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Abstract
The standard model of synchrotron spectra was developed by Westfold (1959), Ginzburg

and Syrovatskii (1969) and also Pacholczyk (1970). Unlike the non-relativistic case, where

the particle radiates at a single frequency, a relativistic particle emits at a range of frequen-

cies. One of the main results of the papers by Westfold and the others is that the total

power/emissivity radiated per unit frequency (assuming a power law distribution function

for particle energies) is a decaying power law in frequency for all frequencies. However,

such a nice form arises only under the set of assumptions that the magnetic field is uniform

everywhere and that there is no upper limit on particle energies. In our work, we have

been examining the consequences of filamentary magnetic field structures and their possible

signatures on the observed spectrum at radio frequencies.
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Chapter 1

Introduction

Astrophysical jets are awe eliciting cosmological phenomenon studied by theoretical astro-

physicists and experimentalists alike. The scales at which these jets operate are truly remark-

able in both size and extent. Technically speaking, astrophysical jets are highly collimated

elongated beams of ionized matter emitted along the axis of rotation of exotic astronomical

sources like radio galaxies, pulsars, quasars and black holes. The strong magnetic field pro-

duced by these dense nuclear objects forces these jets to be highly collimated. If the velocity

of matter/plasma in such jets approaches the speed of light, we call them relativistic jets as

they start showing effects from the theory of special relativity. Capable of extending to mega

parsecs, such jets can excite surrounding sheaths of stationary gas or continuously supply an

active region at the point where they terminate. These impact regions are called hotspots

in extra-galactic terminology and are part of larger structures called radio lobes. Figure (1)

shows a Fanaroff and Riley (FRII) Double Radio source.
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Figure 1.1: A classic FRII (double). Source: https://en.wikipedia.org

The characteristic temperature (or more accurately, the spectral dependence of the brightness

versus wavelength) of a hot spot can be used to reveal the nature of the physical processes

at work. The physical processes responsible for the radiation (at frequencies ranging from

radio to X-rays) in such hotspots have been a subject of research since the eighties. However,

answers to some important questions are still inconclusive - for instance, are the electrons

responsible for the radiation re-accelerated in the vicinity of the hotspot or not, for the

detection of such synchrotron electrons that are observed at such huge distances from the

central source would otherwise be impossible as their energy (or equivalently, the Lorentz

factor γ) would decay over time and they would run out of ‘fuel’ before they even reach the

distances at which they are observed.

The physical mechanism that gives rise to the radiation from such hotspots/lobes is now

widely believed to be synchrotron radiation. A synchrotron is a relativistic cyclotron but with

several important differences arising out of relativistic effects which make it an interesting

and intellectually stimulating problem in itself. An important difference is that unlike the

non-relativistic case, where the particle radiates at a single frequency, a relativistic particle

emits at a range of frequencies. We shall briefly derive the basics of synchrotron radiation in

the subsequent sections but the reader may read up any textbook that deals with radiation

fields for relevant concepts. In particular, one may want to start with:

• Radiative Processes In Astrophysics by G.B. Rybicki, and A.P. Lightman, 2004 Wiley-
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VCH Edition. It uses the Guassian-CGS unit system.

• High Energy Astrophysics by Malcolm S. Longair, 2011 Cambridge University Press,

3rd Edition. This one uses the SI system of units.
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Chapter 2

Theoretical Foundations

2.1 Larmor’s Formula

Larmor’s formula arises when one tries to find out the radiation emitted from an accelerated

charge. Although it is possible to derive this formula directly from Maxwell’s Equations,

we shall instead be using the much simpler and intuitive approach that was taken by J.J

Thomson. The latter helps give a better physical understanding of the phenomenon and is

mathematically far less intricate than the actual derivation. This derivation shall make use

of the Gaussian-CGS system of units.

For a stationary point charge, Coulomb’s Law dictates that the the electric field E be

purely in the radial direction:

E = Er =
q

r2

Let us say that the charged particle is accelerated by a small velocity 4v in some time 4t.
After a time t, the pure radial electric fields lines shall be disrupted and there will be a

perpendicular component of the electric field as well:

E⊥
Er

=
4vtsinθ
c4t

(2.1)

Figure 2.1 (taken from Longair, Pg-156) helps explain how the above expression can be

obtained:
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Figure 2.1: Perpendicular and Radial Electric fields. (Source: Rybicki and Lightman)

Substituting t = r/c in the 2.1 gives the perpendicular component of the electric field:

E⊥ =
q

r2

(
4v
4t

)
rsinθ

c2
=
qv̇sinθ

rc2
(2.2)

An important point to note here is that E⊥ depends on r−1 and not r−2 like the radial field.

Thus far away from the charge, only E⊥ will contribute significantly to the radiation field.

Next comes the question of total power radiated in each direction. This requires us to

make use of the Poynting Vector S. In CGS units, S is proportional to the square of the

perpendicular component of the electric field:

|S| = c

4π
E2
⊥ (2.3)

Putting in the value of E⊥ from Equation 2.2, we obtain the famous Larmor’s formula.

|S| = 1

4π

(
q2v̇2sin2θ

c3r2

)
(2.4)

The charge radiates with a dipolar power pattern that looks like a doughnut whose axis is

parallel to v̇. Figure 2.2 (taken from www.cv.nrao.edu) shows the angular distribution of

the radiation diagrammatically.
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Figure 2.2: Doughnut shaped angular distribution of radiation. (Source:
https://www.cv.nrao.edu)

In order to find the total power radiated in all directions, one must integrate 2.4 over all

directions. Although trivial, we shall not show the entire calculation here. The total emitted

power comes out to be:

P =

∫
|S| dA =

2

3

q2v̇2

c3
(2.5)

This result is known as the Larmor’s Equation. According to 2.5, the total (integrated)

power radiated over all the directions is proportional to the square of the acceleration of the

charged particle.

The relativistic generalization of the Larmor’s formula uses relativistic transformations to

and from the particle’s instantaneous rest frame. The same can be found in any standard

textbook for e.g. Rybicki and Lightman. The important result to be noted, however, is that

the total power P is in some sense, the sum of the squares of the perpendicular and parallel

components of acceleration of the charged particle.

P =
2q2

3c3
γ4
(
a2
⊥ + γ2a2

‖
)

(2.6)

2.2 Relativistic Beaming

One can find the derivations of the general expressions for the angular distribution of received

power in either Rybicki & Lightman or Longair’s book. It suffices to say that the derivations

require the Lorentz transformations of the angular distributions of emitted power. For

purposes relevant to us, we shall only look at the expressions where the acceleration of the
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point charge is either parallel or perpendicular to the direction of the velocity and then

arrive at relativistic limits for such cases. To make these expressions easier to understand,

we believe is necessary to include the following figure taken from Rybicki & Lightman:

Figure 2.3: Geometry for dipole emission. (Source: Rybicki and Lightman)

It is clear from the figure that θ is the angle between the velocity vector and the field

emitted whereas Θ is the angle between the acceleration vector and the direction of emission.

Consider now, the following two cases:

• Case 1 - Acceleration ‖ to Velocity:

dP‖
dΩ

=
q2

4πc3
a2
‖

sin2θ

(1− βcosθ)
(2.7)

• Case 2 - Acceleration ⊥ to Velocity:

dP⊥
dΩ

=
q2a2
⊥

4πc3

1

(1− βcosθ)4

[
1− sin2θcos2φ

γ2(1− βcosθ)2

]
(2.8)

Figure 2.4 summarizes both the important cases concisely. It has again been taken from

Rybicki & Lightman. It is important to note that radiation in both the cases is emitted at

an angle θ ∼ 1
γ

so that most of the radiation is concentrated in the forward direction and is

confined to a narrow cone since γ is a large number. This is known as the beaming effect.
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Figure 2.4: Two important cases of Relativistic Beaming. (Source: Rybicki and Lightman)

In the extreme relativistic case, γ >> 1. The denominators in Equations 2.7 and 2.8 become

very small and the radiation becomes strongly peaked in the forward direction. In this limit,

we obtain the following complicated looking expressions for the above two cases:

dP‖
dΩ
≈

16q2a2
‖

πc3
γ10 γ2θ2

(1 + γ2θ2)6
and, (2.9)

dP⊥
dΩ
≈ 4q2a2

⊥
πc3

γ8

[
1− 2γ2θ2cos2φ+ γ4θ4

(1 + γ2θ2)6

]
(2.10)

Even though these look intimidating, all we really need to note is that these expressions
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depend on θ solely through the combination γθ. This shall be used in the subsequent section

where we derive the standard model of particle spectra qualitatively.
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Chapter 3

Qualitative Derivation of the

Standard Model of Synchrotron

Spectra

3.1 Synchrotron Spectra of a Single Electron

As we have seen, Larmor’s formula contains the square of the acceleration of the particle.

One can use the Lorentz Force law together with Newton’s Equations of Motion to transform

the perpendicular component of Equation 2.6 into the following form using a⊥ = ωBv⊥ with

ωB =
qB

γmc
:

P =
2

3
r2

0cβ
2
⊥γ

2B2 (3.1)

It should be noted that we are using the Guassian-CGS unit system in this derivation. We

now need to average the above formula over all angles which makes sense for an isotropic

distribution of velocities.

Pavg =
2

3
r2

0cγ
2 β

2

4π
B2

∫
sin2α dΩ =

4

3
σT cβ

2γ2UB (3.2)

Here σT = 8πr2
0/3 is the classical Thomson cross- section and UB is the magnetic field

energy density. This final formula in equation 2.12 is a very important one and shall be used

again for comparison in order to find the power emitted by a single electron as a function of

frequency per unit frequency.

In order to proceed with the same, we first need to relate the synchrotron spectrum with the
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variation of the electric field as seen by the observer as power is proportional to the square

of the electric field (Equation 2.3). We shall also encounter the concept of critical frequency

which shall serve as one of the most important quantities in the discussion followed.

Figure 3.1: Emission cones at various points of an accelerated particle’s trajectory. Picture
taken from Rybicki & Lightman.

Consider the above diagram. The arc length 4s is related to the radius of curvature of the

path by a = 4s/4θ. Using the equation of motion,

γm
4v
4t

=
q

c
(v ×B)

and the fact that |4v| = v4θ together with 4s = v4t gives the following results:

4θ
4s =

qBsinα
γmcv ; a = v

ωBsinα
; 4s = 2v

γωBsinα

Using all these and a few more algebraic manipulations, one can estimate the time difference

between the emitted and received beams of radiation in the line of sight of the observer to

be:

4tA ≈
(
γ3ωBsinα

)−1

The expression suggests that the width of the observed pulses is smaller than the gyration

period by a factor γ3. This in turn means that the spectrum will be fairly broad and cut-off

at frequencies corresponding to the inverse of the above time period. Such a frequency is

given a special name in the context of synchrotron radiation and is known as the critical
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frequency. It depends on the square of the Lorentz factor γ, the magnetic field B and also

the pitch angle α.

ωc ≡
3

2
γ3ωBsinα =

3γ2qBsinα

2mc
(3.3)

So far we have been only been developing the tools necessary for the qualitative derivation.

It is clear that the power spectrum will extend to something of the order of the critical

frequency before falling off. Making use of the fact that the electric field depends on θ

solely through the combination γθ (The beaming effect, Equations 2.9 and 2.10) lets us write

E(t) ∝ F (γθ). One can further use a similar machinery as that used to find the critical

frequency to find a relation between θ and time t.

γθ ≈ 2γ
(
γ2ωBsinα

)
t ∝ ωct (3.4)

The time dependence of the electric field can now be written as, E(t) ∝ g(ωct). However,

what we need for finding the spectrum is the square of the Fourier transform of the electric

field.

Ê(ω) ∝
∞∫

−∞

g(ωct) e
iωtdt (3.5)

dW

dωdΩ
∝
∣∣∣Ê(ω)

∣∣∣2 =

∣∣∣∣∣∣
∞∫

−∞

g(ωct) e
iωtdt

∣∣∣∣∣∣
2

(3.6)

One can mentally change the variables of integration to ξ = ωct. This makes it clear that the

integrand is now only a function of the quantity ω/ωc. Integrating the power spectrum per

unit frequency over the solid angle and dividing by the period of orbit (both independent of

frequency), we get:

dW

dωdt
= T−1dW

dω
≡ P (ω) = C1F

(
ω

ωc

)
(3.7)

This can now be integrated over all frequencies to get the total power radiated per unit

frequency by a single electron.

P =

∞∫
0

P (ω)dω = C1

∞∫
0

F

(
ω

ωc

)
dω = ωcC1

∞∫
0

F (x) dx (3.8)
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Comparing it with our previous expression of average power (Equation 2.12), gives us for

the highly relativistic case (β ≈ 1), the power radiated per unit frequency as a function of

frequency for a single synchrotron electron.

P (ω) =

√
3e3B sinα

8π2ε0cme

F (x) (3.9)

3.2 Synchrotron Spectra for a Power Law Distribution

Function

We have already arrived at the expression for the power radiated by a single electron in a

magnetic field. The next part is to figure out the total power radiated by a distribution of

such electrons. Traditionally, the electron energy distribution function (DF) has been chosen

to be a decaying power law with a high energy cut-off i.e. N(γ)dγ = Cγ−pdγ. The total

emitted power by such a distribution of electrons will just be the integral over the particle

energies:

Ptot(ω) = C

γ2∫
γ1

P (ω)γ−pdγ ∝
γ2∫
γ1

F

(
ω

ωc

)
γ−pdγ ∝ ω−(p−1)/2

x2∫
x1

F (x)x(p−3)/2dx (3.10)

What makes the standard model standard is the following: if the energy limits are far too

wide, one can approximate the limits as x1 ≈ 0 and x2 ≈ ∞. In that case, the integral is

just a constant and we obtain the following well known expression:

Ptot(ω) ∝ ω−(p−1)/2 (3.11)

The spectral index s is related to the particle DF index p through

s =
p− 1

2

Arriving at this expression by invoking the above assumptions comes at its own cost. For

one, the power appears to blow at ω = 0. Such (and other) problems are solved when we

look at things much more carefully. Working to solve this problem is one of the main aims

of our MS-Thesis.
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Chapter 4

Detailed derivation of the

Synchrotron Spectrum using

Lienard-Weichert Potentials

The derivation for the same is extremely technical and involved. We shall only present a

short summary of it here for the sake of completeness. We shall be following Longair which

uses the SI system of units.

4.1 Potentials and the Coordinate System

The expression for the radiation spectrum of a moving electron is:

dW

dωdΩ
=

e2

16π3ε0c

∣∣∣∣∫ +∞

−∞

{
n×

[(
n− v

c

)
× v̇

c

]
κ−3

}
ret

exp(iωt) dt

∣∣∣∣2 (4.1)

Here κ = [1 − (v .n)/c] and the vector n is the unit vector from the electron to the point

of observation. It is possible to manipulate this complicated looking expression into a more

manageable form for later use.

dW

dωdΩ
=

e2

16π3ε0c

∣∣∣∣∫ ∞
−∞

n×
(
n× v

c

)
exp

[
iω

(
t′ − n . r0(t′)

c

)]
dt

∣∣∣∣2 (4.2)

This form does not include the acceleration of the particle and only the dynamics of the

electron appear hereon. The next part of setting the stage involves setting up a proper

coordinate system for the problem. The reader might find it useful to refer to the following
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diagram:

Figure 4.1: Coordinate system for evaluating the Intensity of synchrotron radiation. (Source:
Longair)

The vector n points from the electron to the observer as mentioned before and is taken to

lie in the x − z plane. We define a vector ε‖ lying in the plane containing the vector n

and the magnetic field. We also define a vector ε⊥ that lies along the y-axis. These three

vectors n, ε‖ and ε⊥ form a natural system of linearly independent vectors. The parallel and

perpendicular directions are with regard to the direction of the magnetic field as seen by the

observer.

4.2 The Algebra

We consider the coordinates of the electron in the (n, ε‖, ε⊥) coordinate system such that

t′ = 0 at x = y = z = 0. After a time t′, the electron will have moved a distance vt′ and the

angle it would have swept would be φ = vt′/a. From figure 4.1:

v = |v|
[
ixcos

(
vt′

a

)
+ ε⊥sin

(
vt′

a

)]
(4.3)
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The first term in the square bracket can be decomposed in terms of the vectors (n and ε‖):

v = |v|
[
ε⊥sin

(
vt′

a

)
+ ncos θ cos

(
vt′

a

)
− ε‖sin θ cos

(
vt′

a

)]
(4.4)

We can now compute the vector triple product n × (n × v) in Equation 4.2 remembering

that n × ε⊥ = ε‖ and n × ε‖ = −ε⊥. The first term in 4.2 simplifies to:

n× (n× v) = |v|
[
−sin

(
vt′

a

)
ε⊥ + sin θ cos

(
vt′

a

)
ε‖

]
(4.5)

To evaluate the exponent in 4.2, we need to put in the value of r0(t′). We shall not show

its complete expression here for the sake of being concise. It should, however, be noted that

the term in the exponent simplifies greatly.[
t′ − n . r0(t′)

c

]
= t′ − a

c
cos θ sin

(
vt′

a

)
(4.6)

One can now use the small angle approximations for sin
(
vt′

a

)
and cos θ as the largest contri-

butions in the exponent come from small values of [t′ − n . r0(t′)/c]. Otherwise, there would

be many ‘oscillations’ in the integral and the overall value would turn out to be very small.

This is precisely why using the small angle approximation for these trigonometric functions is

justified. In this case, it is enough to expand them to 3rd order in their respective arguments.

t′ − n . r0(t′)

c
≈ 1

2γ2

[
t′(1 + γ2θ2) +

c2γ2t′3

3a2

]
(4.7)

We next make small angle approximations in the expression for the vector triple product as

well:

n× (n× v

c
) =

∣∣∣v
c

∣∣∣ [−sin(vt′
a

)
ε⊥ + sin θcos

(
vt′

a

)
ε‖

]
≈
(
−vt′

a
ε⊥ + θε‖

)
(4.8)

All this effort can now be utilized in writing down the power separately in the ε‖ and ε⊥

directions.

dW⊥(ω)

dωdΩ
=

e2ω2

16π3ε0c

∣∣∣∣∫ ∞
−∞

vt′

a
exp

{
iω

2γ2

[
t′(1 + γ2θ2) +

c2γ2

3a2
t′3
]}

dt′
∣∣∣∣2 (4.9)

dW‖(ω)

dωdΩ
=

e2ω2θ2

16π3ε0c

∣∣∣∣∫ ∞
−∞

exp

{
iω

2γ2

[
t′(1 + γ2θ2) +

c2γ2

3a2
t′3
]}

dt′
∣∣∣∣2 (4.10)
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Taking the limits of the integral from −∞ to ∞ is permissible because most of the power

emitted by a synchrotron electron lies within small values of θ. In other words, since only

a small section of values of t′ corresponding to small values of θ contribute to the integral,

there is little error in extending the limits from −∞ to ∞.

The next part of the derivation in mostly changing variables and using the fact that these

above integrals can be expressed in terms of modified Bessel functions of the 2nd kind. It

suffices to say that Equations 4.9 and 4.10 reduce to:

dW⊥(ω)

dωdΩ
=

e2ω2

12π3ε0c

(
aθγ
cγ2

)2

K2
2/3(η) (4.11)

dW‖(ω)

dωdΩ
=

e2ω2θ2

12π3ε0c

(
aθγ
cγ

)2

K2
1/3(η) (4.12)

Here θ2
γ = (1 + γ2θ2) and η = ωaθ3

γ/3cγ
3. Finally, we need to integrate over the angle θ the

details of which can be found in Westfold’s 1959 paper. It is traditional to write:

F(x) = x

∫ ∞
x

K5/3(z) dz (4.13a)

G(x) = xK2/3(x) (4.13b)

We finally arrive at the following nice looking set of equations:

dW⊥(ω)

dω
=

√
3e2γ sinα

8πε0c
[F (x) + G(x)] (4.14)

dW‖(ω)

dω
=

√
3e2γ sinα

8πε0c
[F (x) − G(x)] (4.15)

The net power per unit frequency as a function of frequency is just the sum of the powers

in the two perpendicular directions. Summing 4.13 and 4.14 yields a result very similar to

Equation 3.9 that was obtained merely through qualitative discussions.

dW (ω)

dω
=

√
3e2γ sinα

8πε0c
F (x) (4.16)
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4.3 The Synchrotron Radiation of a Power Law Distri-

bution of Electron Energies

To obtain the frequency integrated emission, or emission from a power law distribution of

electrons, we need to have the integrals over the F and G functions. One may use the

following derived relations from Abramowitz and Stegun given in Rybicki and Lightman:

∫ ∞
0

xµF (x) dx =
2µ+1

µ+ 2
Γ

(
µ

2
+

7

3

)
Γ

(
µ

2
+

2

3

)
(4.17a)∫ ∞

0

xµG(x) dx = 2µΓ

(
µ

2
+

4

3

)
Γ

(
µ

2
+

2

3

)
(4.17b)

In order to evaluate the total power emitted by a distribution of electrons, all we need to

do now is integrate Equation 4.15 using Equation 4.16a. This shall make use of the fact

that µ = (p− 3)/2. The final expression for total power per unit frequency as a function of

frequency from a power law distribution of electron energies, N(E) dE = κE−pdE is given

by:

Ptot(ω) =

√
3e3Bκsinα

8π2ε0cme(p+ 1)

(
ωm3

ec
4

3eB sinα

)−(p−1)/2

Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)
(4.18)
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Chapter 5

Filamentary Magnetic Fields

5.1 The Model

Now that the theory of the standard model of synchrotron spectra has been developed, we

need to see how well can it be applied to real life scenarios, like hotspots or lobes of radio

galaxies. However, as Eilek and Arendt 1996 point out, the standard model is overly

restrictive and a little too naive, especially in applications to spectral aging of radio sources,

working on which is after all, a major aim of our MS-thesis.

Summarizing the standard model, the reader shall remember that the synchrotron spectrum

depends upon the particle energy E (or equivalently γ) and the magnetic field B. The

magnetic field is taken to be homogeneous and constant throughout the source which is a

rather weak assumption when it comes to space plasmas or even plasmas in laboratories.

As our interferometers have become better at resolving far away sources, filamentary nature

of magnetic fields has turned up from time to time. The exact reason for their existence

might not be known as of now but they could be in part due to fluctuations in magnetic

fields at the intermediate scales (Eilek and Arendt 1996). Thus, any realistic model should

incorporate these kinds of substructures/magnetic field distributions throughtout the emit-

ting volume.

For purposes relevant to us, we imagine several filaments of strong magnetic field strengths

immersed in a background region of plasma and gas where the field is much weaker. The

salient features of our model are:

• The gyroradius r of the electron’s trajectory is the related to the Lorentz factor γ and
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the magnetic field B by:

r =
γmc

eB sinα
(5.1)

We note that the maximum possible gyroradius of the electron must equal the width/diameter

l of a filament. This is just twice the gyroradius:

l =
2γmc

eB sinα
(5.2)

This equation relates the width of the filament, the magnetic field and the Lorentz

factor of the synchrotron electron. We call this the confinement condition. Clearly r

cannot exceed l if the electron has to reside inside the filament.

• In a steady state situation, there is a natural limit on r, namely the size of the filament.

This in turn puts an upper limit on the value of the Lorentz factor (γmax) given a

particular value of the magnetic field B. This also means that if the γ > γmax, the

electron will be forced to reside outside the filament.

• Due to the inclusion of an upper limit, the integral limits can neither be extended

artificially from 0 to ∞, nor can the Ptot integral be obtained analytically in closed

form. The standard power law form of the synchrotron spectrum might get altered.

5.2 Numerical Analysis: An Approximation for the

Bessel function Integral

The asymptotic forms of the function F (x) from Rybicki and Lightman are as follows:

F (x) =


4π 3
√

x
2√

3Γ( 1
3)

x << 1 (i)√
π
2
e−x
√
x x >> 1 (ii)

(5.3)

The reader is urged to recall that x = ω/ωc where ωc is the critical frequency of the electron.

We already had the asymptotic forms of the function but wanted to make it more precise. To

achieve the same, we wrote a code in Mathematica and carried out a number of procedures

to arrive at an approximate function Fapprx.:

• We first plotted F (x) or the Bessel function integral (Equation 4.13a) numerically.
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• Realizing that the shape could be obtained by multiplying an increasing function with

a rapidly decreasing one, we took the functions in question to be a power law and a

decaying exponential with arbitrary parameters.

• We then fit these to the original curve and figured out the values of the arbitrary

parameters. To make things even more precise and accurate, we demanded that the

percentage error be < 5% for all values of x.

• Making the above demand split the approximate function into 4 parts. The forms for

x << 1 and x >> 1 were kept the same. The exact form for Fapprx. is given below.

Furthermore, we present various graphs to help the reader understand this function

and its manufacturing procedure a little better.

Fapprx.(x) =



4π 3
√

x
2√

3Γ( 1
3)

0 < x < 0.0075 (i)

1.761e−xx0.291 0.0075 ≤ x < 1 (ii)

e−x (1.07x0.513 + 0.701) 1 ≤ x < 26 (iii)

√
π
2
e−x
√
x x ≥ 26 (iv)

(5.4)

The % error with respect to an approximate form Y (x) of the Bessel function integral F (x)

as a function of x is given below. Y (x) can be any one of the equations 5.3 and 5.4 depending

upon which one of them is required.

% error w.r.t Y(x) =

∣∣∣∣∣
(
x
∫∞
x
K 5

3
(ξ)dξ − apprx. form Y(x) of F (x)

x
∫∞
x
K 5

3
(ξ)dξ

)
× 100

∣∣∣∣∣ (5.5)
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Figure 5.1: The original Bessel function integral F (x), Equation 4.13a

Figure 5.2: Fapprx.(x) (Equation 5.4) superimposed on F (x) (Equation 4.13a)
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Figure 5.3: F (x) (Eqn. 4.13a), Fapprx.(x) (Eqn. 5.4 (ii)) and the asymptotic form for x << 1
(Eqn. 5.3 (i))

Figure 5.4: % error between F (x) (Eqn. 4.13a) and Fapprx.(x) (Eqn. 5.4 (ii)) and x << 1
asymptotic form of F (x) (Eqn. 5.3 (i))
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Figure 5.5: F (x) (Eqn. 4.13a), Fapprx.(x) (Eqn. 5.4 (iii)) and the asymptotic form for x >> 1
(Eqn. 5.3 (ii))

Figure 5.6: % error between F (x) (Eqn. 4.13a) and Fapprx.(x) (Eqn. 5.4 (iii)) and x << 1
asymptotic form of F (x) (Eqn. 5.3 (ii))
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5.3 Checks made using Fapprx.(x)

The overall constants modulo physical quantities like electric charge, magnetic field, mass

of the electron and speed of light etc. in the original and approximate expressions of total

power are respectively:

1

(p+ 1)
Γ

(
p

4
+

19

12

)
Γ

(
p

4
− 1

12

)
(5.6a)

2
−(p+1)

2

∫ ∞
0

Fapprx.(x) dx (5.6b)

The following table compares these values for three different values of the power law distri-

bution index p. The middle column gives the value of the power integral constant calculated

through F (x) (Eqn. 4.13a) while the rightmost one gives it for the constant calculated

through Fapprx.(x) (Eqn. 5.4). One notes that the values of the two constants are very close

and quite insensitive to the value of p.

Value of p Original Function F (x) Approximate Function Fapprx.(x)

5 0.266648 0.266409

6 0.273897 0.273557

7 0.313496 0.312980

Table 5.1: Comparison of constants for different values of p

Although the % error seems to increase, we need not worry about it as the values of spectral

index s rarely turn out to be above 3. That means at max, a % error of 0.16 in the value of

the constant calculated through Fapprx.(x).

5.4 Log-Log Plots of Power Vs. Frequency

After checking the value of the overall constant, the next step was to actually plot things.

We plotted power vs. frequency plots for a wide set of parameters B, p and γmax and the

results were in accordance with the work of Eilek and Arendt (1994).

In particular, we took the magnetic field to be of the order of a few hundred Tesla (Carilli

1999), varied the value of γmax over three orders of magnitude and also changed the DF

parameter p to see how the spectrum got effected.
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We shall not be presenting all these cases here. Instead, we shall show only one of the plots

and then list out all the general results that we extracted out of this exercise. In particular.

we show the graph for the case B = 10−7 T, p = 5 and γmax = 100.

Figure 5.7: Log-Log plot showing synchrotron power P as a function of frequency ω. Here,
B = 10−7 T, p = 5 and γmax = 100.

The notable points deduced from all this hard work are as follows:

• The slope of the increasing part turned out to be 1/3 in all the cases irrespective of

the values of B, p or γmax.

• The middle part follows the standard power law dependence i.e. Ptot(ω) ∝ ω−(p−1)/2.

• The rapidly decreasing part is not a straight line on log-log scale and was verified to

be an exponential cut-off.

• The trends seen in the above curves can be easily explained just by staring at the

expression for the critical frequency.

• To recall, ωsy = 26.4× 1010γ2B Hz in SI units.

• The curves turn at two fiducial frequencies: ω0 corresponding to γ = 1 and ωc corre-

sponding to γ = γmax.

29



• The slope 1/3 occurs for ω << ω0 while the spectrum cuts off exponentially at high

frequencies when ω >> ωc.

It was further found that ωsy doesn’t depend on p which makes sense as ωc doesn’t have any

p dependence. We also verified that the magnetic field B indeed follows a linear trend while

for γmax the trend is quadratic. In other words, the turn-over frequencies, ωc1 and ωc2 are

independent of the values of the power law distribution index (p). ωc1 ∝ γ2
1 whereas ωc2 ∝ γ2

2

and the ωc ∝ γ2B trend was also verified.
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Chapter 6

The Pressure Balance Equation

All our analysis so far has been without any regard to filaments. But it guarantees the

fact that our code and analysis is correct by being concurrent with the work of Eilek and

Arendt (1996). The next part in the puzzle is to actually invoke filaments and after that,

distributions of filament sizes and magnetic fields and individually sum up the radiations

coming from the filaments and the background. We start off with setting up the pressure

balance equation for a single filament immersed in a weak background region of plasma.

6.1 Magnetic and Particle Pressures

A uniform magnetic field of strength B corresponds to a magnetic field energy density

B2/2µo. This is true for both the filament as well as the background as long as the fields

are constant and homogeneous. We also have pressure coming due to the relativistic motion

of electrons. An electron with Lorentz factor γ has total energy equal to γmc2. Multiplying

this with the DF for particle energy, that has the dimensions of per unit volume, gives us

the total particle pressure due to the relativistic kinematic motion of the electrons. For a

single filament, the pressure balance equation then becomes (assuming constant magnetic

fields both inside and outside the filament):

B2
in

2µo
+

∫ γmax

1

γmc2Kinγ
−pdγ =

B2
out

2µo
+

∫ ∞
γmax

γmc2Koutγ
−pdγ (6.1)

Here N(γ)dγ = Kγ−pdγ is the particle energy DF with dimensions of per unit volume.

Equivalently, we may also express the same as N(E)dE = K ′E−pdE but now N(E) is the

number density per unit energy of the synchrotron electrons.
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6.2 The Single Filament Case

A single cylindrical filament of a finite radius is imagined to be immersed in a background

region having a magnetic field much weaker than what’s inside. The values of magnetic fields

are taken to be constants so that the pressure balance equation takes a simple form. We also

emphasize that this derivation is without invoking the minimum energy argument. We’ve

tried to keep all physical quantities and expressions in SI units. The following cartoonish

diagram might be helpful for the purposes of visualization.

Figure 6.1: A rough sketch of a single filament immersed in a background region of plasma.

6.2.1 Independent Parameters

There are 4 independent parameters. These are: magnetic field inside the filament (Bin),

width of the filament (l), contrast ratio between the fields (ζ = Bout/Bin) and contrast ratio

for the number densities (k = nout/nin).

6.2.2 The Contrast Ratio

For a constant magnetic field B, the magnetic field pressure is simply B2

2µ0
. Similarly, a pop-

ulation of relativistic electrons with a given number density will also contribute to pressure.

In a state of equilibrium between the filament and the background, we can write the pressure
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balance equation (it is again emphasized that the magnetic fields are constant) as follows:

B2
in

2µo
+

∫ γmax

1

γmc2Kinγ
−pdγ =

B2
out

2µo
+

∫ ∞
γmax

γmc2Koutγ
−pdγ (6.2)

Using the fact that p > 5, we can reduce the above equation to:

Bout =

√
B2
in +

2µ0Kinmc2

3
− 2µ0mc2(Kin +Kout)

3γ3
max

(6.3)

We can then use the fact that K1 and K2 are related to n1 and n2 through number density

integrals. From there we obtain the relations;

Kin = n1(−p+1)

γ−p+1
max −1

and Kout = −n2(−p+1)

γ−p+1
max

(6.4)

Since γmax = leB
2mc

, and γmax >> 1, we can neglect its inverse when being added to a

considerably bigger quantity. After using this assumption and using the expression for Kin

and Kout and rearranging the above equation, we finally obtain an equation relating ζ, p, k

and l or equivalently, γmax:

ζ =

(
1− 2µ0mc

2

B2
in

(
1− p
2− p

)[
nout

(
leBin

2mc

)
− nin

])1/2

(6.5)

6.2.3 Filament

The total power per unit frequency as a function of frequency emitted only from the filament

can be evaluated as:

Ptot,fil =

√
3e3Binsinα

8π2ε0cm

γ=
leBin
2mc∫

γ=1

KinF (ω, γ,Bin)γ−pdγ

=
−nin(−p+ 1)

√
3e3Bin sinα

8π2ε0cm

γ=
leBin
2mc∫

γ=1

F (ω, γ,Bin)γ−pdγ (6.6)

6.2.4 Background

To evaluate the total power per unit frequency emitted from only the background region,

we need to evaluate the power integral with limits from γmax to ∞. It is, however, very
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important to note that the high frequency exponential cut-off emerges when the upper limit

has a finite value, as needs to be done in a numerical treatment. Thus analytically, the

expression for background radiation is:

Ptot,bkg =

√
3e3Boutsinα

8π2ε0cm

γ=∞∫
γ=

leBin
2mc

KoutF (ω, γ,Bout)γ
−pdγ

After using the contrast ratio equations for the magnetic fields and the number densities, we

can write the same as:

Ptot,bkg =
−nin(−p+ 1)

√
3e3ζBinksinα

8π2ε0cm

(
leBin

2mc

)p−1


γ=∞∫

γ=
leBin
2mc

F (ω, γ,Bout)γ
−pdγ

 (6.7)

6.2.5 Sum of Synchrotron Radiation from the two regions

Most of the work is now done and all we now need to do is just manually add up the radiation

from the filament and the background. We denote the sum simply by Ptot without any other

subscript.

Ptot =

−nin(−p+ 1)
√

3e3Binsinα

8π2ε0cm

γ= leB
2mc∫

γ=1

F (ω, γ,Bout)γ
−pdγ

+

−nin(−p+ 1)
√

3e3ζBinksinα

8π2ε0cm

(
leBin

2mc

)p−1
γ=∞∫

γ= leB
2mc

F (ω, γ,Bout)γ
−pdγ


Many of the terms can be taken common and the simplified expression (Equation (7)) can

be written down as:

Ptot =
−nin(−p+ 1)

√
3e3Binsinα

8π2ε0cm


γ=

leBin
2mc∫

γ=1

F (ω, γ,Bin)γ−pdγ + kζ

(
leBin
2mc

)p−1
γ=∞∫

γ=
leBin
2mc

F (ω, γ, ζBin)γ−pdγ


As can be seen, (7) contains only four independent parameters: Bin, ζ, k and width of the
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filament l.

6.2.6 Mathematica code Summary

In our Mathematica code, we took solid values for each of the independent parameters. We

then solved (4) for the number density (nin) which means we also have nout since we only

need to multiply the former by k. It should be mentioned that presence of a single filament

did not change the spectrum in any major way, although it does look significantly different

from that of a uniform field region case. This was enough motivation for us to move forward

and do the two (many) filament region case. In the following graph, we compare the uniform

field spectrum with that of the composite spectrum of a single filament + background. The

values of the contrast ratio parameters ζ and k have been chosen to be approximately equal

to 1.

1 104 108 1012 1016
Logω

10-190

10-140

10-90

10-40

LogPtot

Figure 6.2: Uniform field case Vs. Composite spectrum with ζ = 0.999 and k = 0.999.

Even though the break-frequencies roughly match in the two cases, there is significant de-

viation from the uniform magnetic field case. This is enough motivation for the fact that

the incorporation of filaments in an otherwise uniform magnetic field region can cause extra
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break-frequencies to appear. This phenomenon is closely tied together with the concept

of synchrotron aging and shall be talked about in further detail with regard to the two

filament-region case.

6.2.7 Sensitivity Analysis

In order to find out how sensitive each independent parameter is, we plotted several curves

for each parameter while keeping the value of the other three parameters constant (at some

reference value). This allowed us to figure out the break-frequencies with respect to each of

the independent parameters. We have presented the graphs as well as % error plots for each

of the independent parameter below and have also tried to provide a concise explanation of

the trend seen. We frequently use the term % error in the following sections. We define it

for an arbitrary parameter X (as a function of the frequency ω) in the following manner:

% error (ω) =

∣∣∣∣(Ptot(ω) for reference value of X− Ptot(ω) for some other value of X

Ptot(ω) for reference value of X

)
× 100

∣∣∣∣
(6.8)

Magnetic Field B

We present Log-Log plot of synchrotron power vs. frequency ω for two values of B, B =

10−8 T (reference) and B = 10−7 T. We can clearly see the 4 break frequencies. Here we

have taken ζ = 0.999, k = 0.999 and γmax = 103. The trend that the critical frequency

ωc for a composite spectrum depends linearly on B is also verified. The second plot is a

Log-Log plot of the percentage error vs. frequency ω again for B = 10−8 T and B = 10−7 T.

This plot shows that Bin is an extremely sensitive parameter especially at high frequencies

(> 1013 Hz).
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Figure 6.3: Comparison of break-frequencies when only B is changed. ζ = 0.999, k = 0.999,
γmax = 103.

10 105 109 1013
Logω

10-2

1018

1038

1058

1078

1098
Log% error

Figure 6.4: % error between composite spectra for B = 10−8 T and B = 10−7 T.
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Gamma Max γmax

We present a Log-Log plot of synchrotron power vs. frequency ω for three different values

of γmax, γmax = 102, γmax = 103 and γmax = 104. The usual quadratic trend for the break-

frequencies is followed here as well. The exponential cut-off frequency is the same since

upper limit of γ is the same. For all cases, B = 10−8 T and k = ζ = 0.999. The second plot

shows percentage error as a function of frequency for γmax = 103 and γmax = 104. One can

see that the error initially increases with frequency and finally attains a constant value. The

plot shows that γmax is also a very sensitive parameter.
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Figure 6.5: Multiple graphs for the composite spectrum with different values of γmax. B =
10−8 T and k = ζ = 0.999.
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Figure 6.6: % error from a (-)900 % increase in γ value from γmax = 103 to γmax = 104.

Electron Number Density Ratio k

We present a Log-Log plot of total synchrotron power vs. frequency ω for four different

values of the parameter k = nout/nin. It can be seen that the break-frequencies ωc1, ωc3 and

ωc4 do not depend on the parameter k. The values of B, γmax and ζ have been taken to be

10−8 T, 103 and 0.999 respectively. The second plot is again a Log-Log plot of percentage

error vs. frequency. It that the parameter k is less sensitive at higher frequencies than at

lower ones.
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Figure 6.7: Log-Log plot of Ptot vs. ω. Here, B = 10−8 T, γmax = 103 and ζ = 0.999.
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Figure 6.8: % error plot for k. One notes that it is less sensitive at higher frequencies than
at lower ones.
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Magnetic Field Contrast Ratio ζ

We present a Log-Log plot of total synchrotron power vs. frequency ω for four different

values of the parameter ζ = Bout/Bin. The plot establishes that break frequencies of the

composite spectrum for the single filament case have a linear dependence on ζ. Here we have

taken k = 0.999, B = 10−8 T and γmax = 103 as the reference values. The second plot is a

Log-Log plot of percentage error vs. frequency for ζ. We note that it is more sensitive at

lower frequencies.
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Figure 6.9: Log-Log plot of Ptot vs. ω with emphasis on parameter ζ. All other parameters
are, B = 10−8 T, γmax = 103 and k = 0.999.

41



1 104 108 1012 1016
Logω

10

100

1000

104

LogPtot

Figure 6.10: % error plot for ζ. One notes that it is more sensitive at lower frequencies.

We repeated the same procedure while keeping the % errors to a maximum of 10% and

compiled the results in the following table that neatly summarizes all of them. We were

thus able to conclude which parameters are the most sensitive; Bin and ζ are so in this case.

Moreover, we came to know whether a particular independent parameter is more sensitive

at higher or lower frequencies.

Parameter % increase % error at high ω % error at low ω More Sensitive At

Bin (−10, 10) ∼ 100, >> 100 < 100 HIGH ω

γmax (−10, 10) ∼ (30,−30) ∼ (−10, 10) HIGH ω

k (−5,−10) ∼ (0, 0) ∼ (−5,−11) LOW ω

ζ (−5,−10) ∼ (−4000,−7000) ∼ (−5000,−9500) LOW ω

Table 6.1: Parameter sensitivity as a function of frequency.

6.3 Behaviour of Break Frequencies with various Pa-

rameters

We did a thorough analysis and saw how the break frequencies depend upon the 4 indepen-

dent parameters Bin, k, ζ and γmax. We noted that there are four breaks in the composite
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spectrum as opposed to just two in a uniform field case. We denote them in increasing order

of frequency by ωc1, ωc2, ωc3 and ωc4. These break frequencies correspond to the following

values of γ: γ = 1 for ωc1, γ = 103 for ωc3 and γ = 105 for ωc4. The break at ωc2 is a new

occurrence and cannot be predicted theoretically. The reference values of the parameters

have been taken as follows: Bin = 108 T, γmax = 103, k = 0.999 and ζ = 0.999.

6.3.1 Dependence on Bin

We changed the reference value of the magnetic field by ±50% and plotted all four break

frequencies as a function of the magnetic field. We then noted how the break frequencies

changed and plotted the same in Mathematica. A lot of the numbers had to be guessed

through naked eye which might have reduced the accuracy. However, the first break fre-

quency seems to increase linearly with Bin, in accordance with ωc ∝ γ2B.
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(a) ωc1 vs. Bin
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(b) ωc2 vs. Bin
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Figure 6.11: Break frequencies as a function of the Magnetic Field.
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6.3.2 Dependence on γmax

We changed the reference value of γmax by ±50% and plotted all four break frequencies as

its function. We then noted how the break frequencies changed and plotted the same in

Mathematica. ωc1 and ωc4 should technically not depend on γmax as they correspond to

fixed values of γ (γ = 1 and γ = 105).

600 800 1000 1200 1400
γmax

500

1000

1500

2000

2500

ωc1

ωc1 vs.γmax

(a) ωc1 vs. γmax
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Figure 6.12: Break frequencies as a function of γmax.

6.3.3 Dependence on k

The parameter k i.e. the ratio of the number density of synchrotron electrons outside and

inside the filament, as is seen in the plots, influences only the second break frequencies ωc2.
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Figure 6.13: Break frequencies as a function of parameter k.

6.3.4 Dependence on ζ

The ratio of the magnetic fields from outside and inside the filament also effects the break

frequencies. Although more sensitive at lower frequencies, its significance becomes greater

at higher frequencies where the contribution from the background region is greater and

dominant.
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Figure 6.14: Break frequencies as a function of parameter ζ.

6.3.5 Trends of Break Frequencies

• ωc1 which corresponds to γ = 1 increases with Bin but is independent of the other

three parameters γmax, k and ζ.

• ωc2 cannot be predicted theoretically and is a new feature that arises only in the case

of a composite spectrum. It increases with Bin and γmax but decreases with k and ζ.

• ωc3 corresponds to γ = γmax and increases with Bin, γmax and ζ. It does not seem to

vary with k.

• ωc4 is the exponential cut-off break-frequency which occurs as a result of having a

numerical upper limit on γ. In theory, the upper limit is ∞ and one observes only

the power law for high frequencies all the way upto ω = ∞. It shouldn’t technically
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depend on γmax although the graph shows it to increase with the same. It increases

with Bin and ζ but does not vary with k.
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Chapter 7

Synchrotron Aging: Could the Radio

Sources be Fooling Us?

7.1 Basic Theory

With regard to synchrotron radiation, the highest energy electrons are the ones to get de-

pleted the most quickly, leading to a steepening in the emission spectrum at high frequencies

over time. A synchrotron-aged radio spectrum is characterized by an (assumed) low fre-

quency power-law emission spectrum of index p, a ‘break frequency’ ωB, near which the

spectrum steepens from the injected power-law, and the behavior above the break, which

depends on micro-physical processes such as pitch angle scattering and particle acceleration.

Assuming that the synchrotron power is the only source by which the electron loses energy,

we have for highly relativistic electrons,

−dE
dt
∝ B2E2 (7.1)

This clearly suggests that the higher energy electrons will radiate away their energy first. One

can also calculate the characteristic timescale for a synchrotron electron with energy E (and

commensurate Lorentz factor γ) by simply taking the ratio of total energy to instantaneous

power,

τ =
E

dE/dt
=

E
4
3
σT cβ2γ2UB

(7.2)

So no matter what the energy of the synchrotron electrons is, if we were to return to the blob
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of plasma some time τ after it was accelerated, we would find only those electrons remaining

whose lifetimes would have been longer than τ .

Mathematically, the standard radiative ‘age’ of the relativistic particle distribution, tsyn,

defined as the time since the spectrum was a power-law out to infinite frequency (Eilek,

Melrose & Walker, 1996), relates to νB and the magnetic field B through:

νB =
243m5

ec
9

64πe7
B−3t−2

syn

For B in µG and νB in GHz, this can be reduced to the following convenient expression:

tsyn = 1610B−3/2 ν
−1/2
B MYr (7.3)

Relation (7.3) shows that there is an inverse relation between tsyn and the break frequency

νB. This means that the break frequency decreases with time. The following diagram helps

visualize the same.

Figure 7.1: Brightness Vs. Frequency sketch showing decreasing Break Frequency with time.

7.2 The Multi-Filament Region Case

We have seen that introduction of a single filament causes the synchrotron spectra to change

in a subtle but significant way. We now wish to show that a multi-filament case can further
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complicate the phenomenon of spectral aging by introducing additional break-frequencies

into the composite power spectrum. It suffices to take a 2 filament-region case for the

purposes of illustration, although the same mathematical treatment can be extended to as

many filaments as required.

We visualize a region of plasma with two concentric cylindrical regions having different

pressures and electron number densities and use the pressure balance equations to relate

multiple parameters just like we did for the single filament case.

Figure 7.2: 2 Filament Region Case, two concentric cylinders are immersed in a ‘weak’
background.

7.2.1 Pressure Balance between Regions - 1 & 2

Assuming a state of equilibrium between region-1 and region-2, and making use of the

pressure balance equation gives us the contrast ratio of the (constant) magnetic fields of

these two regions. In particular, we start from,

B2
1

2µo
+

∫ γm1

1

γmc2K1γ
−pdγ =

B2
2

2µo
+

∫ γm2

γm1

γmc2K2γ
−pdγ (7.4)
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Integrating and making use of the fact that p > 5, we obtain the first desired relation,

ζ21 =

(
1− 2n1µ0mc

2

B2
1

(
1− p
2− p

)
[γm1k21 − n1]

)1/2

(7.5)

Here ζ21 = B2/B1, k21 = n2/n1 and γm1 is the maximum possible value of the Lorentz factor

for region-1. B, p and n refer to the magnetic field, the power law distribution index and

the electron number density respectively. Taking ζ21, k21, γm1 and B1 as the independent

parameters, one can solve for n1. We shall use it in the subsequent part of the derivation.

7.2.2 Pressure Balance between Inside and Outside Regions

This time, we equate the pressures of the two inside regions to that of the outside (back-

ground) region, assuming everything to be in perfect equilibrium. In other words, we assume

P1 = Pout and P2 = Pout giving respectively,

B2
1

2µo
+

∫ γmax1

1

γmc2K1γ
−pdγ =

B2
out

2µo
+

∫ ∞
γmax1

γmc2Koutγ
−pdγ (7.6)

B2
2

2µo
+

∫ γmax2

γmax1

γmc2K2γ
−pdγ =

B2
out

2µo
+

∫ ∞
γmax1

γmc2Koutγ
−pdγ (7.7)

These can be simplified to an expression relating the contrast ratio of outside and innermost

region’s magnetic fields ζ21 with other parameters like B1, n1 and γm2 etc. Here, kout1 =

kout/k1 while γm2 is the maximum possible value of the Lorentz factor for region-2. Thus

equations (7.6) and (7.7) respectively reduce to:

ζout1 =

(
ζ2

21 +
2n1µ0mc

2

B2
1

(
1− p
2− p

)
[γm1k21 − γm2kout1]

)1/2

and (7.8)

ζout1 =

(
1 +

2n1µ0mc
2

B2
1

(
1− p
2− p

)
[1− γm1k21]

)1/2

(7.9)

We thus obtain a set of redundant but fortunately consistent equations. Equating the above

two expressions makes us arrive at equation (7.5).
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7.2.3 Independent Parameters

In addition to the 4 independent parameters from the single filament case, we have two more

additional parameters in the 2 filament-region case. Looking at (7.5) and (7.7) there are a

total of six independent parameters: ζ21, k21, γm1, B1, ζout1 and γm2. As mentioned earlier,

we can find the number density n1 and now in addition, kout1, or equivalently, nout.

7.2.4 Region-1

The total power per unit frequency as a function of frequency emitted only from region-1

can be evaluated as follows:

Ptot,r1 =
−n1(−p+ 1)

√
3e3B1

8π2ε0cm

γm1∫
1

Fr1(ω, γ,B1)γ−pdγ (7.10)

Note that the approximate function Fapprx(x) inside the integral will be different for different

regions.

7.2.5 Region-2

Along similar lines, we can evaluate the total power emitted from region-2 in the following

way:

Ptot,r2 =
−n1k21(−p+ 1)

√
3e3ζ21B1

8π2ε0cmγ
−p+1
m1

γm2∫
γm1

Fr2(ω, γ, ζ21B1)γ−pdγ (7.11)

7.2.6 Outside (Background) Region

Finally we are left with the background region. We need to use the correct Fapprx(x) and

integrate from γm2 to (technically) ∞.

Ptot,bkg =

√
3e3Boutsinα

8π2ε0cm

∞∫
γm2

KoutFout(ω, γ,Bout)γ
−pdγ

Ptot,bkg =
−n1kout1(−p+ 1)

√
3e3ζout1B1

8π2ε0cmγ
−p+1
m2

∞∫
γm2

Fout(ω, γ, ζout1B1)γ−pdγ (7.12)
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7.2.7 Sum of Synchrotron Power from the 3 Regions

All that needs to be done now is to add the radiated powers from all the three regions

individually. Mathematically, we need to find Ptot = Ptot,r1 + Ptot,r2 + Ptot,bkg. One can take

many of the factors common so that the resulting expression for total power becomes,

Ptot =
−n1(−p+ 1)

√
3e3B1sinα

8π2ε0cm

{ γ=γm1∫
γ=1

Fr1(ω, γ,B1)γ−pdγ

+
k21ζ21

γ−p+1
m1

γ=γm2∫
γ=γm1

Fr2(ω, γ, ζ21B1)γ−pdγ +
kout1ζout1

γ−p+1
m2

γ=∞∫
γ=γm2

Fout(ω, γ, ζout1B1)γ−pdγ

}
(7.13)

7.2.8 Running the Code in Mathematica

With equation (7.13) in hand, we plotted several graphs for different sets of parameters. We

chose the value of p, the particle distribution index to be 5. It has been already established

that p doesn’t change the break frequencies in any way; it just changes the magnitude of

values obtained for the total power. We now present the composite spectra below and also

compare it with the single filament case in the limit when B1 = B2 and n1 = n2.

Figure 7.3: The Composite Spectra (Black). Contributions from individual regions are also
visible (In Color).
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(a) Synchrotron power spectrum for the single fil-
ament case.
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(b) Spectrum for the 2 filament case when B1 =
B2 and n1 = n2.

Figure 7.4: Comparison of single filament case with that of double filament one. Values of
all the parameters are chosen to be the same for both.

7.3 Source Age from Composite Spectrum: An Artifi-

cial Example

Equation (7.3) gives the age of the synchrotron source in terms of the break frequency νB.

Observationally, there is a possibility of mistaking the actual break frequency with the one

that occurs at slightly lower frequencies as can be seen from the spectrum. This can make

the source appear much older than it actually is. We shall determine the two ‘ages’ of the

source by using the above spectrum as an example.
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Figure 7.5: Determining the Age of the Source from Break Frequencies

We have denoted the actual break frequency by νB and the one that it can be mistaken with

by ν ′B. The corresponding synchrotron ages are denoted by tsyn and t′syn. Since the outside

magnetic fields are much smaller than that in region-1, let us use B = 10−8 T = 100µG.

Taking νB ≈ 104 GHz and ν ′B ≈ 10 GHz, we get,

tsyn ≈ 1610× (102)−3/2 × (104)−1/2 = 16100 Yr = 0.016 MYr (7.14a)

t′syn ≈ 1610× (102)−3/2 × (10)−1/2 = 509× 10−3 MYr = 0.509 MYr (7.14b)

We thus have,
t′syn
tsyn

=
0.509

0.016
= 31.81 (7.15)

We notice that the source can look much older than it actually is. In fact in this case, it

looks approximately 32 times older!
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Chapter 8

Conclusion

We have been able to reproduce a part of Eilek and Arendt’s paper using Fapprx and shown

that the shape of the synchrotron spectrum varies from the standard case of a power law. We

have re-confirmed that the Log-Log plot of a synchrotron spectrum for a uniform magnetic

field case:

• is increasing with slope 1/3 at lower frequencies for ω < ωc1 where ωc1 corresponds to

the lower limit of γ in the synchrotron power expression.

• is a (decaying) power law for intermediate frequencies between ω = ωc1 and ω = ωc2.

Here ωc2 corresponds to the upper limit of γ.

• cuts off exponentially after ω = ωc2 roughly at high frequencies.

We started with the simple case of a single filament immersed in a weaker region. The

quantification of the spectrum required the use of 4 independent parameters Bin, contrast

ratio of the magnetic fields ζ, ratio of the number densities k and the maximum possible

Lorentz factor γmax in contrast with only 2 parameters (B and γmax) in the uniform field case.

We were able to show that the spectrum changes in a subtle but significant way and the

resulting spectrum has 4 break frequencies, one of which cannot be associated with any of

the γs.

We also noted that most of the contribution to the power at lower frequencies comes from

the inner filament having stronger magnetic field, and that at higher frequencies comes from
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outside the filament which has a weaker magnetic field. In addition, we analyzed each pa-

rameter separately and were able to pin-point whether it is more sensitive at higher or lower

frequencies.

We also did the two filament region case where the role of filaments became even more clear.

We showed that there can actually be another exponential cut-off frequency which might

lead to wrong determination of the age of the source.

Thus, at this point, it seems quite intuitive that the number of filaments can play a major

role in how the composite spectrum looks. It might add break frequencies that are otherwise

absent and complicate the phenomenon of synchrotron aging.
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