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Abstract 

Propagation of a cell requires successful segregation of its genetic material into 

resulting daughter cells, a process brought about by the coordinated dynamics of cytoskeletal 

spindles. High resolution time-lapse microscopy has opened new avenues for understanding 

the dynamics of spindles within single cells. Automated computational image analysis allows 

the extraction of useful quantitative information from microscopy data in an unbiased, 

objective and reproducible manner. In the present work, I have developed three automated 

image analysis tools in MATLAB to investigate the quantitative aspects of subcellular 

dynamics such as particle motion, intensity and interaction. The tools are called Automated 

Multi-peak Tracking Kymography (AMTraK), Fluorescence Tracker (FluoreT) and 

Differential Interference Contrast Object Tracker (DICOT). While AMTraK and FluoreT are 

used to analyse time-lapse fluorescence images, DICOT applies to images from time-lapse 

DIC microscopy. The tools are validated with simulated noisy data, tested on experimental 

image-series and benchmarked by comparing their results with manual measurements, 

published literature and outputs of other software. The wide utility of these tools is 

demonstrated on diverse data ranging from in vitro microtubule gliding assays and clathrin 

assembly kinetics to in vivo axonal vesicle transport, DNA segregation in E. coli and 

cytoplasmic granule mobility in C. elegans embryos. 

ParM filaments that form a plasmid-segregating spindle in E. coli cells display 

dynamic instability and are also known to slide in vitro. Our Brownian dynamics simulations 

of the ‘search and capture’– based assembly of the ParMRC spindle suggest that dynamic 

instability does not alter the time taken by ParM filaments for plasmid capture. Quantitation 

of ParM sliding using AMTraK shows that the filaments slide against each other in a 

contractile, sub-diffusive manner at a speed higher than the rate of polymerization.  

The mobility of the mitotic spindle during the process of asymmetric positioning is 

shown to vary between nematode species, suggesting an evolutionary difference in spindle 

mechanics. Viscosity of the cytoplasm is hypothesized to give rise to these differences. Our 

novel, non-invasive quantification of cytoplasmic viscosity using DICOT suggests that 

viscosity may contribute to the observed difference in spindle motion patterns during 

positioning in the embryos of six related nematode species including C. elegans.  

My work highlights the insights that computational tool development can provide 

when applied to in vitro and in vivo dynamics of subcellular processes. 
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Chapter 1 

Introduction 

In this thesis, I have aimed to improve our quantitative understanding of subcellular dynamics 

by a combination of computational tool development, analysis of microscopy image data and 

computer simulations.  In this chapter, I briefly describe cytoskeletal spindles that segregate 

DNA and the microscopy methods employed for observing subcellular dynamics. Further, I 

aim to motivate the computational analysis of microscopy image data and computer 

simulations of cytoskeletal systems.  

1.1. DNA segregation machinery in eukaryotes and prokaryotes 

 The propagation of a cell requires successful segregation of its genetic material into 

resulting daughter cells. In both, prokaryotes and eukaryotes, this process is brought about by 

large subcellular structures called ‘spindles’ that are composed of cytoskeletal polymers and 

associated regulatory proteins. Spindles are transient in nature. They are formed at the onset 

of division; they orchestrate the segregation of DNA to opposite poles of the cell and 

disintegrate shortly after segregation. DNA segregation in all the three kinds of cell division- 

binary fission, meiosis and mitosis - is known to involve the spindle apparatus. Given this 

fact, the study of organization and working of spindles is of fundamental importance not only 

to understand how cells divide, but also to accelerate the development of drugs that target 

dividing cells, such as chemotherapy drugs and antibacterial substances. 

 In this thesis, we investigate biophysical aspects relevant to mitotic spindles in 

eukaryotes and prokaryotes. Although the goal of this machinery in both kinds of cells is to 

segregate copies of replicated DNA prior to cell division, the structure, components and 

mechanism of action of spindles appear to vary widely. 

Eukaryotic spindles 

 In eukaryotic cells, spindles are composed of microtubules (MTs), ~25 nm wide 

dynamic filaments formed by GTP-hydrolysis dependent polymerization of tubulin subunits 

(Figure 1.1, Figure 1.5A). Each subunit is a heterodimer made of α and β tubulin monomers 

held by tight, non-covalent bonds. The structural and kinetic polarity of microtubules is 
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attributed to the α-β dimeric subunits such that the end with β is the fast-growing end or the 

plus end, while the α-end is the slow-growing or minus end. Microtubules are nucleated by 

centrosomes or microtubule organizing centres (MTOCs) composed of  tubulin ring 

complexes such that the MT- minus ends are embedded in MTOCs while the plus ends 

continue to shrink and grow, extending outward in cellular space. The MTOCs with 

emanating microtubules form the two poles of a bipolar, antiparallel spindle that segregates 

chromosomes during mitosis.  

 

Figure 1.1. Mitotic spindle in eukaryotes. The spindles in eukaryotes are composed majorly of 

microtubule filaments (red) that extend outward from MTOCs (centrosomes, green) to the 

kinetochores (yellow) of chromosomes (blue) or to the other MTOC or towards the cell cortex. 

(Reproduced from Gadde and Heald, 2004).  

 

 Microtubules display dynamic instability, i.e. they alternate between phases of growth 

and rapid shrinkage (Mitchison and Kirschner, 1984). The transition of an MT from growth 

to shrinkage is called ‘catastrophe’, while the transition from shrinkage to growth is called 

‘rescue’. According to the ‘search and capture’ model of eukaryotic spindle assembly 

(Kirschner and Mitchison, 1986), the MT plus ends search cellular space and capture 

chromosomes at their kinetochores. Theoretical studies show that polymers displaying 

dynamic instability are highly efficient in ‘search and capture’ in contrast with a polymer 

lacking the property (Holy and Leibler, 1994). Dynamic instability is shown to reduce the 
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time taken for target capture by orders of magnitude (Figure 1.2A).  Further, mathematical 

modelling and Brownian dynamics based simulations suggest that dynamic instability alone 

is insufficient to bring about chromosome capture at mitotic timescales unless combined with 

a bias such as a RanGTP gradient that stabilizes MTs growing towards chromosomes 

(Wollman et al., 2005; Athale et al., 2008) (Figure 1.2B). 

 

Figure 1.2. ‘Search and capture’ of DNA. (A) Target capture time (τ) is plotted versus distance 

from the target. A polymer with dynamic instability (two-state polymer (TSP)) shows 10
3
 times lower 

capture time as compared to a polymer lacking dynamic instability (single-state polymer (SSP)). 

(Reproduced from Holy and Leibler, 1994). (B) Schematic suggests a ‘biased-search-and-capture’ 

model and shows how a MT stabilizing gradient (green) affects the length asymmetry of MT-asters 

(white). (Reproduced from Athale et al., 2008). 

 

 Several MT-associated proteins regulate MT dynamics and maintain the stability and 

structural integrity of the eukaryotic spindle during segregation (reviewed by Gadde and 

Heald, 2004). Molecular motors such as dynein and kinesin hydrolyse ATP to ‘walk’ along 

MT tracks and perform varied functions related to the spindle, including sorting, crosslinking 

and sliding of MTs (Howard, 2001). Cytoplasmic dynein, a minus-end directed motor is 

known to focus the minus ends of MTs thereby enabling spindle pole formation. 

Additionally, dynein motors anchored at the cell cortex are known to pull on astral 

microtubules to bring about spindle positioning in cells such as budding yeast and C. elegans 

embryos (reviewed by Grill and Hyman, 2005). In previous work, the mobility of the mitotic 

spindle during the process of asymmetric positioning was shown to vary between nematode 

species, suggesting an evolutionary difference between spindle mechanics (Valfort et al., 

2018; Farhadifar et al., 2015; Riche et al., 2013). A simple hypothesis is that the viscosity of 
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the cytoplasm could give rise to these differences. Indeed, predictions from simulations of 

spindle-oscillatory mechanics in C. elegans have suggested that order of magnitude 

differences in the cytoplasmic viscosity can change the qualitative nature of spindle 

oscillations by mechanical damping  (Kozlowski et al., 2007)⁠. This motivates the study of 

biophysical properties of the cytoplasm and their effect on spindle motion patterns in single-

celled nematode embryos. In Chapter 6 of the thesis, we use a novel, non-invasive 

microrheology approach combined with automated image analysis to quantify the 

cytoplasmic viscosity of multiple nematode zygotes. 

Prokaryotic spindles 

 Contrary to earlier belief, bacteria possess an extensive cytoskeleton (Vollmer, 2006; 

Wickstead and Gull, 2011; Cabeen and Jacobs-wagner, 2010; Michie et al., 2006) whose 

constituents are vital for various molecular events including DNA segregation. In addition to 

genomic DNA, bacteria are known to naturally possess extrachromosomal, self-replicating 

molecules of DNA called ‘plasmids’. Plasmids are reported to participate in the metabolism 

and virulence of the cell by conferring properties such as resistance to heavy metals, toxic 

chemicals and antibiotics to the cell. While high copy number plasmids are shown to be 

partitioned randomly between daughter cells prior to cell division (Reyes-Lamothe et al., 

2014; Ghosh et al., 2006; Ebersbach and Gerdes, 2005), several low-copy-number plasmids 

ensure their faithful partition by encoding an active spindle machinery composed of 

homologs of eukaryotic cytoskeletal elements (Nordstrom and Austin, 1989; Becker et al., 

2006; Aylett et al., 2010; Moller-Jensen et al., 2002; Fink and Löwe, 2015). A variety of 

prokaryotic spindle machineries made of cytomotive filaments have been reported so far 

(Gerdes et al., 2010; Schumacher, 2012; Ebersbach and Gerdes, 2005)(Figure 1.3). In this 

thesis, we focus on a well-studied type-II plasmid segregation system encoded by plasmid R1 

in E. coli. R1 is a ~100 kb low copy number plasmid (4-6 copies per cell) that encodes the 

ParMRC spindle at its par locus.  
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Figure 1.3. Schematic of types of plasmid segregation systems. The Type I system (for example, 

ParABS, SopABC) utilizes the bacterial nucleoid as a track. ParB bound plasmids are pulled by 

disassembling ParA filaments, enabling the uniform distribution of plasmids on nucleoid surface. In 

the type II system (for example, ParMRC, AlfA), plasmids are pushed apart by insertional 

polymerization of filaments bound to them. The type III system (for example, TubZRC) involves 

segregation by polymers that undergo treadmilling. ( Reproduced from Schumacher, 2012). 

 

 As compared to eukaryotic spindles that span a length of tens of microns, the spindles 

in prokaryotes are minimal not only in size, but also in the number of components. The 

ParMRC system, for example, consists only of three components. ParM, the cytomotive 

element of the spindle, is an actin homolog that generates force by ATP-dependent 

polymerization. Other two components include parC, a cis-acting centromere-like DNA 

sequence and ParR, an adaptor protein that binds to both, parC and ParM. When a ParM plus 

end binds to ParRC, they form a complex that we will henceforth refer to as a ‘half-spindle’.  Two 

such ‘half-spindles’ assemble into a bipolar, transient mitotic spindle of average length ~1.5 

μm in vivo that pushes plasmids apart (Moller-Jensen et al., 2002; Campbell and Mullins, 

2007; Gayathri et al., 2012) (Figure 1.4, Figure 1.5B). 
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Figure 1.4. ParMRC spindle in E. coli. The plus ends of ParM polymers bind to plasmids at ParRC 

complexes to form a half-spindle. Two such half spindles associate to form an antiparallel, bipolar 

spindle. Insertional polymerization at the bound ends of ParM filaments generates force to push 

plasmids to opposite poles of the cell. (Reproduced from Gayathri et al., 2012). 

 

Interestingly, ParM has been shown to display dynamic instability as that of 

microtubules (Garner et al., 2004). However, while ParM filaments are observed to undergo 

catastrophic events, no rescues have been observed in them. In vitro reconstitution 

experiments have been performed previously to show that the dynamic instability of ParM 

enables easy turnover of filaments and provides excess monomer to drive the elongation of 

the spindle (Garner et al., 2007). As seen in eukaryotes, dynamic instability is hypothesized 

to facilitate ParM filaments to search cellular space and capture their plasmid targets. 

However, the effect of ParM dynamic instability on the efficiency of plasmid capture has not 

been thoroughly investigated. Given that the ParMRC spindle requires the interaction of only 

three well-studied components to assemble and function, the use of computer simulations is 

most suited to address this question. With this aim, in Chapter 7 of the thesis, we simulate the 

‘search and capture’ of plasmid targets by ParM filaments in an E. coli cell. 

Once the entire spindle is assembled, insertional polymerization of ParM filaments at 

their plasmid bound ends pushes sister plasmids to opposite poles of an E. coli cell. In 

addition, ParM filaments are known to slide and form bundles in vitro in the absence of 

additional proteins, a feature only qualitatively reported recently in literature (Gayathri et al., 

2012). How dynamic instability, insertional polymerization and inter-filament interactions 

together bring about the process of plasmid segregation in an E. coli cell in a span of a few 

minutes still remains poorly understood. In eukaryotic cells, motor-assisted sliding of MTs is 
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speculated to play a role in maintaining spindle length (Burbank et al., 2007; Goshima and 

Scholey, 2010). However, determining the potential role of ParM sliding in spindle assembly 

and plasmid segregation is difficult. This is because in an E. coli cell, the direct observation 

of sliding interactions in ParM filaments is hampered greatly due to the diffraction limit of 

light microscopy (~250 nm). Therefore, computer simulations are found most useful to 

identify the potential role of ParM filament sliding. Simulations of this process are currently 

hindered by the lack of quantitative information on ParM filament sliding. As a first step, in 

the latter half of Chapter 7, we quantify for the first time to our knowledge, the in vitro 

sliding parameters of ParM filaments by automated kymography.  

 Motivated by the need to unravel the complexity of organization and function of 

mitotic spindles, multiple studies have examined the time-dependent interactions between the 

spindle components using live-cell microscopy. Owing to the transient and dynamic nature of 

spindles, time-lapse light microscopy is found highly effective for studying these structures 

(Figure 1.5). 

1.2. Visualizing subcellular dynamics by microscopy  

 Microscopes have aided the human eye for centuries, enabling the visualization of 

micrometer and nanometer-sized objects such as molecules, clusters, cytoskeletal filaments, 

organelles or cells themselves.  Light microscopes make use of light in the visible range 

(wavelength 400-700 nm) and a combination of lenses to magnify objects. Since their 

invention in the 17
th

 century, light microscopes have evolved greatly in terms of resolution 

and user-friendliness, thereby making light microscopy an indispensable tool in cell biology. 

The advent of time-lapse microscopy and live-cell imaging has further opened new avenues 

for the analysis of spatiotemporal dynamics of subcellular events that lay the foundation for 

higher order cellular processes such as determination of cell shape, locomotion, cell division, 

cell-cell adhesion and differentiation. 

 Light microscopy can be broadly classified into two categories- (a) labelled or 

fluorescence microscopy and (b) label-free microscopy. In the following text I dwell briefly 

on the two kinds of imaging. 

Fluorescence microscopy 

 Fluorescence microscopy makes use of fluorophores or dyes that absorb light of a 

particular wavelength, reach their excited state and subsequently emit light of a longer 
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wavelength. These fluorophores are used to ‘label’ the molecules of our interest either by 

expressing them within cells or by physically introducing them into the system. Over the last 

two decades, the emergence of a plethora of compatible fluorophores, high resolution 

microscopy and robust computer programs for quantitative analysis of data has popularized 

the use of fluorescence microscopy for in vitro as well as in vivo imaging.  

 

Figure 1.5. DNA-segregating spindles imaged by different forms of light microscopy. (A) 

Immunofluorescence micrograph of a eukaryotic mitotic spindle imaged during metaphase in a tissue 

culture cell. MTs (green) associated with chromosomes (blue) aligned at the metaphase plate are seen. 

The yellow region represents the overlapping of MTs with TPX2 (red), a spindle component. 

Reproduced from (Wittmann et al., 2001). (B) A phase-contrast image of an E. coli cell is overlaid 

with a fluorescence microscopy image of par
+
 plasmids (orange) pushed to cell poles by a ParM 

spindle (green). Scale bar – 2 μm. (Reproduced from Moller-Jensen et al., 2003). (C) DIC image of a 

mitotic spindle within a single-celled C. elegans embryo. Centrosomes are marked by black arrows. A 

marks the anterior and P marks the posterior regions of the embryo. Scale bar – 10 μm. (Adapted from 

Cluet et al., 2014). 

 

 Although fluorescence microscopy has several advantages, there are some inherent 

challenges associated with this method. Probing the components of a bacterial cell (size ~2 

μm) through optical microscopy is hindered by the diffraction limit of light. Phototoxicity 

due to prolonged exposure to high intensity radiation may damage cells, alter their behaviour 

and affect their viability (Sarah Grah et al., 2017; Dixit and Cyr, 2003). Rapid photobleaching 
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of fluorophores can result in poor quality of images over long durations of microscopy. Also, 

the signal obtained from thicker samples is obscured by out-of-focus light coming from 

planes above and below the focal plane. I shall allude now to the recent technological variants 

of fluorescence microscopy that have helped overcome some of these challenges and are 

found especially suitable for imaging spindles and their cytoskeletal elements (Figure 

1.6A,B). 

 Confocal microscopes provide greater axial and lateral resolution as compared to 

typical epifluorescence microscopes as they illuminate the samples with focussed laser beams 

of light and further eliminate out-of-focus light by incorporating a pinhole aperture at the 

detector (Pawley, 1995). Total Internal Reflection Fluorescence (TIRF) microscopy 

(reviewed by Toomre and Manstein, 2001) is commonly used for analysing the in vitro 

dynamics of cytoskeletal filaments since it provides high axial resolution and selectively 

illuminates ~100 nm below the coverslip, thereby improving the signal to noise ratio.  

 Speckle labelling is yet another technique that uses low levels of fluorescent dyes and 

is most suitable for visualizing the polymerization and depolymerisation kinetics of 

cytoskeletal polymers (Waterman-Storer et al., 1998). The introduction of a low 

concentration of labelled monomers results in formation of polymer lattices that contain a 

mixture of labelled and unlabelled subunits. This in turn gives rise to fiduciary marks that 

allow better visualization of polymer turnover and movement.  
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Figure 1.6. Modes of light microscopy for imaging mitosis. Schematics describing the working 

principles of (A) confocal microscopy (Reproduced from Murphy, 2001), (B) TIRF microscopy 

(Reproduced from Shashkova and Leake, 2017) and (C) DIC microscopy. (Reproduced from Murphy, 

2001).  

 

Label-free microscopy  

 As the name suggests, label-free imaging techniques generate contrast using inherent 

features of a colourless, unstained, transparent sample, without the use of fluorophores. 

Traditional label-free techniques such as Differential Interference Contrast (DIC) and phase-

contrast (Zernike, 1953) allow the observation of cells and large subcellular structures in their 



21 
 

native, unperturbed states with minimal exposure to light, thereby preventing phototoxicity. 

Phase-contrast microscopes make use of the phase shift in light induced by the refractive 

indices of components of the sample. In phase-contrast images, objects appear uniformly dark 

over a relatively lighter background and with a characteristic outer halo. DIC microscopes 

employ dual-beam interference optics to improve contrast (Figure 1.6C). As a result, the DIC 

image of an object is a combination of light and dark regions that gives a pseudo-3D effect 

(Figure 1.5C). The use of DIC microscopy is especially advantageous as it allows users to 

focus on thin axial sections of the specimen and the high contrast generated in these images 

helps to easily discern single particles from aggregates (Li et al., 2007).  

 Modern day microscopes equipped with advanced cameras can acquire images and 

videos at high spatiotemporal resolution. Microscopy can thus rapidly generate hundreds of 

images from a single experiment leading to gigabytes of complex data. Manually making 

sense of this data is not only tedious, time-consuming and subjective but may also lead to 

erroneous interpretation owing to the possible existence of a viewer’s bias. It is therefore 

useful to augment advanced imaging techniques with robust and automated image analysis 

tools that can efficiently process image data and accelerate investigation in cell biology.  

1.3. Computational analysis of microscopy images 

 A digital image is made up of a finite number of discrete, equally sized units called 

‘picture elements’ or ‘pixels’. Each pixel possesses spatial coordinates (x,y) and an amplitude 

that corresponds to the intensity of light collected from the sample at that (x,y) position. 

Digital image analysis involves the use of computers to process images in order to mine the 

wealth of information stored in them and extract useful quantitative information (Gonzalez 

and Woods, 2008). The data deluge that results from microscopy experiments necessitates the 

rapid analysis of images on a high-throughput scale. Automation of image analysis helps not 

only to reduce manual intervention but also provides unbiased, reproducible measurements of 

the morphology and behaviour of the objects in terms of motion, concentration and 

interaction with other objects. Automated image analysis finds applications numerous fields, 

some examples of which are biology, biomedicine, astronomy, geology, remote sensing and 

robotics.    

 Since over a decade, the importance of computational image analysis in cell biology is 

increasingly being recognized. As a result, a plethora of image analysis techniques and tools 

are now available for researchers in order to quantitatively investigate the dynamics of cells 
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and intracellular molecules. Kymography and single particle tracking are two classic 

techniques fundamental to image analysis that are most commonly employed to explore the 

biophysical aspects of various biological processes, ranging from intracellular dynamics to 

the characterization of cell motility and migration. In Chapters 3, 4 and 5, I shall discuss in 

detail the software tools I have developed in order to automate quantitative kymography and 

2D particle tracking in labelled and label-free images. 

 Microscopy data is inherently noisy. Noise in the context of image analysis is random 

variation in the intensity of an image. It can stem from several sources including fluctuations 

in the image sensor, thermal vibrations at the microscopy setup, errors in quantization and 

photon counting (Pawley, 1995). Data is therefore often denoised by specialized image-

processing techniques such as median filtering and averaging prior to analysis (Gonzalez and 

Woods, 2008). The limit imposed by diffraction and the presence of noise in light microscopy 

data makes it important to test the robustness and accuracy of image analysis programs that 

automatically quantify parameters from such data. 

Accuracy, precision and error 

 Accuracy of a tool is a measure of how close the output gained from the tool is to the 

actual or ‘true’ value (Waters, 2009). The deviation between the true value and the output is 

what we refer to as error. Error may depend on particle size and density, the quality of the 

hardware used for imaging and acquisition, image noise and even the algorithm used for 

analysis. The most accurate tool is the one that results in the lowest error. Precision, on the 

other hand, is a measure of how close the outputs from repeated runs of a tool on the same 

data are, to each other.  

 As simulations offer a true value of a parameter for comparison, image analysis tools 

are validated using simulated data. Owing to the lack of a true value of quantifiable 

parameters in biological image data, manual measurements are considered as gold standards 

during validation of automated tools. Additionally, one may compare the output generated by 

image analysis to other methods of quantification reported in previous literature.  

 The image analysis tools I describe in Chapters 3, 4 and 5 are rigorously validated 

with simulated noisy data, tested on experimental image time-series and benchmarked by 

comparing their results with manual measurements, published literature and outputs of other 

software. 
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 To summarize, the computational analysis of image data obtained from in vitro and in 

vivo microscopy provides much needed quantitative insights into biological problems. The 

objective, high-throughput and reproducible quantitation provided by automated image 

analysis sets the foundation for mathematical models and simulations that could further 

improve our understanding of cellular and subcellular dynamics. 

1.4. Simulation of cytoskeletal and spindle dynamics 

 The modularity of the cytoskeleton and the stochasticity associated with its dynamics 

has attracted scientists to model processes involving the cytoskeleton. Extensive theoretical 

studies have been carried out towards modeling aspects of mitosis (reviewed by Mogilner et 

al., 2006). Coarse-grained computer simulations based on constrained Langevin dynamics 

(Nedelec and Foethke, 2007) enable the reconstitution of the components of cytoskeletal 

spindles in silico in order to understand their collective behaviour. For instance, such 

simulations have been employed to shed light on self-organization of MTs and motors 

(Nedelec et al., 1997), spindle assembly (Loughlin et al., 2010; Nedelec, 2002) as well as 

spindle positioning (Kozlowski et al., 2007). In conclusion, a systems-biology approach that 

relates subcellular dynamics to individual and population level properties and combines 

experiments with quantitative analysis and computer simulations is essential in order to 

address some of the long standing questions in biology.  

1.5. Organization of the thesis 

The thesis is organized in two sections. The first part focuses on the development of tools for 

automated quantitative image analysis of microscopy data. The second part describes how 

these tools have been applied to study certain aspects of mechanics of cytoskeletal spindles in 

eukaryotic and prokaryotic cell systems through quantitative image analysis and simulations. 

1.5.1. Computational tool development for automated image analysis 

In Chapter 3, I describe a novel software tool for Automated Multi-peak Tracking 

Kymography (AMTraK), which uses peak information and distance minimization to track 

and automatically quantify kymographs from in vitro and in vivo fluorescence microscopy 

time-series of subcellular dynamics. Chapters 4 and 5 describe Fluorescence Tracker 

(FluoreT) and Differential Interference Contrast Object Tracker (DICOT) respectively, which 

are software tools I developed for automated single particle tracking in 2D in labelled and 

label-free image-series. 
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1.5.2. Applications: Spindle mechanics 

In Chapter 6, we use a novel, non-invasive microrheology approach to estimate the 

cytoplasmic viscosity of multiple nematode zygotes. To this end, we apply DICOT (described 

in Chapter 5) to trace endogenous yolk granules imaged within live zygotes by time-lapse 

DIC microscopy. In Chapter 7, we aim to understand the effect of dynamic instability of 

ParM filaments on spindle assembly using Brownian dynamics based simulations. 

Additionally, in an attempt to understand the potential role of filament sliding in segregation, 

we quantify for the first time to our knowledge, the in vitro sliding parameters of ParM 

filaments. To this end, we employ AMTraK (described in Chapter 3). 
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Chapter 2 

Materials and Methods 

2.1. Implementation of algorithms 

The computational image analysis tools (AMTraK, FluoreT and DICOT) were implemented 

in MATLAB R2014b and R2016a (MathWorks Inc., USA) in combination with the Image 

Processing toolbox (version 7.0 and above) and Statistics toolbox (version 7.3 and above) and 

tested on Linux, Mac OSX and Windows 10 platforms.  

2.2. Pre-processing of image data from microscopy 

The acquired time-series and movies taken from published data were converted to 

uncompressed TIF time-series using ImageJ version 1.4 (Schneider et al., 2012) and an online 

converter for MOV files (https://video.online-convert.com). Microtubule images with ‘salt 

and pepper’ noise were de-noised with a 3 x 3 median filter. Median filters work by replacing 

the intensity of each pixel by the median value calculated from its neighbourhood. Image 

contrast was enhanced by normalization (considering 0.3% saturated pixels) and brightness 

was adjusted using ImageJ and Fiji (Schindelin et al., 2012). Normalization stretches the 

intensity-histogram of the image to span the entire range of grayscale values allowed by the 

image type. The intensity of each pixel in the input image (Iin) is modified as follows: 

Iout = (Iin – c) * [(b – a) / (d – c)] + a      (Equation 2.1) 

Here, Iout is the modified intensity, c and d are minimal and maximal intensities in the input 

image respectively and a and b are the lower and upper limits of grayscale values of the 

image (for example, for an 8-bit image, a = 0, b = 255). A non-zero value of saturated pixels 

improves contrast by reducing the effect of outlying pixel-intensities during normalization. 

2.3. Simulating fluorescence bead images  

In order to validate the automated tools for analysis of fluorescence microscopy data, we 

simulated bead-like circular structures by creating 8-bit images in MATLAB (MathWorks 

Inc., USA) with a black background (intensity: 0) with single white pixels (intensity: 255) 

placed in specific positions. To resemble the convolution effect of microscopy, the images 

were further filtered using a 5 x 5 disk filter and smoothed using a 3 x 3 averaging filter.  
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Figure 2.1. Simulated images. (A) A simulated bead image used to estimate the accuracy of image 

analysis tools developed for fluorescence microscopy. A profile through the image (yellow line) is 

used to generate (B) an intensity profile through the three beads. 

 

The resulting circular objects (Figure 2.1A) have intensity profiles (Figure 2.1B) that 

resemble point sources of fluorescence signal. The time-series were saved as multi-page TIF 

files. Increasing levels of complex noise, a combination of Poisson and Gaussian noise, was 

added to individual images/time-series using ImageJ (Schneider et al., 2012). Poisson (shot) 

noise was introduced first using the ‘Poisson Noise’ plugin (Gallo, 2008). Gaussian noise was 

added using a filter with mean= 0 and increasing standard deviation (0-60) with the aid of the 

‘Add specified noise’ feature.  

2.4. Calculation of signal to noise ratio 

The signal to noise ratio (SNR) was calculated for each image in a simulated time-series 

using the following equation, and then averaged: 

 

 SNR =  
 𝜇𝑠− 𝜇𝑏

𝜎𝑏
      (Equation 2.2) 

While μs and μb are the mean intensities of the signal and background respectively, σb represents the 

standard deviation of the background intensity. 

2.5. Otsu’s thresholding 
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In Chapters 3 and 4, automated thresholding for segmentation was carried out by Otsu’s 

method that makes use of the gray-level histogram of images to dichotomize the pixels into 

background and foreground classes. The threshold level that maximizes inter-class variance 

(or minimizes intra-class variance) in pixel intensities is chosen as the optimal threshold 

(Otsu, 1979). 

2.6. Centroid detection 

The position of centroid or center-of-mass of a detected particle is calculated as follows: 

C (x,y) = ( 
∑ 𝑥𝑖

𝑛

𝑖=1

𝑛
 ,  

∑ 𝑦𝑖
𝑛

𝑖=1

𝑛
 ) 

n is the number of pixels comprising the detected particle. 

2.7. Nearest-neighbour tracking 

In successive frames of an image-series, position coordinates that are closest in terms of 

distance and time are linked to make up a trajectory. This method is computationally less 

intensive and generally applicable and works best with low density of particles whose 

velocity of movement is lesser than the inter-particle spacing. Modified forms of this method 

have been used for tracking in the tools described in this thesis. The details of implementation 

are given in Chapters 3, 4 and 5. 

2.8. Data analysis 

All data analysis and plotting was performed using MATLAB 2014b and 2016a (MathWorks 

Inc., USA). Fitting of custom functions was performed using either the Levenberg-Marquardt 

non-linear least square routine or the trust-region method, implemented in the Curve-Fitting 

toolbox (version 3.5 and above) of MATLAB. 

 

2.9. Estimation of effective diffusion coefficient 

The effective diffusion coefficient (Deff) of particles was estimated by two methods described 

in the following text. 

2.9.1. Mean Square Displacement (MSD) analysis 



28 
 

Mean square displacement (< r
2
 >) of particles was calculated as described in (Khetan and 

Athale, 2016) using the Cartesian coordinates (x,y) obtained from AMTraK, FluoreT and 

DICOT.  

< r
2 

(δt) > = [x (t + δt) - x (t)] 
2
 + [(y (t + δt) - y (t)] 

2
   (Equation 2.3) 

 

In the above equation, r is the displacement of the particle at two time-points separated by a 

time-step δt that ranges from the minimal time-step in experiment to 3/4
th

 of the length of the 

trajectory.   

Deff was calculated by fitting the average MSD profile (as a whole or its linear portion, based 

on user input) to the anomalous diffusion model as follows: 

< 𝑟2 > = 2𝑛𝐷𝑡𝛼                    (Equation 2.4) 

Here, n is the number of dimensions (n = 1 for AMTraK; n = 2 for FluoreT and DICOT), t is 

the time-step and α is the anomaly parameter that indicates the nature of diffusion. The 

motion is said to be purely diffusive if α = 1, sub-diffusive or ‘restricted’ when α < 1 and 

super-diffusive or ‘transported-like’ when α > 1.  

 

2.9.2. Perrin’s method 

It applies to particles undergoing pure Brownian motion with equal probability of being 

displaced in the X and Y directions. In order to calculate the Deff by Perrin’s method (Perrin, 

1910), ∆x and ∆y values are calculated from the Cartesian coordinates (x,y) of particle 

trajectories. 

∆x = x (t) – x (t + δt);        (Equation 2.5) 

∆y = y (t) – y (t + δt) 

Here, δt is the time-step. A Gaussian fit to the distribution yields the mean (μ) and standard 

deviation (σ). For a purely diffusive particle, μ of the distribution of ∆x and ∆y values would 

be 0. The diffusion coefficient is calculated separately for X and Y directions using the 

following expression: 

Dx = 
𝜎𝑥

2

2𝛿𝑡
          (Equation 2.6) 

Dy = 
𝜎𝑦

2

2𝛿𝑡
  

The Deff is then given by the average of Dx and Dy values. 
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2.10. Stokes-Einstein’s equation for estimation of viscosity 

Viscosity of the solvent (s) was estimated from the effective diffusion coefficient (D) and 

radius (r) of suspended spherical particles using the Stokes-Einstein’s equation: 

𝜂𝑠 =  
𝑘𝐵𝑇 

6𝜋𝑟𝐷
         (Equation 2.7) 
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Chapter 3 

Automated Multi-Peak Tracking Kymography 

(AMTraK): A Tool to Quantify Subcellular 

Dynamics with Sub-Pixel Accuracy 

Overview 

Kymographs are widely used in cell biology to reduce the dimensions of a time-series in 

microscopy for both qualitative and quantitative insight into spatiotemporal dynamics. While 

multiple tools for image kymography have been described before, quantification remains 

largely manual. In this chapter, I describe a novel software tool for automated multi-peak 

tracking kymography (AMTraK), which uses peak information and distance minimization to 

track and automatically quantify kymographs, integrated in an intuitive graphical interface. 

The tool provides an objective and automated method for reproducible analysis of 

kymographs from in vitro and in vivo fluorescence microscopy time-series of subcellular 

dynamics. 

3.1. Introduction 

Kymographs, or space-time plots, have been extensively used to analyse subcellular 

microscopy time-lapse image data with improvements in microscopy. They have been used in 

the past to characterize organelle transport, cell division (Pereira and Maiato, 2010) and 

molecular motor motility, and the wide-range of applications could be the result of the 

reduced spatial dimensions of complex microscopy time-series. Most often however, 

kymography has been used as a qualitative readout of movement or dynamics. In studies 

where kymographs have been quantified, this process has usually been manual, as seen in the 

Multi Kymograph plugin for ImageJ (Rietdorf and Seitz, 2008). The existing tools such as the 

automated kymography tool (Chetta and Shah, 2011) and ‘guided’ kymography (Pereira and 

Maiato, 2010) focus on automating the process of kymograph building. Few methods for the 

automated quantification of kymographs exist, such as ‘Kymomaker’ (Chiba et al., 2014) and 

a curvelet-based tool (Chenouard et al., 2010). Both these tools automate quantification, but 

cannot deal with merging and spitting events. Despite the ubiquitous nature of merging and 

splitting events in typical subcellular processes, none of the existing tools for the automated 

quantification of kymographs include a feature to handle budding and coalescence. 
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The reduced 1D analysis offered by kymography is found to be especially useful for 

the study of (i) bacterial DNA segregation, (ii) motor-driven filament transport, (iii) 

recruitment of proteins on membranes and (iv) vesicular transport in axons. Each of these 

scenarios is briefly reviewed in the following text. 

Genome segregation is conserved across cellular systems and has been extremely well 

studied in the rod-shaped Gram-negative bacterium Escherichia coli (Skarstad et al., 1985; 

Nordström and Dasgupta, 2006). However microscopic analysis of DNA segregation has 

only recently been made possible with improvements in microscopy and image-analysis 

(Nielsen et al., 2006; Spahn et al., 2014; Sliusarenko et al., 2011; Reyes-lamothe et al., 2010). 

Given the almost 1D geometry of segregation of the genome along the long axis of the cell, 

kymography is a convenient way to analyse the process of nucleoid DNA segregation. Recent 

studies using explicit 3D tracking over time have that found compaction waves are associated 

with E. coli genome segregation (Fisher et al., 2013). Based on a reduction in dimensions to 

1D over time, a quantitative kymograph-based analysis could be used to screen for changes 

and defects in segregation, without the need for more complex datasets and their analysis. 

The process of microtubule transport by molecular motors reconstituted in vitro, 

referred to as a `gliding assay’ has been extensively used to examine the fundamental nature 

of multi-molecular transport of actin and microtubule filaments by motors (Howard et al., 

1989; Nitzsche et al., 2010; Leduc et al., 2007; Toyoshima et al., 1987). Recent studies have 

also used ‘gliding assays’ to address microtubule mechanics based on the bending of 

filaments while undergoing transport (Martin, 2013). Kymography of cytoskeletal filaments 

in vivo has been used to follow actin contractility and microtubule buckling dynamics (Bicek 

et al., 2009). However in most cases the use of kymography has been limited to visualizing 

the time-series in a single-image, as a compact form of data representation. A general tool 

that could use this information to objectively extract the measures of motility would hence be 

of some use to these multiple applications. 

The assembly of proteins by ‘recruitment’ to structures is fundamental in multi-

protein complex formation. The assembly of vesicles by budding off membranes and their 

fusion is critical for cellular function. For the assembly of coated pits with clathrin for 

endocytosis, the site of assembly  (Ungewickell and Branton, 1981), sequence of binding 

events (Avinoam et al., 2015) and interactions of other proteins (Skruzny et al., 2015) is 

considered to be critical. Microscopy of in vitro reconstituted membrane bilayers has become 

a powerful tool to study the dynamics of protein assembly during vesicle formation (Pucadyil 

and Schmid, 2010; Neumann et al., 2013). Proteins such as epsin, which were reported to 
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accelerate clathrin recruitment (Kalthoff et al., 2002) have been examined using kymography 

of the fluorescently labelled clathrin and the effect of mutant epsins on the process tested 

(Holkar et al., 2015). While such an approach lends itself to high-content screening, the 

analysis of the kymograph has been manual. Many other such recruitment dynamics studies 

could benefit from an automated routine to quantify the kinetics of assembly through 

intensity measurements coupled to kymography. 

Neuronal vesicles are transported in axons by the action of molecular motors. 

Microscopy of in vitro reconstituted (Allan and Vale, 1991) and the in vivo transport in 

cultured cells (Welzel et al., 2011; Hill et al., 2004) has provided insights into both the 

components and forces regulating transport. Recent technical developments have allowed 

whole animal in vivo microscopy of subcellular vesicle movements in neurons (Mondal et al., 

2011). In this and comparable studies, quantitative statistics have been obtained using manual 

detection of kymographs. This is possibly due to the complex nature of the time-series with 

cross-overs and the crowded in vivo environment. An approach that uses objective criteria 

and automates the process of quantification could provide valuable improvements to our 

understanding of fundamental nature of vesicle transport as well as aid in the process of 

modeling vesicle transport. 

Here, we have developed a novel tool to automatically quantify kymographs from 

fluorescence image time-series. We proceed to demonstrate the utility of the automated 

multi-peak tracking kymography (AMTraK) tool by quantifying dynamics from diverse 

subcellular fluorescence microscopy data sets. These include bacterial genome-segregation, 

microtubule (MT) motility of 1D filaments and 2D radial asters, membrane protein assembly 

dynamics and vesicle transport in axons. 

 

3.2. Materials and methods 

3.2.1. Simulated test images of bead diffusion in 1D 

Simulated images of static beads were generated as described in Chapter 2, Section 2.3. To 

simulate bead motion, a simple 1D random-walk was implemented. The initial position of 

every bead (x0) was incremented in each frame as follows: 

xt = x0 + vt          (Equation 3.1) 

Here, v is the speed assigned to the beads and xt is the position of the bead after time t. For 

each time-series, the speed was varied and drawn from a normal distribution with a fixed 

mean m = 0 and standard deviation (s).  
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3.2.2. Microscopy of segregating nucleoids and kinesin-MT gliding assay 

The dynamics of bacterial nucleoid segregation (experiment and microscopy performed by 

Manasi Gangan) were imaged using an inverted Zeiss LSM780 confocal microscope (Carl 

Zeiss, Germany) at 63x magnification. E. coli cells expressing plasmid-based HupA-GFP 

were grown on LB agar-pads at 37°C. The microtubule gliding assay (experiment and 

microscopy performed by Kunalika Jain) involved flowing in a mixture of TRITC-labelled 

and unlabelled tubulin that were previously taxol-stabilized, onto a cleaned glass slide with 

human kinesin (Cytoskeleton Inc., USA) following standard methods and imaged on a Zeiss 

Axiovert Z1 upright epifluorescence microscope at 40x magnification. Both experimental 

methods are described in greater detail in our publication (Chaphalkar et al., 2016). 

 

3.2.3. Image pre-processing  

Images of MT-gliding assays were de-noised using a 3 x 3 median filter in ImageJ. Images of 

bacterial nucleoid segregation were corrected for drift using the rigid body transformation in 

the StackReg plugin (Thévenaz et al., 1998) in ImageJ. The vesicle transport image time-

series in C. elegans taken from supplementary material (movie S1) of Mondal et al., 2011 

was converted from WMV to uncompressed TIF time-series using an online converter 

(https://video.online-convert.com) and ImageJ (Schneider et al., 2012). In the absence of a 

scale bar for this movie, the pixel size was calculated by first measuring the width of the axon 

of a posterior lateral touch neuron (PLM) from figure 1F in the same report. Using this value 

of axon width for calibration, the pixel size was determined to be 0.11 μm. Pixel sizes were 

provided by authors for the other published datasets (Holkar et al., 2015; Foster et al., 2015) 

analysed in this study. Signal to noise ratio of simulated images was calculated as described 

in Chapter 2. 

 

3.2.4. Manual analysis of kymographs 

For manual analysis, kymographs of MT-gliding made by AMTraK were processed using a 

custom script written in MATLAB (MathWorks Inc., USA). Lines were interactively drawn 

on each kymograph along the edges of the motion ‘track’ of a microtubule, using the getline 

function built in MATLAB. Position coordinates (x,y) were extracted over time from the 

drawn lines to calculate speed. 

 

3.2.5. AMTraK implementation specifics 

https://video.online-convert.com/
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The automated multi-peak tracking kymography (AMTraK) code was implemented in 

MATLAB R2014b (MathWorks Inc., USA) in combination with the Image Processing 

(version 7.0) and Statistics (version 7.3) Toolboxes and tested on Linux, Mac OSX and 

Windows 10 platforms. The processing time taken by AMTraK varies in the range of a few 

seconds to a few minutes depending on the size of the input time-series and the number of 

tracks identified.  

 

3.2.6. Data analysis 

Data output from AMTraK was analysed for calculation of (a) displacement, (b) speed, (c) 

tortuosity, (d) MSD-based effective diffusion coefficient and (e) intensity-based time 

constant of assembly. All data analysis and plotting was performed using MATLAB 2014b 

and 2016a (MathWorks Inc., USA). Fitting of custom functions was performed using either 

the Levenberg-Marquardt non-linear least square routine or the trust-region method, 

implemented in the Curve-Fitting toolbox (version 3.5 and above) of MATLAB. The 

intensity kinetics plots (shown in Figure 3.8C, D) were fit to a single-phase exponential 

function,  to obtain the time constant of assembly τ = 1/c. MSD-

based effective diffusion coefficient in 1D was determined as described in Chapter 2, Section 

2.9.1.  

 

3.3. Algorithm and workflow 

The automated multi-peak tracking kymography (AMTraK) is open source software based on 

an algorithm that combines peak detection and distance minimization based linking to 

quantify dynamics of fluorescence image time-series. The source code has can be accessed 

from: http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/Amtrak.html. 

The program has a graphical user interface (GUI) front-end and is accompanied by a detailed 

help file. The algorithmic workflow (Figure 3.1) is divided broadly into three steps: 

(a) Making the kymograph 

(b) Peak detection and tracking  

(c) Statistics  

These steps in the workflow are reflected in the graphical user interface (GUI) layout (Figure 

3.2).  

 

  

y = a+ (b - a)× (1-e-c×t )

http://www.iiserpune.ac.in/~cathale/SupplementaryMaterial/Amtrak.html
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Figure 3.1. Algorithm workflow. The workflow of the algorithm involves three steps (1) kymograph 

generation, (2) peak detection and tracking and (3) quantification and the functions invoked by each 

part are elaborated.  

 

The functioning of each of these steps is briefly described as follows: 

 

(a) Making the kymograph:  

The user chooses an input image time-series with the ‘Open File’ button. Image time-series 

are assumed to be uncompressed, multi-page TIF files (independent of bit depth). The user 

can choose to process either the whole or a subset of frames using the ‘Frame nos.’ text box. 

For example entering ‘2:2:8’ will now result in only frames 2, 4, 6 and 8 being processed for 

further analysis. The text box ‘Save as sub-folder’ takes a number input (default ‘1’) 

indicating where the outputs will be stored (e.g.: ‘./amtrak-1’). The drop-down menu ‘Apply 

LOI’ allows the user to either choose a line of interest (LOI) using the mouse (‘Interactive’) 

or apply a pre-existing LOI on a different channel (color) of the image time-series (‘From 

file’). Once an interactively drawn LOI is selected, it is stored in the output sub-folder as 

‘LOIselection.txt’ (Table 1). This LOI can subsequently be applied, to another channel or the 

same region of another dataset (e.g.: microfluidics channels) using the ‘From file’ mode. For 

this, the user is required to load a separate TIF time-series using ‘Open File’ and change the 

sub-folder number in order to prevent overwriting old data. The ‘LOI width (pixels)’ allows a 

user to choose the width of the LOI, to compensate for occasional drift of the object, in a 

direction orthogonal to the LOI orientation. The choice widths- 1, 3 and 5 pixels- is centered 

around the selected LOI pixels, similar to that implemented in the ImageJ Multi Kymograph 

plugin (Rietdorf and Seitz, 2008). The drop-down menu ‘Units’ allows the user to select 

distance and time units, and the text boxes ‘Pixel size’ and ‘Time interval’ are used to 

provide conversion factors per pixel and frame respectively. This results in scaling the pixels 
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and frame numbers to physical units. The button ‘Make Kymograph’ produces a maximum 

intensity projection image of the input time-series, if the user had chosen the ‘Interactive’ 

mode (default) in the ‘Apply LOI’ menu. The user is required to select the line of interest by 

drag-clicking the mouse. Double-clicking or pressing the ‘Enter’ key on the keyboard ends 

the selection and throws a dialog box, which prompts the user to choose to either select more 

LOIs or continue with the processing of the one already selected. This generates file one or 

more ‘LOIselection.txt’ files in the sub-folders. If the ‘From file’ mode was selected, the 

program allows the user to select a pre-existing ‘LOIselection.txt’ from the directory 

structure. The program then generates kymographs based on these LOIs and stores the 

matrices corresponding to the LOIs in sub-folders numbered according to the sequence of 

LOI selection (e.g.: ‘/amtrak-1/’, ‘/amtrak-2/’ etc.). 
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Figure 3.2. AMTraK user-interface. The GUI is organized to reflect the three workflow steps to 

generate and process a kymograph and display track statistics. 

 

(b) Peak detection and tracking:  

Detecting peaks: The button ‘Subfolder’ allows the user to choose the kymographs to be 

processed using ‘Add’, which adds the subfolders created earlier to the active list. Using this 

feature, a user can either process a single kymograph at a time, or process multiple 

kymographs using the same parameters. Based on the user’s choice, the kymograph is either 

auto-segmented row-wise using Otsu’s method (Otsu, 1979) (briefly described in Chapter 2, 

Section 2.5) or segmented with a manual input of ‘Intensity threshold’ that is a fraction in the 

range 0-1. The resulting binary image is processed for ‘Peak detection’. The user can choose 

between three alternative methods: (i) findpeaks (Brookes, Mike (Department of Electrical & 

Electronic Engineering, Imperial College, Exhibition Road, London, 2005) (default) and (ii) 

watershed (Meyer, 1994) to find central peaks, while (iii) Canny edge detection (Canny, 

1986) is useful if the edge information is the most reliable descriptor of the dynamics. The 

findpeaks method makes use of the derivatives of a list of numbers to identify the position of 

‘rises’ in them.  In case of a plateau-like rise, findpeaks chooses the centre of the plateau as 

the peak. Typically findpeaks and watershed are ideal for spherical objects. Peak detection 

outputs an image of the kymograph with the peaks overlaid in color. 

 

Linking: The list of peaks P(t) for each time point t is linked resulting in tracks, based on user 

input parameters of ‘Search radius’ (λ1) and ‘Min. track length’ (λ2). Peaks are linked if the 

minimal pair-wise distance dj(t, t+τ)  between every j
th

 peak in successive rows (t, t+τ) 

satisfies the condition min(dj (t, t+τ)) ≤ λ1, iteratively for the j
th

 peak in every subsequent time 

step (t + τ). If two or more peaks are equidistant, we implement linear approximation where 

the peak that makes the largest angle (0 to ) with the existing track is chosen. For the peaks 

in t = 1, the angle criterion does not hold true and equidistant peaks are resolved by user-

input. The peaks that did not form a part of any track were treated as start-points of new 

tracks. Tracks are eliminated from further analysis if their number of peaks linked len(P) ≤ λ2, 

to avoid artifacts due to very short tracks.  

 

Remove redundant: If the checkbox ‘Remove redundant tracks’ is selected, each i
th

 track with 

ηi coordinates, is tested for intersections using the inbuilt intersect function. If the number of 
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common coordinates (ηc) satisfies the condition ηc ≥ (ηi /3), it is eliminated as a redundant 

track.  

 

Splitting and joining tracks: If the checkbox ‘Splitting events: Link tracks’ is selected, events 

where two tracks merge are identified by a two-step process. First, all endpoints of tracks 

(I(x,t)) are evaluated for the condition:   

)()(),( 21   x

e

t

e dANDdtxI      (Equation 3.2)  

Here, de
t
 is the distance on the time-axis (t) and de

x
 is the distance on the spatial (x) axis. 

Then, a peak (Jm) with the minimal (Euclidean) distance to the end-point is selected to link 

the two tracks. The time and distance thresholds are set by the user in the text box for ω1 

(frames) and ω2 (pixels) respectively.  

Invoking the button ‘Make tracks’ links the peaks based on the input parameters, while the 

button ‘Quantify’ produces text files corresponding to each track (Table 3.1). 

 

(c) Statistics:  

This section of the code produces both text-file outputs and plots of the dynamics estimated 

from the kymograph. The user may choose to display statistics of ‘All’ tracks or a specific 

‘Individual’ track picked from the drop-down menu. Similarly, the flexible display allows the 

user choose between ‘Average’ and ‘Instantaneous’ values of motility parameters. In case of 

the former, the frequency distribution of Distance, Time, Speed and Tortuosity (i.e. 

directionality) are plotted if the button ‘Plot’ corresponding to these variables is pressed. 

Additionally, the mean (μ) and standard deviation (σ) of these variables are also generated in 

the text boxes. Pressing the ‘Track Intensity’ button plots the normalized (0-1) grey value 

intensity of each track as a function of the time. The button ‘Track orientation’ triggers a 

recoloring the tracks in the kymograph based on the net direction of movement along the X-

axis- blue (negative, left), red (positive, right) and green (stationary, neutral). The number of 

tracks following respective directions is displayed in the text boxes adjacent to the button.  

Mean square displacement analysis of all detected tracks is performed on pressing the ‘MSD’ 

button. A window with the plot of the average MSD against increasing time-step is displayed. 

Ticking the ‘Fit MSD’ option a priori helps the user to extract the value of the average one-

dimensional diffusion coefficient by fitting the entire or a fraction of the average MSD curve 

to the anomalous diffusion equation (See Chapter 2, Section 2.9.1).  
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Outputs of the analysis are stored in multiple tab-delimited text files to enable reproducible 

analysis and are summarized in Table 3.1. 
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Table 3.1. Description of output files generated by AMTraK 

Function Sr. No. Output file Description 

Make Kymograph 1 OutputKymo.txt The kymograph matrix 

  2 OutputKymo.tif The kymograph image 

  3 LOIselection.txt (x,y) Coordinates of Line of Interest 

  4 LOIselection.tif LOI overlaid on projected image-stack 

        

Detect Peaks 5 Peaks.tif Peaks overlaid on the kymograph 

  6 Brightcoords.txt (x,y) Coordinates of peaks detected in the 

kymograph 

        

Make Tracks 7 PlotContour.tif Tracks overlaid on the kymograph 

  8 Tracklist.txt (x,y) Coordinates  and intensity of tracks 

detected in the kymograph 

  9 Branchpoints.txt Intersecting tracks and their branch points 

        

Quantify 10 OutputStats.txt Summary of particle movement statistics 

  11 USER_InstStats.txt Instantaneous (stepwise) statistics of each 

track 

  12 USER_TrackStats.txt Averaged statistics of each track 

        

Track Orientation 13 Track_Orientation.txt Directions indicated against track numbers 

  14 Track_Orientation.tif Colour-coded tracks overlaid on kymograph, 

red=right, blue=left, green= neutral 

        

Track Intensity 15 Track_Intensity.tif Intensity profiles of each track 

        

MSD 16 MSD_vs_Time.tif Mean square displacement profiles 

 17 AvgMSD_vs_Time.tif Average MSD curve with fit 

 18 ID_Time_MSD.txt Trackwise MSD  

    

Save Parameters 19 All_Parameters.txt Record of kymograph making and processing 

parameters 

 

3.4. Results 

3.4.1. Accuracy of detection 

To test the positional detection accuracy of the algorithm, we created simulated image time-

series of linearly aligned, equidistant, circular objects that represent typical fluorescence 

images of objects (Figure 3.3A, Figure 2.1A) comparable to subcellular structures.   
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Figure 3.3. Estimating positional accuracy. (A) A single frame of a 2D image time-series of static 

spheres (with a peak intensity of 1) with Poisson and Gaussian noise (Signal to noise ratio 3.55) is 

analysed using AMTraK (B) resulting in a kymograph. (C) The mean error of detection in pixel units 

(<∆x>) is plotted as a function of the signal to noise ratio (SNR) for the findpeaks (blue) and 

watershed (black) methods.  

 

Since the time-series consists of the same image, the objects are static and the expected 

kymograph would show straight lines that do not deviate in their path. However, addition of 

complex noise, a combination of Poisson and Gaussian noise (described in Chapter 2, Section 

2.3), results in intensity variations as seen in the kymograph (Figure 3.3 B). The difference 

between the position of the detected tracks ( xD ) and the simulated position ( xS ) is used as 

an estimate of the limit of accuracy in position detection: 

∆x =| xS- xD|         (Equation 3.3) 

Increasing levels of noise were added to the time-series and the mean error in position 

detection was estimated. The SNR was calculated as described in Section 2.4. The mean error 

(<∆x>) was found to be less than 1 pixel using both, the findpeaks and the watershed method 

(Figure 3.3C) in the given range of SNRs. In low SNR (3.56) conditions (Cheezum et al., 

2001), findpeaks performed best and resulted in tracks of equal and unaltered lengths.  

 

To test if motility affects the positional accuracy, we also evaluated the positional accuracy of 

particles undergoing a random walk (described in the Materials and Methods section) with a 
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fixed image noise (SNR 5.1). By increasing the SD of the random walk we estimated the 

effect of increasing velocity on ∆x (Figure 3.4A). The error of positional detection (<∆x>) 

using the findpeaks and watershed methods, as before, was found to be less than 1 pixel for 

the chosen range of velocities of the random walk (Figure 3.4B).  

 

 

Figure 3.4. Positional accuracy of tracking simulated motility. (A) Kymographs of time-series of 

spheres undergoing a 1D random walk SNR 5.1 were tracked. The colors indicate the detected tracks. 

(B) The arithmetic mean of error in position detection (Δx) from findpeaks (blue) and watershed 

methods (black) over 3 iterations of the time-series is plotted for increasing velocity of the random-

walk as inferred from the standard deviation (SD).  

 

Tracking errors accumulate at higher velocities, suggesting that image noise is the major 

limiting factor for the positional accuracy of detection, independent of particle motility. Thus, 

while AMTraK analysis can result in sub-pixel accuracy of position detection, it is essential 

that the input data have low-noise. We proceeded to test our method on the multiple 

experimental datasets to examine the utility of this program involving bacterial DNA 

segregation, microtubule motility, vesicle assembly and transport dynamics. 

 

3.4.2. Detecting splitting events in bacterial DNA-segregation 

A time-series of growing E. coli is acquired in fluorescence and DIC to follow the nucleoid 

segregation dynamics of HupA-GFP labeled DNA (Figure 3.5A). Using the maximum 

intensity projection produced from AMTraK, the LOIs are chosen (Figure 3.5B) and used to 

generate and analyze two kymographs (Figure 3.5C, D). The segregation of the genome is 

captured by the branched structures of the tracks marked in the kymographs.  
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Figure 3.5. Nucleoid segregation dynamics of E. coli. (A) Image time-series of E. coli MG1655 

grown on agar pads and imaged in DIC (left) and fluorescence based on HupA-GFP (right) are 

analyzed using AMTraK. (B) AMTraK generates a maximum intensity projection on the basis of 

which user-selected lines of interest (red lines) are used by the program to generate kymographs. The 

kymographs based on (C) LOI 1 (k1) and (D) LOI 2 (k2) were tracked resulting in branched tracks 

(colored lines). (E) The instantaneous velocities of nucleoids 1 and 2 (n1, n2) from kymographs 1 (k1) 

and 2 (k2) are plotted as a function of time (colors indicate nucleoids n1, n2 each from the 

kymographs k1, k2). (F) Mean velocities are estimated using both the arithmetic mean (±s.d.) and vex, 

the mean of the exponential decay ( y = e-1/vex ) that was fit (red line) to the frequency distribution of 

instantaneous velocity (bars). Scale bar 4 µm. 
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Additionally we can evaluate both the instantaneous velocity for time-dependence (Figure 

3.5E) and average statistics (Figure 3.5F). The mean nucleoid transport velocity is 

0.103±0.12 µm/min (arithmetic mean ± SD). Based on the form of the frequency distribution 

of instantaneous velocities, we also fit an exponential decay function to obtain the 

exponential mean velocity vex = 0.104 µm/min. These values of nucleoid movement speed 

from E. coli MG1655 (wild-type) cells are comparable to a previous report in which 

nucleoids were tracked in 3D over time (Fisher et al., 2013). While nucleoids form a 

diffraction-limited spot in microscopy images, un-branched cytoskeletal filaments form 

typical 1D structures and dynamics of transport on them and of the filaments themselves, are 

ideally suited for kymography.  

 

3.4.3. Microtubule transport: filament edges, centers and time-dependence of velocity 

The transport of microtubule (MT) filaments by surface-immobilized molecular motors in the 

presence of ATP and buffers is referred to in the literature as a ‘gliding assay’ or ‘collective 

transport assay’. Here, we analyze the gliding motility of MT on kinesin, as described in the 

methods section, using AMTraK. The analysis of a representative kymograph using either 

peak- (Figure 3.6A) or edge-detection (Figure 3.6B) successfully traces the centroids and 

edges respectively.  
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Figure 3.6. Microtubule (MT) gliding motility on kinesin motors. MTs gliding on kinesin (images 

acquired every 1 minute for 30 minutes) were analyzed using AMTraK by either detecting (A) the 

centerline (red) or (B) the two edges the filament, edge 1 (red) and 2 (cyan). Color bar: gray scale 

image intensity normalized by the maximal value for the bit-depth. (C, D) The velocity estimates 

from the centroid-based velocity estimates and the two edges and (E) the velocities estimated from 

each edge are correlated. (F) The frequency distribution of the instantaneous velocity estimates using 
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the centroid (blue) is compared to edge-based estimates. r
2
: goodness of fit, y/x: slope of the linear fit. 

Number of filaments analyzed, n=10. 

 

The mean velocity estimates for collective motor transport show variations between 

individual filaments. The centroid and edge velocity estimates of multiple MT filaments 

(n=10) are strongly correlated as evidenced by the straight line fit with slope ~ 1 (Figure 

3.6C, D), as expected. However, the linear correlation of edge-based velocities has a slope of 

~0.9 (Figure 3.6E), suggesting small deviations from the ideal slope, within the range of the 

average positional detection error (Figure 3.3C). While typical kymograph analysis of 

cytoskeletal transport averages the edge information (movement of the tips over time), 

correlating edge-velocities could potentially be used to estimate small alterations in the 

filament geometry such as bending and length change. The mean velocity of 0.5 µm/min 

obtained from our analysis of the assay (Figure 3.6F) is consistent with previous reports for 

the same construct (Cytoskeleton, 2005; Stewart et al., 1993). While the transport of 

effectively 1D MT filaments lends itself to kymography, we proceeded to investigate if 2D 

radial MT structures or asters can also be analyzed by kymography.  

 

3.4.4. Fusion of MT asters 

In recent experiments by Foster et al. (Foster et al., 2015) they examined the spontaneous 

contraction dynamics of  radial MT arrays or asters labeled with Alexa647-tagged tubulin, in 

Xenopus egg extracts. We have taken a time-series of such asters from published data (kindly 

shared by the author Peter J. Foster) and analyzed coalescence events using AMTraK (Figure 

3.7A) The projection of the time-series for selecting the LOI enables us to reduce the 

complex movements of such 2D structures to a 1D over time process. The movement of the 

smaller aster as it merges with the larger one is rapid. The fluorescence intensity following 

the merger fluctuates but does not increase, which we interpret to mean tubulin density at the 

center of the new aster does not increase (Figure 3.7B). 
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Figure 3.7. MT aster coalescence. (A) A time-series of MT asters undergoing fusion (time-series 

taken from previous work by Foster et al. (Foster et al., 2015)) was analysed using AMTraK. The grey 

scale bar indicates normalized fluorescence intensity of Alexa-647 labelled tubulin. (B) The relative 

intensity over time of the two coalescing asters is plotted. 

 

While the coalescence appears not to result in a compaction of the aster, it demonstrates the 

utility of the code for 2D MT array transport. On the other hand, intensity measurements are 

expected to change during processes such as molecular ‘recruitment’ of subcellular 

structures, so we proceed to test the tool on this process, which had previously been studied 

using manual kymography. 

 

3.4.5. Kinetics of clathrin assembly during in vitro vesicle formation 

We proceed to quantify the assembly kinetics of clathrin on membranes from an in vitro 

reconstitution assay of clathrin assembly on vesicle precursors reported previously by Holkar 

et al. (Holkar et al., 2015). This process has been analyzed using kymography due to its 

effectively 1D spatial extent and the multiple simultaneous events of assembly. The 

published time-series of fluorescently labeled clathrin assembly kinetics in the presence of 

wild-type epsin (supplementary movie 3 in (Holkar et al., 2015)) and L6W mutant epsin 

(supplementary movie 5 in  (Holkar et al., 2015)) in the form of 16 bit TIF images were 

provided by the authors (Sachin Holkar, personal communication). AMTraK was used to 

analyse this data without any pre-processing, resulting in tracked kymographs of assembly 

kinetics with wild-type (Figure 3.8A) and mutant epsin (Figure 3.8B).  
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Figure 3.8. Dynamics of clathrin assembly. (A, B) Microscopy time-series taken from Holkar et al. 

(Holkar et al., 2015) of fluorescently labeled clathrin assembly in the presence of (A) wild-type and 

(B) mutant epsin were analyzed using AMTraK. Colored lines in the kymographs indicate detected 

tracks. (C, D) The change in intensity as a function of time based on AMTraK detected tracks from 

(C) clathrin + w.t. epsin and (D) compared to clathrin + (L6W) mutant epsin. The intensity kinetics 

plots are fit to a single-phase exponential function,  to obtain the time 

constant of assembly τ = 1/c (red). R
2
: goodness of fit. (D) The mean values (error bar represents SD) 

  

y = a+ (b - a)× (1-e-c×t )
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of the time constant of assembly of clathrin (τ) in the presence of wild-type and mutant epsin are 

compared. 

 

The software outputs a text-file of grey-value intensities normalized by the bit-depth 

(maximum normalized, between 0-1) (Table 3.1), which when multiplied by the bit-depth of 

the input images, produced intensity profiles of clathrin assembly in grey-values with time in 

the presence of wild-type (Figure 3.8C) and mutant epsin (Figure 3.8D). These intensity 

profiles were fit to a single phase exponential function y = a+ b-a( ) × 1-e-c×t( ), where y is the 

intensity which increases with time t, and depends on three fit parameters, a, b and c, the 

same function as used by Holkar et al. (Holkar et al., 2015). A large proportion of the 

assembly events were successfully tracked and most showed saturation kinetics that were fit 

by curves with R
2 

> 0.7. While the parameters a and b are scaling factors, c determines the 

characteristic clathrin polymerization time, τ = 1/c. In our analysis the clathrin assembly time 

in presence of wild-type epsin is <τ> = 71.49 ± 44.09 s while with mutant epsin <τ> = 70.16  

±  29.89 s. In our estimate of the mutant assembly time is indistinguishable from wild-type, 

consistent with the previous report, which used manual quantification of the kymograph 

(Holkar et al., 2015). We proceed to examine if our tool, which appears to work successfully 

on in vitro data with low background noise, can also be used for the quantification of in vivo 

dynamics inside the crowded environment of an intact cell. 

 

3.4.6. Axonal vesicle transport: Characterizing directional switching 

Synaptic vesicles in Caenorhabditis elegans mechanoreceptor neurons labeled with GFP-

Rab3 have been recently studied by Mondal et al. in a whole-animal microfluidics device, 

providing retrograde and anterograde vesicle transport statistics (Mondal et al., 2011). Such 

in vivo data is complex, involves multiple crossovers and has many objects close to each 

other. AMTraK based analysis of the published data could detect up to 17 different tracks 

(Figure 3.9A). Vesicles that were not detected have typically low intensity or were out of 

focus and were not segmented. The spread of the distribution of instantaneous velocities (left-

ward: negative, anterograde; right-ward: positive, retrograde, non-motile: paused) shows that 

the GFP-Rab3 vesicles are equally likely to be anterograde and retrograde in their transport 

(Figure 3.9B).  
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Figure 3.9. Analysis of synaptic vesicle transport. (A) GFP-Rab3 tagged vesicles from posterior 

touch cell neurons in C. elegans (experimental data from taken from supporting movie S1 from 

(Mondal et al., 2011)) were analyzed using AMTraK. Colored lines with index numbers indicate 

tracks. (B) The frequency distribution of instantaneous velocities of the vesicles (n=1592) is plotted 

using AMTraK (mean: 0.49 𝜇m/s, SD 0.88). (C, D) The frequency distributions of non-zero velocities 

are fit with an exponential decay function y = A ×e-x/m (red line), where A: scaling factor and m: 

mean. (C) The mean anterograde velocity from the fit is 0.625 μm/s with arithmetic mean 0.77 ± 0.53 

µm/s (n = 425) and (D) the mean retrograde velocity from the fit is 0.714 µm/s with arithmetic mean 

0.854 ± 0.67 µm/s (n = 540). Arithmetic means are reported ± standard deviation (SD). R
2
 indicates 

the goodness of the fit. 

 

Based on the shape of the frequency distribution of the non-zero velocities in anterograde 

(Figure 3.9C) and retrograde (Figure 3.9D) directions, an exponential decay fit to the 

frequency distribution was used to estimate mean velocities (goodness of fit, R
2 

= 0.99). To 

enable comparison with the arithmetic means reported in literature (Mondal et al., 2011), we 

also estimate the average. The mean velocity from the exponential fits of anterograde 

transport is 0.625 µm/s (n = 425, arithmetic mean ± SD: 0.77 ± 0.53 µm/s) while the mean 
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retrograde velocity is 0.714 µm/s (n = 540, arithmetic mean ± SD: 0.854 ± 0.67 µm/s). In this 

case, both means are comparable since only non-zero values were the analyzed. Velocities in 

both directions are of comparable order of magnitude to the published values obtained by 

manual detection (Mondal et al., 2011), but ~1.5-fold lower, due to a (non-zero) threshold 

velocity used by the authors to define pauses (as personally communicated by the author, 

Sudip Mondal). This difference in values could also be attributed to the choice of tracks 

considered for manual and automated analysis. Thus, AMTraK can be reliably used to 

quantify transport and assembly dynamics from both in vitro and in vivo fluorescence 

microscopy data, as seen from the quantification, which is consistent with literature.  

 

3.5. Discussion 

In this report, we have described a novel tool for automatic quantification of kymographs 

from fluorescence microscopy time-series. Using simulations we have demonstrated sub-

pixel position detection accuracy of our proposed method, in conditions of low Poisson and 

Gaussian noise. The program quantifies position, motility, brightness intensity of 

fluorescence signal and fusion/splitting events. The utility of the code is tested on in vitro and 

in vivo fluorescence time-series ranging from in vitro assays of MT gliding assays with 

kinesin, coalescence dynamics of MT-asters, clathrin assembly kinetics on lipid tethers to in 

vivo axonal synaptic vesicle transport. The measures of average transport and kinetics of 

these diverse data types are consistent with published data and provide opportunities for 

improved statistics of individual events from a dynamic time-series, which were not as easily 

accessible with current methods. 

Manual quantification of kymographs (Rietdorf and Seitz, 2008) depends typically on 

reliable edge detection. As a result, quantification varies between individuals and requires 

prior information or experience (Welzel et al., 2009). Yet, manual kymography is widely 

reported in cell-biological literature for the analysis of dynamic processes, possibly due to the 

heterogeneity of the data types and the absence of a single standard method or even criterion, 

which to make the process less interactive. While developing AMTraK, we tested global 

(whole-image) methods of edge-segmentation (contour-, watershed- and gradient-based), but 

found them to be inadequate for the task. Possible reasons include the time-dependent 

brightness and contrast changes of the sample resulting from either bleaching or intrinsic 

dynamics. We find that for some applications such as vesicle transport and protein 

recruitment, the detecting and tracking peaks is ideal, while for microtubule gliding assays 

edge detection is better. As a result our code allows the user to choose amongst three 
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different methods of segmentation based on the nature of their data (a) peak detection by 

findpeaks and (b) watershed and (c) edge detection using the Canny edge detector.  

Typical problems in peak or edge detection arise when the data has poor signal to 

noise. This is also seen in our error analysis with increasing noise amplitude (Figure 3.3D). 

One solution is to background-subtract the image, which can be easily done in multiple tools. 

The occasional loss of some particles in a time-series such as synaptic vesicles (Figure 3.9A), 

despite being visible to the eye, results from a failure in detection or a `pruning’ step used to 

remove spurious and redundant tracks. Such pruning however was found to be necessary to 

ensure robustness of the code for handling multiple data types and is simple to troubleshoot 

due to the limited number of adjustable parameters. While intensity matching did not improve 

the percentage vesicles tracked, in future additional features like those used in pattern-

matching for tracking (Miura, 2005) could be used further improve the detection percentages. 

Our test with increasing (Poisson and Gaussian) random image noise (Figure 3.3) also 

suggests that increase of fluorescently tagged proteins (for instance due to expression level 

increases in vivo) could result in reduced spatial contrast. Such data would then be difficult to 

automatically quantify using AMTraK. The data would require pre-processing with 

something similar to an anisotropic diffusion filter (Perona and Malik, 1990) to preserve edge 

information but reduce non-specific signal. In future, multiple data pre-processing routines 

could be implemented in a separate module, to add to the functionality of the program. 

Our quantification of the frequency distribution of synaptic vesicle transport in 

anterograde and retrograde directions (Figure 3.9C, D) suggests the instantaneous velocities 

are exponentially distributed. While the arithmetic mean suffices for comparison with 

experimental reports (Mondal et al., 2011), the quantification of the precise nature of the 

distribution of velocities could be used as a test of theoretical models. Such a comparison has 

been made in previous work on synaptic vesicle precursor trafficking (Maeder et al., 2014). 

Such models are relevant for both neurophysiology as well as understanding of collective 

effects in molecular-motor driven vesicle transport in vivo (Bridgman, 1999; Hendricks et al., 

2010). 

The collective motor velocity of human kinesin driven gliding of MTs has been well 

characterized in previous work (Howard, 2001; Gibbons et al., 2001; Howard et al., 1989). 

Many of these studies have shown that the MT length and kinesin density do not affect the 

mean speed. However, the time-series of individual filaments show small time-dependent 

variations (Figure 3.6A, B), possibly a result of the local inhomogeneity of motor 

distributions. This information could be of some use when mixed-motor populations are used 
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(Ikuta et al., 2014). Recent studies of filament motility have used a filament-tracking 

approach based on a MATLAB program FIESTA (Ruhnow et al., 2011), with a positional 

accuracy of 30 nm. We find the distribution of time-averaged velocity of gliding calculated 

using AMTraK match closely the distribution obtained from analysis using FIESTA (Figure 

3.10). This suggests that while complex transport dynamics in 2D are indeed better analyzed 

using tracking tools, for those data sets that are amenable to kymography analysis, AMTraK 

results are comparable to those obtained from tracking tools with sub-pixel accuracy. 

 

 

Figure 3.10. Comparing kymography to filament tracking. The frequency distribution of 

instantaneous velocities obtained after analyzing time-series of MTs gliding on kinesin using 

AMTraK (red bars) and the high-precision filament-tracking tool, FIESTA (blue bars) are plotted. 

 

While the dynamics of multiple particles can be simultaneously quantified using 

AMTraK, the selection of LOIs remains manual. However, once an LOI has been selected, 

the program can also be used in the ‘From file’ mode to apply a pre-existing LOI to quantify 

kymographs in other channels (e.g.: bright field, fluorescence) and other fields of view with 

similar sample geometries. Potentially, LOIs could be generated independent of AMTraK 

too, provided they are compatible with the input format. Multiple bright-field and 

fluorescence correlative analysis tools for bacterial image analysis (Athale and Chaudhari, 

2011a; Sliusarenko et al., 2011; Guberman et al., 2008; Ducret et al., 2016) are examples in 

this case. More recent developments in image-analysis software to systematically extract data 

from microfluidics experiments automatically output channel information (Sachs et al., 

2016), which could also form the basis for the LOIs for multiple fields of view. These 

approaches could in future further increase the throughput our analysis tool.  
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Multiple software tools for kymography have been described in the recent past in 

literature and their features are summarized for comparison (Table 3.2, Figure 3.11). While 

most tools including this one, require user inputs for the process of kymograph generation, 

only AMTraK and Kymograph Direct (Mangeol et al., 2016) automates the detection and 

connection. However, certain features of AMTraK make it unique, being absent in other 

comparable tools, such as automated branch-point detection, an integrated quantification 

module and sub-pixel positional accuracy accessible with an easy to use GUI front-end. In 

addition, since the code is open source and written in MATLAB, it is more likely to be used 

in an existing microscopy analysis workflow, due to the increasing spread of MATLAB as a 

data analysis platform in quantitative cell-biology research (Shekhar et al., 2014; Howard, 

2014).  

 
Table 3.2. A comparison of features in kymography tools described in literature and commonly in use 

for cellular and subcellular scale images. 
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/ Tool 
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Tra

K 
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raph 

Makekym

ograph 
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graph 

Tracke

r 
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Kymo

graph 

Kymo

graph 
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and 

Kymograp
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selection 

Manu

al 

Manual Semi-

automated 

Manual Manual No Manual Manual 

Multiple 

LOIs 

Yes Yes Yes Yes Yes No No No 

Automate

d track 

detection 

Yes No No Semi-

automat

ed 

Yes Semi-

automat

ed 

No Yes 

Quantific

ation 

Yes Separat

e 

No Separat

e  

No XY-

coordin

ates 

No Separate 

No. of  

adjustabl

e 

parameter

s 

8 1 1 7 13 - - - 

Split and 

merge 

detection 

Auto

matic 

No No No No No No Manual 

Open 

source 

 Yes  Yes  Yes  Yes No  Yes  Yes Yes 

Program

ming 

language 

MAT

LAB 

ImageJ 

macro 

Java 

(ImageJ 

plugin) 

Plugin 

for Icy 

- Java 

(ImageJ 

plugin) 

Java 

(ImageJ 

plugin) 

ImageJ 

macro and 

LabView 

Referenc

e 

This 

report 

(Rietdo

rf, Jens 

(FMI 

(Hallman, 

2007) 

(Cheno
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al., 

(Chiba 
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2014) 

(Das et 

al., 

2012) 
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se et al., 

2012) 
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and 

Seitz, 

2008) 

2010)  

 

 

 

Figure 3.11. Automated track detection by other tools. Kymograph of axonal vesicle transport tracked 

by (A) AMTraK, (B) Kymomaker and (C) KymographDirect are shown. 

 

Thus, AMTraK could serve as a tool for the rapid quantification of image time-series 

of transport and assembly kinetics from microscopy. This has become particularly relevant in 

the context of high-content screening (Zanella et al., 2010), where the spatial interaction 

patterns are becoming just as important as bulk kinetics measured in traditional high 

throughput screens. 



56 
 

3.6. Conclusion 

We have developed AMTraK, an automated tool for the quantification of kymographs. Our 

approach detects peak and edge information and utilizes a distance minimization approach to 

link them. We demonstrate the wide utility of our tool by quantifying microtubule transport 

dynamics, clathrin polymerization kinetics and vesicle transport. Combined with a user-

friendly interface, objective detection criteria and open source code, we believe AMTraK can 

be used to extract more and reproducible statistics from microscopy of subcellular dynamics. 
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Chapter 4 

FluoreT: A platform for 2D fluorescence tracking 

with sub-pixel accuracy 

 

Overview 

In Chapter 3, we have described automated kymography as a powerful technique to analyse 

spatiotemporal dynamics of various seemingly 1D processes in cell biology.  To study the 

biophysical aspects of intracellular processes, it is useful to track morphology, motion and 

interaction of particles in multiple dimensions from time-lapse image data. In this chapter, I 

describe Fluorescence Tracker (FluoreT), an automated particle tracker in 2D, which 

performs intensity-based segmentation and nearest-neighbour based linking to track labelled 

particles and quantify parameters of their motility and length. The tool is integrated in an 

intuitive interface and provides an objective method for reproducible analysis of fluorescence 

microscopy time-series of subcellular dynamics. 

 

4.1. Introduction 

Time-lapse imaging is pivotal in understanding and observing the spatiotemporal 

dynamics of subcellular events that lay the foundation for higher order cellular processes 

such as determination of cell shape, locomotion, cell division, cell-cell adhesion and 

differentiation. Over the last two decades, the advent of a plethora of compatible 

fluorophores, high resolution microscopy and robust computer programs for quantitative 

analysis of data has popularized the use of fluorescence microscopy for in vitro as well as in 

vivo imaging.  While kymography proves to be a powerful method to qualitatively and 

quantitatively analyse fluorescence image-series, its scope seldom extends beyond classic 1D 

problems in biology (described in Chapter 3). For biophysical studies of intracellular 

processes, it is useful to track single particle morphology, motion and interaction in multiple 

dimensions from image data. The ‘particles’ in focus here could range from single molecules, 

clusters, cytoskeletal filaments, organelles to cells themselves. To this end, several algorithms 

for single particle tracking have been proposed for the efficient and objective quantification 

of motion of labelled biomolecules (Chenouard et al., 2014; Cheezum et al., 2001; Maska et 

al., 2014; Ulman et al., 2017; Jaqaman et al., 2008).  
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The process of microtubule transport by molecular motors reconstituted in vitro, referred 

to as a ‘gliding assay’ has been extensively used to examine the fundamental nature of multi-

molecular transport of actin and microtubule filaments by motors (Howard et al., 1989; 

Nitzsche et al., 2010; Leduc et al., 2007; Toyoshima et al., 1987). Recent studies have also 

used gliding assays to address microtubule mechanics based on the bending of filaments 

while undergoing transport (Martin, 2013). Multiple studies have used a filament tracking 

programme called FIESTA, that is reported to have ~9 nm accuracy of filament detection 

(Ruhnow et al., 2011) for quantifying transport of microtubules in gliding assays (Lüdecke et 

al., 2018; Grover et al., 2016; Jain et al., 2019). However, the tool displays some limitations. 

At high filament densities, it is found to not resolve filament crossovers accurately. It is seen 

to switch the plus-minus ends of MTs in data of high temporal resolution. We also find that it 

may underestimate the number of small filaments in the field of view. Hence, a custom-made 

tool that alleviates these problems could be of utility. 

In this chapter, we describe Fluorescence Tracker (FluoreT), an automated particle 

tracking software that performs centre-of-mass-based segmentation and distance-based 

linking to quantify object motion and length in 2D. We demonstrate the sub-pixel accuracy of 

the tool using simulated noisy images. We test the utility of FluoreT on experimental in vitro 

reconstitution data from kinesin-driven microtubule gliding assays and assess its performance 

in comparison to FIESTA.  

 

4.2. Materials and Methods 

4.2.1. Microscopy and image pre-processing 

The microtubule gliding assay experiment (courtesy, Kunalika Jain) is briefly described in 

(Chaphalkar et al., 2016) and in Chapter 3. The images were de-noised using a 3 x 3 median 

filter in ImageJ. 

 

4.2.2. Simulated test images 

Beads 

Simulated images of static beads were generated as described in Chapter 2, Materials and 

Methods. To simulate a time-series of diffusive bead motion, a simple 2D random-walk was 

implemented. Each bead was displaced in random orientations in the consecutive frames. The 

step-size of the bead was drawn from root mean square displacement values calculated based 

on the following equation: 
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<r
2
> = 4Dt         (Equation 4.1) 

Here, r
2
 is the mean square displacement, D is the fixed diffusion coefficient assigned to the 

beads and t is the time-step.  

To simulate a time-series of ballistic motion of beads, the initial position of beads (x0, y0) was 

incremented in each frame using the following equations: 

xt = x0 + vt * cos()        (Equation 4.2) 

yt = y0 + vt * sin()        (Equation 4.3) 

Here, v is the specific fixed speed assigned to the beads and (xt, yt) are position coordinates of 

beads after time t. 

 

Filaments 

Filaments (n = 10) were simulated in 8-bit images as randomly oriented, bright, rigid rods 

(intensity = 255) of variable lengths (10 to 90 pixels) on a black background (intensity = 0) 

using MATLAB (Mathworks Inc., USA).  To resemble the convolution effect of microscopy, 

the images were further filtered using a 5 x 5 disk filter and smoothed using a 3 x 3 averaging 

filter. These images were processed further in Fiji, where their contrast was enhanced by 

normalization and they were smoothed using a 3 x 3 filter. A representative filament is shown 

in Figure 4.5C, whose intensity profile along the width is shown in Figure 4.1.  

 

Figure 4.1. Intensity profile along the width of a simulated filament. 

 

4.2.3. FluoreT implementation specifics 

The FluoreT code was implemented in MATLAB R2014b (MathWorks Inc., USA) in 

combination with the Image Processing (version 7.0) and Statistics (version 7.3) toolboxes 

and was tested on Linux, Mac OSX and Windows 10 platforms. 



60 
 

4.3. Algorithm and Workflow 

The Fluorescence Tracker (FluoreT) is a program for 2D single particle tracking in 

fluorescence microscopy images. It involves intensity-based particle detection and distance 

minimization based linking to quantify dynamics of particle motion in image time-series. The 

program has a GUI front-end and is accompanied by a detailed user-guide. The algorithmic 

workflow (Figure 4.2) is divided broadly into two steps: 

(a) Particle detection and tracking  

(b) Statistics  

These steps in the workflow are reflected in the graphical user interface layout (Figure 4.3).  

 

 

Figure 4.2. Algorithm. The algorithm involves two steps (1) particle detection and tracking and (3) 

quantification to obtain statistics from the input data.  

 

The functioning of each of these steps is briefly described as follows: 

 

(a) Particle detection and tracking:  

The user chooses an input image time-series with the ‘Open File’ button. Image time-series 

are assumed to be uncompressed, 8 or 16-bit multi-page TIF files. The user can choose to 

process either the whole or a subset of frames using the ‘Frame nos.’ text box. For example 

entering ‘2:2:8’ will now result in only frames 2, 4, 6 and 8 being processed for further 
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analysis. The output will be stored in a subfolder named ‘fluoret-<name of input file>’ in the 

same directory as the image. In the segmentation step, particles of interest are distinguished 

from the background based on an intensity threshold. Choosing the ‘Automated’ option 

results in global thresholding of each image in the time-series by Otsu’s method (See Chapter 

2, Section 2.5). Alternatively, one may choose to input a ‘Manual threshold’ value of 

intensity, a fraction in the range 0-1. Particle detection is commenced on the click of the 

‘Locate particles’ button, the first output of which is a segmentation-preview window 

displaying the skeleton of the particle overlaid in red on the first time-frame of the original 

image-series. Depending on the segmentation accuracy observed in this window, the user 

may want to tweak the threshold value applied and restart the segmentation process. The 

skeleton and centroid information obtained from segmentation is used for measuring the 

length and for tracking the motion of particles.  

 

 
 

Figure 4.3. FluoreT interface. The GUI allows the user to provide input for segmentation and 

tracking in the ‘Tracking’ panel, while quantification is carried out in the ‘Statistics’ panel. 

 

Once particles are detected, the user needs to fill in parameters of tracking. The drop-

down menu ‘Units’ allows the user to select distance and time units, and the text boxes ‘Pixel 

size’ and ‘Time interval’ are used to provide conversion factors per pixel and per frame 
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respectively. This results in scaling the pixels and frame numbers to physical units. The list of 

centroids P(t) for each time frame t is linked resulting in trajectories, based on user input 

parameters of ‘Search radius’ (λ1). The core tracking function is adapted from (Athale et al., 

2014). Centroids (see Chapter 2) are linked if the pair-wise distance dj (t, t+τ) between every 

j
th

 centroid in successive frames (t, t+τ) satisfies the condition (dj (t, t+τ)) ≤ λ1 iteratively for 

the j
th

 centroid in every subsequent time frame (t + τ). The centroids that do not form a part of 

any trajectory are treated as start-points of new trajectories. Any trajectory with less than 3 

data-points len(P) ≤ 3 is eliminated from further analysis to avoid artifacts due to very short 

paths.  

 

The code produces both, text-file outputs and plots of the dynamics estimated from 

the tracking. The end of tracking is marked by the display of a plot of trajectories (blue) 

overlaid on the first image of the original time-series. Parameters used for particle detection 

and tracking are stored in a text file on using the ‘Save Parameters’ button. 

 

(b) Statistics:  

The ‘number of particles detected’ are displayed in the panel as soon as basic quantification 

is completed. The ‘Make and save movie’ button produces and saves the output of tracking as 

a multi-page TIF file in the same subfolder. The user may want to tweak the tracking ‘search 

radius’ and re-run the tracking if spurious trajectories are observed at this stage. Mean square 

displacement analysis (see Chapter 2) of all detected trajectories is performed on pressing the 

‘MSD’ button. A window with the plot of average MSD against increasing time-step is 

displayed. Ticking the ‘Fit MSD’ option a priori helps the user to extract the value of the 

average two-dimensional diffusion coefficient by fitting the entire or a fraction of the average 

MSD curve to the anomalous diffusion model (Equation 2.5, Chapter 2). Time-dependent 

dynamics of length of skeletons of detected particles can be visualized by clicking the 

‘Length dynamics’ button. 

A flexible display allows the user to choose between average statistics of ‘All’ trajectories or 

a specific ‘Individual’ trajectory picked from the drop-down menu. The mean (μ) and 

standard deviation (σ) of these variables are generated in the text boxes. Additionally, 

frequency distributions of Distance, Time, Speed and Tortuosity (i.e. directionality) and 

Length are plotted if the button ‘Plot’ corresponding to these variables is pressed.  

Outputs of the analysis are stored in multiple tab-delimited text files to enable reproducible 

analysis and are summarized in Table 3.1. 
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Table 3.1. Description of output files generated by FluoreT. 

Function Sr. No. Output file Description 

Locate particles 1 segmentation.tif Image of detected particles with skeletons 

overlaid in red. 

        

Track particles 2 trajectories.txt (x,y) Coordinates and lengths of tracked 

particles  

        

Make movie 3 trackingmovie.tif TIF movie of tracked particles where the 

current position is marked in blue, trajectory in 

red and particle ID is displayed in yellow 

 4 trajectoryplot.tif Trajectories (blue) overlaid on the first image 

  5 InstStats.txt Instantaneous (stepwise) statistics of each 

trajectory 

  6 StatsPerTrack.txt Averaged statistics of each trajectory 

        

MSD 7 MSD_vs_Time.tif Mean square displacement profiles 

  8 AvgMSD_vs_Time.tif Average MSD curve with fit 

  9 ID_Time_MSD.txt Track-wise MSD  

        

Length dynamics 10 Length_vs_Time.tif Time-dependent statistics of length of 

skeletons of tracked particles  

  11 elongrate.txt Elongation rates of particles 

    

Save Parameters 12 Parameters.txt Record of parameters of particle segmentation 

and tracking 

 

4.4. Results 

4.4.1.  Accuracy of position detection 

To test the accuracy of position detection of the algorithm, we created simulated images of 

randomly localized, circular objects that represent typical fluorescence images of objects 

(Figure 4.3A) comparable to subcellular structures in pixels (Chapter 2, Figure 2.1A). 

Complex noise was added to the image as described in Chapter 2. 

 

 



64 
 

 

Figure 4.4. Sub-pixel accuracy of position detection. (A) A static image showing simulated beads 

on a noisy background. Centroids (red dots) of the beads were detected by FluoreT. (B) The mean 

error of detection in pixel units (<∆x>) is plotted as a function of the signal to noise ratio (SNR). 

 

The Euclidean distance between the position of the detected centroids (xD, yD) and the 

simulated position (xS, yS) is used as an estimate of the accuracy in position detection.  

∆x = ((xD -xS)
2
 + (yD-yS)

2
)
1/2

       (Equation 4.1) 

Increasing levels of noise were added to the time-series and the mean error in position 

detection was estimated. The SNR was calculated as described in Section 2.3. The mean error 

(<∆x>) was found to be less than 1 pixel even at SNR below 4. During segmentation, optimal 

intensity thresholds for segmentation were chosen independently for each noise level, either 

automatically or manually. We find that in low SNR conditions, manually adjusted intensity 

thresholds improved segmentation as fewer false positives were observed with stringent 

manual thresholds.  

4.4.2. Accuracy of length detection 

In addition to particle position, FluoreT also measures particle length in an automated 

manner. In order to test the accuracy of the length estimation feature of FluoreT, we chose 

static images of 8 filaments of different lengths (Figure 4.5A) from an in vitro gliding assay 

in which microtubules were allowed to glide on immobilized kinesin motors. The lengths of 

these filaments were measured manually using ImageJ, independently by three individuals in 

the lab. The average length obtained from manual measurements (Lm) was treated as the 

‘actual length’ of the filament. We then allowed FluoreT to automatically measure the length 

of these filaments and compared the output (La) with the ‘actual’ length. The error is taken as 
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the difference in manual and algorithmic measurements (e = <Lm>- La). We find that the error 

in length detection is sub-micron and independent of filament length (Figure 4.5B).  

FluoreT’s length detection module was also validated with simulated data, since there is no 

‘actual’ length in experiments. Simulations provide a ‘true’ value for comparison. We 

simulated static images of rigid, rod-like filaments that were processed to mimic the effect of 

convolution in fluorescence microscopy (Figure 4.5C). The filaments were of varying lengths 

(10 pixels to 90 pixels). 

 

Figure 4.5. Accuracy of length detection. (A) Microscopically imaged microtubule filaments chosen 

for length measurement are shown. Their lengths were measured manually (nrepeats = 3) and using 

FluoreT. (B) The difference (error) in the average manual length (Lm) and algorithmically measured 

length (La) is plotted as a function of Lm. (C) The skeleton (red line) of a simulated filament detected 

by FluoreT is shown.  (D) The difference in the simulated length (Lsim) and algorithmically measured 

length (La) is plotted as a function of Lsim. Number of filaments simulated for each length slot, n = 10. 

In this case, the error in length detection was calculated as the difference between the 

simulated length (Lsim) and the length measured by the algorithm (La).  The results from 

simulation are consistent with what was observed in experimental filaments as the error in 

length showed no dependence on length of filaments. Also, the average error is equally 

distributed around 0, indicating that FluoreT has overestimated as well as underestimated the 
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lengths of some simulated filaments, as opposed to consistent underestimation observed in 

experimental filaments.  

4.4.3. Tracking diffusive and directional motion of simulated beads 

After testing the position and length detection accuracy, we proceeded to further test the 

ability of FluoreT to track particles that perform two different kinds of movement over time. 

Time-series of circular particles were simulated that perform diffusive (Figure 4.6A) and 

transported (Figure 4.6B) particle motion.  

 

 

Figure 4.6. Diffusive and transported motion analysed by FluoreT. Trajectories of simulated 

beads showing (A) diffusive motion and (B) transported-like motion are shown. (C) Average MSD 

profile (black solid lines) of diffusive beads from (A) was fit (red) to the anomalous diffusion model 

to obtain the effective diffusion coefficient. Shaded gray region indicates standard deviation.  Inset: 

The simulated diffusion coefficient and estimated diffusion coefficient were compared. (D) The 

average MSD profile (black solid line) of directional beads from (B) was fit (red dashed line) to the 

anomalous diffusion model. Inset: The simulated bead velocity was compared with the velocity 

measured by FluoreT. 
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We analysed the motility of these particles using FluoreT and compared motility parameters. 

The effective diffusion coefficient of randomly diffusing simulated particles was found to be 

comparable with the actual value of Deff used in the simulation, i.e. 1 pixel
2
/frame. We found 

the measured velocity of directional particles to be identical with the value used for 

simulation, i.e. 1 pixel/frame. 

 

4.4.4. Motility and length of motor-driven microtubules 

Having validated the ability of FluoreT to characterize diffusive and transported-like motion 

of simulated particles, the tool was tested on experimental data that comes from an in vitro 

gliding assay experiment. Kinesin motors are immobilized on the surface and TRITC-

labelled, taxol-stabilized microtubules of varying lengths (Figure 4.7A) are allowed to glide 

on them.   

 

Figure 4.7. Tracking kinesin-driven microtubules. (A) Still image from an in vitro gliding assay 

experiment showing taxol-stabilized microtubules moving on immobilized kinesin motors. Scale bar 

10 μm. (B) Filaments are segmented by FluoreT and their skeletons are marked in red. The filament 

marked in a small yellow box is magnified and shown as the inset. (C) Motion trajectories (blue lines) 
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of filament-centroids tracked by FluoreT are overlaid on the image. The numbers indicate filament 

IDs.   

FluoreT could effectively segment and skeletonize all the filaments in each image 

(Figure 4.7B) of the time-series (31 frames) using an automated threshold. The kinetics of 

movement was tracked only till the filaments remained within the image frame and away 

from the image borders. Centroids of filaments were detected and tracked by the tool, 

generating (x,y) trajectories (Figure 4.7C).  

The 2D position coordinates from trajectories were used to calculate the MSD of 

filaments over time (Figure 4.8A) based on equation 2.2 (see Chapter 2). Fitting the average 

MSD curve to the anomalous diffusion model (Equation 2.4) yielded an anomaly parameter α 

= 1.7, which clearly indicates the super-diffusive nature of filament movement as they are 

transported and driven by the action of motors bound to them.  

 

Figure 4.8. Motility and length dynamics of microtubules analysed by FluoreT. (A) MSD profiles 

of individual filaments tracked in Figure 4.7 are shown. (B) Filament speed measured by FluoreT is 

compared with measurements by other automated tools. FIESTA is a nanometer-precision 2D particle 

tracker and AMTraK (see Chapter 3) is an automated kymography tool. (C) Length dynamics of 
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taxol-stabilized filaments were analysed post tracking. (D) Distribution of microtubule lengths 

measured by FluoreT and FIESTA are compared.  

 

Motility parameters such as displacement, speed and tortuosity of filaments were estimated 

using the position coordinates obtained from tracking. We compared the speed estimates 

from FluoreT with those from 2 other image analysis tools, namely FIESTA (Ruhnow et al., 

2011) and AMTraK (Chaphalkar et al., 2016). While FIESTA is a 2D tracking program, 

AMTraK performs kymography in an automated manner with sub-pixel accuracy (described 

in Chapter 3). We find that for the given image data, the mean filament speeds estimated by 

all the three tools are comparable (Figure 4.8B). The number of filaments tracked using the 

three tools were varied, FluoreT-78, AMTraK-10, FIESTA-31. 

In addition to position and motility parameters, the length dynamics of filaments was tracked 

over time using FluoreT. As the filaments were taxol-stabilized, they showed minimal 

variation in length over time, as expected (Figure 4.8C). The length estimates of filament 

populations measured by FluoreT and FIESTA were compared and the average lengths were 

found to be similar (6.37 μm and 7.78 μm respectively) (Figure 4.8D). However, FIESTA 

appeared to underestimate the number of filaments in comparison to FluoreT (Figure 4.8D).  

4.5. Discussion 

We have developed FluoreT-- a MATLAB-based 2D particle tracking tool integrated in a 

GUI-- that detects and tracks labelled particles in fluorescence microscopy image time-series. 

The intensity-based detection of centre-of-mass of particles is followed by nearest-neighbour 

based linking to generate trajectories that describe the movement of particles over time. In 

addition to parameters of motility such as speed, directionality and MSD, FluoreT also 

follows the length dynamics of particles in fluorescence microscopy images.  

We test the position detection accuracy of FluoreT using simulated noisy images of 

circular particles and find the error to be sub-pixel even at SNR as low as 4. The accuracy of 

length detection was tested using experimental images of microtubules as well as simulated 

filaments. On comparing the measures of length obtained from FluoreT with manual 

measures, we find that the error in length detection is sub-micron and is independent of 

filament length (Figure 4.5B). It is important to note that the algorithmically determined 

lengths are slight underestimations as compared to mean manual lengths. However, this trend 

was not seen in length measurements of simulated filaments (Figure 4.5D). The 
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underestimation in experimental images could simply be the effect of a manual bias while 

measurement, as we have no information about the ‘true’ size of objects imaged in diffraction 

limited microscopy images. 

Although multiple automated tools are available for particle tracking in fluorescence 

microscopy data (Chenouard et al., 2014), FluoreT stands out as a user-friendly program that 

detects and traces particles over time with minimal adjustable parameters. FluoreT could 

effectively track diffusive and directional movement of simulated particles and was further 

tested on experimental data of labelled microtubule filaments gliding on kinesin in vitro. The 

super-diffusive motion of filaments was identified by confirmed by anomaly parameter 

greater than 1 (Figure 4.8A). The speed of movement and length of filaments was found to 

match with measures from FIESTA. However, we note that the number of filaments tracked 

by FIESTA were two fold lower than those tracked by FluoreT (Figure 4.8D) and FluoreT 

appeared to track all filaments in the field of view (Figure 4.7C).  

In future, FluoreT could be improved significantly in terms of segmentation accuracy 

by implementing Gaussian fitting or alternative segmentation algorithms (Ulman et al., 2017) 

and allow users to choose a suitable method for their dataset. Currently, FluoreT performs 

centroid-based tracking. As centroid-based tracking is sensitive to fluctuations in particle 

shape, FluoreT could be extended further to obtain tip information from particles with high 

aspect ratios such as filaments. This information would be useful especially in case of 

tracking length dynamics of filaments such as microtubules (without taxol stabilization) that 

grow and shrink over time and show different polymerization and depolymerisation kinetics 

at both ends. In order to resolve spatial overlaps and crossovers in filaments, ‘branch pruning’ 

(Athale and Chaudhari, 2011b) that relies on running angles of skeleton pixels, or ‘multi-

assignment’ algorithms designed for high density data (Kirubarajan et al., 2001) could be 

implemented. This would help to improve the accuracy of the tool in conditions of low SNR 

and high particle density.  

4.6. Conclusion 

Fluorescence Tracker (FluoreT), is a single particle tracking software developed for high 

throughput quantitation of object motion and length in 2D. The speed of kinesin motors 

associated with microtubules in an in vitro assay is estimated using the tool (0.29 μm/s) and 

is comparable to measures from other software. FluoreT is found to display sub-pixel 

accuracy of position detection and reproduces identical values of parameters of motion when 
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tested on simulated noisy data. The MATLAB-base and extensibility of FluoreT allows the 

scientific community to build on the code to enhance existing features of segmentation and 

tracking. The interface is very user-friendly with minimal number of tuneable input 

parameters to help users irrespective of their programming expertise to process image data 

using this platform.  
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Chapter 5 

Differential Interference Contrast Object Tracker 

(DICOT) for particle motility analysis in label-free 

images  

Overview 

In contrast with fluorescence microscopy, label-free imaging techniques such as Differential 

Interference Contrast (DIC) allow the observation of cells and large subcellular structures in 

their native, unperturbed states with minimal exposure to light. Owing to these advantages, 

there exists a demand for more and robust image-analysis routines that can automatically 

process DIC images in order to gain quantitative insight into cellular and subcellular 

processes. In the following chapter, I present DICOT, a novel program for comprehensive 2D 

tracking of objects in DIC images based on simple objective criteria for detection and linking. 

The tool is shown to reproducibly quantify in a high-throughput manner, the diffusive 

behavior of micron-sized beads and the rheology of solvents in which they are suspended. 

 

5.1. Introduction 

Several cells and tissues are transparent and colourless in nature and cannot be observed by 

plain light microscopy unless stained. The visualization of such tissues, cells and subcellular 

organelles necessitated innovations in light microscopy in the past. Since over two decades, 

the goal of observing cells and intracellular processes is routinely being achieved by labelling 

biomolecules with compatible fluorophores and subsequently imaging them under 

fluorescence microscopes. These fluorophores can either be genetically expressed within 

cells or be physically introduced into the system. However, the invasive nature of these 

methods may perturb cellular systems and alter their behaviour (Sarah Grah et al., 2017). In 

addition, the phototoxicity that results from prolonged exposure to high intensity beams of 

light in such experiments may affect the viability of the specimen being imaged (Dixit and 

Cyr, 2003).  

Label-free imaging techniques overcome these challenges by generating contrast using 

inherent features such as refractive index and density differences in a sample, without the use 
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of fluorophores. Traditional label-free techniques such as Differential Interference Contrast 

(DIC) and phase-contrast allow the observation of living cells and subcellular structures 

(Kasprowicz et al., 2017; Sarah Grah et al., 2017) with minimal exposure to light.  

 Although single particle tracking is a powerful technique commonly employed to 

analyse fluorescence microscopy images (see Chapter 4), specialized tools for particle 

tracking in label-free images are scarcely available. Furthermore, most of the available 

software tools are designed to analyse phase contrast images (Sliusarenko et al., 2011; 

Guberman et al., 2008) as segmentation of DIC images is more complex than that in phase 

contrast. This is because, in phase contrast images, objects appear uniformly dark (with a 

characteristic halo) over a relatively lighter background. However, the DIC image of an 

object is a combination of light and dark regions that gives a pseudo-3D effect. The object 

appears as if it were illuminated from a certain direction at an angle, casting a shadow on a 

part of itself. While particle detection algorithms developed for fluorescence images leverage 

the difference in intensities of the signal and background, the lack of such clear difference in 

intensities and the non-uniformity of illumination in DIC make segmentation in such images 

particularly challenging.  

 Current algorithms in the field of automated DIC segmentation and tracking range 

from to template-based methods (Piccinini et al., 2016) to machine-learning (Carpenter et al., 

2006). Here, we describe differential interference contrast object tracker (DICOT), a novel 

program that implements gradient detection (Athale and Chaudhari, 2011b) and adaptive 

thresholding (Bradley and Roth, 2007) to segment and extract position and size information 

of objects in DIC images. Trajectories that are generated by linking the position coordinates 

in time by nearest neighbour approximation, are used further to comprehensively quantify the 

spatiotemporal dynamics of objects.  

5.2. Materials and Methods 

5.2.1. Microscopy of diffusive beads 

Monodisperse polystyrene beads (NIST Traceable Particle Size Standards, Bangs 

Laboratories Inc, IN, USA) of radius 0.5 μm and dilution 1:100 (v/v) were used for diffusion 

experiments (experiments and microscopy was performed by Yash Jawale). Beads suspended 

in distilled water or 25% (v/v) glycerol (Glycerol 99% GC, Sigma-Aldrich Inc., USA) were 

flowed into a double-backed tape chamber (dimensions - 1 cm x 1 cm x 0.01 cm) made using 

a slide and coverslip. Time-lapse images were acquired every 0.5 s for 50 s in DIC mode with 
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a 40x (NA 0.6) CFI S Plan Flour ELWD lens and 60x (NA 0.7) Super Plan Fluor ELWD ADL 

lens and Andor Clara CCD camera mounted on a Nikon Eclipse Ti-E inverted microscope 

(Nikon Corp., Japan). The imaging was carried out at 25
0
C.  

 

5.2.2. Image pre-processing and segmentation 

DIC images of control beads were pre-processed to enhance contrast (with 0.3% saturated 

pixels) using Fiji (Schindelin et al., 2012). 

Segmentation: Two core alternative methods are employed by DICOT for segmentation of 

images after a customized background correction routine: 

Adaptive thresholding 

This method (Bradley and Roth, 2007) considers local variations in illumination and 

computes an integral image of the input image. The mean intensity (μi) of a fixed window of 

neighbouring pixels is calculated at each pixel position. That pixel is considered as 

background if its original intensity is less than t% of μi and foreground if the original intensity 

is less than μi. The factor t is dependent on image size. 

 

Gradient detection 

In order to segment objects in DIC images, a pixel-wise gradient is calculated in 

neighbouring pixels in X and Y directions. Each neighbouring pixel is an average of a 

window of pixels. The two gradient images are binarized using a threshold and combined and 

skeletonized to obtain object information (Athale and Chaudhari, 2011b). 

5.2.3. DICOT implementation specifics 

The DICOT code was implemented in MATLAB R2014b (MathWorks Inc., USA) in 

combination with the Image Processing (version 7.0) and Statistics (version 7.3) toolboxes 

and was tested on Linux, Mac OSX and Windows 10 platforms. 

5.2.4. Data analysis 

All data analysis and plotting was performed using MATLAB 2014b and 2016a (MathWorks 

Inc., USA). The effective diffusion coefficient of bead motility was calculated by MSD 

analysis and Perrin’s method (described in Chapter 2, Section 2.9). Viscosity of the solvent 

was estimated by Stokes-Einstein relation (Chapter 2, Section 2.10). Fitting of custom 
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functions was performed using either the Levenberg-Marquardt non-linear least square 

routine or the trust-region method, implemented in the Curve-Fitting toolbox (version 3.5 and 

above) of MATLAB. 

5.3. Algorithm and Workflow 

The differential interference contrast object tracker (DICOT) is an open source program 

based on an algorithm that combines segmentation of objects and distance minimization 

based linking to quantify dynamics of label-free DIC image time-series. The program has a 

GUI front-end and is accompanied by a detailed help file. The algorithmic workflow (Figure 

3.1) is divided broadly into three steps: 

(a) Object detection 

(b) Tracking  

(c) Statistics  

These steps in the workflow are reflected in the graphical user interface (GUI) layout (Figure 

3.2).  
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Figure 5.1. Algorithm. The workflow of the algorithm involves three steps (1) object detection, (2) 

tracking and (3) quantification to obtain statistics from the input image time-series.  

 

The functioning of each of these steps is briefly described as follows: 

 

(a) Object detection:  

The user chooses an input image time-series with the ‘Open File’ button. Image time-series 

are assumed to be uncompressed, 8 or 16-bit multi-page TIF files. The user can choose to 

process either the whole or a subset of frames using the ‘Frame nos.’ text box. For example 

entering ‘2:2:8’ will now result in only frames 2, 4, 6 and 8 being processed for further 

analysis. The output will be stored in a subfolder named ‘dicot-<name of input file>’ in the 

same directory as the image. The drop-down menu ‘Units’ allows the user to select distance 

and time units, and the text boxes ‘Pixel size’ and ‘Time interval’ are used to provide 

conversion factors per pixel and frame respectively. This results in scaling the pixels and 

frame numbers to physical units. Objects could be detected selectively by applying minimum 

and maximum size thresholds. Background subtraction is performed to aid accurate 

segmentation, for which a pseudo-background is created by filtering the test image itself. The 

size and SD of this ‘Gaussian filter’ can be specified in the adjacent boxes. We set size ‘11’ 

and SD ‘5’ as default values which may be varied by the user depending on the image data. 

Two alternative methods of object detection have been implemented in DICOT. The first 

method is a modified form of the ‘Gradient detection’ algorithm (Athale and Chaudhari, 

2011b) which marks the skeletons of objects by calculating the gradient in neighbouring pixel 

values in X and Y directions such that each neighbouring pixel is an average of ‘ng’ 

neighbours. The parameter ‘Gradient mask’ allows the user to set the value of ng to suit the 

current data. Alternatively, the ‘Adaptive thresholding’ method computes a local threshold 

based on mean or Gaussian-weighted mean intensity at each pixel and compares it with the 

intensity of the pixel. The size of the neighbourhood is determined from the ‘Adaptive mask’ 

parameter (na) and image size (K), such that the neighbourhood size is 2*K/na +1.  

Clicking the button ‘Locate’ commences the segmentation. 
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Figure 5.2. DICOT interface. The GUI allows the user to provide input in the ‘Parameters’ panel, 

which is processed to obtain statistics that are displayed in the ‘Operations and Display’ panel. 

 

(b) Tracking: 

Once objects are detected, the user needs to fill in parameters of tracking. The list of 

centroids P(t) for each time point t is linked resulting in tracks, based on user input 

parameters of ‘Search radius’ (λ1) and ‘Min. track length’ (λ2). Centroids (see Chapter 2) are 

linked if the minimal pair-wise distance dj (t, t+τ) between every j
th

 centroid in successive 

frames (t, t+τ) satisfies the condition min(dj (t, t+τ)) ≤ λ1 iteratively for the j
th

 centroid in 

every subsequent time frame (t + τ). The centroids that do not form a part of any trajectory 

are treated as start-points of new trajectories. Trajectories are eliminated from further analysis 

if their number of centroids linked len(P) ≤ λ2, to avoid artifacts due to very short tracks. If 

the checkbox ‘Remove redundant tracks’ is selected, each i
th

 track with ηi coordinates, is 

tested for intersections using the inbuilt intersect function. If the number of common 

coordinates (ηc) satisfies the condition ηc ≥ ηi/3, it is eliminated as a redundant track.  
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The code produces both text-file outputs and plots of the dynamics estimated from the 

tracking. The end of tracking is marked by the display of coloured trajectories overlaid on the 

first image of the original time-series. Parameters used for object detection and tracking are 

stored in a text file on using the ‘Save Parameters’ button.  

 

(b) Statistics:  

The ‘Make and save movie’ button produces and saves the output of tracking as a multi-page 

TIF file in the same subfolder. The user may want to tweak the tracking ‘search radius’ and 

re-run the tracking if spurious trajectories are observed at this stage. After satisfactory 

tracking, the ‘Quantify’ button is invoked to proceed with quantification. The ‘number of 

objects detected’ are displayed in the panel as soon as basic trajectory-wise quantification is 

completed. A flexible display allows the user to choose between average statistics of ‘All’ 

trajectories or a specific ‘Individual’ trajectory picked from the drop-down menu. The mean 

(μ) and standard deviation (σ) of these variables are generated in the text boxes. Additionally, 

frequency distributions of Distance, Time, Speed and Tortuosity (i.e. directionality) and 

Length are plotted if the button ‘Plot’ corresponding to these variables is pressed.  

Mean square displacement analysis of all detected trajectories is performed on pressing the 

‘MSD’ button. A window with plot of the average MSD against increasing time-step is 

displayed. Ticking the ‘Fit MSD’ option a priori helps the user to extract the value of the 

average two-dimensional diffusion coefficient by fitting the entire or a fraction of the average 

MSD curve to the anomalous diffusion model (Equation 2.5, Chapter 2). Time-dependent 

dynamics of length of skeletons of detected objects can be visualized by clicking the ‘Length 

dynamics’ button. While the segmentation module of the tool detects lengths for elongated 

objects (aspect ratio >1) (Athale and Chaudhari, 2011), the length of a circular object 

measured here is along a chord of the circle rather than its diameter. 

Outputs of the analysis are stored in multiple tab-delimited text files to enable reproducible 

analysis and are summarized in Table 3.1. 
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Table 3.1. Description of output files generated by DICOT. 

Function Sr. No. Output file Description 

Locate  1 segmentation.tif Image of detected objects with skeletons 

overlaid in red 

  2   untracked.txt  Frame-wise record of detected objects prior to 

tracking 

    

Track  3 trajectories.txt (x,y) Coordinates and lengths of tracked 

objects  

        

Make movie 4 trackingmovie.tif TIF movie of tracked objects where the current 

position is marked in blue, trajectory in red 

and particle ID is displayed in yellow 

 5 trajoverlaid.tif Trajectories (blue) overlaid on the first image 

    

 Quantify 6 InstStats.txt Instantaneous (stepwise) statistics of each 

trajectory 

  7 StatsPerTrack.txt Averaged statistics of each trajectory 

        

MSD 8 MSD_vs_Time.tif Mean square displacement profiles 

  9 AvgMSD_vs_Time.tif Average MSD curve with fit 

  10 ID_Time_MSD.txt Track-wise MSD  

        

Length dynamics 11 Length_vs_Time.tif Time-dependent statistics of length of 

skeletons of tracked objects  

  12 elongrate.txt Elongation rates of objects 

    

Save Parameters 13 Parameters.txt Record of parameters of particle segmentation 

and tracking 

 

 

5.4.Results 

5.4.1. Diffusive motion of beads 

The ability of DICOT to segment and track particles in DIC mode was tested using DIC 

image-series of 1 μm diameter beads suspended in two solvents, water and 25% glycerol 

solution. The density of beads was chosen such that they could space out evenly in the field 

of view and did not hinder each other’s movement. The centroids of beads were detected by 

either by gradient detection or adaptive thresholding (insets of Figure 5.3A, 5.43A) and 

tracked in time for at least 5 s using a nearest-neighbour search to generate trajectories (x,y) 
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(Figure 5.3A, 5.4A). The resulting position information was used to calculate the effective 

diffusion coefficient by MSD analysis and Perrin’s method.  

 

Figure 5.3. Diffusive motion of beads suspended in water. (A) Trajectories from 2D tracking are 

shown as coloured lines overlaid on DIC images of beads. Scale bar 10 μm. Inset: Magnified image of 

beads (segmented by adaptive thresholding) overlaid with centroids (red dots).  (B) Average MSD 

profiles (black solid lines) were fit (red dashed line) to the anomalous diffusion model (equation 2.3) 

to obtain effective diffusion coefficients. Shaded gray region indicates standard deviation.  

Distribution of step-sizes of beads along the (C) X-axis and (D) Y-axis with their Gaussian fits (red) 

are shown.  

 

The MSD analysis (Figure 5.3B, Figure 6.3B) helps to not only quantify the Deff, but also 

helps to reveal the nature of movement of objects by quantifying the anomaly parameter (α) 

by fitting the average curve to the anomalous diffusion model. The motion is said to be 

purely diffusive if α = 1, sub-diffusive or ‘restricted’ when α < 1 and super-diffusive or 

‘transported-like’ when α > 1.  

We find that beads suspended in both the solvents showed purely diffusive behaviour upto 

timescales of ~9 s, as the α values obtained from fits were close to 1 (Figure 5.3B, 6.3B). 

Perrin’s method, on the other hand, applies only to particles undergoing pure Brownian 
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motion with equal probability of being displaced in the X and Y directions. For purely 

diffusive objects, average of the distribution of displacement in X and Y (∆x and ∆y) is 0. In 

case of beads suspended in solvents, the distributions of ∆x and ∆y were found to be similar 

to each other, hinting at the isotropic nature of the medium. Gaussian fits to these 

distributions show an average around 0 (Figure 5.3 C, D and Figure 5.4C, D), confirming the 

Brownian motion of beads. Velocity auto-correlation analyses performed with bead 

trajectories also suggest diffusive movement upto ~12 s (data not shown). 

 

Figure 5.4. Diffusive motion of beads suspended in glycerol solution. (A) Trajectories from 2D 

tracking are shown as coloured lines overlaid on DIC images of beads. Scale bar 10 μm. Inset: 

Magnified image of beads (segmented by adaptive thresholding) overlaid with centroids (red dots).  

(B) Average MSD profiles (black solid lines) were fit (red dashed line) to the anomalous diffusion 

model (equation 2.5) to obtain effective diffusion coefficients. Shaded gray region indicates standard 

deviation.  Distribution of step-sizes of beads along the (C) X-axis and (D) Y-axis with their Gaussian 

fits (red) are shown.  

 

As predicted, the Deff of beads was found to be greater in water as compared to 25% glycerol, 

as estimated by both methods- Perrin and MSD. In order to validate these measures of bead 

motility determined by DICOT, we used the Stokes-Einstein equation that relates the 

diffusion coefficient to viscosity of the solvent to quantify the viscosity of water and glycerol 

(Figure 5.5). 
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5.4.2. Estimation of viscosity of water and glycerol 

The viscosity value of water estimated using the Deff values based on Perrin’s method and 

MSD were found to be comparable to each other (Figure 5.5) and to the reported value (0.89 

* 10
-3

 Pa s at 25
0
C) that was determined experimentally using viscometers (Korson et al., 

1969; Rob Phillips et al., 2012).  

 

Figure 5.5. Viscosity of the solvents. Mean viscosities (s) of the two solvents, water and 25% (v/v) 

glycerol solution, were estimated using Deff obtained by MSD and Perrin’s methods and compared 

with published values.  

 

Similarly, the estimated viscosity of 25% glycerol solution by the two methods were found to 

be comparable to each other and consistent with experimentally determined viscosities within 

the given range of temperature (Segur and Oderstar, 1951). This suggests that the motility 

parameters estimated by DICOT are reliable and accurate. 

 

5.5. Discussion 

In this chapter, I describe DICOT, an automated 2D particle tracker implemented in 

MATLAB, developed to process time-lapse images from DIC microscopy. DICOT detects 

the centroids of objects and links them in time based on a nearest-neighbour approach to 

generate (x,y) trajectories. The tool is integrated in an easy-to-use, intuitive GUI that allows 

the users to fine-tune the parameters of object detection and tracking for optimal results and 

also displays the output in the form of statistics of object motility and length.  



83 
 

The nearest-neighbour search is a method to temporally link particles detected in each image 

frame. In successive frames of the image-series, position coordinates that are closest in terms 

of distance and time make up a single trajectory. The method is simple, computationally less 

intensive and generally applicable, but works best with low density of objects whose velocity 

of movement is often lesser than the inter-object spacing. This prompted us to assess the 

sensitivity of this method to the input ‘search radius’. When we plotted the estimated 

viscosity (an indirect measure of the Deff of suspended beads) as a function of search radius, 

we found that the optimal search radius is data-set specific. In the case of water, tracking 

search radius that resulted in viscosity comparable to the reported value (0.001 Pa s) was ~1.8 

μm. The solvent viscosity estimated using Deff values appears to vary with varying search 

radius (Figure 5.6). Therefore, in the case of tracking based on distance minimization, a 

careful choice of search radius is essential.  

 

 

Figure 5.6. Estimated viscosity of water is plotted as a function of the ‘search radius’ parameter in 

DICOT. 

 

An initial guess could be made based on the following expression: 

SR ~ dmax < μspace        (Equation 5.1)  

Here, SR is search radius, dmax is the maximum instantaneous displacement of objects per 

frame and μspace is the average distance between two objects in the image. dmax and μspace 

could be roughly approximated by eye. The value of SR could be optimised if need be, such 
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that at that input SR there are no spurious trajectories in the output movie 

‘Trackingmovie.tif’. 

 

It is important to note that a range of values of search radius (between 1.6 and 2 μm) yielded 

saturating values of viscosity of water, close to the reported value (Figure 5.6). Thus, it is fair 

to assume that slight variation in the search radius does not compromise the accuracy of the 

measurement. For very high densities of objects, however, one may require to employ density 

corrections on the viscosity obtained by the Stokes-Einstein relation. In future, additionally 

introducing more involved, object-identification-based algorithms as alternatives for tracking 

in DICOT would substantially reduce the influence of search radius.  

Gradient detection and adaptive thresholding are the two different segmentation methods 

employed in DICOT. Either of the two could be chosen by the user based on the data being 

analysed. Typically, we recommend the use of the gradient method for objects with aspect 

ratios greater than 1, such as rod-like E. coli cells. The adaptive thresholding method is useful 

in segmenting spherical objects. In the rare event of finding image-series with objects that are 

segmented well by both methods, the choice is governed by efficiency of the algorithm. For 

example, we take the case of our image-series with 1 μm beads, imaged at 63x magnification 

and segmented by both the methods (Figure 5.7A, B). Although both methods detected 

similar number of trajectories and resulted in comparable measures of Deff (Figure 5.7C), the 

adaptive thresholding method was found to be faster, i.e. more efficient than gradient 

detection.  
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Figure 5.7. Comparison of segmentation methods used in DICOT. Bead images segmented by (A) 

gradient detection method and (B) adaptive thresholding method are shown. The yellow line indicates 

the detected skeleton of spheres, while centroids are marked as red dots. (C) Mean effective diffusion 

coefficients calculated by analyzing the same dataset with both methods are compared. 

 

The displacement distributions of beads in X and Y directions centre are seen around mean 0 

(Figure 5.3C, D; Figure 5.4C, D), indicating that both solvent media are isotropic. Thus the 

beads are equally probable to be displaced in X, Y or Z directions. This led us to think, what 

if a bead moves in Z, but shows no displacement in X and Y? Would the (x,y) trajectory of 

such a bead represent the true 2D-Deff? However as an answer to these questions, we reason 

that the displacement of the bead in Z would make it go out of focus and such a blurred 

image of the bead is not segmented by DICOT’s algorithm. Additionally, our time-frame cut-

off ensures that only objects that are consistently detected in each consecutive frame make up 

a trajectory. Both these factors allow us to indirectly ensure that the movement we detect is 

only indeed in the XY plane. As a result, our estimation of viscosity of the solvents based on 

2D particle tracking yields values consistent with published literature. 

We compared the output from DICOT with CellTracker (Piccinini et al., 2016) that tracks 

particles in DIC images based on template selection and distance minimization. The average 
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speeds measured for a single bead image-series with DICOT and CellTracker were found to 

be consistent with each other (1.64 μm/s +- 0.3, 1.58 μm/s +- 0.14). To its advantage, DICOT 

does not require additional template selection or training prior to segmentation and tracking, 

as was seen with the other tool. Also, as a novel feature, DICOT implicitly outputs motility 

parameters such as directionality and effective diffusion measures, in addition to object 

displacement and speed. For objects with high aspect ratios, the gradient detection based 

segmentation module in combination with distance based tracking could be utilized in future 

to track lengths of elongated rod-shaped structures such as E. coli cells or cytoskeletal 

filaments. 

5.6. Conclusion 

DICOT is a comprehensive tool based in MATLAB, developed to automatically segment and 

track objects in DIC images, in order to quantify the dynamics of their movement and length. 

The tool was validated on experimental image-series of micron-sized beads diffusing in water 

and 25% glycerol and the values of viscosity of both solvents (0.001 Pa s and 0.0026 Pa s 

respectively) were found comparable to literature. Owing to its objective tracking criteria and 

user-oriented interface, DICOT could be applied to gain new insights in old biological 

problems through high throughput analysis of label-free imaging data. 
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Chapter 6 

Cytoplasmic Viscosity Varies and Correlates with 

Spindle Motion Among Zygotes of Related 

Nematode Species 

Overview 

Precise positioning of the mitotic spindle is essential for the determination of the division-

plane and the subsequent first asymmetric cell division in various species of nematode 

embryos. In addition to the well-studied interactions of the spindle with the cell cortex, 

viscoelastic properties of the cytoplasm are speculated to be involved in the patterns of 

spindle motion observed during positioning. In this chapter, we use a microrheology 

approach to estimate the cytoplasmic viscosity of multiple nematode zygotes. To this end, we 

apply DICOT (described in Chapter 5), a MATLAB-based particle tracking tool to trace 

endogenous yolk granules imaged within live nematode zygotes by time-lapse DIC 

microscopy. With this novel, non-invasive method, we estimate the viscosity of the 

cytoplasm of one-celled embryos belonging to 6 species of nematodes, including C.elegans. 

 

6.1. Introduction  

In single-celled embryos of nematode species, including the popular model organism C. 

elegans, accurate determination of the plane of cell division is critical during the first 

asymmetric cell division which is important for establishment of polarity in the tissue. Precise 

positioning of the mitotic spindle is essential for the determination of the division-plane. 

Interactions of spindle microtubules with dynein complexes in the cortex are known to affect 

spindle positioning and motion pattern (Kozlowski et al., 2007; Garzon-Coral et al., 2016; 

Grill and Hyman, 2005). In previous work, the mobility of the mitotic spindle during the 

process of asymmetric positioning was shown to vary between nematode species, suggesting 

an evolutionary difference between spindle mechanics (Valfort et al., 2018; Farhadifar et al., 

2015; Riche et al., 2013). A simple hypothesis is that the viscosity of the cytoplasm could 

give rise to these differences. Indeed, predictions from simulations of spindle-oscillatory 

mechanics in C. elegans have suggested that order of magnitude differences in the 



88 
 

cytoplasmic viscosity can change the qualitative nature of spindle oscillations by mechanical 

damping  (Kozlowski et al., 2007)⁠. 

In order to understand the biophysical properties of the cytoplasm and the balance of 

forces acting on subcellular structures such as cytoskeletal spindles, microrheology 

techniques have been developed previously. While active methods include dragging of beads 

in vivo by optical and magnetic tweezers (Garzon-Coral et al., 2016), passive techniques were 

based on tracking of Brownian motion of fluorescent nanoparticles injected in vivo (Daniels 

et al., 2006; Chen et al., 2013). However, there are disadvantages to these methods. The 

invasive nature of such methods and the phototoxicity caused by prolonged exposure to high 

intensity beams of light and their interaction with the fluorophore may alter the behavior of 

cellular systems and affect their viability (Dixit and Cyr, 2003). Also, photobleaching of the 

probes in long-duration imaging experiments may result in poor quality of imaging. In 

addition, the insertion of exogenous particles in the cells may trigger active transport 

mechanisms within the cell. Therefore, there exists a need for non-invasive, label-free 

methods that allow us to quantify biophysical properties of the complex cytoplasmic fluid. 

Label-free DIC microscopy is especially advantageous to follow the dynamics of subcellular 

particles without the issues associated with labelling and phototoxicity (Kasprowicz et al., 

2017). 

Microrheology studies with endogenous probes have been carried out in systems such as 

and S. pombe (Selhuber-Unkel et al., 2009) and amoeba (Rogers et al., 2008) to understand 

how viscoelastic properties of the cytoplasm vary over the cell cycle and affect processes 

such as locomotion. Here, we apply a novel, high-throughput microrheology approach to 

estimate the viscosity of the nematode zygote cytoplasm based on automated particle tracking 

in DIC time-lapse imaging of these cells. The probes of our choice are endogenous, refringent 

yolk granules composed of lipoproteins. They are ubiquitously found in zygotes of multiple 

nematode species (Figure 6.1A), including C. elegans, and their abundance in the cytoplasm 

serves as an added advantage.  

In this chapter, we employ DICOT (described in Chapter 5), a custom-made, MATLAB-

based particle tracking tool to trace yolk granules imaged within live nematode zygotes by 

time-lapse DIC microscopy. DICOT generates 2D trajectories of tracked particles and further 

calculates their effective diffusion coefficient. The viscosity of the cytoplasm is then 

determined by Stokes-Einstein’s relation and further corrected for density of the suspended 
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granules. The cytoplasmic viscosity of zygotes of 6 evolutionarily related nematode species is 

estimated and compared among each other. We find that effective viscosities vary among 

these species and correlate with the observed spindle recoil velocities.  

 6.2. Materials and Methods 

6.2.1. Nematode strains, culture and live-cell imaging  

The zygotes of 6 nematode species- Caenorhabditis elegans (N2), Caenorhabditis 

monodelphis (SB341), Caenorhabditis remanei (PB219), Pristionchus pacificus (PS312), 

Oscheius tipulae (CEW1) and Diploscapter coronatus (JU359) were cultured and imaged by 

live-cell DIC microscopy in Delattre lab, ENS, Lyon (experiments and microscopy were 

performed by Thibault Brugiere and Dr. Marie Delattre) as described in (Valfort et al., 2018). 

Pixel size is 0.065 μm. Time-lapse images of zygotes in pro-metaphase were acquired at the 

interval of 0.5s. Temperature of 23
0
C +- 2 was maintained throughout the imaging. 

6.2.2. Image pre-processing and analysis 

DIC images of nematode zygotes were pre-processed to enhance contrast (with 0.3% 

saturated pixels) using Fiji (Schindelin et al., 2012). Radius of yolk granules was measured 

manually using Fiji (Figure 6.1B). Granule motion was analysed using Differential 

Interference Contrast Object Tracker (DICOT), a custom-made DIC 2D particle tracker 

written in MATLAB (Mathworks, USA) (described in Chapter 5). Subsections of the 

segments were cropped and used for DICOT analysis (such as those in Figure 6.5A) so as to 

avoid the effects of the boundary on granule diffusion analysis. MSD analysis was performed 

as explained in Chapter 2, Section 2.9.1. Solvent viscosity was estimated by Stokes-

Einstein’s relation (Chapter 2, Section 2.10). 

Granule density was measured manually using Fiji and MATLAB for the whole embryo as 

well as anterior and posterior segments that correspond to 30% of major axis in each species. 

The absolute granule density and diameter were used to estimate granule packing fraction 

(2D).  

6.2.3. Density correction of viscosity 

The effective viscosity was estimated by correcting the solvent phase viscosity for the density 

of granules based on the packing fraction (2D) as follows: 

 

(i) Quemada method (Quemada, 1977): 
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eff = s * (1- (/max)) 
-2  

       (Equation 6.1) 

 

(ii) Krieger-Dougherty method (Krieger and Dougherty, 1959): 

eff = s * (1- (/max)) 
-2.5 max  

      (Equation 6.2) 

 

 The maximal packing fraction, max is taken as 0.64 (Buscall et al., 1994).  

 

6.3. Results  

6.3.1. Size and motion of yolk granules in nematode zygotes 

Yolk granules in nematode zygotes are roughly spherical in shape (Figure 6.1B). In order to 

see how the sizes of these granules vary across species, we measured the granule radius 

(ngranules ~30 per species) and found it to be comparable among 6 different species (Figure 

6.1C).  

 

Figure 6.1. Size of yolk granules in nematode species. (A) Yolk granules are imaged by live-cell 

DIC microscopy in 6 nematode species, C. elegans (Ce), C. monodelphis (Cm), C. remanei (Cr), P. 

pacificus (Pp), O. tipulae (Ot) and D. coronatus (Dc). Scale bar 3 μm. (B) Magnified image of a 
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spherical granule is shown. The yellow line indicates the diameter of the granule that is marked 

manually. (C) Mean radius of granules among the given nematode species is compared (ngranules ~30 

per species). Error bars indicate standard deviation. 

The 2D motion of granules was tracked in label-free DIC images over time using DICOT. 

We find that the movement of granules in all the species varies axially along the zygote. In 

the central plane of the zygote, the oscillatory motion of spindles during anaphase appears to 

cause a ‘streaming-like’ effect in the cytoplasm. In this plane of the zygote, two regions of 

the cytoplasm occupied by the spindle poles are clear of granules, a feature that has 

previously been used to quantify spindle oscillations  (Cluet et al., 2014). Granules tracked by 

our method in this plane show continuous directional trajectories (Figure 6.2A), suggesting 

that their movement is affected strongly by spindle motion. In contrast, the granules tracked 

in the planes away from the centre and relatively closer to the cortex show random-walk like 

diffusive behavior (Figure 6.2B).   

 

Figure 6.2. Granule motion pattern varies axially in the embryo. Movement of yolk granules was 

tracked using DICOT in a C. elegans embryo in the (A) central and (B) upper planes for 10 s. 

Coloured lines indicate trajectories. Scale bar 3 μm. 

These observations suggest that yolk granules are mostly passive in nature and may be 

chosen as endogenous probes for a label-free particle tracking microrheology approach to 

determine the viscosity of the cytoplasm in which they are suspended. In addition, their 

ubiquitous presence in nematode species and their abundance in the cytoplasm serve as 
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advantages to arrive at a statistically sound inference. The data was averaged for at least 100 

granules per embryo for 10 or more embryos per species. 

Granule motion trajectories (x,y) obtained from 2D tracking (Figure 6.3 left panel) were 

further processed using DICOT to calculate the mean square displacement. Individual MSD 

profiles of hundreds of granules were averaged and fit to the anomalous diffusion model 

(Figure 6.3 right panel) to obtain the effective diffusion coefficient and anomaly parameter 

values. We find that the effective diffusion coefficient obtained by fitting an average MSD 

profile is comparable to the one obtained by fitting individual profiles and then averaging the 

diffusion coefficient values and therefore chose the former.  
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Figure 6.3. MSD analysis of yolk granules.  Left panel- Trajectories from 2D tracking are shown as 

coloured lines overlaid on DIC images of yolk granules in one zygote each of species-  (A) C. 

elegans, (B) C. monodelphis, (C) C. remanei, (D) P. pacificus, (E) O. tipulae and (F) D. coronatus. 

Coloured lines indicate different granules. Scale bar 3 μm.  Right panel- Average MSD profiles (black 

solid lines) were fit (red) to the anomalous diffusion model (equation 2.3) to obtain effective diffusion 

coefficients. Shaded gray region indicates standard deviation.  

 

It is important to note here that our fits to average MSD profiles are limited to short 

timescales (~1/4
th

 of the timescale of the entire average profile) as the granules begin to 

deviate from purely diffusive behaviour above ~4 s as indicated by their average MSD 

profiles (Figure 6.3 right panel). The movies used as input were ~50s each and the 

trajectories we obtain from DICOT lie in the time scales of 5-20s.  

Interestingly, a previous study (Daniels et al., 2006) reports super diffusivity of particles 

above timescales of ~1 s and a lack of sub-diffusivity. However, we find anomaly (𝞪) values 

from 0.667 to 1.47 (averages obtained from different zygotes) (Figure 6.7A), indicating a 

heterogeneity in granule mobility going from sub-diffusive (α <1) to super-diffusive (α>1). 

This contradiction in observations could perhaps be explained by the choice of particle size in 

Daniels et al., which is 100nm (diameter), i.e. ~6 times lesser than yolk granules.  A recent 

model of cytoplasmic mobility suggests that particles lower in size than the pore size of the 

cytoplasm may not undergo restricted diffusion, as opposed to larger particles (Etoc et al., 

2018). While we have imaged C. elegans zygotes only in the pro-metaphase, similar studies 

in S. pombe report that the sub-diffusivity of endogenous probes is not affected in various 

stages of cell division (Selhuber-Unkel et al., 2009). The heterogeneity in the anomaly 

parameter of diffusion of granules also appears to be independent of their position within the 

cell (Figure 6.7B). 
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Figure 6.4. Heterogeneity of granule mobility within C. elegans zygotes. (A) Distribution of 

average anomaly parameter (α) values obtained from different zygotes. (B) A mixture of sub-diffusive 

(blue dots, α < 0.9), diffusive (green dots, α = 0.9 to 1.1) and super-diffusive (red dots, α > 1.1) 

granules was observed to be distributed in the cytoplasm of a C. elegans zygote.  

6.3.2. Estimation of solvent phase viscosity of the cytoplasm 

The effective diffusion coefficient was calculated by the MSD based method for granules 

distributed throughout the whole embryo and separately for those in anterior and posterior 

segments. The A-P segments correspond to regions at the two poles that span ~30% of the 

length of the major axis of the cell. Subsections of these segments were considered for 

analysis (Figure 6.5A) so as to avoid the effects of the boundary on granule diffusion 

analysis. Deff was then used to calculate the ‘solvent-phase’ viscosity (s) of the cytoplasm 

using the Stokes-Einstein’s relation (Equation 6.1). 

 

 

Figure 6.5.  Cytoplasmic viscosity of zygotes based on granule movement. (A) Trajectories of 

granules tracked from anterior (blue) and posterior (magenta) segments of a C. elegans embryo. Scale 

bar 3 μm. Average MSD profiles of granules for (B) anterior and (C) posterior segments are shown in 
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blue and magenta respectively. The shaded areas indicate standard deviation. The average MSD curve 

(solid line) is fit (dashed line) to the anomalous diffusion equation to obtain the effective diffusion 

coefficient (Deff). (D) Mean (± SD) solvent viscosities of anterior and posterior regions of embryos are 

estimated across 6 species (number of zygotes per species- Ce : 19, Cm : 18, Cr : 12, Pp : 11, Ot : 14, 

Dc : 10). The viscosities of whole embryos are represented by red dotted lines. *, P<0.05 and **, 

P<0.01.  

 

The obtained anterior and posterior viscosities were compared among species (Figure 6.4D, 

summarized in Table 6.1) and found to be maximal in zygotes of D. coronatus and C. 

monodelphis species. Our results are in agreement with a previous report that shows that the 

viscosity along the A-P axis in C. elegans embryos does not differ prior to the first cell 

division (Daniels et al., 2006). However, based on Student’s t-test assuming unequal 

variances, we find that the solvent viscosities along the A-P axis of C. monodelphis and O. 

tipualae vary significantly. It is interesting to note that in O. tipulae embryos, the oscillatory 

pattern of the spindle during anaphase prior to the first cell division is different from that in 

C. elegans (Valfort et al., 2018). 

Table 6.1. Summary of solvent viscosities (Pa s) of nematode zygotes. 

Species Whole embryo Anterior Posterior 

Mean SD Mean SD Mean SD 

C. elegans 
0.073668 0.013046 0.075225108 0.015042 0.083526213 0.022709 

C. monodelphis 
0.203763 0.039396 0.171076629 0.047144 0.212847399 0.060487 

C. remanei 
0.087853 0.013185 0.097320047 0.021931 0.098888292 0.023283 

P. pacificus 
0.073749 0.032619 0.08182003 0.03012 0.076832674 0.025154 

O. tipulae 
0.130317 0.026974 0.117459021 0.035033 0.166762493 0.037731 

D. coronatus 
0.2792 0.069039 0.28664612 0.083762 0.266274558 0.065356 

 

The whole-embryo viscosity obtained for C. elegans by our method appears to be ~0.08 Pa s, 

more than an order of magnitude lower than the values reported previously that were 

determined in vivo by magnetic tweezer experiments (Garzon-Coral et al., 2016; De Simone 

et al., 2018) and special assays that involved the injection and tracking of fluorescent 

nanoparticles within the embryo (Daniels et al., 2006). Motivated by the need to investigate 

the probable cause of this difference, we went on to check the effect of density (crowding) of 

granules on the obtained viscosity. 
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6.3.3. Viscosity corrected for density of granules 

 

Figure 6.6. Viscosity corrected for granule crowding. (A) Density of granules in the image plane 

was measured manually for anterior (blue) and posterior (magenta) regions of nematode species. 

Scale bar 3 μm. (B) Mean granule packing fraction (2D) varies across species. (C) Mean effective 

viscosity of the cytoplasm, inclusive of 2D, is estimated for the 6 species using the Quemada 

equation. Error bars indicate standard deviation. *, P<0.05 and ***, P<0.001. 

The solvent phase viscosity (s) was corrected for the apparent density of granules in the 

zygote. The granule packing fraction (2D) was estimated for anterior and posterior segments 

(Figure 6.6A, B) as well as for the whole embryo (Figure 6.7A).  



98 
 

 

Figure 6.7. Viscosity of the whole cell. (A) Granule packing fraction values are measured manually 

and compared across nematode species. (B) Effective viscosity inclusive of packing fraction is 

calculated by Kreiger-Dougherty and Quemada equations. Error bars indicate standard deviation.   

 

The obtained 2D was used to calculate the effective viscosity (eff) inclusive of granule 

crowding by the Quemada and Krieger-Dougherty methods (Equations 6.1 and 6.2) (Figure 

6.6C, 6.7B).  

 

  



99 
 

Table 6.2. Viscosities (Pa s) inclusive of granule packing fraction (eff - Quemada) are 

compared across species and summarized below. 

Species Whole embryo Anterior Posterior 

Mean SD Mean SD Mean SD 

C. elegans 
0.152795 0.027051 0.230985186 0.046187185 0.265695959 0.072237886 

C. monodelphis 
0.596411 0.115315 0.653166764 0.179996389 1.967997446 0.55926706 

C. remanei 
0.146358 0.021974 0.213437172 0.048097649 0.214020395 0.050390826 

P. pacificus 
0.148573 0.065697 0.20704888 0.076219154 0.34876023 0.114178659 

O. tipulae 
0.355429 0.073567 0.529565432 0.157948039 0.933640652 0.211240245 

D. coronatus 
0.88591 0.219082 2.020655473 0.590463802 1.765808435 0.433411631 

 

To further ensure that active transport has little or no role to play in the observed pattern of 

granule motion, RNA interference experiments were conducted in collaboration with Delattre 

lab, where ATP metabolism in the single-celled C. elegans embryos was knocked down by 

two methods, (i) silencing the CYC-1 gene and (ii) the ATP-2 gene.  

 



100 
 

Figure 6.8. ATP inactivation does not affect granule motion. Average MSD profiles (black solid 

lines) were fit (red) to the anomalous diffusion model to obtain effective diffusion coefficients of (A) 

CYC and (B) ATP-2 knockdowns. Shaded gray region indicates standard deviation. (C) Solvent 

viscosities of the whole-embryo cytoplasm of wildtype C. elegans and RNAi-based ATP-knockdown 

embryos are estimated using Stokes-Einstein’s equation. nz = number of zygotes. 

 

We find that RNAi-based silencing of CYC-1 and ATP-2 genes did not affect the effective 

diffusion coefficient of the granules and in turn the viscosity of the cytoplasm in the cells 

(Figure 6.8A, B). The viscosity of cytoplasm of wildtype zygotes was found to be 

comparable to the ATP knockdown variants (Figure 6.8C).  

 

6.4. Discussion 

In a pioneering attempt to determine the cytoplasmic viscosity of nematode zygotes by a non-

invasive method, we used yolk granules innately present in the cells as probes. Six 

evolutionarily related species of nematodes were analysed, including the model organism 

Caenorhabditis elegans along with Caenorhabditis monodelphis, Caenorhabditis remanei, 

Pristionchus pacificus, Oscheius tipulae and Diploscapter coronatus. The zygotes were 

imaged by label-free DIC microscopy and the movement of granules was tracked in time 

using DICOT. Using their MSD profiles, the effective diffusion coefficient of granules was 

estimated. The viscosity of the cytoplasm containing these granules was then estimated by 

Stokes-Einstein relation that relates the effective diffusion coefficient to viscosity.  

Our estimate of effective cytoplasmic viscosity of C. elegans zygotes is ~0.15 Pa s, about 150 

times the viscosity of water (0.001 Pa s). This value obtained for C. elegans, however, is 10 

folds lower than the values reported previously (Daniels et al., 2006). In addition to the fact 

that our measurements are obtained by a non-invasive method in unperturbed cells, there are 

a few possible explanations for this deviation.  

(a) The Deff estimated in the report by Daniels et al. is measured from MSD profiles of ~1 

s timescales. Our values are taken from longer curves that are fit for at least 4 s. 

Movement driven by active transport can show time-dependent differences, so we 

tested the effect of using a shorter time-interval of 1 s (comparable to Daniels et al., 

2006), to examine if our estimates change. We find in our study that the Deff from 1 s 

and 4 s fits are the same (~8x10^-3 um^2/s).  
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(b) Daniels et al. have pooled data from multiple cell cycle stages as opposed to our 

estimates of viscosity that are taken only from zygotes imaged in the pro-metaphase 

(and away from the central plane of the zygote), where the motion of spindles is 

thought to affect the diffusion of granules in the least. Having a representative time-

series from all stages systematically could be used to explain the discrepancy between 

our data and theirs.  

(c) The differences in our sampling time (500 ms) versus theirs (33 ms) may also be one 

of the possible reasons for the deviation in MSD measurements. However, the interval 

of 500 ms was found suitable when used to image 1 μm-diameter control beads 

suspended in water and glycerol using the same microscopy set up, as it gave 

viscosities of these solvents comparable with published literature. 

(d) The viscosity estimated by (Garzon-Coral et al., 2016; De Simone et al., 2018) is 0.6 

Pa s, a value that also seems to vary from the viscosity reported by (Daniels et al., 

2006) and appears 4 times higher than the viscosity estimated in our study. 

We report that the cytoplasmic viscosities of the zygotes of the given 6 species of nematodes 

vary from each other. While C. elegans, C. remanei and P. pacificus show comparable 

whole-embryo viscosities, O. tipulae, D. coronatus and C. monodelphis show significantly 

higher viscosities. Recoil velocities measured post laser ablation of the spindle (courtesy, 

Delattre lab, ENS, Lyon) corroborate with our viscosity estimation results.  While spindle 

recoil velocities were found to be comparable for C. elegans, C. remanei and P. pacificus 

species, the least velocities were recorded for D. coronatus and C. monodelphis.  

Zygotes of less-studied nematode species, including those other than the Caenorhabiditis 

species could be analysed by this method, irrespective of the degree of their amenability to 

genetic and physical manipulation.  

6.5. Conclusion 

Our non-invasive, label-free method for estimation of viscosity of the cytoplasm of nematode 

zygotes using yolk granules as endogenous probes paves way for understanding the 

variability that has emerged during the course of evolution, in the biophysical properties of 

cells and molecular assemblies such as the mitotic spindle. 
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Chapter 7 

Dynamic Instability and Sliding of ParM 

Filaments: Implications for Plasmid Segregation  

Overview 

Having discussed eukaryotic spindles in Chapter 6, we now focus on the mechanics of a 

minimal, plasmid-segregating spindle formed by the ParMRC system in E. coli. In this 

chapter, in order to determine the effect of dynamic instability of ParM filaments on the 

assembly of the ParM spindle, we perform Brownian dynamics based simulations to 

reconstitute the assembly of half-spindles. Further, we quantify for the first time to our 

knowledge, the sliding of ParM filaments from in vitro imaging data using quantitative 

kymography and diffusion analysis. To this end, we employ AMTraK (described in Chapter 

3), an automated kymography tool implemented in MATLAB, that generates and processes 

kymographs. 

 

7.1. Introduction 

The segregation of low copy R1 plasmids during cell division in E. coli is brought about 

by a transient, minimal spindle formed by the ParMRC system (Moller-Jensen et al., 2002, 

2003). The par operon (Gerdes and Molin, 1986) encodes three spindle components- ParM 

(motor), ParR (repressor) and parC (centromere). ParM is a filamentous actin-like polymer 

(Ent et al., 2002) that generates force by ATP-dependent polymerization. In their free state, 

ParM filaments show identical kinetics of polymerization and depolymerization at both ends. 

parC is a cis-acting centromere-like sequence on the plasmid. ParR is an adaptor protein that 

binds to ParM as well as to parC. Dimers of ParR bind to the parC sequence forming a 

ParRC complex on the plasmid. In the ‘search and capture’ model of spindle assembly 

(Figure 7.1A), ParM filaments search cellular space and capture plasmid targets at the ParRC 

complex. Structural analysis of ParM filaments has shown that only the barbed (plus) end of a 

ParM filament is structurally capable of binding to a ParRC complex. The binding of plus 

ends with ParRC complexes results in the formation of a tripartite complex that we refer to as 

a ‘half-spindle’. In the ‘on-site nucleation’ model of ParMRC spindle assembly (Figure 7.1B) 

half-spindles are formed when a ParM filament is nucleated on the plasmid at the ParRC site 
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itself. At least two such half-spindles assemble in an antiparallel orientation to form a 

complete bipolar spindle (Figure 7.1A,B) (Gayathri et al., 2012).  

 

 

Figure 7.1. Models of ParMRC spindle assembly and action. ParM filaments are shown as blue 

rods, plasmids are shown as orange circles and ParRC complexes are shown green dots. Plus and 

minus ends of ParM filaments are marked by red + and – signs respectively. (A) The ‘search and 

capture’ model of spindle assembly: ParM filaments are randomly nucleated in the cell. Filaments 

‘search and capture’ plasmids at the ParRC sites to form a half-spindle. Two half-spindles encounter 

each other to assemble the complete spindle. (B) The on-site nucleation model of spindle assembly: 

ParM filaments are nucleated at ParRC sites of plasmids to form half-spindles. Two half-spindles 

encounter each other to assemble the complete spindle.  (C) Once the entire spindle is assembled, the 

coupled filaments elongate by insertional polymerization of ParM monomers (blue dots) at the bound 

ends to push the plasmids to opposite cell poles. Filaments in a pair also slide in a contractile manner, 

the direction of sliding is marked by arrows. (D) The assembled spindle elongates by insertional 

polymerization in the absence of filament sliding. 

 

Properties of the cytomotive elements of a spindle are thought to bring about spindle 

formation and movement of DNA. In the following section, I shall briefly review two 

interesting properties of ParM filaments – dynamic instability and sliding - that are 

hypothesized to drive the ParMRC spindle assembly and plasmid segregation.  

 

Dynamic instability of ParM filaments 
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Dynamic instability is the ability of filaments to alternate between phases of growth and rapid 

shrinkage. The transition of a filament from growing stage to shrinkage is termed as a 

‘catastrophe’ and the transition of a shrinking filament to growth is termed as a ‘rescue’. 

Similar to microtubules in eukaryotes, ParM has been shown to display dynamic instability 

(Garner et al., 2004). However, while ParM filaments are observed to undergo catastrophic 

events, no rescues have been observed in them. Given that the reported velocity of shrinkage 

is much greater than the velocity of growth (Garner et al., 2004; Gayathri et al., 2012) (Figure 

7.4A), the onset of catastrophe in a filament results in its complete destruction.  

The discovery of catastrophic events in ParM filaments led to the question, how does 

dynamic instability contribute to ParMRC spindle assembly and segregation? In vitro 

reconstitution experiments have shown that the dynamic instability of ParM enables easy 

turnover of filaments, and provides excess monomer to drive the elongation of the spindle 

(Garner et al., 2007). Further, it is hypothesized that the dynamic instability of ParM 

filaments may aid the ‘search and capture’ of plasmid DNA in prokaryotes (Garner et al., 

2007), similar to eukaryotic cells, where the dynamic instability of microtubules is shown to 

allow the efficient search of cellular space and capture of chromosomes prior to segregation 

(Holy and Leibler, 1994) (see Chapter 1).  

In an E. coli cell, two distinct kinds of ‘search and capture’ events involving ParM 

filaments may be necessary for the complete spindle to assemble (Figure 7.1A). The first type 

involves the capture of a plasmid by a single filament at the ParRC complex to form a half-

spindle. At least two such half-spindles are required for the formation of the entire bipolar 

spindle. The second type of ‘search and capture’ event takes when the two half-spindles 

associate by their ParM filaments to form a complete spindle. The precise role of dynamic 

instability in both the kinds of ‘search and capture’ events still remains a puzzle. In this study, 

we simulate the first type of ‘search and capture’ process with the aim to determine whether 

dynamic instability increases the efficiency of capture of a plasmid by a filament, in a cell as 

small as E. coli. We use plasmid capture time as a measure of the efficiency of capture and 

compare the efficiency of dynamic filaments and fixed-length filaments in capturing plasmid 

targets. 

 

Sliding and bundling of ParM filaments in vitro 

In recent work,  ParM filaments were reported to bundle and undergo sliding in vitro 

(Gayathri et al., 2012) (Figure 7.2) in the presence of a very low concentration of a crowding 
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agent. Sliding in a pair of filaments of comparable length is observed to be contractile in 

nature, proceeding in a thermodynamically favourable direction that maximizes the overlap 

between them. Interestingly, unlike eukaryotic actin and microtubule filaments, ParM 

filaments do not require the presence of additional proteins or molecular motors in order to 

initiate or continue sliding. As sliding could occur in the presence of ATP as well as a non-

hydrolysable analogue (AMPPNP), hydrolysis of ATP is shown to not be required for the 

process. It has been established that a sequence of 4 amino acid residues on the interface of 

the two filaments are essential for sliding (Gayathri et al., 2012). In previous work in 

eukaryotes, motor-assisted sliding of microtubules in eukaryotic spindles has been speculated 

to facilitate spindle assembly and maintain spindle length (Burbank et al., 2007; Loughlin et 

al., 2010; Goshima and Scholey, 2010). While the potential role of ParM filaments in spindle 

formation and mechanism of action is not yet known, it is hypothesized that during 

elongation of a bipolar spindle (Figure 7.1C,D), the free ends of the filaments may be 

stabilized by pairing (bundling) and hence protected from catastrophe (Gayathri et al., 2012).  

 

Figure 7.2. Sliding in ParM filaments. Speckle labelled Alexa-568 ParM filaments showing sliding 

in the presence of AMPPNP were observed by TIRF microscopy. One filament is seen to slide on 

another filament that appears static. Red arrowheads indicate the distal tip of the sliding filament. 

Time is indicated in seconds. Scale bar - 4 µm. 

 

On the assembly of the complete spindle, insertional polymerization of ParM at the bound 

ends is reported to drive the process of pushing the plasmids to opposite cell poles. How 

dynamic instability, insertional polymerization and inter-filament interactions together bring 

about the process of plasmid segregation in an E. coli cell in a span of a few minutes still 

remains poorly understood.  In an E. coli cell, the direct observation of the interactions of 

spindle components is hindered greatly due to the diffraction limit of light (~250 nm). Also, it 

is established that the ParMRC spindle is a minimal machinery that requires only three well-

studied components to bring about plasmid segregation. Given these two facts, the use of 

computer simulations is most suited to investigate the collective behavior of this system and 

identify the potential roles of ParM dynamic instability and filament sliding in spindle 
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assembly and plasmid segregation. However, simulations of the sliding process are currently 

hindered by the lack of quantitative information on ParM filament sliding. 

In this chapter, in order to determine the effect of dynamic instability on the assembly of 

the ParM spindle, we perform Brownian dynamics based simulations to reconstitute the 

assembly of half-spindles. Further, we quantify for the first time to our knowledge, the 

sliding of ParM filaments from in vitro imaging data using quantitative kymography and 

diffusion analysis. To this end, we employ AMTraK (Chaphalkar et al., 2016) (described in 

Chapter 3), an automated kymography tool implemented in MATLAB, that generates and 

processes kymographs. 

 

7.2.Materials and Methods 

7.2.1. Computer simulations 

All the simulations were performed in 3D using Cytosim (Nedelec and Foethke, 2007), an 

agent-based Brownian simulator. Values of parameters used in the simulations were set either 

based on published experimental measures or were varied across a physiologically relevant 

range (Table 7.1). All the molecular events (polymerization, depolymerisation, binding, 

unbinding etc.) are simulated to occur with a constant probability inside an E. coli cell. The 

steric interaction between objects was set to 0 unless otherwise mentioned. 

Cell system 

An E. coli cell is modelled as an elongated spherocylinder of length 2.8 μm with 

hemispherical caps of radius 0.4 μm at both ends (Bakshi et al., 2012; Reshes et al., 2008) 

(Figure 7.3). The viscosity of the cytoplasm is taken as 9.75 cP (Mullineaux et al., 2006). The 

cell geometry does not undergo any change in time. 
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Figure 7.3. A still image from the Cytosim simulation. Dynamic ParM filaments (yellow lines) 

diffuse within an E. coli cell (grey boundary) and capture par+ plasmids (blue spheres). Plasmids 

bind to filaments at the ParRC site (orange). Green chevrons depict the free minus ends of the 

filaments. Scale bar – 0.2 μm. 

 

Plasmids 

In our model we assume that plasmids are in their post-replication phase, so the number of 

plasmids in the cell remains unchanged during the simulation. Plasmids are initialized at the 

cell centre in the beginning of the simulation (Jensen and Gerdes, 1999). The number of 

plasmids in a cell varies in the range 1-2, depending on the simulation performed. Each 

plasmid is modelled as a sphere carrying one ParM-binding site on the surface representing a 

ParRC complex. The plasmid radius is chosen to be 30 nm, an approximation based on the 

radius of gyration (RG) of circular DNA that can be calculated using the following equation 

(Araki et al., 2006): 

< 𝑅𝐺
2  > = b

2
N/12        (Equation 7.1) 

Here, b is the Kuhn length of DNA (0.34 nm), N is the number of base pairs in the par
+
  

plasmid (R1 plasmid - 10
5 

bp).  

The local effective viscosity around free plasmids was modulated such that the resulting 

effective diffusion coefficient of plasmids matched the reported value (5*10
-5 

μm
2
/s ) 

measured in vivo (Campbell and Mullins, 2007).   

Filaments 

ParM filaments were modelled as discrete polymers with rigidity 0.073 pN μm
2
, equal to that 

of actin (Gittes et al., 1993). The filaments are kinetically identical and display dynamic 

instability (Garner et al., 2004) at both ends, unless bound to a plasmid. The dynamic 

instability of filaments was modelled using the standard 2-state 4-parameter model described 

for microtubules (Verde et al., 1992). The velocity of growth (vg) and shrinkage (vs) of 

filaments were taken from two different reports (Garner et al., 2004; Gayathri et al., 2012) 

(Figure 7.4A). In both cases, vg was lower than vs. The frequency of catastrophe (fcat) was 

calculated using the length versus time information obtained by digitizing a graph from 

(Garner et al., 2004) (Figure 7.4B). The reciprocal of average time taken for catastrophe (tcat) 

was taken as the frequency of catastrophe.  
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<fcat> = 1/ <tcat>         (Equation 7.2) 

We take the growing force (Fg) of ParM to be 1 pN, equal to experimentally measured values 

for actin (Footer et al., 2007). In our simulations, vg depends on Fg such that: 

v= vg * e 
–F/Fg

         (Equation 7.3) 

As rescue events were not observed in experiments, we set the frequency of rescue of both 

ends of a filament to 0. Thus the commencement of a catastrophic event leads to complete 

destruction of a filament. In order to keep filament number constant in some simulations, if 

destroyed, filaments were allowed to re-nucleate elsewhere in the cell.   

 

Figure 7.4. Dynamic instability parameters of ParM filaments. ParM filaments were modelled as 

dynamic filaments using the standard 4-parameter model. (A) Velocities of growth and shrinkage 

were taken from (Garner et al., 2004; Gayathri et al., 2012). (B) Frequency of catastrophe was 

calculated using the average time taken for a catastrophic event from this graph reproduced from 

(Garner et al., 2004). 

 

According to the ‘search and capture’ model (Figure 7.1A), filaments were allowed to 

nucleate randomly within the cell, diffuse in cellular space and capture plasmid targets at the 

binding site. A filament can bind to a plasmid by only the barbed (plus) end which gets 

protected from catastrophe and shows increased velocity of growth post binding (Gayathri et 

al., 2012). Binding happens at the chosen binding rate when the plus tip of a diffusing 

filament lies within 10 nm of a plasmid. Only one filament can bind to a plasmid at a time. 

Once bound to the plus end of a filament, plasmids do not detach. 
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Table 7.1. Simulation parameters 

Parameter Abbreviation Value/Attribute Units Reference 

Simulation Space Parameters 

E. coli cap radius r 0.4 μm (Bakshi et al., 2012) 

E. coli total length l 2.8 μm (Bakshi et al., 

2012),(Reshes et al., 

2008) 

Viscosity η 0.00975 Pa s (Mullineaux et al., 

2006) 

Thermal energy (at 

37
0
C) 

kBT 4.28 * 10
-21

 N m (Rob Phillips et al., 

2012) 

Boundary  Stiff  This study 

Time of simulation t 10 min This study 

Cytoskeletal Parameters 

Velocity of growth 

vg – bound end 0.022 μm s
-1

 (Gayathri et al., 2012) 

vg – unbound 

end 

0.006 μm s
-1

 (Gayathri et al., 2012) 

0.058 (Garner et al., 2004) 

Velocity of 

shrinkage 

vs – bound end 0 μm s
-1

 (Gayathri et al., 2012) 

vs – unbound 

end 

-0.234 μm s
-1

 (Gayathri et al., 2012) 

0.157 (Garner et al., 2004) 

Frequency of 

catastrophe 

fcat – bound 

end 

0 s
-1

 (Garner et al., 2004) 

fcat – unbound 

end 

0.0383 s
-1

 (Garner et al., 2004) 

Frequency of rescue 

fres – bound 

end 

0 s
-1

 (Garner et al., 2004) 

fres – unbound 

end 

0 s
-1

 (Garner et al., 2004) 

Distance between 

two points of a 

filament 

df 0.05 - This study 

Initial length - 0.01 μm (Garner et al., 2004) 

Polymer dynamics 

model 

- Two-state 4-

parameter model 

- This study 

Minimal length of 

the filament 

- 0.01 μm This study 

Fate of filaments 

that reduce to length 

minimal length 

- Destroy - This study 
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Rigidity 𝜅 
 

0.073 pN s 

μm
-2

 

Taken from values 

reported for actin 

(Gittes et al., 1993) 

Growing force Fg 1 pN (Footer et al., 2007) 

Steric interaction - 0  This study 

Plasmid Parameters 

Effective diffusion 

coefficient 

Deff 0.00005 μm
2
/s (Campbell and 

Mullins, 2007) 

No. of plasmids np 1 or 2 - This study 

No. of binding sites nbs 1 - (Gayathri et al., 2012) 

Binding-site Parameters 

Filament binding 

rate 

- 500 /s This study 

Filament unbinding 

rate 

- 0 /s This study 

Filament binding 

range 
 10 nm This study 

End of filament 

bound 

- Plus - (Gayathri et al., 2012) 

No of filaments per 

binding site 

nf 1 - (Gayathri et al., 2012) 

     

 

7.2.2. Microscopy, image pre-processing and analysis 

The experimental work on ParM was performed by Gayathri Pananghat in the lab of Dr. Jan 

Lowe, MRC Lab, Cambridge. ParM filaments were assembled in vitro with a mixture of 

Alexa-568 labelled and unlabelled monomers, in the presence of ATP or AMPPNP and 1% 

methyl cellulose, were imaged by TIRF microscopy as described in (Gayathri et al., 2012). 

The image time-series were pre-processed by enhancing contrast, smoothing using a 3 x 3 

mean filter and adjustment of brightness and contrast in ImageJ (Schneider et al., 2012).  

Angle of contact measurement 

Angles of contact formed by filaments prior to sliding were measured by image analysis 

using a custom MATLAB code. Filament ends and the point of contact were manually 

selected on the image. The smallest angle made at the point of contact was measured.  

Quantitative kymography for sliding and diffusion analysis 

Analysis of filament sliding and diffusion was performed by quantitative kymography using a 

MATLAB based tool named AMTraK (Chaphalkar et al., 2016). Spatiotemporal coordinates 

of filaments obtained from kymography were used to estimate the 1D diffusion coefficient 
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and anomaly parameter as described in Chapter 2. The cumulative displacement of the sliding 

filament was obtained by summing the instantaneous displacement in time. Instantaneous 

displacement in the direction of translocation of the filament was considered positive, while 

that against the direction of translocation of the filament was considered negative. The 

cumulative displacement was fit to the logistic function: 

 

dt = (k * d0) / [ d0 + [(k - d0) * e
-rt 

]       (Equation 7.4) 

Where k is the maximal displacement, r is the sliding rate, d0 is the initial displacement and dt 

is the displacement at time t. Phases in the displacement curve were identified comparing the 

slope of the curve (m) to the sliding rate (r). Based on transitions in the slope, three phases 

were identified analogous to a growth curve: lag (approach: m < r), log (sliding m ~  r) and 

stationary (paired m < r).  

Persistence length measurement 

Persistence lengths of individual and bundled ParM filaments were estimated from electron 

microscopy and fluorescence microscopy images respectively using FiberApp (Usov and 

Mezzenga, 2015) by manually tracing contours of filaments. The contour data was analysed 

using two alternate methods to estimate the persistence length (λ) in 2D, (a) the angle 

correlation method and (b) mean squared end-to-end distance (MSED) method. Angle 

correlation is measured as cosine of , the angle between tangents of any pair of segments 

along a contour of length l. 

⟨cos θ⟩ = e
−l/2λ

         (Equation 7.5) 

MSED is expressed by the equation: 

⟨R
2

⟩ = 4λ [l − 2λ (1 − e
−l/2λ

)]       (Equation 7.6) 

Here, R is the direct end-to-end distance between any pair of segments along a contour of 

length l. 

 

7.2.3. Data analysis 

All data analysis and plotting was performed using MATLAB 2014b and 2016a (MathWorks 

Inc., USA). Fitting of custom functions was performed using either the Levenberg-Marquardt 
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non-linear least square routine or the trust-region method, implemented in the Curve-Fitting 

toolbox (ver. 3.5) of MATLAB.  

 

7.3. Results 

This section is divided into two parts-  

(1) Simulation of ParM spindle assembly and  

(2) Quantitative image analysis of ParM filament sliding. 

 

7.3.1. Simulation of ParM spindle assembly 

We reconstitute components of the ParMRC spindle machinery within an E. coli cell 

in silico in a coarse-grained model where filaments and plasmids are represented by rods and 

spheres respectively. While the filaments diffuse with an effective diffusion coefficient 

(given by their length) implicitly calculated by Cytosim, plasmids can be assigned an 

effective diffusion coefficient by modulating their local viscous drag. The parameters used 

for simulations are summarized in Table 7.1. Details of the system components modelled in 

the simulation are given in Section 7.2.1.  

In an attempt to simplify our simulations, we consider that plasmids have replicated 

beforehand and also that the boundary of the cell does not grow within the simulation time 

span. We analyse the collective behaviour of the spindle components for 10 minutes, a period 

two fold greater than the reported time of plasmid segregation (Campbell and Mullins, 2007) 

and approximately half the time of the cell cycle for a fast growing E. coli cell.  

Plasmids do not translocate to the poles by diffusion alone 

It is known that high copy number plasmids of low molecular weight are partitioned 

randomly by diffusion into two daughter cells (Reyes-Lamothe et al., 2014; Ghosh et al., 

2006; Ebersbach and Gerdes, 2005). However, high molecular weight, low copy number 

plasmids in E. coli cells are observed to require additional segregation mechanisms including 

the recruitment of a dedicated segregation machinery (Nordstrom and Austin, 1989; Ghosh et 

al., 2006; Ebersbach and Gerdes, 2005) to ensure that each daughter cell inherits at least a 

single copy of the plasmid. When reconstituting par+ plasmids in simulation, the first 

question we asked was, is plain diffusion sufficient for segregation of R1, a 100 kb sized 

plasmid? We modelled R1 as spheres of 30 nm radius and effective diffusion coefficient of 

5*10
-5

 μm
2
/s (Campbell and Mullins, 2007). In the beginning of the simulation, they were 
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initiated at the cell centre and were allowed to diffuse within the cell without steric hindrance 

for 10 min. We find that plasmids moving at such low diffusion coefficients do not 

translocate from the centre to the poles by themselves (Figure 7.5). The in vivo Deff was 

measured using a mini plasmid of 30 kb in size carrying the par+ operon (Campbell and 

Mullins, 2007). If plasmids 1/3
rd

 the size of R1 do not get segregated to the poles by diffusion 

alone, we suspect there is little chance that 100 kb R1 plasmids will be able to do so. This 

result indirectly supports the experimental results that such plasmids require dedicated 

mechanisms for segregation in addition to diffusion. 

 

Figure 7.5. Plasmids do not translocate to poles by diffusion alone. par
+
 plasmids (red spheres) 

were initialized in the centre of cell (upper panel) and allowed to diffuse with the given Deff for 10 

min. Plasmids appear to be unable to reach the poles by plain diffusion (lower panel). 

 

Dynamic instability of ParM does not affect plasmid capture time in E. coli cells 

The dynamic instability of filaments was modelled using the standard 2-state-4-

parameter model described for microtubules (Verde et al., 1992). The velocity of growth (vg) 

and shrinkage (vs) of filaments were taken from two different reports (Garner et al., 2004; 

Gayathri et al., 2012). The image-based measures in both the reports differ possibly due to 

the fact that in the decade that separates the two observations, microscopy has improved 

greatly in terms of technology and resolution. 

As a first step, the average lifetimes of simulated filaments were estimated. Using 

parameter values from (Garner et al., 2004), the average lifetime was calculated to be 24 s. 

Using values reported in (Gayathri et al., 2012), the average lifetime turned out to be 14.3 s. 
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Thus, the average lifetime of simulated filaments matched the lifetime of filaments measured 

in vitro (~20 s, (Garner et al., 2007)) (Figure 7.6A). We then measured the maximal length a 

dynamic ParM filament can achieve, i.e. the length prior to catastrophe. The average maximal 

lengths obtained by using values from (Gayathri et al., 2012) and (Garner et al., 2004) were 

1.25 μm and 8 μm respectively (Figure 7.6B). As the maximal length determined using 

parameters from (Gayathri et al., 2012) was comparable to the average length of a spindle 

observed within an E. coli cell, we chose to use the former that set of vg and vs values in all 

the further simulations.  

 

Figure 7.6. Lifetimes and maximal lengths of dynamic ParM filaments. Using vg and vs values 

from (Gayathri et al., 2012; Garner et al., 2004), the (A) average lifetimes and (B) maximal 

length (prior to catastrophe) of simulated filaments (n = 1000) were estimated and compared 

to reported  experimental observations. 

We now investigate the effect of dynamic instability on capture of plasmids by 

filaments. Dynamic filaments (of initial length 10 nm) and fixed-length filaments (of lengths 

10 nm, 100 nm and 500 nm) were simulated. The ratio of number of filaments to number of 

plasmids (FP ratio) was varied.  We measured the efficiency of capture in terms of two 

parameters. One is the average time taken for a plasmid to get captured for the first time. 

Second is the fraction of successful capture events. We report that in E. coli cells, dynamic 

instability does not alter the time required for a ParM filament to capture a plasmid target 

(Figure 7.7A). The capture time also did not appear to depend on the number of filaments 

available per plasmid for binding. The fraction of successful capture events, however, 

appeared to be proportional to the number of filaments available for binding, but did not seem 

to be affected by dynamic instability of the filaments (Figure 7.7B).  
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Figure 7.7. Effect of dynamic instability on plasmid capture in simulation. (A) Plasmid capture 

time and (B) the fraction of successful capture events are measured across an increasing ratio of 

number of filaments to number of plasmids (FP ratio). The filaments are either dynamic or fixed-

length filaments of different lengths. 20 runs of the simulation were performed for each kind of 

filament.  

Filaments bound to plasmids show slightly increased lifetimes 

It is observed that once a plasmid is captured by a ParM filament, the bound end is stabilized 

by ParRC complexes (Schumacher et al., 2007; Moller-Jensen et al., 2007), thereby preventing it from 

catastrophe and increasing the rate of polymerization of the filament at that end (plus end) (Gayathri 

et al., 2012).  Let us assume that a filament polymerizing at 22 nm/s at the plus end displaces 

a bound plasmid at the same speed. Theoretically, it would take ~34 s for the filament to push 

the plasmid from the centre to the poles i.e. over a distance of 1/4
th

 cell length (~0.75 μm). If 

a single filament bound to a plasmid target is capable of transporting the plasmid over the 

required distance within a short time, is the pairing of two antiparallel half-spindles essential? 

Since one end of a filament in a half-spindle is free and prone to catastrophe, we speculate 

that the potential answer to this question may lie in the time for which a dynamic filament 

bound to a plasmid survives in the absence of rescue events. 
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Figure 7.8. Binding increases lifetime of dynamic filaments.  (A) Montage of a simulation of 

dynamic filaments (yellow) bound to ParRC complexes (orange dots) on plasmids (blue circles, n = 

100). Scale bar - 0.2 μm. (B) The average lifetimes of bound and unbound filaments are compared.  

We calculated the lifetime of filaments when bound to plasmids. We find that in 

simulation, the filaments bound to plasmids show increased lifetimes i. e. 31.1 s (Figure 

7.8A,B). However, this lifetime is still not sufficient for the filament to complete the 

segregation by itself as the process is estimated to take ~3-4 minutes in vivo (Campbell and 

Mullins, 2007).  

The finding that bound filaments have shorter lifetimes than 3-4 minutes inspite of 

stabilization by plasmids at one end suggests that other mechanisms may be employed in vivo 

to stabilize the free end of a filament, so that it can last till the entire segregation is 

completed. One such mechanism could be the pairing (bundling) of free ends of filaments 

belonging to two antiparallel half-spindles. Since bundling and sliding interactions in ParM 

filaments have only been reported qualitatively so far, we attempt to quantify the parameters 

associated with these interactions.  
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7.3.2. Quantitative image analysis of ParM filament sliding 

In an E. coli cell, the direct observation of sliding interactions in ParM filaments is 

hampered greatly due to the diffraction limit of light. Therefore, the use of computer 

simulations is most suited to identify the potential role of ParM filament sliding in 

prokaryotic spindle assembly and segregation. However, simulations of this process are 

currently hindered by the lack of quantitative information on ParM filament sliding. We 

quantify for the first time to our knowledge, the parameters of sliding of ParM filaments from 

in vitro microscopy data using image analysis. The quantified parameters include: 

(a) The angle of contact made by filaments prior to sliding, when they approach each 

other in the field of view. 

(b) The diffusive behavior of short ParM filaments that slide onto long filaments.  

(c) The phases in which sliding occurs in vitro.  

(d) The persistence length of individual ParM filaments and bundles. 

 

Towards quantitative image analysis, we employ multiple programs. A customized 

MATLAB code was used to determine the angle of contact of ParM filaments interactively. 

The diffusion and sliding processes were analyzed using AMTraK (Chaphalkar et al., 2016) 

(described in Chapter 3), an automated kymography tool implemented in MATLAB, that 

generates and processes kymographs. The persistence lengths of individual filaments and 

bundles were estimated using an open source tool named FiberApp (Usov and Mezzenga, 

2015).  The methodology of these analyses is described in detail in Section 7.2.2.  

 

Sliding is favoured by acute angles of contact 

Filaments were speckle labelled with Alexa568 and allowed to diffuse on the surface 

of the coverslip. When a diffusing filament approaches another filament either at the tip or 

along the length, we observe that there are two outcomes. Sliding may or may not happen 

successfully between these filaments (Figure 7.9A, B). In case of a successful sliding 

encounter, we find typically that one filament stays stationary (template filament) and the 

other filament slides progressively on the template filament. We quantify the smallest angle 

made by the pair of filaments at the point of contact (Figure 7.9C, D) and find that sliding is 

favoured by lower angles of contact.  
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Figure 7.9. Preferred angle of contact during sliding. The first and last images from time-lapse 

microscopy show (A) successful sliding events and (B) unsuccessful sliding events. Time is indicated 

in seconds. Scale bar is 4 µm. The schematics in (C) and (D) show encounters between filaments that 

may either happen at the tip or elsewhere along the length of the template filament. The distribution of 

angles of contact () for filaments are plotted as angular histograms when they meet at the (C) tip (n = 

34) or (D) elsewhere along the length (n = 48). Angles for successful sliding are shown in blue while 

unsuccessful sliding events are shown in red. 

 

Angles below 60
0
 were found to be favourable for sliding events. Perpendicular 

encounters between filaments usually resulted in unsuccessful sliding (Figure 7.9B). On rare 

occasions, we saw unsuccessful sliding despite lower angles of contact. The analysis predicts 

that along with the angle, the orientation of the filaments may also be important for filaments 

to slide on each other. While we do not have polarity information in the experimental data 

analysed here, it has been established previously using sliding mutants that antiparallel 

orientation is crucial for filament sliding (Gayathri et al., 2012). 
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Sub-diffusive sliding of short filaments 

We next quantify the sliding behaviour of short filaments on long filaments in the 

presence of ATP and AMPPNP (separately) to see if length of the sliding filament plays a 

role in the pattern of sliding observed. Short filaments (mean length - 0.5 μm) labelled with 

Alexa568 and long template filaments (mean length - 10 μm for AMPPNP and 2 μm for 

ATP) were labelled with Alexa488 (Figure 7.10A). Automated multi-channel kymography 

was performed using AMTraK to quantify the motion of short filaments sliding on long 

templates. We traced lines of interest on long template filaments and applied the same LOIs 

on the channel containing short filaments so as to analyse only those filaments that are 

present on long filaments. We find from kymographs (Figure 7.10B) that while the long 

filaments do not show much movement and remain stagnant over time, the short filaments 

perform 1D random walk-like sliding on them.  

 

 

 
Figure 7.10. Restricted diffusion of short ParM filaments sliding on long filaments. (A) 

Schematic of the bidirectional sliding of short ParM filaments (green) on long static filaments 

(magenta). Representative images from time-series of short filaments labelled with Alexa488 (green) 

sliding on long filaments labelled with Alexa568 (magenta) in the presence of ATP (left) and 

AMPPNP (right). Scale bar is 2 µm. (B) Kymographs of static long filaments (left) onto which short 
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filaments slide (right). The mean square displacement (blue lines) of short filaments indicate 

restricted diffusion in the presence of (C) ATP (n = 9) and (D) AMPPNP (n = 123). The fit to the 

average MSD curve (1/4
th
 portion) is marked in red.  

 

Based on trajectories obtained by AMTraK, we calculated the mean squared displacement of 

these small filaments and fit the average curve to the anomalous diffusion equation (Figure 

7.10C,D). We find the filaments to undergo restricted, sub-diffusive motion, further 

confirmed by the anomaly parameter (α) which was found to be below 1 in the presence of 

both, ATP and AMPPNP.  

Kymography reveals three phases of filament sliding 

In contrast with short filaments, long filaments that slide on template filaments of similar 

length showed persistent, rapid sliding in the direction that maximized the overlap between 

them.  
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Figure 7.11. Phases in ParM sliding. Kymographs of filaments sliding in the presence of (A) ATP 

and (B) AMPPNP are generated and tracked using AMTraK. Coloured lines represent tracks. The 

tracks chosen for analysis in these particular kymographs were of speckles of tips, shown in blue in 

(A) and shown in green in (B).  

(C) & (D) The cumulative displacement (see Section 7.2.2) profiles of chosen speckle-tracks are 

calculated and fit to Equation 7.4. The three phases -approach, sliding and pairing- are identified as 

described in Section 7.2.2. The ‘sliding’ phase is marked with a grey box. The fit parameters of 

sliding rate (r), maximal displacement (k) and initial displacement (d0) are listed. (E) The average 

sliding speeds of ParM in the presence of ATP and AMPPNP (n = 11 each) are compared. Error bars 

indicate standard deviation. 
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Automated kymography was performed on pairs of filaments undergoing sliding in 

the presence of ATP or AMPPNP. A typical kymograph from AMTraK (Figure 7.11A,B) 

shows three phases of filament sliding- approach, sliding and pairing. Initially, two filaments 

of comparable lengths appear to be located at a distance from each other. Gradual diffusion of 

the filaments leads to the filaments approaching each other and encountering either at the tip 

(in this case) or along the length. Post contact, while one filament appears to remain stagnant, 

the other filament rapidly slides on it, increasing the overlap between filaments at each step. 

Sliding of filaments continues till the overlap between them is maximized and in 90% of the 

cases observed, the two filaments remained static as a pair.  

The tracks obtained from processed kymographs were used to analyse the 

displacement and speed of sliding filaments. The cumulative displacement of each filament 

was plotted over time and appears to show a sigmoidal profile. The curve was fit to a logistic 

model (Equation 7.4) to determine the rate of sliding and segregate the three phases i.e. 

approach (lag), sliding (log) and pairing (stationary)  based on slope (see Section 7.2.2) 

(Figure 7.11C,D). We find that the average sliding speeds in the presence of ATP (1.24 +- 

0.78 μm/s) and AMPPNP (0.73 +- 0.65 μm/s) are comparable (Figure 7.11C). Surprisingly, 

we find the speed of sliding is ~50 times the velocity of polymerization of a ParM filament 

(0.022 μm/s). For comparison with kymography, ParM filament speckles were tracked in 2D 

using an ImageJ plugin- SpeckleTrackerJ (Smith et al., 2011). Sliding speeds calculated by 

both methods were found to be comparable.  

Bundles show greater persistence length as compared to single filaments 

Initial models of the ParM spindle assembly (Garner et al., 2004) suggested that a 

single ParM filament binds at both ends to ParRC complexes and the insertional 

polymerization of the filament at both ends results in segregation of the plasmids to cell 

poles. However, structural studies have now shown that only one end of a filament is capable 

of binding to a ParRC complex. The formation of a complete bipolar ParMRC spindle in the 

latter case would hence require at least two ParM filaments to come together and interact 

(Gayathri et al., 2012). Given that ParM filaments show sliding and bundling in vitro, one 

may speculate that the possible forms of inter-filament interactions in a complete spindle may 

involve the bundling of filaments. Intuitively, we hypothesize that the segregation of 

plasmids brought about by a bundle of filaments may be more advantageous than that by a 
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single filament. Motivated by the need to illustrate the possible advantage a bundle may have 

during segregation, we quantify the rigidity of single ParM filaments as well as bundles, in 

the form of persistence length. 

 

 
 
Figure 7.12. Persistence length of ParM filaments. (A) Electron micrograph taken from (Ent et al., 

2002) was used to determine persistence length of single ParM filaments. Scale bar – 100 nm. (B) 

TIRF micrograph of bundles of ParM filaments taken from (Gayathri et al., 2012) was used to 

estimate the persistence length of bundles. Scale bar – 5 μm. (C) Kymograph of an image-series 

containing (B) shows speckles moving randomly in a disconcerted manner, confirming the presence 

of filament bundles. (D) Persistence lengths of individual filaments and bundled filaments were 

estimated and compared.  

 

To this end, we employed FiberApp (Usov and Mezzenga, 2015), a tool that estimates the 

persistence length of elongated structures by image analysis. Images of single filaments 

(number of filaments = 25) were taken in the form of an electron micrograph from a 

published report (Ent et al., 2002) (Figure 7.12A). The TIRF micrographs of speckle labelled 

filaments obtained from (Gayathri et al., 2012) were chosen to estimate the persistence length 

of filament bundles (number of bundles = 40) (Figure 7.12B). We confirmed that the 
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filaments were indeed bundled in these image-series by performing kymography using 

AMTraK.  Kymographs made along bright elongated filament-like structures in these images 

show disconcerted motion of speckles over time, confirming the presence of multiple 

filaments that have bundled (Figure 7.12C). 

We calculate persistence length using two methods, the mean squared end-to-end distance 

(MSED) method and the angle correlation method (see Section). With both methods, we find 

that the persistence length of bundles (~30 μm) is ~15 folds greater than that of single 

filaments (~2 μm) (Figure 7.12D). An order of magnitude difference in the two measures 

strongly suggests that bundles have greater rigidity than single filaments. Bundles may 

therefore be capable of exerting forces across greater distances and appear to have an 

advantage during segregation.  

 

7.4. Discussion  

Probing the interiors of small cells such as E. coli (~ 2.8 μm x 0.8 μm) by light 

microscopy is greatly hindered due to the diffraction limit of light. Therefore, to understand 

the spatiotemporal organization and function of subcellular structures such as mitotic spindles 

within these cells, high resolution microscopy experiments need to be augmented by robust 

computational image analysis and theoretical modeling. In this study, we focus on the 

bacterial type II segregation machinery made by ParMRC molecules. Brownian dynamics 

based simulations are used to reconstitute the partial assembly of this spindle within an E. 

coli cell.  

For the faithful segregation of a large, low copy number plasmid such as R1 (100 kb), it is 

crucial that replicated copies of the plasmid move from the centre of the cell to opposite 

poles, each travelling a distance at least 1/4
th

 of the cell length in the span of a few minutes.  

We perform simple simulations to show that plasmids with a diffusion coefficient similar to 

that of R1 do not translocate from the centre to the poles by plain diffusion (Figure 7.5). This 

result indirectly supports the fact that a dedicated spindle machinery which can translocate 

sister R1 plasmids to opposite poles, is required to be employed by the cell to ensure that 

each daughter cell receives at least one copy of the plasmid.  

We further investigate the role of dynamic instability of ParM filaments in the ‘search 

and capture’ of plasmid targets. Our findings indicate that in an E. coli cell, diffusion of ParM 

filaments may be sufficient to bring about ‘search and capture’ of plasmids (Figure 7.7A). 
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Theoretical studies in eukaryotic cells have shown that dynamic instability of microtubules 

greatly improves the efficiency of ‘search and capture’ of chromosomes (Holy and Leibler, 

1994). However, we do not observe any difference in the plasmid capture time by dynamic 

ParM filaments and fixed-length filaments in an E. coli cell (Figure 7.7A). We suspect that 

the contrast in ‘search and capture’ processes in eukaryotic and E. coli cells in terms of the 

role of dynamic instability could potentially be explained by the difference in the cell sizes. A 

systematic study of the effect of cell size or volume on plasmid capture time could be 

performed in future to address this hypothesis. Also, our work differs from the theoretical 

studies performed in eukaryotic cells in terms of number of dimensions. While Holy and 

Leibler (Holy and Leibler, 1994) performed calculations in 2D, our results emerge from 

simulations carried out in 3D, possibly explaining the contrast in results.  

Further, we tested the effect of the number of filaments available per plasmid for 

binding on the plasmid capture time and found that capture time remains unaltered even when 

the ratio of filaments to plasmids increases upto 5 (Figure 7.7A). The fraction of successful 

capture events, however, appeared to be proportional to the number of filaments available for 

binding, but did not seem to be affected by dynamic instability of the filaments (Figure 7.7B).  

In E. coli, although we show that dynamic instability of ParM filaments may not be 

essential to bring about the capture of plasmid targets, we speculate that dynamic filaments 

may play a role in the efficient capture of one half-spindle by another. In future, simulations 

could be performed to address this question and test if half-spindle capture time is 

substantially reduced when the filaments associated with the half-spindle display dynamic 

instability.  

Our finding that filaments in a half-spindle have lifetimes shorter than the time 

required for segregation (Figure 7.8) suggests that other mechanisms are required to stabilize 

and protect the free end of a bound filament from catastrophe, thereby forming a stable 

bipolar spindle that can continue to elongate till the completion of segregation. A stabilized 

structure would persist for longer time in the cell and consequently elongate more. As an 

added advantage, such an elongated bipolar spindle may have increased chances of aligning 

with the major axis of the cell. This may thereby ensure that the two plasmids reach opposite 

ends of the cell and reduce the chances of the formation of a plasmid-less daughter cell. It has 

been hypothesized that pairing of filaments allows the stabilization of free ends. In future, it 

would be interesting to test this using simulations. 
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In addition to dynamic instability, we explored the quantitative nature of sliding 

interactions in ParM filaments observed in vitro in the presence of ATP or AMPPNP. 

Automated kymography using AMTraK revealed three phases – approach, sliding and 

pairing. Notably, filaments that approached each other at angles of contact below 60
0
 ended 

up in a successful sliding event and perpendicular interactions appeared to not favour sliding. 

The speed of movement was estimated from the rapid sliding phase was ~1 μm/s, about 50 

folds higher than the velocity of growth of ParM filaments reported previously. As this 

sliding is contractile and tends to maximise the overlap between two filaments, it is safe to 

assume that if sliding were to occur in the filaments of two half-spindles in vivo, it would 

oppose the direction of insertional polymerization. This may in turn offer resistance to the 

segregation process and affect the rate at which plasmids are being pushed apart, thus making 

it difficult for segregation to be completed in the reported timescale of a few minutes 

(Campbell and Mullins, 2007). As sliding between filaments is extremely difficult to 

visualize in vivo, this conundrum could be addressed by developing simulations of complete 

spindle assembly and segregation, inclusive of the sliding behaviour between filaments, 

based on the quantitation performed in the current work. Preliminary simulations performed 

with this objective hinted at the possibility of the following scenario. Sliding between two 

half-spindles allows minus ends of filaments (that are stabilized by pairing), to reach upto 

plasmids. These plasmid obstacles are now used as footholds against which the minus end of 

each filament continues to push, temporarily assisting the segregation. This may be 

accompanied by insertional polymerization at the plus end of the other filament in the pair, 

causing an overhang in the two filaments which is overcome by sliding yet again. However, 

more simulations need to be performed to deliberate on this possibility of events. 

7.5. Conclusion  

In this study, we found Brownian dynamics based simulations to be ideal to investigate 

the role of dynamic instability in ‘search and capture’ of plasmids by ParM filaments in an E. 

coli cell. Our results indicate that neither the dynamic instability of filaments, nor the number 

of filaments available per plasmid alter the time taken by a ParM filament to capture a 

plasmid.  

Our novel quantitation of the in vitro sliding parameters of ParM filaments shows that 

filaments favour lower angles of contact (<60
0
) for successful sliding. The persistence length 

of ParM bundles and individual filaments is shown to differ by an order of magnitude, 
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indicating the advantage of plasmid segregation by filament bundles. Automated kymography 

using AMTraK shows that short filaments slide on long filaments in the form of a 1D random 

walk, in a sub-diffusive manner. Kymography also revealed that sliding in filaments of 

comparable lengths proceeds in a contractile manner in three phases- approach, sliding and 

pairing. Interestingly, the speed of sliding was found to be ~50 times the rate of 

polymerization of the filament. Simulations incorporating the quantitation of filament sliding 

performed in this work could help identify the potential role of ParM sliding during plasmid 

segregation by this minimal machinery in E. coli. 
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Chapter 8 

Conclusion and Outlook 

 

    In the present work, I have aimed to improve our quantitative understanding of subcellular 

dynamics by a combination of computational tool development, analysis of microscopy 

image data and computer simulations. The work is divided into two parts. The first part 

focuses on the development of tools for automated quantitative image analysis of microscopy 

data. The second part describes how these tools have been applied to study certain aspects of 

mechanics of cytoskeletal spindles in eukaryotic and prokaryotic cell systems through 

quantitative image analysis and Brownian-dynamics based simulations.   

    The chapters 3, 4, and 5 of the thesis describe AMTraK, FluoreT and DICOT respectively, 

the three automated tools I have developed for image analysis to quantify time-lapse 

microscopy data in labelled and label-free images. The wide utility of these tools is 

demonstrated by analysing diverse image-series emerging from in vitro microtubule gliding 

assays with kinesin, coalescence dynamics of microtubule-asters, clathrin assembly kinetics 

on lipid tethers to in vivo axonal vesicle transport, DNA segregation in E. coli and embryonic 

cell division in C. elegans. The tools are rigorously validated with simulated noisy data, 

tested on experimental image time-series and benchmarked by comparing their results with 

manual measurements, published literature and outputs of other software. The three image 

analysis tools described in my work are integrated into intuitive, user-friendly graphical 

interfaces with minimal tuneable parameters and require minimal level of computational 

expertise for operation. The codes are written in MATLAB, a coding environment commonly 

resorted to by biologists worldwide. This adds to the extensibility of these tools, allowing the 

scientific community to build on them in order to enhance existing features of particle 

segmentation and tracking. The tools are found to be precise as repeated measurements on the 

same data using the same set of parameters yield identical output. Owing to their objective 

detection criteria and open source code, we believe AMTraK, FluoreT and DICOT can be 

used to extract more and reproducible statistics from microscopy images.  

Automated multi-peak tracking kymography (AMTraK, described in Chapter 3) was 

developed as an automated tool for the quantification of kymographs. Our approach detects 

peak and edge information and utilizes a distance minimization method for generating tracks. 

AMTraK displayed sub-pixel accuracy of particle-position detection when it was validated 
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using simulated images of beads undergoing random walk in the presence of background 

noise. The general applicability of the tool is illustrated by quantifying microtubule transport 

dynamics, clathrin polymerization kinetics, DNA segregation and axonal vesicle transport.  

Fluorescence Tracker (FluoreT, described in Chapter 4), is a single particle tracking 

software developed for high throughput quantitation of particle motion and length in 2D. 

FluoreT is shown to display sub-pixel accuracy of particle-position detection even at SNR as 

low as 4 and reproduces identical values of parameters of motion when tested on simulated 

data. The speed of kinesin motors associated with microtubules in an in vitro assay is 

estimated using the tool (0.29 μm/s) and is comparable to measures from other software. We 

also found that while FIESTA underestimated the number of filaments in view, FluoreT 

could correctly estimate the value. In future, FluoreT could be improved significantly in 

terms of segmentation accuracy by applying Gaussian fitting algorithms as well as by 

providing alternative segmentation algorithms to enable the user to make a suitable choice for 

a given dataset. As centroid-based tracking is sensitive to fluctuations in particle shape, 

particles with high aspect ratios such as filaments could additionally be processed to obtain 

tip information. This information would be useful especially in tracking the length dynamics 

of filaments such as microtubules (without taxol stabilization) that grow and shrink over time 

and show different polymerization and depolymerisation kinetics at both ends. FluoreT could 

be additionally integrated with more efficient tracking algorithms such as cross-correlation 

and sum-absolute-difference (Cheezum et al., 2001) as alternatives to the current distance 

based approach. In order to resolve spatial overlaps and crossovers in filaments, ‘branch 

pruning’ (Athale and Chaudhari, 2011) that relies on running angles of skeleton pixels, or 

‘multi-assignment’ algorithms designed for high density data (Kirubarajan et al., 2001) could 

be implemented. This would help to improve the accuracy of the tool in conditions of low 

SNR and high particle density. 

            Differential Interference Contrast Object Tracker (DICOT, described in Chapter 5), is 

a comprehensive particle tracker developed to automatically segment and track objects in 

DIC images, in order to quantify their movement and length. The tool is validated on 

experimental image-series of micron-sized beads diffusing in multiple solvents. The diffusive 

behaviour of beads was quantified and the effective diffusion coefficient was used to 

calculate the viscosity of the solvents - (i) water and (ii) 25% glycerol solution- by Stokes-

Einstein’s relation. We find the estimated mean viscosities of water and 25% glycerol to be 
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0.001 Pa s and 0.0026 Pa s respectively, consistent with published reports. In future, as an 

additional feature in DICOT, the gradient detection based segmentation module in 

combination with distance based tracking could be utilized to analyse the length dynamics of 

elongated rod-shaped structures such as E. coli cells or cytoskeletal filaments. 

Having validated DICOT, we applied it to estimate the viscosity of cytoplasm of 

zygotes of 6 related species of nematodes (described in Chapter 6). Our estimate of effective 

cytoplasmic viscosity of C. elegans zygotes is ~0.15 Pa s, about 150 times the viscosity of 

water (0.001 Pa s). This value obtained for C. elegans, however, is 4-10 folds lower than the 

values reported previously (Daniels et al., 2006; De Simone et al., 2018). Further, we find the 

viscosities vary in these related species and appear to correlate with the pattern of spindle 

motion and recoil velocities during positioning. Our non-invasive, label-free method for 

estimation of viscosity of the cytoplasm of nematode zygotes using yolk granules as 

endogenous probes paves way for understanding the variability that has emerged during the 

course of evolution, in the biophysical properties of cells and molecular assemblies such as 

the mitotic spindle. Zygotes of less-studied nematode species, including those other than the 

Caenorhabiditis species could be analysed by this method, irrespective of the degree of their 

amenability to genetic and physical manipulation.  

We studied the effect of dynamic instability of ParM filaments in the assembly of the 

minimal plasmid-segregating spindle in E. coli by Brownian dynamics based simulations 

(described in Chapter 7). We show that plasmids as large as R1 do not translocate from the 

centre to the poles by plain diffusion. We report that in E. coli cells, dynamic instability does 

not alter the time required for a ParM filament to capture a plasmid target (Figure 7.7A) 

suggesting that diffusion may be sufficient to bring about plasmid capture by ParM filaments 

in these cells. Our finding differs from previous studies in eukaryotic cells that show that 

dynamic instability of microtubules greatly improves the efficiency of search and capture of 

chromosomes. While dynamic instability of ParM filaments may not be essential to bring 

about the capture of plasmid targets, we speculate that dynamic filaments may play a role in 

the efficient capture of one half-spindle by another. In future, simulations could be performed 

to address this question and test if half-spindle capture time is substantially reduced when the 

filaments associated with the half-spindle are dynamically unstable. The novel quantification 

of ParM sliding dynamics performed in this study when combined with simulations that 

reconstitute the complete assembly and action of the ParMRC spindle could improve our 
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understanding of this minimal DNA-segregating machinery and help identify the potential 

role of inter-filament interactions in the process. 

            In conclusion, my work highlights the utility of novel tool development and its 

application to the dynamics of subcellular processes both in vitro and in vivo. Quantitative 

studies on a high throughput scale using such tools could be utilized to gain new insights in 

old biological problems through the analysis of labelled and label-free imaging data. 
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