figure contains the plot of y = L vs x = K of the kicked rotor system

starting from initial states such that L0 = 0, for N = 100000. It can be seen that the values

of L begin to deviate from the line L = 0 in the neighbourhood of K = 1.
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The following figures are visual representations of the Poincaré surface section of the kicked

rotor system. They contain the plots of y = (L mod 2π)/2π vs. x = (θ mod 2π)/2π of the

system starting from 10 different initial states such that the points (L0, θ0) lie on the line

y = x, for N = 1000.
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Figure 3.2: For K = 0.5, the system exhibits regular behaviour for all initial conditions.
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Figure 3.3: For K = Kc = 0.9716, the system exhibits chaotic behaviour for many initial

conditions.
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Figure 3.4: For K = 5.0, the system exhibits chaotic behaviour for almost all initial condi-

tions.
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Let fN(∆L) be the probability that LN − L0 = ∆L after N kicks. Then:

fN(∆l) = 〈δ(∆l − (LN − L0))〉

=

〈
1

2π

+∞∫
−∞

eit(∆l−(LN−L0)) dt

〉

=

〈
1

2π

+∞∫
−∞

eit∆L
N−1∏
n=0

(
e−it(Ln+1−Ln)

)
dt

〉

=

〈
1

2π

+∞∫
−∞

eit∆L
N−1∏
n=0

(
e−iKt sin(θn)

)
dt

〉

where 〈〉 involves averaging over q random initial conditions; q → ∞. Assumption: For

sufficiently large values of K, θn are uncorrelated for t→∞. Then:

fN(∆L) =
1

2π

+∞∫
−∞

eit∆L
N−1∏
n=0

(〈
e−iKt sin(θn)

〉)
dt

=
1

2π

+∞∫
−∞

eit∆L
N−1∏
n=0

 1

2π

2π∫
0

e−iKt sin(θn) dθn

 dt

=
1

2π

+∞∫
−∞

eit∆L[J0(Kt)]N dt

≈ 1

k
√
πN

e−
(∆L)2

K2N (for large N)

Let the kicked rotor system start from initial states such that L0 = 0. Assumption: For

sufficiently large values of K, θn are uncorrelated for N →∞. Then:

〈(LN − L0)2〉 = 〈L2
N〉 =

〈
K2

N−1∑
n=0

(
N−1∑
n′=0

sin(θn) sin(θ′n)

)〉

≈ K2

N−1∑
n=0

〈sin(θn)〉 =
K2N

2
(for large N)

where 〈〉 indicates averaging over q random initial conditions; q →∞.
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The following figures contain histograms that represent the normalized probability distribu-

tion of the angular momentum of the kicked rotor system starting from initial states such

that L0 = 0, for q = 100000 and N = 1000.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

∆L

0.0
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P
(∆
L

)

Classical Probability Distribution of Angular Momentum

Figure 3.5: For K = 0.5, the angular momentum of the system is most probably in the

neighbourhood of 0. Higher and lower values of angular momentum are less probably attained

by the system.
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Figure 3.6: For K = 5.0, the normalized probability distribution of the angular momentum

of the system is Gaussian centred at 0.
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The following figures contain the plots of y = 〈L2
N〉 vs. x = N of the kicked rotor system

starting from initial states such that L0 = 0, for q = 10000 and N = 1000. The average

energy of the system 〈E〉 =
〈L2
N 〉

2I
.

0 200 400 600 800 1000

kick number

0.1

0.2

0.3

0.4
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0.6

0.7

〈(
∆
L

)2
〉

Classical Average of Angular Momentum

Figure 3.7: For K = 0.5, the average energy of the system fluctuates about a saturation

value with N and can be considered to be nearly constant.
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Figure 3.8: For K = 5.0, the average energy of the system increases linearly with N (char-

acteristic of a diffusion process).
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Figure 3.9: This figure contain a histogram that represents the logarithm of the normalized

probability distribution of the Poincaré first recurrence times of the kicked rotor system for

K = 5.0. (No. data points = 100000, Volume of neighbourhood = 1.0). The logarithm of

the normalized probability distribution of the Poincaré first recurrence times of the system

decreases linearly with return kick number for sufficiently large return kick numbers.

Summary

• For sufficiently small values of K, the kicked rotor system exhibits regular behaviour.

For values of K > (Kc ≈ 0.9716), it exhibits chaotic behaviour.

• For values of K > Kc, the normalized probability distribution of the angular momen-

tum of the kicked rotor system is Gaussian centred at 0, for q →∞ and N →∞. This

was expected from the theoretical calculation.

• For values of K > Kc, the variance of the angular momentum of the kicked rotor

system increases linearly with N , for q → ∞ and N → ∞. This was expected from

the theoretical calculation.

• For sufficiently large Poincaré recurrence times, log(P (Tr)) = −Tr + const.. This was

expected from the theory.
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3.1 Quantum Kicked Rotor System

The Hamiltonian describing the quantum kicked rotor (QKR) system is:

Ĥ(t) =
L̂2

2I
+ k cos(θ̂)δτ (t)

with the commutation relation:

[θ̂, L̂] = i~Î

Here:

Ĥ0 =
L̂2

2I
; V̂ (t) = V̂0δτ (t)

where:

V̂0 = k cos(θ̂); δτ (t) =
∞∑
n=0

δ(t− nτ)

A modified quantum Hamiltonian system is constructed by replacing the impulse in Ĥ(t)

with a pulse having finite time width ∆τ and finite height 1/∆τ [6]. The Hamiltonian

describing this system is:
Ĥ0 when qτ < t < (q + 1)τ −∆τ

Ĥ0 +
V̂0

∆τ
when (q + 1)τ −∆τ < t < (q + 1)τ

This Hamiltonian is piece-wise constant. Therefore, the time evolution operator Ŵ (t) of this

system for t ∈ [0, τ −∆τ) is:

Ŵ (t) = e−
i
~ Ĥ0t

and for t ∈ [τ −∆τ, τ) is:

Ŵ (t) = e
− i

~

(
Ĥ0+

V̂0
∆τ

)
(t−(τ−∆τ))

Ŵ (τ −∆τ)

Therefore, the Floquet operator of this system is:

Ŵ (τ) = e
− i

~

(
Ĥ0+

V̂0
∆τ

)
(∆τ)

e−
i
~ Ĥ0(τ−∆τ)
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and the Floquet operator of the QKR system is:

Û(τ) = lim
∆τ→0

Ŵ (τ) = e−
i
~ V̂0e−

i
~ Ĥ0τ

A complete set of orthonormal eigenstates of L̂ is {|n〉 ↔ 1√
2π
einθ}. The entries of the

Floquet matrix of the QKR system, expressed using {|n〉} are:

[U(τ)]mn = 〈m| Û(t) |n〉

=

2π∫
0

e−imθe−
ik cos(θ̂)

~ e−
iτL̂2

2~I einθ dθ

= in−me−
i~τn2

2I Jn−m

(
k

~

)
where Jα(x) is the Bessel function of the first kind of order α. In this basis, only the entries

of U(τ) close to its diagonal entries are significant. Let |A(0)〉 be the initial state (angular

momentum ground state) of the QKR system. Then:

|A(Nτ)〉 = UN |A(0)〉

The expectation value of L̂2 for |A(Nτ)〉 is:

〈L̂2〉N = 〈A(Nτ)|L2 |A(Nτ)〉

16
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Figure 3.10: This figure contains the plot of y = 〈L̂2〉N vs. x = N (kick number) of the

QKR system starting from the aforementioned initial state |A(0)〉 for K = 5.0

Classically, the kicked rotor system exhibits chaotic behaviour for values of K > Kc and the

variance of its angular momentum (∝ energy) increases linearly with time. However, the

expectation value of L̂2 of the QKR system increases with time till a value of time (break

time) after which it fluctuates about a particular finite value, implying that the system has

undergone a transition of state from a regime in which it exhibits chaotic behaviour to a

regime in which it exhibits regular behaviour. “The QKR system has localized.”
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Figure 3.11: This figure contains a histogram that represents the level spacing distribution

of the QKR system for K = 100. It can be seen that the distribution is nearly Poissonian

(∝ e−S). For this result, the order of the Floquet matrix of the QKR system is 2001×2001; an

exact fit is expected if its order is much larger and its elements are more precisely evaluated

and if the bin size of the histogram is smaller.

Note: The Floquet matrix has infinite order. Therefore, for the purpose of numerical

calculations, it must be truncated.

• If the QKR system localizes, then the numerical calculations using its truncated Flo-

quet matrix will be effective even for large N .

• If the QKR system delocalizes, then the numerical calculations using its truncated

Floquet matrix will be effective till a particular value of N .

To know more about the original work, refer to [7][8][9].
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Chapter 4

Anderson Localization

Quantum localization is the localization of the dynamics of a quantum system in its phase

space. The study of localization of the QKR system is facilitated by the existence of a

mapping from the QKR system to the model of an electron moving in a one-dimensional

disordered lattice i.e the one-dimensional Anderson model with on-site disorder [10].

Let t = sτ . Then the Schrödinger equation describing the dynamics of the QKR system is:

i
∂ψ̃(s)

∂s
= −~2τ

2~I
∂2ψ̃(s)

∂θ2
+
k

~
cos(θ̂)δn(s)ψ̃(s)

i
∂

∂s
|ψ̃(s)〉 = (H′0 + V′0δn(s)) |ψ̃(s)〉 (4.1)

δn(s) =
∞∑
n=0

δ(s− n)

where H′0 is the matrix corresponding to the operator −~2τ
2~I

∂2

∂θ2 and V′0 is the matrix corre-

sponding to the operator k
~ cos(θ̂). For t ∈ [Nτ, (N + 1)τ ]:

|ψ((N + 1))〉 = e−iH0e−iV0 |ψ(N)〉

Assumption: the following vectors are solutions of 4:

|ψ(N)〉 = e−iωαN |uα(N)〉
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where:

|uα(N + 1)〉 = |uα(N)〉

where ωα = Ωατ/~. Then:

|uα(N)〉 = e−i(H0−ωαI)e−iV0 |uα(N)〉

Define:

Tα := tan((H0 − ωαI)/2); W := tan(V0/2); |vα(N)〉 := (I + iW)−1 |uα(N)〉

Then:

(Tα + W) |vα(N)〉 = 0

Let {|n〉} be a complete set of orthonormal eigenstates of L̂. Then:

〈n|Tα |vα(N)〉+ 〈n|W |vα(N)〉 = 0
∞∑

n=−∞

〈n|Tα |n〉 〈n|vα(N)〉+
∞∑

m=−∞

〈n|W |m〉 〈m|vα(N)〉 = 0

Tn(α)vn(α) +
∞∑

m=−∞ (6=n)

Wnmvm(α) = −Wnn(α)vn(α)

The eigenstates of the Floquet operator of the QKR system have been represented similar

to the eigenstates of an electron in the one-dimensional tight-binding model with random

disorder in the on-site energy (Anderson model). The major difference between the QKR

system and the Anderson model is that, a localization of the expectation value of the angular

momentum of the QKR system is observed while a localization of the expectation values of

the position of an electron in the Anderson model is observed [11].

Many experiments have been performed on hydrogen atoms [12][13] in microwave fields and

ultra-cold atoms [14][15] in optical lattices to support the results obtained from the theo-

retical/numerical studies of the QKR system. Localization of the QKR system and other

simple quantum Hamiltonian systems has been experimentally observed. Variants of the

kicked rotor system have also been studied in many topics: metal-insulator transitions, con-

trol of decoherence, measures of entanglement, quantum resonances and quantum transport

to quote a few.

20



Chapter 5

Coupled Kicked Rotors

It is now known that the two-dimensional Anderson model localizes. Knowing the great

scope of the kicked rotor system, one can ask the question: “What can be inferred from the

study of the dynamics of a system coupled kicked rotors?”

Studies of systems of two coupled kicked rotors have been presented in [16][17][18][19]; more

recently in [20]. The variant of a system of two coupled kicked rotors studied in this thesis

was presented by the authors of [20]. This variant is a simple and intuitive extension of the

system of two identical, independently kicked rotors.

The simplest system of coupled kicked rotors is a system of two coupled kicked rotors. The

Hamiltonian describing a system of two coupled kicked rotors is:

H(t) =
L2

1

2I1

+
L2

2

2I2

+ V (θ1, θ2)δτ (t)

where L1, I1, L2, I2 are the angular momentum and the moment of inertia of the first and

the second rotors respectively and:

δτ (t) =
∞∑
n=0

δ(t− nτ)

where τ is the kicking time period. For the purpose of this thesis, a variant of this system

was studied. This variant has already been studied [20]. The chosen variant is described by
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the Hamiltonian:

H(t) =
L2

1

2I
+
L2

2

2I
+ k[cos(θ1) + cos(θ2)− ε cos(θ1 − θ2)]δτ (t)

where I1 = I2 = I, k is the amplitude of the kick and ε is the coupling strength. The aim is

to study the dynamics of this system (TCKR system) for various values of k. The Hamilton’s

equations of motion describing the dynamics of the TCKR system are:

θ̇1 =
∂H

∂L1

; θ̇2 =
∂H

∂L2

L̇1 = −∂H
∂θ1

; L̇1 = −∂H
∂θ1

The iterative map is:

L1,n+1 = L1,n +K[sin(θ1,n)− ε sin(θ1,n − θ2,n)] (5.1)

L2,n+1 = L2,n +K[sin(θ2,n)− ε sin(θ2,n − θ1,n)] (5.2)

θ1,n+1 = θ1,n + L1,n+1 (5.3)

θ2,n+1 = θ2,n + L2,n+1 (5.4)

where K = kτ
I

. If I = 1 and τ = 1, then K = k. Henceforth, I = 1, τ = 1, ε = 1. Since

H(t) is invariant under the exchange θ1 ↔ θ2, the characteristics of the dynamics of both the

rotors are identical. Therefore, only information about L1 and θ1 is presented henceforth.
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Figure 5.1: This figure contains the plot of y = L1 vs x = K of the kicked rotor system

starting from initial states such that L1,0 = 0, for ε = 2 and N = 100000. It can be seen

that the values of L1 begin to deviate from the line L1 = 0 in the neighbourhood of K = 0.3

and completely deviate in the neighbourhood of K = 1.5.
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The following figures are visual representations of the Poincaré surface section of the TCKR

system. They contain the plots of y = (L1 mod 2π)/2π vs. x = (θ1 mod 2π)/2π of the

system starting from 10 different initial states such that the points (L1,0, θ2,0) lie on the line

x = π and the points (L2,0, θ2,0) lie on the line y = π, for N = 1000.
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Figure 5.2: For K = 0.1, the system exhibits quasi-regular behaviour for most initial condi-

tions. The quasi-regular behaviour can be attributed to the coupling term of the Hamiltonian

and the choice of the initial conditions of the system.
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Figure 5.3: For K = 0.3, the system exhibits uncharacterised behaviour. Although the
system seems to exhibit chaotic behaviour for many initial conditions, there are regions of
its phase space inaccessible by it.
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Figure 5.4: For K = 2.0, the system exhibits chaotic behaviour for all initial conditions.
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The following figures contain histograms that represent the normalized probability distribu-

tion of L1 of the TCKR system starting from initial states such that L0 = 0, for q = 100000

and N = 1000.
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Figure 5.5: For K = 0.3, L1 is most probably in the neighbourhood of 0. Higher and lower

values of angular momentum are decreasingly less probably attained by the system.
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Figure 5.6: For K = 0.5, the normalized probability distribution of L1 peaks at 0 similar to
a pulse function.
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Figure 5.7: For K = 2.0, the normalized probability distribution of L1 is Gaussian centred
at 0.
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The following figures contain the plots of y = 〈L2
1,N〉 vs. x = N of the kicked rotor system

starting from initial states such that L0 = 0, for q = 10000 and N = 1000.
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Figure 5.8: For K = 0.3, the variance of L1 fluctuates about a saturation value with N and

can be considered to be nearly constant.
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Figure 5.9: For K = 0.5, the variance of L1 increases by a power-law with N .
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Figure 5.10: For K = 2.0, the variance of L1 increases linearly with N .
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Figure 5.11: This figures contains a histogram that represent the logarithm of the normalized

probability distribution of the Poincaré first recurrence times of the TCKR system, for

K = 4.0. (No. data points = 100000, Volume of neighbourhood = 5.0). The logarithm of

the normalized probability distribution of the Poincaré first recurrence times of the system

decreases linearly with return kick number for sufficiently large return kick numbers.

Summary

The dynamics of the TCKR system for K ∈ [0, 2.0] were studied. However, results of the

numerical calculations on the system only for few values of K have been presented. It is

evident from these figures that:

• The dynamics of TCKR system is very sensitive to its initial conditions. The system
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exhibits chaotic mixing.

• The TCKR system undergoes the earlier mentioned transition of state, preliminarily

for K ∈ [0.3, 0.4] and completely for K ∈ [1.25, 1.5].

• The energy of the TCKR system increases with the kick number, by a power law for

K ∈ [0.3, 0.4] and linearly for K > 2.

• The TCKR system is completely chaotic for K > 2; for sufficiently large Poincaré

recurrence times, log(P (Tr)) = −Tr + const..

5.1 Quantum TCKR System

The Hamiltonian describing the quantum TCKR system (QTCKR) is:

Ĥ(t) =
L̂2

1

2I
+
L̂2

2

2I
+ k[cos(θ̂1) + cos(θ̂2)− ε cos(θ̂1 − θ̂2)]δτ (t)

with the commutation relations:

[θ̂i, L̂j] = i~δij Î (i, j = 1, 2)

The Floquet operator of the QTCKR system is

Û(τ) = e−
ik
~ [cos(θ̂1)+cos(θ̂2)−cos(θ̂1−θ̂2)]e−

iτ
2~I (L̂2

1+L̂2
2)

A complete set of common orthogonal eigenstates of L̂1 and L̂2 is {|n1, n2〉 = 1
2π
ei(n1θ1+n2θ2)}.

The the entries of the Floquet matrix expressed using {|n1, n2〉} are:

Um,n(τ) =
1

4π2
e−

i~τ
2I

(n2
1+n2

2)

2π∫
0

2π∫
0

e−
i
~k[cos(θ̂1)+cos(θ̂2)−cos(θ̂1−θ̂2)]eir1θ1eir2θ2 dθ1dθ2

where r1 = n1 −m1 and r2 = n2 −m2.
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Figure 5.12: This figure contains a histogram that represents the level spacing distribution

of the QTCKR system for K = 10. It can be seen that the distribution is nearly Poissonian

(∝ e−S). For this result, the order of the Floquet matrix of the QTCKR system is 441×441;

an exact fit is expected if its order is much larger and its elements are more precisely evaluated

and if the bin size of the histogram is smaller.
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Concluding Remarks

The dynamics of a variant of the general system of two coupled kicked rotors was studied

in this thesis using a combination of analytical and numerical techniques. The dynamics

of the TCKR system was studied by studying the Poincaré surface sections in its phase

space, normalized probability distribution of its angular momentum and the variance of its

angular momentum. The normalized probability distribution of the Poicaré recurrence times

of the system was also studied. From these studies, it was inferred that the TCKR system

undergoes the earlier mentioned transition of state. The dynamics of the QTCKR system

was studied by the studying its level spacing distribution. Due to the limitations of the

numerical techniques and the computational capabilities available, the maximum order of

the truncated Floquet matrix considered was 441 × 441. However, it is expected that the

QTCKR system localizes and this may be tested by considering larger Floquet matrices.

Further research can involve the study of the classical and quantum resonances and the

localization-delocalization transitions of this system. The dynamics this system in a finite

potential well or external bath can also be studied. A mapping of this system to a two-

dimensional Anderson model can be used to enhance the understanding of metal-insulator

transitions. Simpler variants of the general system of two coupled kicked rotors can also

be studied. Quantized interactions significantly alter the behaviour exhibited by interacting

quantum systems. This is an important result for the design of quantum computers and

their performances. From an experimental perspective, these systems can be realized in

atom-optics experiments, cavity opto-mechanics and NMR experiments. Results from these

experiments can then be used to develop high precision sensing equipments and quantum

technologies.
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