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Abstract

Dark matter has been one of the most elusive puzzles in our understanding of the cosmos for

over seventy years now. In this document, we explore the effects of the pair production of certain

exotic particle states called millimagnetically charged particles (mmCPs) on the gravitational

waves generated by a magnetar. We explicitly calculate the difference in the time evolution of

the gravitational wave (GW) amplitude which, when the waves are detected in the future, could

serve as a signature of the presence of said mmCPs.

In this enterprise, we first present the necessary background on gravitational waves and then

look at the existing literature on the gravitational waves in the context of isolated neutron stars.

Due to the presence of multiple ideas on neutron star magnetic fields, we choose the ideas which

we believe are the closest to reality and proceed to calculate the deformation to the star which

generates a non-zero quadrupolar ellipticity and thus, gravitational waves. The amplitude of the

gravitational waves is directly affected by the strength of the magnetic field. We compare the

GW amplitude by evolving the magnetic field with and without the presence of mmCPs and find

that there is a difference.

In the last chapter, we explore the application of an interesting idea regarding worldline in-

stantons that recently appeared in the literature. We wish to see the potential arenas this new

idea may open up in this subfield. We also apply the technique to two different situations and

find that the solution matches the known solution.
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Chapter 1

Introduction

In this chapter, we introduce the main players in our work, the elusive dark matter and the ever

intriguing neutron stars.

Dark Matter

The extensive presence of dark matter is an intriguing puzzle with a large number of ideas in the

literature [1]. The first evidence of dark matter was pointed out by Zwicky in 1933 [2]. He saw

that the nebulae in the Coma cluster had unexpectedly high velocities. Further evidence was

provided by the observations of Rubin et al [3]. They observed that the rotation velocities of the

stars at the edge of the galaxy was not agreeing with the values predicted by Newtonian gravity.

In fact, the rotation curves increase linearly up to a certain distance and then flat out. According

to Newtonian gravity, however, if our galaxy was the only mass in the surrounding area, the

velocities should fall off as the square root of the distance after the linear increase. A resolution

to this conundrum was provided by Ostriker and Peebles’ [4] proposal of the presence of a dark

matter halo, which they had used to account for instabilities in the galactic disc models. The

presence of dark matter also plays an important role in large scale structure structure formation

in cosmology, as it the density perturbations generated by dark matter that are believed to have

lead to the large scale structures we see today [5]. In addition, it is of incredible interest to

understand the particle nature of dark matter due to it’s role in big bang nucleosynthesis [6].

Among the possible candidates for dark matter are exotic states called millicharged particles

(mCPs) [7] and millimagnetically charged particles (mmCPs) [8].
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Figure 1.1: A schematic of a neutron star [14]

Neutron Stars and Magnetars

Neutron stars are one of the end stages of stellar evolution, along with black holes and white

dwarfs. They form due the gravitational collapse of a massive star under their own mass. Histor-

ically, they were thought to have a mass between the Chandrasekhar limit of 1.4 solar masses and

3 solar masses. However, the GW170817 event where the result of a binary neutron star merger

collapsed into a black hole [9], suggests a limit closer to the final mass of the merger, ' 2.17

solar masses [10, 11, 12, 13]. A schematic of a typical neutron star is given in Fig. 1.1 [14].

Magnetars are neutron stars with extremely high magnetic fields [15]. On an average, their

magnetic fields are as high as 1015 G [16, 15], making them the most magnetic objects in the
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universe. Originally, they were proposed as likely candidates for soft gamma repeaters (SGRs)

and anomalous X-ray pulsars (AXPs) [17]. Our interest in magnetars stems from the fact that

due to the presence of such high magnetic fields, we can expect the non-perturbative quantum

field theoretic process of Schwinger pair production of mmCPs which can potentially affect the

amplitude of the gravitational waves from the star. Note that this type of gravitational wave

is called a ”continuous” gravitational wave in contrast to a ”burst” type gravitational wave

that are generated by binary neutron star mergers or binary black hole mergers that the Laser

Interferometer Gravitational-Wave Observatory (LIGO) is already observing [18, 19, 20]. These

type of GWs are expected to be detected once the LIGO sensitivity becomes better and future

telescopes like the Einstein Telescope begin operations.

The outline of this thesis is as follows. In Chapter 2, we will understand the basic theory behind

the generation of gravitational waves and rederive important results that will be indispensable

in later exercises. In Chapter 3 we will look specifically at our system of neutron stars and

rederive the important formulae, gain intuition and calculate a few quantities that will be directly

applicable in the meat of the thesis, which is Chapter 4. In this chapter, we shall motivate

mmCPs and look at them in the context of neutron stars. We will use the results obtained in

the previous chapters to obtain the effect of the Schwinger pair production (SPP) of mmCPs on

the gravitational waves from the star. Following this, in Chapter 5, we endeavour on a different

enterprise of trying to calculate the SPP formula for different field configurations. In this context,

we look at a few recent papers and lay down a path for a future project.
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Chapter 2

Gravitational Waves

In this chapter, we will understand the general theory behind the generation and propagation of

gravitational waves (GWs). At the end of the chapter, we will see how pulsars, which are rapidly

rotating neutron stars can act as a source of GWs.

2.1 Linearized gravity

To begin discussing gravitational waves, we start with linearized gravity, i.e., there exists a

coordinate system in which the metric is given by gµν = gµν + hµν , where gµν is the background

and hµν is considered fluctuation over the background. This notion will be made much clearer

later. For now, we take gµν = ηµν . We are going to follow the discussion in [18] and [20] The

action for the theory is given by

Sg =
c3

16πG

∫
d4x
√
−gR (2.1)

where R is the Ricci scalar. Working upto O(h2), we get expressions for the Riemann tensor,

Ricci tensor and the Ricci scalar. Note that the Einstein field equations, Gµν = 8πG
c4
Tµν are

10 in number(symmetric tensors), constrained by the Bianchi identities Gµν
;ν = 0 which are 4

in number, so we solve for 6 equations in total. Note also that GR is invariant under xµ →
x′µ(x), under which gµν → g′µν = ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ. By choosing a particular coordinate system in

which gµν = ηµν + hµν , we are using up this freedom. We still have a residual gauge freedom

xµ → x′µ(x) = xµ + ξµ, with |∂µξν | � |hµν |, under which the metric transforms as gµν → g′µν =

ηµν − ∂µξν − ∂νξµ + hµν +O(∂ξ2). Renaming −∂µξν − ∂νξµ + hµν as h′µν , we get g′µν = ηµν + h′µν
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with |hµν | � 1, i.e., this is indeed a symmetry of the (linearized) theory. Under finite global

Lorentz transformations, x′µ = Λµ
νx

ν , the metric transforms as gµν → g′µν = Λρ
µΛσ

νgρσ which

reduces to

g′µν = ηµν + Λρ
µΛσ

νhρσ

= ηµν + h′µν

therefore, hµν is a tensor under Lorentz transformations. Similarly, under global space-time

translations, x′µ = xµ − aµ, g′µν = δρµδ
σ
ν gρσ = gµν = ηµν + hµν . Therefore, hµν is invariant under

translations. Thus, we conclude that hµν is invariant under the Poincare group. In the next

subsection, we shall see the form the field equations take in the linear regime.

2.1.1 Einstein’s equations in the linear regime

For the metric gµν = ηµν + hµν , the Riemann tensor turns out to be [18]:

Rµνρσ =
1

2
(∂ρνhσµ + ∂σµhρν − ∂ρµhνσ − ∂σνhρµ)

and it is clearly invariant under hµν → h′µν = −∂µξν − ∂νξµ + hµν , as expected since this

transformation is a symmetry of the theory. We now introduce the trace-reversed metric tensor,

hµν = hµν − 1
2
ηµνh (so called since hµµ = trace of hµν = −hµµ), and putting this back in Einstein’s

equations gives

2hνσ + ηνσ∂
ρλhρλ − ∂ρνhρσ − ∂ρσhρν +O(h2) = −16πG

c4
Tνσ

which, analogous to electromagnetism, using the Lorentz gauge ∂µh
µν

= 0 and neglecting higher

order terms reduces to

2hνσ = −16πG

c4
Tνσ (2.2)

where the Tµν is the energy momentum tensor and is a conserved current of space time transla-

tions, which amounts to saying ∂µT
µν = 0 in the linear theory (in the full theory, this becomes

∇µT
µν = 0). Setting the condition that T µν = 0,

2hνσ = 0 (2.3)

we obtain the wave equation for vacuum propagation.
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Our metric is a symmetric rank 2 tensor and thus has 10 independent components. Using

the Lorentz gauge, we have 4 constraints, thus 10− 4 = 6 independent components. Observing

that Eq.(2.3) is invariant under hµν → hµν + ξµν with ξµν = ηµν∂ρξ
ρ − ξµ,ν − ξν,µ with 2ξµ = 0,

we have 4 further constraints for a total of 2 independent components. We can make use of this

gauge freedom by choosing ξ0 such that the trace of hµν becomes 0. Then, we can choose ξi

such that h0i = 0. Also, once trace becomes 0, hµν = hµν . Therefore, until now, we have used

up 4 degrees of freedom, hµµ = 0 and h0i = 0. Now, using Lorentz gauge’s ν = 0 equation, we

get ∂0h
00 + ∂ih

0i = ∂0h
00 = 0 meaning that h00 is time independent. We can thus choose it to

be 0 such that we now have h0µ = 0. Including the trace condition, we have used up 5 degrees

of freedom. The Lorentz condition now reads ∂ih
ij = 0 (these are called transverse conditions -

analogous to electromagnetism’s polarization condition). Thus, this gauge is called transverse

traceless gauge or TT gauge [20]. To summarize, the components are given by

2hµν = 0 (2.4)

with the gauge conditions

h0µ = 0, hµµ = hii = 0 and ∂ih
ij = 0 (2.5)

We call this metric hTTij . For a single plane wave, with direction of propagation along n̂, the

gauge condition reduces to nihTTij = 0. Assuming n̂ = ẑ, the solution of the wave equation can

be written as

hTTij =

h+ h× 0

h× −h+ 0

0 0 0

 cosω(t− z/c) (2.6)

where h+ and h× are the polarization states, the two independent components in the metric.

Now, let us define two operators called projection operator and Λ - operator as:

Pij(n̂) = δij − ninj, i.e., Pij = Pji, n
iPij = 0, PijP

jk = P k
i , and P

ii = 2 (2.7)

Λij;kl = PikPjl −
1

2
PijPkl (2.8)

and observing that Λii;kl = 0, we say hTTij = Λij;klhkl, where hij is in the Lorentz gauge. This

above relation will be very useful in later obtaining a solution to the full wave equation with a

source term.
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Graviton On a side note, we can connect some important properties about gravity and semi

classical physics by obtaining the spin of ”graviton”. For this, we rotate the 2×2 matrix of the

metric in the plane perpendicular to n̂ by an angle φ about n̂. This is mathematically achieved

by multiplying with rotation matrix R from one side and RT , the transpose, from the other to

obtain the new h′+ and h′× as:

h′+ = cosφh+ − sinφh× (2.9)

h′× = sinφh+ + cosφh× (2.10)

Looking at h× ± ih+, after rotation, it becomes:

h× ± ih+ → h′× ± ih′+ = e∓2iφ(h× ± ih+) (2.11)

which can be interpreted, from helicity concepts of particle physics, as graviton having spin 2.

This conclusion is discussed below

Helicity and Group Theory Helicity, h, in particle physics is defined the eigenvalue of the

operator defined as:

H = S · p̂

where S is the spin operator and p̂ is the momentum direction. A helicity state is an eigenstate

of H. Noting, in addition, that R(p̂, φ) = eiS·p̂φ = eiHφ, we have:

H|ψ〉 = h|ψ〉 =⇒ eHφ|ψ〉 = ehφ|ψ〉.

Using this argument above with h× ± ih+ as the helicity state, we have the helicity h = 2. This

means that the value of |S| = 2, i.e., spin is 2.

2.2 Effective Energy Momentum tensor

In this section, we generalize gravitational wave propagation to the case when the background

is not necessarily flat, following the discussion from [18]. The metric is given by gµν = gµν + hµν

with |hµν | � 1. If we think of GW’s as plane waves, we have a scale for comparison. This scale

is frequency when talking about GW propagation in time, idea coming from eiωt. Similarly, the

scale is wave vector when talking about GW propagation in space, as in eikx. The background

varies much slower than the fluctuations, by definition and hence the values kB and ωB for the
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background are much smaller than those of the fluctuation

kB � k and ωB � ω.

We choose one of the above conditions to Taylor expand the relevant quantities and though the

mathematics is the same, there is a subtlety of time and space. Thus, expanding Rµν to O(h2),

we get

Rµν = Rµν +Rµν
(1) +Rµν

(2) +O(h3) (2.12)

where the superscript 1 and 2 represent the order of h and Rµν is calculated purely from the

background, i.e., 0th order in h. We will now integrate out the higher frequency modes. In order

to identify them, note that Rµν is low frequency, by default, and Rµν
(1) is high frequency (since

Ricci tensor contains derivatives of h ∼ eikx and k is high here as previously discussed), and

Rµν
(2) has both high and low (since h · h ∼ ei(k1+k2)x and h · h ∼ ei(k1−k2)x are both possible, the

first term gives the high frequency term, the second gives the low frequency term) [20]. Putting

this Rµν in the trace reversed Einstein equations, and taking only the low frequency modes, we

get

Rµν = −
[
Rµν

(2)
]lowfreq.

+
8πG

c4

[
Tµν −

1

2
gµνT

]lowfreq.
(2.13)

introducing a length scale 1
k
� l� 1

kB
and averaging, we get

Rµν = −
〈
Rµν

(2)
〉

+
8πG

c4

[
〈Tµν〉 −

1

2
gµν 〈T 〉

]
≡ −

〈
Rµν

(2)
〉

+
8πG

c4

[
T µν −

1

2
gµνT

]
(2.14)

where 〈·〉 represents an average over a spatial volume l3 and thus, the high frequency modes

average out to 0. Taking the trace of this equation, we get

R = −
〈
R(2)

〉
+

8πG

c4

[
T − 1

2
4T

]
= −

〈
R(2)

〉
− 8πG

c4
T . (2.15)

Multiplying (12) by 1
2
gµν and subtracting from (11), we get

Rµν −
1

2
gµνR = −

〈
Rµν

(2) − 1

2
gµνR(2)

〉
+

8πG

c4
T µν

=
8πG

c4

(
T µν + tµν

)
, (2.16)

9



where we have defined tµν = − c4

8πG

〈
Rµν

(2) − 1
2
gµνR(2)

〉
as the effective energy momentum ten-

sor. Explicit calculation gives tµν = c4

32πG

〈
∂µhαβ∂νh

αβ
〉
.

The 00th component of the energy momentum tensor gives the energy density. Writing the

metric in the TT gauge, we have

t00 =
c4

32πG

〈
∂0hij∂0h

ij
〉

=
c4

16πG

〈
ḣ+

2
+ ḣ×

2
〉
. (2.17)

Now, we can write energy density t00 as dE
dV

= dE
dldA

and thus the energy flux per unit area as

dE

dtdA
=

c3

16πG

〈
ḣ+

2
+ ḣ×

2
〉
. (2.18)

2.2.1 Solving the linearized Einstein equations

In this section, we will solve the Einstein equations given by,

2hµν = −16πG

c4
Tµν , ∂µh

µν
= 0, and ∂µT

µν = 0 (2.19)

in the following limits:

1. In weak field (obviously, since we are using the wave equation which is valid only in weak

field)

2. Slow internal motion(that is, the internal motions of the object are non-relativistic), and

3. Negligible self-gravity(i.e., the dynamics are determined by non-gravitational forces)

Expanding a bit more on point no. 3, for self gravitational systems, we can use the virial theorem,

K.E. = −1
2
P.E., to get [20]

1

2
mv2 =

1

2

GMm

r
(2.20)

that is,
v2

c2
=

2GM

c2

1

2r
=
RS

2r
(2.21)

where m is the reduced mass of the system, M is the total mass of the system, RS is the

Schwarzschild radius of a mass M. For self-gravitational systems, weak field (i.e., RS
2r
� 1) implies,

10



through Eq.(2.21) that internal motions are non-relativistic. For systems with negligible self-

gravity though, the weak field expansion and the internal velocity v
c

can be treated independently.

We are going to use this in the following discussion. Using the Green’s function method to solve

the PDE, introduce

G(x− x′) = − 1

4π

1

|x− x′|
δ(t− |x− x′|

c
− t′) (2.22)

which satisfies 2xG(x− x′) = δ(4)(x− x′) and the solution can thus be written as:

hµν(x) = −16πG

c4

∫
d4x′G(x− x′)Tµν(x′).

Using the Λ-operator (with n̂ = x
|x|), we can go into the TT-gauge and substituting for the

Green’s function, we get:

hTTij = Λij;kl(n̂)
4G

c4

∫
d4x′

1

|x− x′|
δ(t− |x− x′|

c
− t′)Tkl(t′,x′)

= Λij;kl(n̂)
4G

c4

∫
d3x′

1

|x− x′|
Tkl(t−

|x− x′|
c

,x′)

' Λij;kl(n̂)
4G

c4

∫
d3x′

1

r
Tkl(t−

r

c
+

x′ · n̂
c

,x′)

where in the last line, the approximation |x−x′| ' |x|(1− x·x′
|x2 ) = r−x′ ·n̂, where |x| = r � d(the

typical size of the object), is used. Next, using Fourier transform of Tkl(t− r
c

+ x′·n̂
c
,x′), to get

Tkl(t−
r

c
+

x′ · n̂
c

,x′) =

∫
d4k

(2π)4
T̃kl(ω,k)e−iω(t− r

c
+x′·n̂

c
)+ik·x′

and using ω x′·n̂
c
∼ ωd

c
∼ v

c
and assuming v

c
� 1, we can expand the exponential in a power series

as follows

Tkl(t−
r

c
+

x′ · n̂
c

,x′) =

∫
d4k

(2π)4
T̃kl(ω,k)e−iω(t− r

c
)+ik·x′(1− iωx′ · n̂

c
− ω2 x′ · n̂2

c2
+ . . .)

= Tkl(t−
r

c
,x′) +

na
c

∂

∂t
Tkl(t−

r

c
,x′)x′a+

nanb
c2

∂2

∂t2
Tkl(t−

r

c
,x′)x′ax

′
b + . . . (2.23)

where the derivatives are all evaluated at retarded time t− r
c
. We can recast the above expressions

using the mass moments. They are defined as follows:

M =
1

c2

∫
d3xT00(t,x) (2.24)
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Mi =
1

c2

∫
d3xT00(t,x)xi (2.25)

Mij =
1

c2

∫
d3xT00(t,x)xixj (2.26)

and using ∂µT
µν = 0, we can prove that Ṁ = M̈ = 0, M̈i = 0 and that M̈ij = 2

∫
d3xTij, i.e., we

can rewrite the leading order contribution to the amplitude hTTij in terms of M̈ij as

hTTij =
1

r
Λij;kl(n̂)

2G

c4
M̈kl(t−

r

c
) . (2.27)

2.2.2 The self-gravity issue

In the above derivation, we neglected self-gravity and this point is reflected in the treatment of the

weak field and v
c

expansions and also in the Green’s function(Tµν is only the matter part of energy

momentum). Once the self-gravity becomes significant, we need to consider the contribution of

the gravitational field itself to the energy and momentum on the RHS of Einstein’s equations.

This discussion is followed from the sections on energy-momentum pseudo-tensor from Landau

and Lifshitz [21] and Maggiore [20]. We start by deriving the relaxed Einstein equations. Define

hµν = −ηµν + (−g)1/2gµν (2.28)

This definition is exact. hµν is not a small quantity, Eq.(2.28) gives the precise definition of

this quantity. In the limit of weak field, we have gµν ' ηµν + hµν and thus, the determinant

g = −1−h(h being the trace of the perturbation) and gµν ' ηµν−hµν . Thus, Eq.(2.28) becomes

hµν = −ηµν + (1 + h)1/2(ηµν − hµν)

= −(hµν − 1

2
ηµνh)

= −(h
µν

).

Thus, in the limit of weak field, h becomes our familiar h. Now, imposing the harmonic gauge

or the de Donder gauge, ∂µh
µν = 0, we get the Einstein equations in the form:

2hµν =
16πG

c4
((−g)T µν + τµν) (2.29)
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where τµν is a pseudo-tensor with no matter contribution whatsoever. This pseudo-tensor is

completely written in terms of the metric. Note that the 2 = −∂2
0 +∇2 is the d’Alembertian in

flat space. This τµν can be further split into a Landau-Lifshitz part and a divergence as follows:

τµν = (−g)tµνLL +
c4

16πG

(
∂βh

µα∂αh
νβ − hαβ∂α∂βh

µν
)

= (−g)tµνLL +
c4

16πG
∂α∂β

(
hµαhνβ − hµνhαβ

)
(using the gauge condition)

= (−g)tµνLL + ∂α∂βχ
µναβ (2.30)

where χµναβ = c4

16πG

(
hµαhνβ − hµνhαβ

)
and thus write the Einstein equations as:

2hµν =
16πG

c4

(
(−g)(T µν + tµνLL) + ∂α∂βχ

µναβ
)
. (2.31)

From Eq.(2.29), we can see that the gauge condition imposed force that

∂µ(((−g)T µν + τµν)) = 0. (2.32)

Thus, this is the energy-momentum conservation equation in this formulation.

2.3 Pulsars as a source of gravity waves

Pulsars are fast rotating neutron stars, one of the end stages of stellar evolution that result when

the leftover mass is above the Chandrasekhar limit, but less than 2-3 solar masses. We will deal

with the quadrupolar ellipticity of these objects as discussed in the Introduction. Quadrupolar

ellipticity results from the time varying quadrupole moment of the neutron star. We consider the

moment of inertia in two frames associated with a rigid, rotating body, the body-fixed frame

and inertial frame. Let the axes of the body frame lie along the principal axes of inertia, labelled

as (x′, y′, z′) and the axes of the inertial frame labelled as (x, y, z) with z coinciding with z′. In

this scenario, the inertia tensor in the body frame is diagonal and is related to the inertial frame

by a time-dependent rotation matrix Rij. The relation goes as I ′ij = RikRjlIkl = RikIklR
T
lj ⇒

I ′ = RIRT , multiplying from the left by RT and from the right by R, we get I = RT I ′R. The

explicit form of the rotation matrix is, assuming angular velocity ω,

R =

 cosωt sinωt 0

− sinωt cosωt 0

0 0 1
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and thus, obtain

I(t) =


I1+I2

2
+ 1

2
(I1 − I2) cos 2ωt 1

2
(I1 − I2) sin 2ωt 0

1
2
(I1 − I2) sin 2ωt I1+I2

2
− 1

2
(I1 − I2) cos 2ωt 0

0 0 I3

 (2.33)

Inspecting the fact that the general definition of the moment of inertia is Iij =
∫
d3xρ(R2δij +

xixj) = Mij+
∫
d3xρR2δij, where Mij is the second mass moment as previously defined. Recalling

that in the formula for leading order contribution to the GW signal (i.e., the perturbation to the

background metric), we have the second time derivative of Mij(t), we try out

2G

c4r
Λij;kl(n̂)Ïkl =

2G

c4r
Λij;kl(n̂)

(
δkl

∫
d3xρ̈R2 + M̈kl

)
=

2G

c4r
Λij;kl(n̂)M̈kl

= hTTij (t,x)

where, in the second line, we have used the fact that Λij;klδkl = 0. We can now use all the

moment of inertia formulae that we have obtained in this section to find explicit expressions for

h+ and h×, for an observer at an angle θ to x3 axis (x1 and x2 oriented such that φ = 0) as

follows:

h+ =
4Gω2

rc4
εI3

(1 + cos2 θ)

2
cos 2ωt

h× =
4Gω2

rc4
εI3 cos θ sin 2ωt.

(2.34)

(2.35)

Using Eq.(2.18) and writing dE
dtdA

= dP
dA

= dP
r2dΩ

, and substituting the above formulae and inte-

grating, we get

P = −dE
dt

=
32G

5c5
ε2I2

3ω
6 (2.36)

which is the rate of energy loss of the neutron star. Next, using the expression for rotational

energy from classical mechanics, E = 1
2
Iω2, we get,

dE

dt
= Iωω̇ = −32G

5c5
ε2I2

3ω
6

that is,

ω̇ = −32G

5c5
ε2I3ω

5 (2.37)

is the rate of decrease of the angular velocity of the star.
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2.3.1 Applicability of the above derived amplitudes

In this section, we will check/justify the applicability of Eq.(2.27) and thus, Eqs.(2.34) and

(2.35) to the case of neutron stars. In general, pulsars are rapidly rotating neutron stars-the

most compact directly observable objects in the Universe. Clearly, these objects are strong

field objects and the formulae we derived using weak field limits may not be applicable. For

such relativistic objects, Ipser [22] showed that the leading order contribution to the amplitude

for a slow moving strong field object is structurally identical to the Eq.(2.27) with some subtle

differences:the mass quadrupole moment has to be the coefficient of 1
r3

(r = xix
i) in the expansion

of the 00th component of the metric in a family of coordinate systems known as asymptotically

Cartesian and mass centred(ACMC) coordinate systems [23], of which the harmonic coordinate

system we previously alluded to is an example. The space surrounding a neutron star with mass

M , radius R, and angular velocity ω can be divided into three regions [23]:

1. the strong field regime with r . 2GM
c2

2. the weak field near zone with max(R, 2GM
c2

) . r . c
ω

3. the wave zone with r > c
ω

We know that even for extreme cases, the weak field near zone is well-defined [24]. Now, to use

the formula developed by Ipser, we need to know how ACMC coordinate systems are defined.

An asymptotically Cartesian and mass centred(ACMC) coordinate system is a coordinate system

(x0, x1, x2, x3) in which the metric has the following 1/r expansion in the weak field near zone:

g00 = −1 +
2M

r
+
α1

r2
+

1

r3

[
3Iij

xixj

r2
+ β1i

xi

r
+ α2

]
+O

(
1

r4

)
(2.38)

g0i = −4εiklJ
k x

l

r3
+O

(
1

r3

)
(2.39)

gij = δij +
α3ij

r
+

1

r2

[
β2ijk

xk

r
+ α4ij

]
+O

(
1

r3

)
(2.40)

where α1, α2, α3ij, α4ij, β1i, and β2ijk are some constants. According to [24] and [23], the

quantity Iij is a tensor that resides in flat space. This means that it’s indices can be manipulated

using the flat space metric. It is also symmetric and traceless. In the Newtonian limit, it can be

written in terms of the moment of inertia tensor as:

Iij = −Iij +
1

3
Ikk δij
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with the moment of inertia tensor Iij defined by

Iij =

∫
d3x ρ(x)(xkx

kδij − xixj). (2.41)

Finally, the GW amplitude is given by [24], [22] and [23]:

hTTij =
1

r
Λij;kl(n̂)

2G

c4
Ïkl
(
t− r

c

)
(2.42)
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Chapter 3

Neutron stars

In this chapter, we will first understand what the effect of the magnetic field is on the shape

of the neutron star. We will prove that it is similar to that of a rotation, in that it flattens at

the poles [25]. Following this, we will explicitly calculate the deformations due to the magnetic

field [26].

3.1 Effect of magnetic field on the shape of the neutron

star

In this section, we will check the stability of the shape of neutron stars with magnetic fields. We

will model the neutron star as an incompressible fluid with a uniform magnetic field inside and a

dipole magnetic field outside. We follow the discussion from section IV of [25]. Using the above

cited model for the magnetic field of a neutron star, using spherical polar coordinates, we have:

Bint
r = B0 cos θ and Bint

θ = −B0 sin θ (3.1)

Bext
r = B0

(R
r

)3

cos θ and Bext
θ =

1

2
B0

(R
r

)3

sin θ (3.2)

where Bint
r and Bint

θ are the components of the internal magnetic field and Bext
r and Bext

θ are

components of the external dipole magnetic field. Next, calculating the energy stored in the

17



magnetic field, we get

Eint =
1

2µ0

∫
dτBint2

=
1

8π

∫
r<R

r2 sin θdrdθdφ((Bint
r )2 + (Bint

θ )2)

=
1

6
B2

0R
3 (3.3)

where we have used natural units in which µ0 = 4π and the integration limits are 0 < r < R, 0 ≤
θ < π, and 0 ≤ φ < 2π. For the energy stored in the external field,

Eext =
1

2µ0

∫
dτBext2

=
1

8π

∫
r>R

r2 sin θdrdθdφ((Bext
r )2 + (Bext

θ )2)

=
1

12
B2

0R
3 (3.4)

with integration limits for r changed to R < r < ∞ and the other two remaining the same.

Therefore, total energy E = Eint + Eext = 1
4
B2

0R
3.

Now that we have established the initial configuration of the system, let us deform the neutron

star. The main idea is that we measure the energy change due to the deformation and:

1. if it is negative, then the deformed configuration is more stable

2. if it is positive, then the deformed configuration is less stable

Using these ideas, we deform the sphere with a Pl(cos θ) deformation:

r(cos θ) = R + εPl(cos θ) (ε� R) (3.5)

and substitute cθ = cos θ, such that sin θ = (1− c2
θ)

1/2 and ∂
∂θ
≡ −(1− c2

θ)
1/2 ∂

∂cθ
and Pl(cos θ) ≡

Pl(cθ). This kind of deformation of the star can be thought of as a displacement vector ξ applied

at each point. This is called a deformation vector. Due to the assumption of an incompressible

fluid, we have ∇ · ξ = 0. We also assume irrotationality and thus have:

ξ = ∇ψ =⇒ ∇2ψ = 0. (3.6)

This is nothing but Laplace’s equation. The solutions for axially symmetric systems is given by
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a linear combination of Legendre polynomials. For a Pl-deformation, the solution is given by:

ψ = ArlPl(cθ) (∵ there is no deformation at the centre). (3.7)

This in turn, implies that ξr = ∂ψ
∂r

= Alrl−1Pl(cθ) and ξθ = ∂ψ
r∂θ

= −Arl−1(1 − c2
θ)

1
2P ′l (cθ)(and

ξφ = 0). Here the prime denotes differentiation w.r.t cθ. But, we know that the deformation at

r = R is given by Eq.(3.5) and thus,

ξr = εPl(cθ) at r = R

=⇒ AlRl−1Pl(cθ) = εPl(cθ)

=⇒ A =
ε

lRl−1
(3.8)

and putting this value of A back in the expressions for ξr and ξθ, we obtain:

ξr =
ε

Rl−1
rl−1Pl(cθ) and ξθ = − ε

lRl−1
rl−1(1− c2

θ)
1/2P ′l (cθ). (3.9)

Now that we have the deformation vector, we can find its effect on the magnetic field and thus

the effect it has on the energy of the system. Denote this change in magnetic field by δB.

3.1.1 Inside the star

We assume that inside the star, we have infinite conductivity i.e., σ =∞. Physically, this means

that a change in the existing magnetic field can only be obtained by physically pushing aside

the field lines(because by Alfven’s theorem the field lines are ”frozen” into the fluid [27]). Then,

to obtain the mathematical form for this ”pushing”, using Ohm’s law(J
σ

= E + v × B) and

that the deformation happens continuously in time in which case, the velocity vector is given by

u = ∂ξ
∂t

and thus, the electric field due to the changing magnetic field and hence the change in

the magnetic field is given by:

δE = −u×B and ∇× δE = − ∂

∂t
(B + δB)

=⇒ ∇×
(
− ∂ξ

∂t
×B

)
= −∂δB

∂t

=⇒ ∇× (ξ ×B) = δB

=⇒ δB = (B · ∇)ξ − (ξ · ∇)B (∵ ∇ ·B = 0 = ∇ · ξ)
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Since the magnetic field inside the star to begin with was homogeneous, we have (ξ · ∇)B = 0

and using spherical polar coordinates, we have:

δBint
r = Bint

r

∂ξr
∂r

+
Bint
θ

r

∂ξr
∂θ
− Bint

θ ξθ
r

(∵
∂θ̂

∂θ
= −r̂) (3.10)

δBint
θ = Bint

r

∂ξθ
∂r

+
Bint
θ

r

∂ξθ
∂θ

+
Bint
θ ξr
r

(∵
∂r̂

∂θ
= θ̂). (3.11)

We have thus obtained the expressions for the change in the magnetic field - the next step is to

calculate the change in energy due to this. But before that let’s put the expressions (3.9) back

in the above equations to obtain equations such as:

δBint
r = εB0

rl−2

Rl−1
(l − 1)

[
cθPl(cθ) +

(1− c2
θ)

l
P ′l (cθ)

]
= εB0

rl−2

Rl−1
(l − 1)Pl−1(cθ) (3.12)

where we have used the identity xPl(x) + (1−x2)1/2

l
∂Pl(x)
∂x

= Pl−1(x), and

δBint
θ = −εB0

rl−2

Rl−1
(1− c2

θ)
1/2

[
cθ
l − 2

l
P ′l (cθ) +

(1− c2
θ)

l
P ′′l (cθ) + Pl(cθ)

]
= −εB0

rl−2

Rl−1
(1− c2

θ)
1/2P ′l−1(cθ) (3.13)

where the last line can be obtained by differentiating the previously mentioned identity. Now,

the change in energy density is given by

δE int = δ
(B2

8π

)
=

1

4π
B · δB

= ε
B2

0

4π

rl−2

Rl−1
[(l − 1)cθPl(cθ) + (1− c2

θ)P
′
l (cθ)] (3.14)
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and averaging this over all directions, and using P0(cθ) = 1 and the orthogonality properties of

Legendre polynomials,
∫ +1

−1
dxPl(x)P ′l (x) = 2

2l+1
δll′ , we get:

〈δE int〉 =
3ε(l − 1)B2

0

8πR3

R2

l + 1

∫ +1

−1

dcθPl−2(cθ)P0(cθ)

=
3εB2

0

8πR

l − 1

l + 1
δl−2,0

2

2 · 0 + 1

=
εB2

0

4πR
(3.15)

and thus multiplying by volume, we get the energy change as

δEint = 〈δE int〉 × 4π

3
R3 =

ε

3
B2

0R
2 . (3.16)

3.1.2 The external field energy

The change in the energy of the magnetic field outside the star due to a Pl-deformation will be

the subject of this section. We can’t use the conductivity arguments here and will thus have to

use a different method to obtain the changes in the magnetic field. Let us write the new magnetic

field components as:

Bext
r = B0

(R
r

)3

cθ + δBext
r and Bext

θ =
1

2
B0

(R
r

)3

(1− c2
θ)

1/2 + δBext
θ . (3.17)

Using the assumption that ∇ × δBext = 0, we may write δBext = ∇δφext. Thus, ∇ · δBext =

∇2δφext = 0. Once again, we are dealing with the Laplace equation and for spherical symmetry,

we have the solutions as

δφext(r, θ) = ΣlAlr
lPl(cos θ) +

Bl

rl+1
P( cos θ) (3.18)

for r ≥ R. But we will only take the second set of terms because we want the perturbations to

die out at infinity. Thus, writing δφext as above with a slight modification, we have:

δφext = −εB0

[ l − 1

l

(R
r

)l
Pl−1(cθ) + ΣjAj

(R
r

)j+1

Pj(cθ)
]

(3.19)
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and taking the gradient in spherical polar coordinates, we get the expressions for δBext
r and δBext

θ

as follows:

δBext
r = εB0

[
(l − 1)

Rl

rl+1
Pl−1(cθ) + ΣjAj(j + 1)

Rj+1

rj+2
Pj(cθ)

]
(3.20)

δBext
θ = εB0

[
(l − 1)

l

Rl

rl+1
(1− c2

θ)
1/2P ′l−1(cθ) + ΣjAj

Rj+1

rj+2
(1− c2

θ)
1/2P ′j(cθ)

]
= εB0

[
(l − 1)

l

Rl

rl+1
P 1
l−1(cθ) + ΣjAj

Rj+1

rj+2
P 1
j (cθ)

]
. (3.21)

Our aim now is to find the values of all the coefficients Aj. For this purpose, we will use the

boundary condition that the component of the magnetic field normal to the surface should be

continuous. The surface that we have is r = R + εPl(cθ) or f(r, θ) = r − R − εPl(cθ) = 0. From

basic vector calculus, the normal to a surface f(x, y, z) = constant is given by ∇f , the gradient.

Using the same logic here, the normal vector at r = R + εPl(cθ) is obtained, to first order in ε,

as −→n = r̂ − ε
R
∂Pl(cθ)
∂θ

θ̂. Thus, for the continuity condition, we have:

Bext · −→n = Bint · −→n

=⇒ Bext
r |R+εPl(cθ) +Bext

θ |R
ε

R
(1− c2

θ)
1/2∂Pl(cθ)

∂cθ

= Bint
r |R+εPl(cθ) +Bint

θ |R
ε

R
(1− c2

θ)
1/2∂Pl(cθ)

∂cθ
(3.22)

where in the second line, Bθ’s are evaluated at R only because R + εPl(cθ) would anyway make

the correction second order in ε. Next, we will evaluate the LHS and RHS separately and equate

them in the end. First, the LHS is given, from Eqs.(3.17), as:

LHS = cθB0
R3

R3
(
1 + εPl

R

)3 + εB0

[
(l − 1)

Rl

Rl+1
(
1 + εPl

R

)l+1
Pl−1(cθ)

+ ΣjAj(j + 1)
Rj+1

Rj+2
(
1 + εPl

R

)j+2Pj(cθ)
]

+
{1

2
(1− c2

θ)
1/2B0

+ ε
B0

R

[
(l − 1)

l
P 1
l−1(cθ) + ΣjAjP

1
j (cθ)

]} ε
R

(1− c2
θ)

1/2∂Pl(cθ)

∂cθ

' cθB0

(
1− 3εPl

R

)
+
εB0

R

[
(l − 1)(1−O(ε))Pl−1

+ ΣjAj(j + 1)(1−O(ε))Pj

]
+

1

2
B0(1− c2

θ)
ε

R
P ′l +O(ε2)
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= cθB0

(
1− 3εPl

R

)
+
εB0

R

[
(l − 1)Pl−1 + ΣjAj(j + 1)Pj

]
+

1

2
B0(1− c2

θ)
ε

R
P ′l (3.23)

and moving on to the RHS, using Eqs.(3.1), (3.12) and (3.13), we obtain:

RHS = cθB0 + εB0(l − 1)Pl−1(cθ)
Rl−2

Rl−1

(
1 + (l − 2)

εPl
R

)
+
[
−B0(1− c2

θ)
1/2 −O(ε)

] ε
R

(1− c2
θ)

1/2P ′l

= cθB0 +
εB0

R
(l − 1)Pl−1(cθ)−

εB0

R
(1− c2

θ)P
′
l (3.24)

where, in both LHS and RHS, we have used the fact that we require the expressions only till

O(ε). Now, using LHS = RHS, we obtain the following

ΣjAj(j + 1)Pj = 3cθPl −
3

2
(1− c2

θ)P
′
l . (3.25)

Using the identities

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x), and

Pl−1(x) = xPl(x) +
(1− x2)1/2

l

∂Pl
∂x

we can simplify the above written equation to obtain the following

ΣjAj(j + 1)Pj =
3

2(2l + 1)
[(l + 1)(l + 2)Pl+1 − l(l − 1)Pl−1] (3.26)

from which we may conclude:

Al−1 = − 3(l − 1)

2(2l + 1)
, Al+1 =

3(l + 1)

2(2l + 1)
, and Aj = 0 ∀j 6= l − 1, l + 1. (3.27)

Substituting the above obtained values for the coefficients back into Eqs.(3.20) and (3.21), we

have our changes to the external field as:

δBext
r = εB0

[3(l + 1)(l + 2)

2(2l + 1)

Rl+2

rl+3
Pl+1 +

(l − 1)(l + 2)

2(2l + 1)

Rl

rl+1
Pl−1

]
(3.28)

δBext
θ = εB0

[ 3(l + 1)

2(2l + 1)

Rl+2

rl+3
P 1
l+1 +

(l − 1)(l + 2)

2l(2l + 1)

Rl

rl+1
P 1
l−1

]
(3.29)
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from which we can now calculate the change in the energy stored in the magnetic field. The

energy for the deformed configuration is given by:

Eext
new = Eext + δEext =

1

8π

∫∫∫ ∞
R+εPl

dτ(Bext)2, (Bext = Bext
r r̂ +Bext

θ θ̂) (3.30)

where Bext
r and Bext

θ are given by Eqs.(3.17). If we represent the original dipole magnetic field

by Bext
0 , we may write (Bext)2 = (Bext

0 )2 + 2Bext
0 · δBext +O(ε2). Also note that the integration

limits should signify the exterior of the star and hence start from R+ εPl and not R. We already

know that Eext =
∫∫∫∞

R
dτ(Bext

0 )2 and hence, paying close attention to the limits, we obtain the

change in energy of the magnetic field as:

δEext = − 1

8π

∫∫∫ R+εPl

R

r2drdcθdφ (Bext
0 )2

+
1

8π

∫∫∫ ∞
R+εPl

r2drdcθdφ 2Bext
0 · δBext (3.31)

where in the second integral we may replace the lower limit by R, since the correction will be of

second order in ε. Thus, putting in the expressions for the magnetic field in the above equation

and using P1(cθ) = cθ, P2(cθ) = 1
2
(3c2

θ − 1) and P 1
1 (cθ) = (1− c2

θ)
1/2, we obtain:

δEext = −1

4

∫ 1

−1

∫ R+εPl

R

r2drdcθB
2
0

(R
r

)6
[
c2
θ +

1

4
(1− c2

θ)

]
+

1

4

∫ 1

−1

∫ ∞
R

r2drdcθB0

(R
r

)3
[
2cθδB

ext
r + 2

1

2
(1− c2

θ)
1/2δBext

θ

]
= −1

4
εB2

0R
2

∫ 1

−1

dcθPl(cθ)

[
1

2
P2(cθ) +

1

2

]
+

1

4

∫ 1

−1

∫ ∞
R

r2drdcθB0

(R
r

)3 [
2P1(cθ)δB

ext
r + P 1

1 (cθ)δB
ext
θ

]
and now using Eqs.(3.28) and (3.29) in the above expressions, we have the following:

δEext = −1

4
εB2

0R
2

∫ 1

−1

dcθPl(cθ)

[
1

2
P2(cθ) +

1

2

]
+

1

2
εB2

0

∫ 1

−1

∫ ∞
R

r2drdcθ

(R
r

)3

P1(cθ)
[3(l + 1)(l + 2)

2(2l + 1)

Rl+2

rl+3
Pl+1 +

(l − 1)(l + 2)

2(2l + 1)

Rl

rl+1
Pl−1

]
+

1

4
εB2

0

∫ 1

−1

∫ ∞
R

r2drdcθ

(R
r

)3

P 1
1 (cθ)

[ 3(l + 1)

2(2l + 1)

Rl+2

rl+3
P 1
l+1 +

(l − 1)(l + 2)

2l(2l + 1)

Rl

rl+1
P 1
l−1

]
.
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In the above expressions, we can use orthogonality of Legendre polynomials and associated

Legendre polynomials to conclude that only l = 0 and l = 2 are possibly non zero. Now, noticing

the l in the denominator of the 2nd term of the 3rd integral, we have l = 0 not viable. Hence,

the change in the magnetic energy is non zero to first order in ε only for a P2-deformation. Thus,

for a P2-deformation, we have the change in the external magnetic energy given by

δEext = −1

4
εB2

0R
2

∫ 1

−1

dcθ
1

2
[P2(cθ)]

2 +
1

2
εB2

0R
5

∫ 1

−1

∫ ∞
R

drdcθ[P1(cθ)]
2 2

5

1

r4

+
1

4
εB2

0R
5

∫ 1

−1

∫ ∞
R

drdcθ[P
1
1 (cθ)]

2 1

5

1

r4

= εB2
0R

2
(
− 1

20
+

2

45
+

1

45

)
=⇒ δEext =

1

60
εB2

0R
2 , (3.32)

where we have used∫ 1

−1

dx[Pl(x)]2 =
2

2l + 1
and

∫ 1

−1

dx[Pm
l ()x)]2 =

2

2l + 1

(l +m)!

(l −m)!
.

Thus, the total change in energy of the system, to O(ε), is, from Eqs. (3.16) and (3.32),

δE = δEint + δEext

=
1

3
εB2

0R
2 +

1

60
εB2

0R
2

=
7

20
εB2

0R
2 (3.33)

which is first order in ε. This δE is

1. > 0 if ε > 0 or prolate shape

2. < 0 if ε < 0 or oblate shape.

The change in the gravitational potential energy for a Pl-deformation is given by

δU =
3(l − 1)

(2l + 1)2

( ε
R

)2 GM2

R
, (3.34)

clearly second order in ε and is thus always positive. The total change in energy is, therefore,

δU = δU + δE
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and putting in the values obtained in Eqs.(3.33) and (3.34), for a P2-deformation, we obtain:

δU =
3

25

( ε
R

)2 GM2

R
+

7

20
εB2

0R
2

In the above equation, since δU is second order in ε and δE is first order in ε, the sign of change in

energy of the system is determined by the sign of ε for small ε. Energy previously was U = U+E,

after the deformation, it becomes U + δU = U + E + (δU + δE). In order to obtain the most

stable configuration, we need to minimize this change and if it is negative the configuration thus

obtained will be stable. Thus, minimizing the previously obtained δU, we have:

ε

R
= −35

24

B2
0R

4

GM2
. (3.35)

Using the virial theorem, we can do a simple calculation(cf. section I of [25]) wherein we obtain

that for dynamical stability (|U |−E) > 0 when γ > 4
3
. Thus, setting E = |U |, with U = −3

5
GM2

R

and E = 1
4
B2
∗R

3, we have the value of B2
∗ to be

B2
∗ =

12

5

GM2

R4
, (3.36)

putting it back in Eq.(3.35), we obtain:

ε

R
= −7

2

(B0

B∗

)2

where B∗ is the ”limit” set by the virial theorem [25].

3.1.3 Quadrupolar ellipticity vs surface ellipticity

At this point, we may introduce some terminology. Following [28], we define surface ellipticity

and quadrupolar ellipticity. When we talk of surface ellipticity, we are talking of:

εsurf =
Requatorial −Rpolar

Rpolar

and by quadrupolar ellipticity, we mean:

εquad = −Q
I

=
Izz − Iyy
Izz
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where Q is the mass energy quadrupole moment and I is the mean moment of inertial of the

tensor Iij. The second equality, though, can only be written in the limit of a weak field. More

details on this terminology can be found in [28] and references therein.

In order to generate gravitational waves, we saw that the variation of the quadrupole moment

with time is essential. On this note, let us look at what the status is on the time dependence of

quadrupolar ellipticity. In [29], evidence is obtained that the quadrupolar ellipticity evolves in

time. To see this, the authors consider two models for the magnetic fields of neutron stars [29],

called AL and BL models. In the AL model, the magnetic field is confined to the crust and

in the BL model, there is an internal magnetic field. Following the results of magneto-thermal

simulations (taken from [29] and the references therein), the ellipticity of the magnetar is seen

to change in magnitude from ∼ 10−11 at 0 yrs to ∼ 2.5× 10−6 after 106 yrs [29] for BL models.

Same procedure for AL models yields values of ellipticity to be ∼ 1.09× 10−8 at 0 yr which after

a million years evolves to ∼ 9.93 × 10−10. From this, it is clear that the quadrupolar ellipticity

varies with time and thus, we also have a variation in gravitational wave signal over this time.

(It can also be seen that the BL model predicts higher ellipticities than the AL model). Now

that we have obtained some rough values for the ellipticities, we may use Eqs.(2.34) and (2.35)

for the GW amplitudes. We see that the GW amplitude is directly proportional to the ellipticity

ε and the square of the frequency of rotation of the neutron star. Based on the proportionality

to ε alone, magnetars seem to be good sources of GWs, with ε ∼ 10−6. But magnetars also

have the frequency of rotation to be around 0.1 Hz which makes the GW amplitude quite small

in magnitude [29] which is very tough to detect, especially because thermal and quantum noise

reduce the sensitivity of the detectors when the frequency is below 10 Hz. For this reason, proto-

magnetars are far more promising candidates for GW signals than magnetars [29] due to having

higher frequencies of rotation. Hence, the best candidates for possible experimental realization

of our current proposition, the effect of SPP of mmcps on the GW signals from neutron stars,

seem to be proto-magnetars.

3.2 Models of the magnetic fields

Now that we have a basic understanding of the effect of the magnetic field on the shape of

the neutron star, we can now tackle the problem of emission of GW’s from such a star. We

require the magnetic axis and to be at an angle to the rotation axis so that we have a non-

zero quadrupole moment(due to the flattening discussed above) and thus, a gravitational wave

signal. For this purpose, we need to be able to calculate the deformation due to the magnetic

field. In the following discussion, we will consider different simple models for the neutron star
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(with an external dipolar field), and using the equations of hydromagnetic equilibrium, solve

for the internal magnetic field and the consequent deformation [26]. We shall assume that the

magnetic field can be treated as a perturbation. The equations of hydromagnetic equilibrium for

a non-rotating star are given by:

∇p
ρ

+∇Φ =
(∇×B)×B

µ0ρ
(3.37)

where p, ρ,Φ, and B are pressure, density, gravitational potential, and magnetic field vector

respectively and Maxwell’s equations for current density have been used. We may replace µ0 by

4π(i.e., working in natural units). Now, the gravitational potential satisfies the Poisson equation

∇2Φ = 4πGρ and the magnetic field, from Maxwell’s equations, satisfies ∇ ·B = 0. Taking the

curl of Eq.(3.37) in addition to the assumption that the equation of state is given by ρ = ρ(p),

we obtain:

∇×
(∇×B)×B

ρ

)
= 0 (3.38)

wherein we have used ∇
(

1
ρ

)
= − 1

ρ2
∇ρ = − 1

ρ2
∂ρ
∂p
∇p(∵ ρ = ρ(p)) and then that the curl of a

gradient is identically zero. There are ways/justifications around the above constraint (3.38),

but they are harder problems [26] with more subtleties popping up and we shall thus impose

this constraint in our problem. As previously stated, assume that the magnetic field effects are

a perturbation of the spherically symmetric background. We can thus expand all our variables

as:

f(r, θ) = f0(r, θ) + f1(r, θ)Pl(cθ)

where Pl are the Legendre polynomials and f1 ∼ O(B2). We are ultimately interested in the

gravitational wave emission due to these deformations and thus, the most important contribution

for us is l = 2 quadrupole deformation [26]. Another reason is as discussed in the previous section,

only the l = 2 deformation is the significant one at first order in deformation. We shall now delve

into calculating the internal magnetic field using all the equations we have written above and by

assuming a form for the equation of state. We shall, in particular, consider two configurations:

1. The star has uniform density throughout

2. The fluid inside the star is a polytrope with n = 1

Using the concept of a stream function S(r, θ) and using ∇ ·B = 0, we have:

∂

∂r
(r2 sin θBr) =

∂

∂θ
(−r sin θBθ)
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and now, using the concepts of exact differentials(and equality of mixed partial derivatives), we

may write an exact differential dS, where S is the stream function, as:

dS = r2 sin θBrdθ − r sin θBθdr. (3.39)

Using the above equation, ∂S
∂θ

= r2 sin θBr and ∂S
∂r

= −r sin θBθ. Inverting the foregoing relations,

we have:

Br =
1

r2 sin θ

∂S

∂θ
and Bθ = − 1

r sin θ

∂S

∂r
. (3.40)

Since we have axial symmetry in our problem, using Eq.(3.37), we have

[B× (∇×B)]φ = 0. (3.41)

This, along with ∇ ·B = 0∇ ·Bp, gives:

Bp · ∇(r sin θBφ) = 0. (3.42)

Here, Bp = (Br, Bθ, 0) is the poloidal field and Bt = (0, 0, Bφ) is the toroidal field. The above

equation may be obtained by expanding the curl in spherical coordinates and looking at the

φ-component. Using the above mentioned concept of stream function, we may write the φ-

component of the magnetic field as:

r sin θBφ = β(S) =⇒ Bφ =
β(S)

r sin θ
.

Now, we may expand Eq.(3.38) to obtain a large differential equation for S and β(S) which, to

be solved, requires us to assume a form for the equation of state. As mentioned above, we will

be dealing with the two cases of uniform density and n = 1 polytrope.

Constant density fluid

For a constant density fluid, Eq.(3.38) reduces to ∇ × (B × (∇ × B)) = 0. Assume a form for

the magnetic field B as:

B = r̂[W (r) cos θ] + θ̂[X(r) sin θ] + φ̂[iZ(r) sin θ]

so that ∇ ·B = 0 becomes

rW ′(r) + 2[W (r) +X(r)] = 0. (3.43)
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In our constant density case, putting Eq.(3.2) into Eq.(3.38), we obtain the following three

equations:

W (rZ)′ + 2ZX = 0 (3.44)

W (r2Z ′′ − 2Z) + 2Z(rX ′ −X) = 0 (3.45)

W [r2X ′′ − 4(W +X)] + 2Z(rZ ′ − Z) = 0 (3.46)

To go further, we may work with three types of magnetic fields:

1. Purely poloidal B = Bp = (Br, Bθ, 0)

2. Purely toroidal B = Bt = (0, 0, Bφ)

3. A general mixed case

Among these, the poloidal case is the most important to us and we shall thus solve it.

1. Pure poloidal In the pure poloidal case, Z = 0. Thus, only Eq.(3.43) and Eq.(3.46) remain

pertinent. Using these two equations, we can write a differential equation in terms of only X

and one interms of both W and X as follows:

r2X ′′′ + 4rX ′′ − 4X ′ = 0 =⇒ X =
A

r3
+ Cr2 +D

rW ′(r) + 2[W (r) +X(r)] = 0 =⇒ rW ′(r) + 2[W (r) + Cr2 +D] = 0

=⇒ W (r) = −1

2
Cr2 −D

where A,C, andD are constants of integration and we have set A = 0 because we want field

solutions that are regular at the centre r = 0. We now have to evaluate the constants C and D.

For this step, following [26], we shall solve for the magnetic field through the stream function

method as well and match the solutions. Following [26] and section 3 of [30], let us assume that

the stream function S(r, θ) is of the form A(r) sin2 θ and β(S) = 0. The stream function solves

the equation [30], [26]:

∇2S =
Br2

R2
sin2 θ (3.47)

where B is a constant parameter and we have assumed a current density with Jφ = B
R2 r

3 sin3 θ.

With a stream function of this form, the magnetic field looks like:

B =
(2A

r2
cos θ,−A

′ sin θ

r
, 0
)
. (3.48)
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Matching this with an external dipole field at the surface,

Bext = B0

(R
r

)3
(

cos θr̂ +
1

2
sin θθ̂

)
we obtain a condition for A. This is done as follows:

2A

r2
= B0, and − A′

r
=

1

2
B0

=⇒ A

r
+ A′ = 0 at the surface (3.49)

Also making sure that the magnetic field is regular at the centre, we have the solution for S(r, θ)

as:

S(r, θ) =
Br2

2R2

(
r2

5
− R2

3

)
sin2 θ (3.50)

and using Eqs.(3.40), we have:

Br = −B
(

1

3
− 1

5

( r
R

)2
)

cos θ

Bθ = B

(
1

3
− 2

5

( r
R

)2
)

sin θ (3.51)

where, these components are also matched to the external field through Eq.(3.49).

2. Other cases As mentioned above, there are other field configurations which one may

explore. In the toroidal case, one would take W = 0 = X, with Z non-zero. Consistency

with the surface conditions demands even this component to be 0 thus making the toroidal field

solution trivial [26]. In the mixed case however, the solution which for which neither Z = 0

nor W = 0 turns out to have Z = arW . This means that this solution can’t be matched to

an external dipole(∵ Z = 0 there). Furthermore, trying to match the θ component as well to a

general solution for the external field which is regular at infinity demands the external field to be

trivially 0 throughout the exterior [26]. A few thoughts on this matter may be found in section

2 of [26].
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n = 1 polytrope

Now that we have dealt with a constant density fluid, we may look at a more realistic n = 1

polytrope for the interior of the neutron star. A polytropic relation is one of the form

p = Kρ1+ 1
n (3.52)

which holds throughout the star, where p, ρ are the pressure and density with K being a propor-

tionality constant and n being the polytropic index. To connect with something more familiar,

consider an isothermal gas. In this case, p = Kρ, i.e., this is a n =∞ polytrope. In our particular

case, we shall look at a n = 1 polytrope. The form for the density of a polytrope is obtained by

solving the Lane-Emdem equation with boundary conditions as:

1. ρ is regular at r = 0.

2. ρ becomes 0 at the surface for the first time.

In the case of n = 1 polytrope, the solution for ρ is of the form

ρ = ρc
sin y

y
, where y =

πr

R

where ρc is the value of ρ at the centre. Using this form for ρ in Eq.(3.38), we may solve for

the magnetic field. We may write Eq.(3.38) interms of the stream function S(r, θ) so that the

equation looks like [26]:

∂

∂r

[ 1

ρr sin θ

∂S

∂θ

{ 1

r sin θ

∂2S

∂r2
+

1

r3

∂

∂θ

( 1

sin θ

∂S

∂θ

)}
+

β

ρr2 sin2 θ

∂B

∂θ

]
− ∂

∂θ

[ 1

ρr sin θ

∂S

∂r

{∂2S

∂r2
+

1

r3

∂

∂θ

( 1

sin θ

∂S

∂θ

)}
+

β

ρr2 sin2 θ

∂B

∂r

]
= 0. (3.53)

1. Poloidal fields Now putting in ρ(y) and solving for S, with β(S) = 0, we obtain S to be

of the form [31, 26]:

S(r, θ) =
2 sin2 θ

3y
[y3 + 3(y2 − 2) sin y + 6y cos y]
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and thus have the expressions for Br and Bθ, using Eqs.(3.40), as:

Br =
π2

R2y2

4 cos θ

3y
[y3 + 3(y2 − 2) sin y + 6y cos y]

Bθ =
2π2

3y3R2
sin θ[−2y3 + 3(y2 − 2)(sin y − y cos y)]

which now have to satisfy the condition of being regular at r = 0 as well as match the external

dipole(Eq.(3.2)) at the surface. With B0 representing the polar magnetic field strength, we obtain

the poloidal to be of the form:

Br =
B0 cos θ

π3 − 6π
[y3 + 3(y2 − 2) sin y + 6y cos y]

Bθ =
1

2

B0 sin θ

π3 − 6π
[−2y3 + 3(y2 − 2)(sin y − y cos y)]

(3.54)

(3.55)

Note:Only matching the magnetic field to the external dipole and not imposing regularity, will

give expressions of the form:

Br =
π2

y3

B0 cos θ

π2 − 6
[y3 + 3(y2 − 2) sin y + 6y cos y]

Bθ =
π2

y3

1

2

B0 sin θ

π2 − 6
[−2y3 + 3(y2 − 2)(sin y − y cos y)]

which are clearly not regular at r = y = 0. But the solutions given in Eqs.(3.54) and (3.55)

match the boundary conditions and the regularity at centre and are thus valid physical solutions.

2. Other cases Following the same line of thought as in the constant density case, we may

consider other cases where the magnetic field is pure toroidal or mixed or even a case where

the magnetic field is confined to the crust [26]. Unlike the constant density case, there is a

non-trivial toroidal field solution for the n = 1 polytrope. The mixed case can also be solved,

as in [26, 32], by considering β(S) = πλ
R
S, where λ is a parameter that can be varied and

S = A(r) sin2 θ. A more exotic case is where we may consider the core of the neutron star to

be a Type I superconductor. In this case, the magnetic field will be expelled from the core and

will be confined to the crust. See [26] and references therein for the details on the solution and

implications of this configuration.
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3.2.1 Deformations due to the above obtained field configurations

In the preceding couple of sections, we assumed that the magnetic field is poloidal and solved

Eq.(3.38) for the cases of a uniform density fluid and the case of a n = 1 polytrope. Now, we

would like to calculate the effect of such field configurations on the shape of the star. For this,

we need to solve Eqs.(3.37) along with the Poisson eqation, ∇2Φ = 4πGρ after perturbing the

current system and obtain the new equilibrium configuration. The perturbed surface of the star

takes the form:

xS = R[1 + ε(R)Pl(cθ)]

where ε(R) is a small quantity and Pl are the Legendre polynomials. The pressure, potential and

density are perturbed as:

p(r, θ) = p(r) + δp(r)Pl(cθ) (3.56)

Φ(r, θ) = Φ(r) + δΦ(r)Pl(cθ) (3.57)

ρ(r, θ) = ρ(r) + δρ(r)Pl(cθ) (3.58)

The Eqs.(3.37) at O(B2) take the form:

∇[δp(r)Pl(cθ)] + ρ∇[δΦ(r)Pl(cθ)] + δρPl∇Φ(r) +O(B4) =
(∇×B)×B

µ0

(3.59)

which, after neglecting the O(B4) term, becomes:

Pl
dδp

dr
+ ρ

dδΦ

dr
Pl + δρPl

dΦ

dr
=

[(∇×B)×B]r
µ0

(3.60)

1

r
(δp+ ρδΦ)

dPl
dθ

=
[(∇×B)×B]θ

µ0

. (3.61)

We now have to solve these equations along with the perturbed Poisson equation:

∇2(Φ + δΦPl) = 4πG(ρ+ δρPl)

=⇒ ∇2(δΦPl) = 4πGδρPl (3.62)
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which, once expanded after putting l = 2, becomes:

P2(cθ)∇2δΦ(r) + δΦ∇2P2(cθ) = 4πGδρP2

=⇒ P2

(d2δΦ

dr2
+

2

r

dδΦ

dr

)
+ δΦ

(−6)

r2
P2 = 4πGδρP2

=⇒ d2δΦ

dr2
+

2

r

dδΦ

dr
− 6

r2
δΦ = 4πGδρ (3.63)

Now, we need to choose a configuration of the magnetic field from the above solutions we obtained

and solve Eqs.(3.60) and (3.61) along with the Poisson equation to ultimately calculate the effect

of the magnetic field. The configurations we will be using are:

1. A uniform density equation of state with poloidal configuration with magnetic field given

by Eqs.(3.51).

2. A n = 1 polytropic equation of state with poloidal configuration with magnetic field com-

ponents given by Eqs.(3.54) and (3.55).

1. Uniform density star with poloidal field We shall assume the fluid to be incompressible

which means that the surface deformation xS can’t be an l = 0 deformation. We shall only

consider l = 2 deformation, the quadrupolar deformation. The δΦ then takes the form [26]:

δΦ(r) = −4π

5
Gε(R)r2ρ. (3.64)

Using the magnetic field in Eqs.(3.51), we obtain:

[(∇×B)×B]r =
2

3

( B
R2

)2(R2r

3
− 2r3

5

)
(1− P2) (3.65)

[(∇×B)×B]θ = −1

3

( B
R2

)2(R2r

3
− r3

5

)dP2

dθ
. (3.66)

Putting these back in Eq.(3.61) along with the expression for δΦ and substituting r = R, we

obtain δp(R) to be

δp(R) =
4π

5
Gε(R)R2ρ2 − B2

90π
. (3.67)
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Equating the O(B2) terms of pressure, we have:

δp(x) = δp(r) + rε(r)
dp

dr
(r)

=⇒ δp(xS) = δp(R) +Rε(R)
dp

dr
(R) (putting r = R)

=⇒ δp(R) = −Rε(R)
dp

dr
(R) (∵ δp(xS) = 0, i.e., pressure at the surface) (3.68)

which after putting in the background pressure p to be [26]

p(r) =
2π

3
ρ2G(R2 − r2)

becomes

δp(R) = Rε(R)
4πG

3
ρ2 × (R).

Equating the above equation to Eq.(3.67), we obtain ε(R) to be of the form:

ε(R) = − 1

48

B2

π2Gρ2R2
. (3.69)

Previously, we had defined something called the quadrupolar ellipticity. In the Newtonian limit,

the expression reads:

εQ =
I33 − I11

I0

(3.70)

where Iij =
∫
d3xρ(x)(r2δij − xixj) and I0 = 2

5
MR2, the moment of inertia of a solid sphere.

Taking ρ = const. and the limits for r to be from 0 to xS = R(1 + ε(R)Pl) with 0 ≤ θ < π and

0 ≤ φ < 2π, we can calculate the above expression to give

εQ = −3

2
ε (3.71)

Note, during the calculation of the above integrals, that the upper limit of r has θ-dependence in

the Pls and we need to use the orthogonality properties of the Legendre polynomials to calculate

them. Thus, the quadrupolar ellipticity takes the form

εQ =
1

32

B2

π2Gρ2R2
=

1

18

B2R4

GM2
(3.72)

which, after casting into a convenient numerical form, looks like:

εQ ∼ 10−12
( R

10 km

)4(1.4Msun

M

)2( B

1013 G

)2
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2. n = 1 polytrope with poloidal field Now that we have quantified the deformation for

the uniform density equation of state, we turn to the more realistic n = 1 polytropic equation

of state. The components on the RHS of Eqs.(3.60) and (3.61) can be obtained from Eqs.(3.54)

and (3.55) to be of the form:

[(∇×B)×B]r =
π3B2

0R

2(π2 − 6)y
[−2y3 + 3(y2 − 2)(sin y − y cos y)] sin yP2(cθ) (3.73)

[(∇×B)×B]θ = − π3B2
0R

2(π2 − 6)y
[y3 + 3(y2 − 2) sin y + 6y cos y] sin y

dP2

dθ
(3.74)

where y = πr
R

as previously defined and B0 is the strength of the magnetic field at the poles, also

as previously defined. Then, following [26], we have δρ, from Eqs.(3.60) and (3.61), as:

δρ = − π5B2
0

8(π2 − 6)2GR2ρcy

[
y3 + 3(y2 − 2) sin y + 6y cos y +

2(π2 − 6)2ρc
π4B2

0

yδΦ
]

(3.75)

and δΦ as

δΦ =
π4B2

0

4(π2 − 6)2ρcy3

[
− 2y5 − 3(y4 + 4π2y2 − 12π2) sin y + y(y4 − 36π2) cos y

]
(3.76)

Using a similar O(B2) argument as in Eq.(3.68) in the case of density, we have δρ(R) given by

δρ(R) = −ε(R)R
dρ

dr

∣∣∣
r=R

.

Thus, we have the surface deformation ε given by:

ε(R) = − π5B2
0(π2 − 24)

16(π2 − 6)2GR2ρ2
c

(3.77)

where we have used that the density taked the form ρ(y) = ρc
sin y
y

. From Eq.(3.70), we have the

quadrupolar ellipticity to be given by:

εQ = −3π5(π2 − 12)

(π2 − 6)3

R4B2
0

GM2
. (3.78)

Casting this above formula into a numerically revealing form, we get the following form:

εQ ∼ 2× 10−10
( R

10 km

)4(1.4Msun

M

)2( B

1013 G

)2

,

a 2 orders of magnitude increase in the ellipticity and thus, in the detection amplitude.
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3.3 GWs from a neutron star with magnetic field induced

distortion

Following the discussion in [24], in this section, we shall explore how gravitational waves are

generated by neutron stars with a non-zero wobble angle(the angle between the magnetic axis

and the rotation axis). As previously discussed in section 2.3.1, the formula for the amplitude

of GW in the strong field limit is structurally identical to the one the weak field limit provided

we are in the ACMC family of coordinate systems and is given by Eq.(2.42). Now, consider a

neutron star spinning about an axis with its magnetic axis aligned at an angle α to this axis.

Let (x, y, z) represent the coordinates in the fixed frame, with the rotation axis aligned with the

z−axis. Also define (x̃, ỹ, z̃) to be the inertial frame with the magnetic axis along z̃. Thus, we

have the angle between z and z̃ as α. The inertial frame is rotating with rotation frequency Ωrot.

The angle between x̂ and ˆ̃x is then given by Φ = Ωrott. Thus, for transforming from the body

frame’s (x, y, z) to the inertial frame’s (x̃, ỹ, z̃), we need to use two rotation matrices, R1(Φ)

about z and R2(α) about x̃. Thus, the net rotation matrix is given as:

R =

cos Ωrott − sin Ωrott 0

sin Ωrott cos Ωrott 0

0 0 1

×
1 0 0

0 cos (α) sin (α)

0 − sin (α) cos (α)

 (3.79)

We shall assume that the mass quadrupole moment Iij can be decomposed as Iij = Irotij + Idistij ,

i.e., a rotational contribution and a distortion contribution. Due to the absence of precession, ∃
an ACMC coordinate system (t, x, y, z) such that Irotij is time independent [24] and is diagonal,

with a form given by:

Iroti j = diag(−Irot/2,−Irot/2, Irot). (3.80)

We shall also make an assumption that ∃ an inertial frame (t̃, x̃, ỹ, z̃) in which Idistij may be

expressed in the following form [24]:

Ĩdistij = diag(−Ĩ33/2,−Ĩ33/2, Ĩ33) (3.81)

Note that this inertial frame need not necessarily be ACMC. Thus, to transform Ĩdist back to the

ACMC coordinates, we shall use the rotation matrix from Eq.(3.79), i.e., Idist = RĨdistRT . This

quadrupole moment tensor Idistij can now be used in the expression for GW amplitude, Eq.(2.42).

As physically expected, there is no contribution from the Irotij because, in this ACMC coordinate

system, it is time independent, as previously stated [24]. The path ahead is now clear: take the
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second time derivative of Idistij and write the hTTij in terms of Ĩ33, α,Ωrot and time t as:

I =
1

2
Ĩdist33

 3 sin2 α sin2 φ(t)− 1 −3
2

sin2 α sin 2φ(t) −3 sinα cosα sinφ(t)

−3
2

sin2 α sin 2φ(t) 3 sin2 α cos2 φ(t)− 1 3 sinα cosα cosφ(t)

−3 sinα cosα sinφ(t) 3 sinα cosα cosφ(t) 3 cos2 α− 1

 (3.82)

with its second time derivative as:

Ï =
3

2
Ĩdist33 sinα

2 sinα cos 2φ(t) 2 sinα sin 2φ(t) cosα sinφ(t)

2 sinα sin 2φ(t) −2 sinα cos 2φ(t) − cosα cosφ(t)

cosα sinφ(t) − cosα cosφ(t) 0

 . (3.83)

Now, assuming that the direction to the observer, n̂, is in the y − z plane and that the angle

between ẑ and n̂ is Θ, i.e., n̂ = (0, sin Θ, cos Θ), we have the projection operator as:

Pij = δij − ninj

=

1 0 0

0 cos2 Θ − sin Θ cos Θ

0 − sin Θ cos Θ sin2 Θ

 . (3.84)

Thus, we finally have hTTij as [24]:

hTTij = h+e
+
ij + h×e

×
ij (3.85)

where e+
ij and e×ij are the polarization tensors given by [24]:

e+
ij =

1 0 0

0 − cos2 Θ sin Θ cos Θ

0 sin Θ cos Θ − sin2 Θ

 (3.86)

e×ij =

 0 cos Θ − sin Θ

cos Θ 0 0

− sin Θ 0 0

 (3.87)
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and the polarizations h+ and h× are given by [24]:

h+ = h0 sinα
[1

2
cosα sin Θ cos Θ cos Ωrottr

− sinα
1 + cos2 Θ

2
cos 2Ωrottr

]
h× = h0 sinα

[1

2
cosα sin Θ sin Ωrottr − sinα cos Θ sin 2Ωrottr

] (3.88)

(3.89)

with h0 = −6G
c4
Ĩdist33

Ω2
rot

r
and tr = t− r

c
is the retarded time.

Ellipticity and quadrupole moment In the weak field limit, the quadrupolar ellipticity is

given by:

εQ =
I3 − I1

I3

Using the definition of Iij from section 2.3.1, the ellipticity can be written in terms of Ĩ33 after

the following steps:

Ĩ33 =
2

3
(I1 − I3)

= −2

3
εQI3

=⇒ εQ = −3

2

Ĩ33

I3

(3.90)

where I3 is the moment of inertia about the rotation axis in the diagonal form. For various

numerical estimates, look at section 2.5 of [24]. The typical order of magnitude for h0 is estimated

to be ∼ 10−27 for a variety of pulsars. For a numerical estimate, h0 may be written as:

h0 = 4.21× 10−24
[ms

P

]2[kpc

r

][ I

1038 kg m2

][ εQ
10−6

]
. (3.91)

An incompressible, magnetized fluid Next, consider a star with an incompressible fluid

with a uniform internal magnetic field and a dipole magnetic field outside the star. This star is

going to be ellipsoid in shape, with the equation of the ellipsoid given by

(δij + aij)X
iXj = R2, (3.92)
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where R is the mean radius of the ellipsoid and, using the expressions for potentials given in [33,

34, 24], the aij are given by:

aij =
15

2

Ωi
rotΩ

j
rot

ω2
J

+
45µ0

32π2

MiMj

R8ρω2
J

(3.93)

where ρ is the constant mass density, ωJ =
√

4πGρ is the Jean’s frequency, Ωi
rot ≡ (0, 0,Ωrot) is

the angular frequency vector in X i coordinates and Mi ≡ (0,M sinα,M cosα) is the magnetic

dipole moment vector, also in X i coordinates. Diagonalizing aij to find the principal axes, we

may calculate the moment of inertia tensor Iij, from which Iij is readily obtained. Separating

Iij = Irotij + Idistij as previously discussed, we have Irijot given by Eq.(3.80) with

Irot33 = −R
5Ω2

rot

3G
(3.94)

and Idistij given by Eq.(3.82), with the Ĩdist33 given by:

Ĩdist33 = − µ0M2

16π2GρR3
. (3.95)

Using the fact that I = 8π
15
ρR5 for a sphere and Eq.(3.90), we have the quadrupolar ellipticity

given by:

εQ =
45µ0M2

256π3Gρ2R8
=

45B2
pole

64πµ0Gρ2R2
(3.96)

where Bpole = µ0
4π

2M
R3 is the strength of the magnetic field at the (North) pole.

Magnetic field induced deformations

In this section, we will calculate a few quantities important for deriving the amplitude of the

gravitational waves. Following the intuition gathered from the derivation of Eq.(3.96), we can

write the quadrupolar ellipticity to be proportional to B2 in the following form:

εQ = D
B2

B2
∗

(3.97)

where B∗ is a quantity with the dimensions of magnetic field so that the magnetic deformation

factor, D, is dimensionless. We shall make the particular choice of B2
∗ = 12

5
GM2

R4 , in sync with

our choice in Eq.(3.36). In the above considered choice of an incompressible, magnetized fluid,
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neatly summarized by Eq.(3.96), we have the distortion factor, D = 3
4

4π
µ0

. We make the choice of

units to be µ0 = 4π
c2

and c = 1, so that D = 3
4

in this configuration. We also have the form for

the quadrupolar ellipticity as:

εQ = D
5

12

B2R4

GM2
=

3

4

B2

B2
∗

(3.98)

The braking indices for pulsars being closer to 3 than to 5 seems to indicate that the primary

spin down of pulsars is due to magnetic dipole radiation [24]. The following spin down equation

may thus be written:

Ω̇rot = −4π

µ0

1

6c3
Ω3
rot

B2R6

I
sin2 α

=⇒ B2 = −µ0

4π

6c3I

R6 sin2 α

Ω̇rot

Ω3
rot

= − 6I

R6 sin2 α

Ω̇rot

Ω3
rot

(3.99)

where we have invoked the choice of our units for the last equality. We are now in a position to

obtain a form for the εQ to be:

εQ = D
Ω̇rot

Ω3
rot

1

GM sin2 α
(3.100)

The same physics is entailed in the corresponding expressions in [24] although, in order to see

it manifestly, some change of notation is in order. Our distortion factor, D, is related to the β

in [24] through the following relation:

β = D
4

15
(3.101)

which may be easily obtained by a few algebraic manipulations. Using Eqs.(3.90), (3.88) and

(3.89), we may write h0 as

h0 =
4

r
IεQΩ2

rot = 16π2 IεQ
P 2r

(3.102)

where P = 2π
Ωrot

is the period of rotation. We write the formula in this form because, observa-

tionally, P is what we measure. Now, using Eqs.(3.98) and (3.99) in the above expression, we

have the following form for h0 [24]:

h0 =
8

5
D
R2

r

Ṗ

P

1

sin2 α
. (3.103)
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Looking back at Eqs.(3.88) and (3.89), the amplitude of the 2Ωrot rotational frequency part is

given by:

h2Ωrot,+
0 = h0 sin2 α

1 + cos2 Θ

2
(multiplying cos 2Ωrottr)

=
8

5
D
R2

r

Ṗ

P

1 + cos2 Θ

2
(3.104)

which is independent of the wobble angle. This form is only dependent on the observables, Ṗ

and P along with a dependence on Θ, which may be ignored for an order of magnitude estimate.

A similar line of action for the × polarization gives:

h2Ωrot,×
0 = h0 sin2 α cos Θ (multiplying sin 2Ωrottr)

=
8

5
D
R2

cr

Ṗ

P
cos Θ (3.105)

where the exact same reasoning for an order of magnitude estimate may be applied, due to

which we shall only look at the order of magnitude of h2Ωrot,+
0 . Transforming the expression to a

different units system, having put µ0 = 4π
c2

and c = 1, we have [24]:

h2Ωrot,+
0 = 1.729× 10−31D

( R

10km

)2(kpc

r

)( s

P

)( Ṗ

10−11

)
(3.106)

(To compare with the amplitude in [24], note that the units for P are s here in contrast to ms

and the order for Ṗ is 10−11 in contrast to 10−13. If we convert to the units in [24], we will

have an extra 10−3 in the denominator, coming from the millisecond, and an extra 10−2 in the

numerator, coming from the 10−13, for an effective ×10.) Putting in the values for Crab pulsar,

the value of h2Ωrot,+
0 ∼ 10−31. For contrast, the LIGO sensitivity, at 100 Hz, is at its peak and

the value is of the order 10−22. This clearly shows that in order for LIGO to detect the signal

at frequency 2Ωrot, we need to have a large D. Following the results from [24], the values of

β = D 4
15

for the regular case of having both internal and external field configurations are not

significantly high. The prospects improve significantly once one introduces the assumption of

superconductivity of the core. In the cases under this assumption, the values of β improve by 2

orders of magnitude. For a deeper discussion of the simulations performed, please look at [24].

We had previously derived the quadrupolar ellipticity in section 3.2.1, which we may now put

in the above discussed language. From Eq.(3.72), we have the ellipticity for a constant density
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fluid given by:

εQ =
1

32

B2

π2Gρ2R2
=

1

18

B2R4

GM2
=

2

15

B2

B2
∗

=⇒ D =
2

15
(3.107)

and from Eq.(3.78), for an n = 1 polytrope, we have:

εQ = −3π5(π2 − 12)

(π2 − 6)3

R4B2

GM2
= −36π5(π2 − 12)

5(π2 − 6)3

B2

B2
∗

=⇒ D = −36π5(π2 − 12)

5(π2 − 6)3
(3.108)
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Chapter 4

Magnetic Monopoles and Millicharges

In this chapter, we will initially discuss the theoretical mechanisms through which magnetic

monopoles arise in QFTs. Following that we will address how this discussion fits into our picture

for mmCPs. In the later parts of this chapter, we shall use the techniques from the previous

chapters to calculate the effect of the pair production of these mmCPs on the gravitational wave

amplitudes.

Classically, Maxwell’s equation, ∇ · B = 0 forbids the existence of magnetic monopoles...

Maxwell’s equations in vacuum, in covariant form, are:

∂µF
µν = 0 and ∂µF̃

µν = 0 (4.1)

where the F̃ µν = 1
2
εµνρσFρσ is the Hodge dual of the field tensor F µν . With the standard definition

F µν = ∂µAν − ∂νAµ, the second equation is a Bianchi identity and is automatically satisfied.

The vacuum equations thus have a symmetry under the following transformation:

F µν → F̃ µν and F̃ µν → −F µν

However, once we introduce a source term Jν on the RHS of the first equation, this symmetry

no longer exists. In order to restore the symmetry, we add a magnetic current term Kν on the

RHS of the second equation, such that the equations become [35]:

∂µF
µν = −Jν and ∂µF̃

µν = −Kν (4.2)
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which are clearly symmetric under the transformations:

F µν → F̃ µν and F̃ µν → −F µν

Jν → Kν and Kν → −Jν

The existence of such a Kν current, however, requires that magnetic monopoles exist in nature.

All equations, unless otherwise mentioned, are in natural units, ~ = 1 = c.

4.1 Dirac quantization condition

For the existence of monopoles to be consistent with quantum mechanics, the following condition

due to Dirac must be satisfied [35]:

qg

4π
=
n

2
, n ∈ Z+ (4.3)

where g is the magnetic charge and q is our regular electric charge. This condition can be derived

heuristically from the condition of anglular momentum quantization as described below.

Heuristic derivation of the Dirac quantization condition

The Lorentz force on a charge q moving at a velocity v = ṙ in a magnetic field B is given by

mr̈ = q(ṙ×B) (4.4)

where the magnetic field is assumed to be due to a magnetic monopole of strength g, with field

strength given by:

B =
g

4πr2
r̂ (4.5)
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The orbital angular momentum of such a charge is given by:

L = r×mṙ

=⇒ dL

dt
= r×mr̈

= r× (ṙ× qg

4πr2
r̂)

=
d

dt

( qg
4π

r̂
)

(4.6)

(4.7)

The last line in the previous series of equations tells us that the total angular momentum, J, is

conserved and is given by,

J = L− qg

4π
r̂. (4.8)

Imposing the regular commutation relations between the components of the angular momentum,

we have the quantization of eigenvalue of angular momenta Ji as half-integers (the reason the

orbital angular momenta eigenvalues are integers is due to the fact that Lis are the generators

of SO(3), whereas the total angluar momentum components are generators of SU(2)). Thus, for

the total angular momentum to have half-integer eigenvalues, we need to have:

qg

4π
=
n

2
, n ∈ Z+

which is precisely the Dirac quantization condition in Eq.(4.3).

4.2 Millimagnetically charged particles

Now that we have looked at how monopoles arise and are motivated, let us look at how mmCPs

arise in field theories. They arise in field theories with an additional U(1) symmetry wherein a

kinetic mixing term added to the Lagrangian, so that it has the following form:

L ⊃ −1

4
F µνFµν −

1

4
F µν
D FDµν +

ε

2
F µνFDµν +

1

2
m2
DA

2
D. (4.9)

Here, the subscript D represents gauge fields in the additional ”dark” sector. The dark gauge

field is massive because otherwise, the electron and the mmCP don’t interact [8]. But, let us

first understand what this mmCP is. For this purpose, we will be looking at the equations of
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motion for the above Lagrangian:

∂µF
µν − ε∂µF µν

D = eJν

∂µF
µν
D − ε∂µF

µν = m2
DA

ν
D + eDJ

ν
D

∂µF̃
µν = 0

∂µF̃
µν
D = gDK

ν
D (4.10)

Under a field redefinition of the form A→ A+ εAD, we are supposed to have:

∂µF
µν = eJν

∂µF
µν
D = m2

DA
ν
D + eDJ

ν
D + εeJν

∂µF̃
µν = −εgDKν

D

∂µF̃
µν
D = gDK

ν
D (4.11)

where, in the third equation, we see the dark monopoles become ε magnetically charged under

our gauge field.

4.2.1 Incorporating monopoles into ordinary electromagnetism

In ordinary electromagnetism, we have the following Lagrangian density:

L = −1

4
F µνFµν − AµJµ

and the equations of motion thus to be of the form:

∂µF
µν = Jν

∂µF̃
µν = 0.

But, if we now want to describe a theory with magnetic monopoles, the second equation has to

be modified as follows:

∂µF̃
µν = Kν (4.12)

In order to do this L has to be modified. The problem of Lagrangin density for dual electro-

magnetism has been addressed previously [36, 37]. We will take inspiration from these and write
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down our Lagrangian. Consider the following form for L:

L = −1

4
F µνFµν − AµJµ +BµK

µ (4.13)

where F µν = (∂ ∧A)µν− εµνρλ∂ρBλ is the field tensor and Bµ is called the dual photon. Jµ is the

electric current and Kµ is the magnetic current. Equation of motion obtained by varying w.r.t.

Aµ are:

∂µF
µν = Jν (4.14)

and varying w.r.t. Bµ yields:

∂µF̃
µν = Kν (4.15)

which are precisely the equations of motion in the presence of a magnetic current.

4.2.2 Incorporating the dark sector into dual EM

In our model of mmCPs, we do not have monopoles in our sector, but we assume that there

are monopoles in the dark sector. For incorporating these monopoles into the dark sector of

the Lagrangian density, we use the theory presented in the previous section. The mmCPs are

actually these dark monopoles that gain a small magnetic charge under our gauge field.

Thus, with kinetic mixing and without monopoles in our sector, the full Lagrangian density is

given by:

L = −1

4
F µνFµν −

1

4
F µν
D FDµν + gDBDνK

ν
D − eAνJν − eDADνJνD +

1

2
m2
DA

2
Dµ +

ε

2
FFD (4.16)

where F = (∂ ∧ A) and F µν
D = (∂ ∧ AD)µν − εµνρλ∂ρBDλ. Under a field redefinition of the form

A→ A+ εAD, we have:

F →F + ε(∂ ∧ AD)

= F + ε(FD + εµνρλ∂ρBDρλ)

and we thus have F 2 written as

F 2 → F 2 + 2εF (FD + εµνρλ∂ρBDλ) +O(ε2)
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in L. Although this cancels the kinetic mixing term, it gives another term of the form

Fµν(ε
µνρλ∂ρBDρλ) = (∂ ∧ A)µνε

µνρλ∂ρBDρλ − εµνσδ∂σBδεµνρλ∂ρBDλ

= 0 + 2δρλσδ∂
σBδ∂ρBDλ (4.17)

where, in the last line, we performed a partial integration over the first two terms as follows:

∂µAνε
µνρλ∂ρBDλ ≡ −Aνεµνρλ∂µ∂ρBDλ

= 0

since it is a product of a symmetric and an anti-symmetric tensors and also used εµνρλεµνσδ =

−2δρλσδ . With this in mind, consider the field redefinition BD → BD + εB. In this case,

FD → FD − εεµνρλ∂ρBλ

and thus, F 2
D can be written as:

F 2
D →F 2

D − 2εFDµνε
µνρλ∂ρBλ

= F 2
D − 4εδρλσδ∂ρBλ∂

σBδ
D

using the same trick as that used in Eq.(4.17), which exactly cancels out the extra term written

down in Eq.(4.17). Thus, after the field redefinitions

A→ A+ εAD and BD → BD + εB, (4.18)

we have the Lagrangian density taking the form:

L = −1

4
F µνFµν −

1

4
F µν
D FDµν + gDBDνK

ν
D + εgDBνK

ν
D

− eAνJν − ADν(eDJνD + εeJν) +
1

2
m2
DA

2
Dµ (4.19)

which exactly reproduces the equations of motion given in Eq.(4.11), rewritten here for clarity:

∂µF
µν = eJν

∂µF
µν
D = m2

DA
ν
D + eDJ

ν
D + εeJν

∂µF̃
µν = −εgDKν

D

∂µF̃
µν
D = gDK

ν
D
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Let us define a new quantity Qm = εgD
g

. Thus, the charge of a single mmCP is Qmg

4.3 mmCP-SPP in Neutron Stars

In this section, we begin by presenting how the evolution of the magnetic field of the neutron

star and its rotation frequency are modelled. For the rotation frequency, we have contributions

coming from both the electromagnetic dipole braking and that from gravitational waves [18, 38,

39], and we have the energy evolution given by:

dE

dt

∣∣∣∣
rot.

=
1

6
B2R6Ω4 − 32

5
GI2ε2QΩ6 (4.20)

Using the standard rotational energy expression E = 1
2
IΩ2 and then approximating the neutron

star by a sphere so that I = 2
5
MR2, we have the following equation for the time evolution of the

rotational frequency:

dΩ

dt
= − 5

12

B2R4

M
Ω3 − 64

25
GMR2ε2QΩ5 (4.21)

In this spin down equation, we have assumed that the magnetic axis is orthogonal to the rotation

axis, i.e., α = π/2 [38]. Our next step is to model the decay of the magnetic field. The mmCP-

SPP takes energy from the NS magnetic fields and thus contributes to its decay. The total energy

contained in the magnetic field (as was derived in chapter 3) is given by:

Emag. =
1

4
B2R3 =⇒ dEmag.

dt
=

1

2
BḂR3. (4.22)

The energy extracted from the magnetic field for driving an mmCP-anti mmCP pair a distance

l from each other is given by QmgBl (analogous to ordinary EM where we would write eEl).

Thus, for a pair production rate of Γ in an active volume VAV , the energy extracted per second

is:

dElost
dt

= −ΓQmgBlVAV (4.23)

or, in terms of the magnetic field,

dB

dt
= − 2

R3
ΓQmglVAV (4.24)
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Realistically, the magnetic field evolution is studied using complex magnetothermal simula-

tions [40, 41, 42]. The salient features, however, are captured if we use an equations of the

following form [40]:

dB(t)

dt
=
B(t)

2τD
e−t/2τD − B(t)

τO
− B2(t)

B(0)τH
− 2

R3
ΓQmglVAV (4.25)

where the first term is the dynamo term, the second is called the Ohmic term, the third is called

the Hall drift term and the fourth is our new mmCP-SPP term. τO is modelled as having a value

of 106 yrs and τH = 104 yrs. The value of τD depends on whether we are modelling magnetars

or pulsars. Magnetars typically have a dynamo for about τD = 10 s, whereas pulsars have much

longer active dynamos.

Using the fact that the magnetic field of a magnetar has remained at the current value, B0 ∼ 1015

G, through its lifetime, tlife ∼ 104 yrs, we can put a bound on the SPP contribution to the

magnetic field decay and thus, a bound on the charge Qm [8]. This equation is as follows:

ΓQmglBeff
4π

3
R3
AV −

B2
0

4tlife
R3 = 0 (4.26)

Using the SPP formula at zero temperature [43],

ΓT=0 =
Q2
mg

2B2
eff

3π2
e
− πm2

QmgBeff , (4.27)

where Beff = B(1 − e−mDl) is the effective magnetic field felt by the mmCP [8], we can use

Eq.(4.26) to get a bound on Qm of:

Qm ' 3.82× 10−19

which different from that obtianed in [8] by a small factor since while we have considered the

average SPP over a volume in Eq.(4.26), the volume was not considered in [8]. We feel this is

a better energetics argument since our entire analysis till that point has considered the active

volume.

Now that we have Eqs.(4.25) and (4.21), all that is left is to substitute the SPP expression and

obtain the evolution of the gravitational amplitude using the following formula (as derived in

chapter 3, Eqs. (3.102) and (3.97)):

h0 =
4

r
IεQΩ2, where εQ = D

B2

B2
∗
. (4.28)
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The solution is obtained numerically in the last section of this chapter. However, there are some

subtleties involved in SPP term regarding the thermal expression (since our system is not at

zero temperature) and we shall address it in the following section.

4.4 Incorporating thermal corrections

The system that we are dealing with is at some finite temperature, hence the correct SPP term

is the thermal Schwinger pair production formula for Γ [44, 45]. It is not that simple to integrate

this into Eq. (4.25) since the prefactor in this formula is plagued by singularities which should

go away when the next order term is taken into consideration. But this is a conundrum since

calculation of this term is extremely difficult even in the zero temperature case, where the exact

expression is unknown. Due to these difficulties, there have been other methods developed which

might help in dodging the singularities. We will come to those shortly, after we see what the

thermal formula looks like.

The full pair production rate for thermal SPP in the case of a pure electric field in QED is given

by [44, 45]:

ΓT 6=0 = ΓT=0 + ΓT

=
∞∑
p=1

e2E2

4π3p2
e
−πpm2

eE

+
∞∑
p=0

nmax∑
n=1

(−1)p+14e2E2

(2π)3/2(nβm)1/2Θ2

[
1−

(nTc
T

)2
]− 1

4

exp
(
− m2

2eE
Θ +

nm

2T

√
1− n2T 2

c

T 2

)
(4.29)

where β = 1
T

is the inverse temperature and Tc is the critical temperature given by Tc = eE
2m

.

The Θ = 2π(p+ 1)− sin−1
(
nTc
T

)
. Clearly, the contribution from ΓT is non-zero only if T > Tc.

For T < Tc, the contribution to ΓT 6=0 comes only from ΓT=0. For our case of mmCPs, we only

need to make the following replacements in the above formulae:

e→ Qmg and E → B

and the rest is the same. The critical temperature thus changes to

Tc(m,Qm) =
QmgB

2m
. (4.30)
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Figure 4.1: The regions are shaded in different colors for different values of magnetic field, as
labelled. Inside these regions, the temperature T > Tc for the given value of the magnetic field.

Thus, in the (m,Qm) plane, there is a region where we have T > Tc. For a magnetar, T ∼
106 K ∼ 86.25 eV, this region where T > Tc is given in Fig. 4.1 for different values of magnetic

field, ranging from 1015 G to 1018 G.

The singularities we talked about before are due to the factor[
1−

(nTc
T

)2
]− 1

4

where, at T = nTc, we have ΓT blowing up. There is a way to soften the singularities though,

within the ”hard thermal loop”(HTL) framework [44]. In this procedure, we replace m by m−iγ,

where γ ∼ 0.04e2T in QED. This is tantamount to the following replacement:

[
1−

(nTc
T

)2
]− 1

4

→

[
1−

(
nTc
T

)2

(
1−

(
nTc
T

)2)2

+
(

2γ
m

(
nTc
T

)2)2

] 1
4

(4.31)

thus, removing the singularities. We may now use this in the pair production rate formula and

see how the magnetic field and the GW amplitude evolve in time. To this end, we need to

(numerically) solve the following differential equation, assuming that the dynamo has already
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Figure 4.2: The GW amplitude when Binitial = 1015 G, m = 10−5 eV and Qm = 3.81 × 10−19.
In this figure, the blue line is the amplitude evolution not considering mmCP-SPP, red line
considers mmCP-SPP, but not the thermal corrections, and the black dashed line consideres the
full mmCP-SPP.
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Figure 4.3: Left : The ratio of magnetic fields without SPP and with SPP. Right : The ratio of
GW amplitude without SPP vs with SPP. Change can be observed after ∼ 0.41 years or ∼ 5
months. The red line doesn’t take into account the thermal corrections to the mmCP-SPP rate
and the blue line includes the thermal corrections to the SPP rate

ramped up the magnetic field to 1015 G:

dB(t)

dt
= −B(t)

τO
− B2(t)

B(0)τH
− ΓT 6=0(B(t))

2

R2
×QmglVAV (4.32)

where ΓT 6=0 is given by Eq.(4.29). Solving this equation using the initial value of the magnetic

field to be 1015 G, we obtain Figs. 4.2 and 4.3. Before we progress any further though, we

need to understand how and where the HTL ”trick” can be used. The rate is plotted against the

temperature in Fig. 4.4. As can be seen, the singularities are not yet completely eliminated, so

we need to be really careful about where the full thermal SPP formula can be used. One line of

progress is to use the formula only when the ratio T
Tc

is not ”close” to an integer. Quantifying

55



0.2 0.4 0.6 0.8 1.0
T/m

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Γ/m4

QmgB=0.70m2

QmgB=0.850m2

QmgB=1.00m2

Figure 4.4: The HTL fudge that we incorporate in Eq.(4.31) is not a solution though. As can be
clearly seen from the above plot, it only makes the singularities finite, doesn’t eliminate them.

this, we could use a condition like: ∣∣∣∣ TTc −
[ T
Tc

]∣∣∣∣ > 0.2 (4.33)

to use the formula.

The thermal SPP is expected to give an increase in the pair production rate by some orders of

magnitude, as can be confirmed by looking at Figs. 4.5, 4.6, 4.7, 4.8 and 4.9. With such an

increase in the pair production rate, we can expect to see its effect in the GW amplitude.
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Figure 4.6: For a magnetic field of 1016 G

57



1.

2.

3.

4.

5.

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10[m in eV]

L
o
g
10
Q
m

1

2

3

4

5

0

   0

(a) The contour plot of the log-

arithm of nmax =
[
T
Tc

]
.

1

1

1

1

1

1

1 1

1 1

1

6215

1

1

8012

1

14

1

1

1 413 623
779

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10(m in eV)

L
o
g
10
Q
m

(b) The ratio of the total SPP
rate including the thermal con-
tribution to the zero tempera-
ture SPP rate for a magnetic
field of 1017 G

1065

1057

1047

1057

1047

1037

1027 1027

1037

1047 1047

1037

1031

1047

1037

1030

1047

1038

1047

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10(m in eV)

L
o
g
10
Q
m

(c) The full SPP rate in units
of m−3s−1

Figure 4.7: For a magnetic field of 1017 G
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Figure 4.8: For a magnetic field of 1018 G

4.5 Results and Implications

In this section, we numerically solve Eq.(4.32) using the expression for ΓT 6=0 given in Eq.(4.29).

The plots for the gravitational wave amplitude are the most important for us and thus, will

be presented in this section. The condition (4.33) has been checked for each of the following

plots. From the plots in Figs. 4.2, 4.3, 4.10, 4.11 and 4.12, we see that the ”sweet spot” for

58



1.

2.

3.

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10[m in eV]

L
o
g
10
Q
m

1

2

3

0

0

(a) The contour plot of the log-

arithm of nmax =
[
T
Tc

]
.

1

1

1

1

1

1

1 1

1 1

1

1

1

1

623

1

1

1

1

1 1 1
45

8

1010

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10(m in eV)

L
o
g
10
Q
m

(b) The ratio of the total SPP
rate including the thermal con-
tribution to the zero tempera-
ture SPP rate for a magnetic
field of 1019 G

1069

1061

1051

1061

1051

1041

1031 1031

1041

1051 1051

1041

1031

1051

1041

1034

1051

1041

1051

1040

1023

-10 -8 -6 -4 -2 0 2

-20

-15

-10

-5

0

Log10(m in eV)

L
o
g
10
Q
m

(c) The full SPP rate in units
of m−3s−1

Figure 4.9: For a magnetic field of 1019 G

endeavour is when the initial magnetic field is around 1015 − 1016 G. This is because as the

magnetic field increases, the nmax decreases which, in turn, means that the deviation from the

case when mmCP-SPP is not considered will be lesser. In addition, notice that for plots using an

initial magnetic field of 1017 and 1018 G, the mass of the mmCP has been increased to 10−2 eV ,

as is consistent with Fig.4.1.

In the future, when we do start detecting gravitational waves from neutron stars or magnetars

with amplitudes ∼ 10−25, we should see one of the curves shown in the above referred figures and

thus infer whether millimagnetically charged particles are present or not. These are continuous

gravitational waves, in that they are not bursts, like the ones LIGO has already detected. Thus,

taking the data over months (or even years) will help deciphering the mystery of dark matter.
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Figure 4.10: B0 = 1016 G, m = 10−4 eV , T = 86.25 eV
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Figure 4.11: B0 = 1017 G, m = 10−2 eV , T = 86.25 eV
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Figure 4.12: B0 = 1018 G, m = 10−2 eV , T = 86.25 eV
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Chapter 5

Worldline Deformations

Let us now change gears and look at the method to obtain the exact worldline instanton solutions

for a given model in this chapter. For this, let us look at the basic premise of the Worldline

Instanton formalism. In this formalism, we have the probability of pair production is given

by [44]

Prob[pair prod.] = 1− ei(W [A]−W ∗[A]) = 1− e−2Im(W [A])

' 2Im(W [A]) (5.1)

in the Minkowski picture, where W [A] is the effective action. After performing a Wick rotation

to go into the Euclidean picture, we can calculate the Euclidean effective action to be

W E[A] = −
∫
dT

T
e−m

2T

∮
Dxe−

∫ T
0 dτ

[
ẋ2

4
+iAµẋµ

]
(5.2)

where Dx is the path integral measure over the closed worldlines. The next step is to perform

a saddle point analysis by treating the exponent of the exponential as an action S. The action

can be obtained to be:

S ' ma+ i

∫ 1

0

duAµẋ
µ (5.3)

with xµ(0) = xµ(1) and ẋ2 = a2. Obtaining the EOM’s for this action, we have

ẍµ(u) = iaFµν ẋν(u) (5.4)

where Fµν is the field tensor for the gauge field Aµ and xµ(u) are the instantons.
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This method has been used to obtain instanton solutions for homogeneous fields and we wish

to see what the solutions would look like for some inhomogeneous configurations [46]. We shall

thus take the vector potential to be:

A3 = −iEF (x4) (5.5)

where E is the electric field and F (x4) is some function of the Euclidean time x4. With this

gauge choice, the instanton equations thus become [46]:

ẍ3 = −aE
m
F ′(x4)ẋ4 (5.6)

ẍ4 =
aE

m
F ′(x4)ẋ3 (5.7)

with x1 and x2 being trivial.

5.1 Deformations in scalar fields

Let us now look at a different problem of a real scalar field in (1+1)D. For this, consider the

model:

Lχ =
1

2
(∂µχ)2 − Vχ(χ) (5.8)

where Vχ(χ) is a given potential. The equation of motion for the this Lagrangian are given by

∂µ∂
µχ+ V ′χ(χ) = 0

where if we are looking for static solutions, i.e., χ = χ(u), not dependent on time, then the

equation reduces to [47]:
d2χ

du2
=
dVχ
dχ

(5.9)

which can be manipulated as below:

d

du
(χ′) =

du

dχ

dVχ
du

=⇒ d

du
(χ′2) =

d

du
(2Vχ)

=⇒ χ′2 = 2Vχ(χ) + const.

64



where we impose the boundary conditions

χ→ χ̄ &
dχ

du
→ 0 as u→ −∞

where χ̄ is the critical point for the potential, i.e., Vχ(χ̄) = 0, in order to get the const. to be 0.

We thus have the full EOM as:

d2χ

du2
=
dVχ
dχ

(5.10)

χ′2 = 2Vχ(χ) (5.11)

Consider a similar model for a different scalar field φ with a different potential Vφ(φ) 6= Vχ(χ).

We have the following EOM for the static solution from a similar analysis:

d2φ

du2
=
dVφ
dφ

(5.12)

φ′2 = 2Vφ(φ) (5.13)

Now, let Lχ be exactly solvable and let it also support finite energy defects (see section 5.1.1).

Then, it is possible to write [46]:

Vφ(φ) =
Vχ(χ→ f(φ))

(f ′(φ))2
(5.14)

where f is a real isomorphism. This deformation implies that the solution in the deformed Lφ is

given exactly by φ = f−1(χ), where χ is that value which exactly solves the static equations in

the original Lχ theory.

5.1.1 Defects

In this section, we will see some basic theory on defects, enough so that we can understand

the technique outlined in [46]. For this purpose, consider a theory described by the following

Lagrangian density [48]:

Lφ =
1

2
(∂µφ)2 − Vφ(φ) (5.15)

in (1+1)D. Let the potential have the following properties:

1. V (φ) = 0 at a set of n critical points {φ̄1, ..., φ̄n}.
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2. V (φ̄i) = 0 ∀i.

3. V ′(φ̄i) = 0 ∀i.

The static EOM we derived in the previous section is still applicable, rewritten here for conve-

nience:
d2φ

du2
=
dVφ(φ)

dφ
(5.16)

As before, we can integrate this equation to obtain

φ′2 = 2Vφ(φ) + C (5.17)

And in order to determine the value of C, we will make use of the existence of defects. The

energy density for the static solutions is given by:

H =
1

2

(
dφ

du

)2

+ Vφ(φ) (5.18)

where the following condition must be satisfied for the finiteness of the kinetic portion of the

energy:

dφ

du
→ 0 as u→ ±∞. (5.19)

Using the critical points, we can distinguish between two types of defect structures. One type

is called topological or kink-like defect structures which connect two different, adjacent critical

points, like so:

lim
u→−∞

φ(u) = φ̄i & lim
u→+∞

φ(u) = φ̄i+1 (5.20)

and the other type, called non-topological or lump-like defects mostly require only a single critical

point, like so:

lim
u→±∞

φ(u) = φ̄i. (5.21)

It was using these boundary conditions that we obtained the Eqs.(5.10) and (5.11). Now that

we have a basic understanding of defects, let us go back to our main issue.
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5.2 Our saddle point equations

In this section, we come back to our main problem after that slight digression. We are going to

apply the technique in Eq.(5.14) to our instanton equations (5.6) and (5.7). For that, we will

recast the equations to a convenient form. Integrating Eq.(5.6), we get

ẋ3 = −aE
m
F (x4)

which when put into Eq.(5.7) immediately gives:

d2x4

du2
= − d

dx4

[
aE√
2m

F (x4)

]2

(5.22)

Let us now define a potential

V (x4) = −
[
aE√
2m

F (x4)

]2

= − ẋ
2
3

2
(5.23)

Now, using the condition ẋ2 = ẋ2
3 + ẋ2

4 = a2, in addition to the above equation, we have:

d2x4

du2
=
dV (x4)

dx4

(5.24)

ẋ2
4 = a2 + 2V (x4) (5.25)

which, barring the RHS of the second equation, is very similar to Eqs.(5.10) and (5.11). This

prompts us to proceed in a similar fashion, by introducing a ”world line deformation”. For

convenience of notation, let us rename x4 as χ. The equations then become

d2χ

du2
=
dVχ(χ)

dχ
(5.26)

χ̇2 = a2
χ + 2Vχ(χ) (5.27)

where aχ is the constant. Consider x4 = φ with a different potential Vφ(φ). In this model, once

again, the EOM are:

d2φ

du2
=
dVφ(φ)

dφ
(5.28)

φ̇2 = a2
φ + 2Vφ(φ). (5.29)
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Let us now apply the technique outlined in Eq.(5.14) to the above χ and φ models. This involves

imposing [46]:

a2
φ + 2Vφ(φ) =

a2
χ + 2Vχ(χ→ f(φ))

f ′(φ)2
(5.30)

and then finding φ using φ = f−1(χ), where χ solves Eqs.(5.26) and (5.27). Therefore, if the ex-

act worldline instantons in the χ model are known, we can obtain the exact worldline instantons

in the φ model. Next, let us prove that φ = f−1(χ) is indeed the exact deformed solution.

Claim. φ = f−1(χ) is the exact deformed solution of the Eqs.(5.28) and (5.29).

Proof. Using Eq.(5.30) in Eq.(5.28), we obtain

d2φ

du2
=
V ′χ(f(φ))

f ′(φ)
− f ′′(φ)

f ′(φ)3
[a2
χ + 2Vχ(f(φ))] (5.31)

In order to prove the claim, it is sufficient to prove that direct differentiation of φ = f−1(χ) gives

the above equation. For that, we use the fact that (f−1)′(χ) = 1
f ′(φ)

and obtain

d2φ

du2
=

1

f ′(φ)

[
d2χ

du2

]
− f ′′(φ)

f ′(φ)3

[
dχ

du

]2

=
V ′χ(f(φ))

f ′(φ)
− f ′′(φ)

f ′(φ)3
[a2
χ + 2Vχ(f(φ))] (5.32)

where, in the last line, we have used Eqs.(5.26) and (5.27).

That was the basic outline of the deformation technique. Let us now apply this technique to some

examples, following the prescriptions defined in [46]. Let us first redefine certain parameters, as

below:

F̃ (χ) = ωF (χ) and γ =
ωm

E
(5.33)

where ω is the frequency and γ is called the Keldysh parameter. Thus, the potential can be

written as:

V (χ) = −1

2

a2F̃ 2(χ)

γ2
(5.34)

68



Plugging this form of the potential into Eq.(5.30) and making f ′(φ) the subject of the equation,

we have the following differential equation for f(φ):

(
df(φ)

dφ

)2

=
a2
χ

a2
φ

(
γ2 − F̃ 2

χ(f(φ))

γ2 − F̃ 2
φ(φ)

)
(5.35)

Equivalently, we also have a differential equation for f−1(χ), given by:

(
df−1(χ)

dχ

)−2

=
a2
χ

a2
φ

(
γ2 − F̃ 2

χ(χ)

γ2 − F̃ 2
φ(f−1(χ))

)
(5.36)

Inverting these equations, given the potentials, we can get the deformation function and thus

obtain the exact instanton solution in one model if the exact instanton solution in the other

model is known. This, however, is extremely difficult due to the sheer mathematical complexity.

Another way to proceed is to actually go the other way. Choose the function f to go from

one model to another and apply f consecutively to produce a tower of exactly solvable models

by just differentiating the deformation function and obtaining the potential [46]. The following

schematic clearly illustrates this process:

(Vχ, χ)
integrating V−−−−−−−−−⇀↽−−−−−−−−−

differentiating f
(Vφ, φ)

integrating V−−−−−−−−−⇀↽−−−−−−−−−
differentiating f

(Vψ, ψ)
integrating V−−−−−−−−−⇀↽−−−−−−−−−

differentiating f
. . . (5.37)

We can generate a different tower by using another f̃ and applying it iteratively. In most

situations, however, we are given the potential and wish to find the worldline instantons, so let

us look at a few applications of the technique that establish it’s authenticity in the next section.

5.3 Applications

In this section we shall solve the Eqs. (5.35) and (5.36) for a few handpicked field configurations.

We will solve for the cases when the electric field is sinusoidal in time and another case where

the electric field is ”single-pulse time-dependent” [49]. Before we begin, however, let us see what

the instanton solutions are in the case of a constant electric field background, i.e., F (x4) = x4.

In this case, the solutions turn out to be:

x3(u) =
m

E
cos (2πnu) =

γ

ω
cos (2πnu) (5.38)

x4(u) =
m

E
sin (2πnu) =

γ

ω
sin (2πnu). (5.39)
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In the following calculations, this x4 solution will serve as our χ model with the invariant a given

by:

a = 2πn
γ

ω
. (5.40)

5.3.1 Sinusoidal time-dependent electric background

For this case, the electric field is given by E(t) = E cosωtx̂3 [46, 49]. From Eq.(5.5) and t = −ix4,

we have F (x4) = sinhωx4
ω

. To put it into the current context of the deformation technique, we take

this F (x4) to be the φ model and the constant electric background case to be the χ model. In

that spirit, let us rewrite F and x4 written earlier as Fφ(φ) and φ respectively. Then, according

to our notation, we have the following information available:

Fχ(χ) = χ =⇒ F̃χ(χ) = ωχ

Fφ(φ) =
sinhωφ

ω
=⇒ F̃φ(φ) = sinhωφ

χ(u) =
γ

ω
sin (2πnu)

aχ = 2πn
γ

ω
.

Given this information, we need to find φ(u) and aφ (through this, x3 for the φ model is auto-

matically determined using the relation between the three quantities). The way forward is now

clear. We solve the ODE’s (5.35) and (5.36) and obtain f(φ) and f−1(χ) in terms of χ, aχ, φ and

aφ. We then substitute χ and aχ from Eqs.(5.39) and (5.40) and simultaneously solve for φ(u)

and aφ.

Solving Eq.(5.35) gives f(φ) to be [46]:

f(φ) =
γ

ω

tan

(
iaχ
γaφ

F

(
iφω

∣∣∣∣− 1
γ2

))
√

1 + tan2
(
iaχ
γaφ

F
(
iφω| − 1

γ2

)) (5.41)

where F(·) represents the incomplete elliptical integral of the first kind, given by

F(φ|m) =

∫ φ

0

dθ
1√

1−m sin2 θ
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Solving Eq.(5.36), on the other hand, gives the inverse f−1(χ) to be:

f−1(χ) =
i

ω
am

(
γaφ
aχ

tan−1

(
ωχ√

γ2 − ω2χ2

)∣∣∣∣− 1

γ2

)
(5.42)

where am(·) is the Jacobi amplitude, defined in the following way. If u = F(φ|m), then, φ =

am(u|m) [50]. Substituting χ and aχ as mentioned at the start of this subsection, we solve for

φ and aφ and obtain the following:

φ(u) =
i

ω
am

2γ tan−1
(

sin 2πnu√
cos2 2πnu

)
K
(

γ2

1+γ2

)
iπ
√

1 + γ2

∣∣∣∣− 1

γ2

 (5.43)

aφ =
4γnK

(
γ2

1+γ2

)
ω
√

1 + γ2
(5.44)

where K(·) is the complete elliptical elliptical integral of the first kind, given by K(m) = F(π
2
|m).

Using the identities in [50], this φ(u) can be transformed into the following form:

φ(u) = sin−1

(
−i
(

γ2

1 + γ2

) 1
2

sd

(
4nuK

(
γ2

1 + γ2

)) ∣∣∣∣ γ2

1 + γ2

)
(5.45)

where sd(u|m) = sinψ√
1−m sin2 ψ

, and ψ = am(u|m). (We use the identity sn(u|−m) =
(

1
1+m

) 1
2 sd(u(1+

m)
1
2

∣∣∣∣ m
1+m

), where sn(u|m) = sin(am(u|m)).) Now, x3 can be obtained using

dx3

du
= −a

γ
F̃φ(φ(u)) (5.46)

to be

x3(u) = sin−1

((
γ2

1 + γ2

) 1
2

cd

(
4nuK

(
γ2

1 + γ2

)) ∣∣∣∣ γ2

1 + γ2

)
(5.47)

where cd(u|m) = cosψ√
1−m sin2 ψ

, and ψ = am(u|m). This can be cross verified to be correct through

the solution in [49].
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5.3.2 Single-pulse time-dependent electric background

In this scenario, the initial steps are the same as in the previous subsection with the replacement

that the electric field is now E(t) = Esech2ωtx̂3 [49] and thus F̃φ(φ) = tan(ωφ). We once again

solve Eq.(5.35) to obtain f(φ) to be:

f(φ) =
γ

ω
sin

[
aχ

aφ
√

1 + γ2
sin−1

{√
1 + γ2 sinωφ

γ

}]
(5.48)

and solve Eq.(5.36) to obtain f−1(χ) to be of the form:

f−1(χ) =
1

ω
sin−1

[
γ√

1 + γ2
sin

{
aφ
√

1 + γ2

aχ
sin−1

(
ωχ

γ

)}]
. (5.49)

Now, solving for φ and aφ after substituting the constant electric background instanton solution

for χ and aχ, we find that the following solution set for φ(u) and aφ satisfies the above equations:

φ(u) =
1

ω
sin−1

[
γ√

1 + γ2
sin(2πnu)

]
(5.50)

aφ =
γ

ω

2πn√
1 + γ2

. (5.51)

Of course, x3(u) for the single-pulse background can also be obtained using the above two solu-

tions in the ODE:

dx3

du
= −a

γ
F̃φ(φ(u)) (5.52)

to obtain

x3(u) =
1

ω
√

1 + γ2
sinh−1[γ cos(2πnu)] (5.53)

Thus, the worldline instantons for the single-pulse time-dependent electric field are given by

Eqs.(5.50) and (5.53). Once again, this solution can be verified with the one presented in [49]
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Chapter 6

Conclusion and future work

Millimagnetically charged particles (mmCPs) are intriguing due to their status as a viable can-

didate for the particle nature of dark matter. In this thesis, we first look at a way in which these

exotic states may arise in quantum field theory and then propose a possible detection strategy.

By looking at the gravitational wave amplitudes from magnetars, where the Schwinger pair pro-

duction (SPP) of mmCPs is believed to occur, in two different scenarios of mmCP-SPP occurring

and not occurring, we can infer the presence of these exotic states. While the current sensitiv-

ity of the Laser Interferometer Gravitational-Wave Observatory is not yet viable for detecting

the continuous gravitational waves where the difference is likely to occur, future detectors such

as the Einstein telescope have great hope. Einstein telescope is projected to be able to detect

gravitational wave amplitudes of up to 10−26 [51, 52, 53] which, according to Fig. 4.2, is very

good news. The result of the experiment will provide some progress in our understanding of the

particle nature of one of the greatest mysteries of the universe, dark matter.

In Chapter 5, we look at a novel technique to calculate exact worldline instantons applicable to a

variety of field configurations [46]. This will, of course, serve as an important step in calculating

the SPP formula for that configuration. This enterprise of calculating worldline instantons, until

now, has been very difficult to undertake and has only been done for a handful of cases [49] such

as a single-pulse time dependent electric field. We are currently trying to fully understand the

implications of such a result and it would potentially be a very rewarding endeavour to see its

application to a challenging problem.

73



74



Bibliography

[1] Gianfranco Bertone and Dan Hooper. “History of dark matter”. In: Rev. Mod. Phys.

90.4 (2018), p. 045002. doi: 10 . 1103 / RevModPhys . 90 . 045002. arXiv: 1605 . 04909

[astro-ph.CO].

[2] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Helvetica Physica

Acta 6 (1933), pp. 110–127.

[3] V. C. Rubin, W. K. Ford Jr., and N. Thonnard. “Extended rotation curves of high-

luminosity spiral galaxies. IV - Systematic dynamical properties, SA through SC”. In:

Astrophys. J. 225 (Nov. 1978), pp. L107–L111. doi: 10.1086/182804.

[4] J. P. Ostriker and P. J. E. Peebles. “A Numerical Study of the Stability of Flattened

Galaxies: or, can Cold Galaxies Survive?” In: Astrophys. J. 186 (Dec. 1973), pp. 467–480.

doi: 10.1086/152513.

[5] Joel R. Primack. “Dark matter and structure formation”. In: Midrasha Mathematicae in

Jerusalem: Winter School in Dynamical Systems Jerusalem, Israel, January 12-17, 1997.

1997. arXiv: astro-ph/9707285 [astro-ph].

[6] Karsten Jedamzik and Maxim Pospelov. “Big Bang Nucleosynthesis and Particle Dark

Matter”. In: New J. Phys. 11 (2009), p. 105028. doi: 10.1088/1367-2630/11/10/105028.

arXiv: 0906.2087 [hep-ph].

[7] Bob Holdom. “Two U(1)’s and Epsilon Charge Shifts”. In: Phys. Lett. 166B (1986), pp. 196–

198. doi: 10.1016/0370-2693(86)91377-8.

[8] Anson Hook and Junwu Huang. “Bounding millimagnetically charged particles with mag-

netars”. In: Phys. Rev. D96.5 (2017), p. 055010. doi: 10.1103/PhysRevD.96.055010.

arXiv: 1705.01107 [hep-ph].

[9] David Pooley et al. “GW170817 Most Likely Made a Black Hole”. In: The Astrophysical

Journal 859.2 (2018), p. L23. doi: 10.3847/2041-8213/aac3d6. url: https://doi.org/

10.3847%2F2041-8213%2Faac3d6.

75

https://doi.org/10.1103/RevModPhys.90.045002
http://arxiv.org/abs/1605.04909
http://arxiv.org/abs/1605.04909
https://doi.org/10.1086/182804
https://doi.org/10.1086/152513
http://arxiv.org/abs/astro-ph/9707285
https://doi.org/10.1088/1367-2630/11/10/105028
http://arxiv.org/abs/0906.2087
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1103/PhysRevD.96.055010
http://arxiv.org/abs/1705.01107
https://doi.org/10.3847/2041-8213/aac3d6
https://doi.org/10.3847%2F2041-8213%2Faac3d6
https://doi.org/10.3847%2F2041-8213%2Faac3d6


[10] Milton Ruiz, Stuart L. Shapiro, and Antonios Tsokaros. “GW170817, general relativistic

magnetohydrodynamic simulations, and the neutron star maximum mass”. In: Phys. Rev.

D 97 (2 Jan. 2018), p. 021501. doi: 10.1103/PhysRevD.97.021501. url: https://link.

aps.org/doi/10.1103/PhysRevD.97.021501.

[11] Masaru Shibata et al. “Modeling GW170817 based on numerical relativity and its implica-

tions”. In: Phys. Rev. D 96 (12 Dec. 2017), p. 123012. doi: 10.1103/PhysRevD.96.123012.

url: https://link.aps.org/doi/10.1103/PhysRevD.96.123012.

[12] Luciano Rezzolla, Elias R. Most, and Lukas R. Weih. “Using Gravitational-wave Observa-

tions and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars”. In:

The Astrophysical Journal 852.2 (Jan. 2018), p. L25. doi: 10.3847/2041-8213/aaa401.

url: https://doi.org/10.3847%2F2041-8213%2Faaa401.

[13] Ben Margalit and Brian D. Metzger. “Constraining the Maximum Mass of Neutron Stars

from Multi-messenger Observations of GW170817”. In: The Astrophysical Journal 850.2

(Nov. 2017), p. L19. doi: 10.3847/2041-8213/aa991c. url: https://doi.org/10.3847%

2F2041-8213%2Faa991c.

[14] Mrunal Korwar and Arun M. Thalapillil. “Novel Astrophysical Probes of Light Millicharged

Fermions through Schwinger Pair Production”. In: (2017). arXiv: 1709.07888 [hep-ph].

[15] Sandro Mereghetti. “The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anoma-

lous X-ray Pulsars”. In: Astron. Astrophys. Rev. 15 (2008), pp. 225–287. doi: 10.1007/

s00159-008-0011-z. arXiv: 0804.0250 [astro-ph].

[16] Victoria M. Kaspi and Andrei M. Beloborodov. “Magnetars”. In: Annual Review of Astron-

omy and Astrophysics 55.1 (2017), pp. 261–301. doi: 10.1146/annurev-astro-081915-

023329. eprint: https://doi.org/10.1146/annurev- astro- 081915- 023329. url:

https://doi.org/10.1146/annurev-astro-081915-023329.

[17] R. C. Duncan and C. Thompson. “Formation of very strongly magnetized neutron stars -

Implications for gamma-ray bursts”. In: Astrophys. J. Let. 392 (June 1992), pp. L9–L13.

doi: 10.1086/186413.

[18] Alessandra Buonanno. “Gravitational waves”. In: Les Houches Summer School - Session

86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July

31-August 25, 2006. 2007. arXiv: 0709.4682 [gr-qc]. url: https://inspirehep.net/

record/762437/files/arXiv:0709.4682.pdf.

[19] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”.

In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102. doi: 10.1103/PhysRevLett.116.061102.

url: https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.

76

https://doi.org/10.1103/PhysRevD.97.021501
https://link.aps.org/doi/10.1103/PhysRevD.97.021501
https://link.aps.org/doi/10.1103/PhysRevD.97.021501
https://doi.org/10.1103/PhysRevD.96.123012
https://link.aps.org/doi/10.1103/PhysRevD.96.123012
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847%2F2041-8213%2Faaa401
https://doi.org/10.3847/2041-8213/aa991c
https://doi.org/10.3847%2F2041-8213%2Faa991c
https://doi.org/10.3847%2F2041-8213%2Faa991c
http://arxiv.org/abs/1709.07888
https://doi.org/10.1007/s00159-008-0011-z
https://doi.org/10.1007/s00159-008-0011-z
http://arxiv.org/abs/0804.0250
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1086/186413
http://arxiv.org/abs/0709.4682
https://inspirehep.net/record/762437/files/arXiv:0709.4682.pdf
https://inspirehep.net/record/762437/files/arXiv:0709.4682.pdf
https://doi.org/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102


[20] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master

Series in Physics. Oxford University Press, 2007. isbn: 9780198570745, 9780198520740.

url: http://www.oup.com/uk/catalogue/?ci=9780198570745.

[21] L.D. Landau, L.D. Landau, and M. Hamermesh. The Classical Theory of Fields. Course

of theoretical physics. Butterworth-Heinemann, 1975. isbn: 9780750627689. url: https:

//books.google.co.in/books?id=X18PF4oKyrUC.

[22] J. R. Ipser. “Gravitational Radiation from Slowly Rotating, Fully Relativistic Stars”. In:

Astrophys. J. 166 (May 1971), p. 175. doi: 10.1086/150948.

[23] Kip S. Thorne. “Multipole expansions of gravitational radiation”. In: Rev. Mod. Phys. 52

(2 Apr. 1980), pp. 299–339. doi: 10.1103/RevModPhys.52.299. url: https://link.aps.

org/doi/10.1103/RevModPhys.52.299.

[24] S. Bonazzola and E. Gourgoulhon. “Gravitational waves from pulsars: Emission by the

magnetic field induced distortion”. In: Astron. Astrophys. 312 (1996), p. 675. arXiv: astro-

ph/9602107 [astro-ph].

[25] S. Chandrasekhar and E. Fermi. “Problems of Gravitational Stability in the Presence of a

Magnetic Field.” In: Astrophys. J. 118 (July 1953), p. 116. doi: 10.1086/145732.

[26] B. Haskell et al. “Modelling magnetically deformed neutron stars”. In: Mon. Not. Roy.

Astron. Soc. 385 (2008), pp. 531–542. doi: 10.1111/j.1365-2966.2008.12861.x. arXiv:

0705.1780 [astro-ph].

[27] H. C. Spruit. “Essential Magnetohydrodynamics for Astrophysics”. In: ArXiv e-prints (Jan.

2013). arXiv: 1301.5572 [astro-ph.IM].

[28] A. Colaiuda et al. “Relativistic models of magnetars: structure and deformations”. In: Mon.

Not. Roy. Astron. Soc. 385 (2008), pp. 2080–2096. doi: 10.1111/j.1365-2966.2008.

12966.x. arXiv: 0712.2162 [astro-ph].

[29] Arthur George Suvorov, Alpha Mastrano, and Ulrich Geppert. “Gravitational radiation

from neutron stars deformed by crustal Hall drift”. In: Mon. Not. Roy. Astron. Soc. 459.3

(2016), pp. 3407–3418. doi: 10.1093/mnras/stw909. arXiv: 1604.04305 [astro-ph.HE].

[30] V. C. A. Ferraro. “On the Equilibrium of Magnetic Stars.” In: Astrophys. J. 119 (Mar.

1954), p. 407. doi: 10.1086/145838.

[31] J. J. Monaghan. “Magnetic fields in steller bodies III Distortion of polytropes”. In: Mon.

Not. Roy. Astron. Soc. 134 (1966), p. 275. doi: 10.1093/mnras/134.3.275.

[32] I. W. Roxburgh. “Magnetostatic equilibrium of polytropes”. In: Mon. Not. Roy. Astron.

Soc. 132 (1966), p. 347. doi: 10.1093/mnras/132.2.347.

77

http://www.oup.com/uk/catalogue/?ci=9780198570745
https://books.google.co.in/books?id=X18PF4oKyrUC
https://books.google.co.in/books?id=X18PF4oKyrUC
https://doi.org/10.1086/150948
https://doi.org/10.1103/RevModPhys.52.299
https://link.aps.org/doi/10.1103/RevModPhys.52.299
https://link.aps.org/doi/10.1103/RevModPhys.52.299
http://arxiv.org/abs/astro-ph/9602107
http://arxiv.org/abs/astro-ph/9602107
https://doi.org/10.1086/145732
https://doi.org/10.1111/j.1365-2966.2008.12861.x
http://arxiv.org/abs/0705.1780
http://arxiv.org/abs/1301.5572
https://doi.org/10.1111/j.1365-2966.2008.12966.x
https://doi.org/10.1111/j.1365-2966.2008.12966.x
http://arxiv.org/abs/0712.2162
https://doi.org/10.1093/mnras/stw909
http://arxiv.org/abs/1604.04305
https://doi.org/10.1086/145838
https://doi.org/10.1093/mnras/134.3.275
https://doi.org/10.1093/mnras/132.2.347


[33] S. Chandrasekhar. Ellipsoidal figures of equilibrium. 1969.

[34] D. V. Gal’Tsov and V. P. Tsvetkov. “On the gravitational radiation of an oblique rotator”.

In: Physics Letters A 103 (July 1984), pp. 193–196. doi: 10.1016/0375-9601(84)90249-4.

[35] T.P. Cheng and L.F. Li. Gauge Theory of Elementary Particle Physics. Oxford science

publications. Clarendon Press, 1984. isbn: 9780198519614. url: https://books.google.

co.in/books?id=lk8GEzVNb10C.

[36] Daniel Zwanziger. “Local Lagrangian quantum field theory of electric and magnetic charges”.

In: Phys. Rev. D3 (1971), p. 880. doi: 10.1103/PhysRevD.3.880.

[37] M. Blagojevic and P. Senjanovic. “The Quantum Field Theory of Electric and Magnetic

Charge”. In: Phys. Rept. 157 (1988), p. 233. doi: 10.1016/0370-1573(88)90098-1.

[38] Simone Dall’Osso et al. “Gravitational Waves from Massive Magnetars Formed in Binary

Neutron Star Mergers”. In: The Astrophysical Journal 798.1 (2015), p. 25. url: http:

//stacks.iop.org/0004-637X/798/i=1/a=25.
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