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Abstract

In the first part of this thesis, we review Chern Simons theory and study its topological

entanglement entropy using the replica trick. We review the quantisation of Chern Simons

theory and see how this seemingly trivial theory has a rich structure and a deep connection

with chiral conformal field theory which lets us calculate partition function on one manifold

from one on another manifold. We see why this calculation is difficult to do for Chern

Simons theory coupled with matter. In the second part, we look at 1 D antiferromagnetic

spin chains and their edge states and see how their low energy physics can be mapped to

the Op3q quantum rotor model. We look at an exactly solvable model, the AKLT model

of spin 1 particles and discuss a pictorial way to see how edge states emerge. We exactly

diagonalize S “ 1 Heisenberg spin chain to look at the Haldane gap and see how the parity

of length of the spin chain decides the ground state. We support these numerical results

with an analytical study of the effective Hamiltonian between the edge spins and by deriving

an effective Hamiltonian between them.
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Chapter 1

Introduction

Topological phases are states of matter in two dimensions which display ground states that

do not exhibit spontaneous symmetry breaking. The degeneracy of their ground states

depend exclusively on the genus of the manifold they are on. This degeneracy is robust and

isn’t lifted by any local perturbation. At low energy limits, their physics is described by a

topological quantum field theory.

It was shownr1s,r2s that for topological phases, the entanglement entropy of a simply

connected region A is of the form SA “ αL´ γ` ... here L refers to the size of the boundary

of the entangling regions, α is some non universal coefficient and gamma a universal constant.

Here ... refers to the contributions which go to zero as size of A goes to infinity.

Chern Simons (CS) theories are topological quantum field theories which describe the low

energy physics of Fractional Quantum Hall Effect system which exhibits topological order

(same as topological phase). Since CS theory is topological, it doesn’t contain any local

degrees of freedom so we expect only the topological part of the entanglement entropy to be

predicted correctly. This would help us understand the long range entanglement in FQHE

states.

We will see that the edge states of a Chern Simons can be observed by doing a gauge

transformation in the bulk and the gauge degrees of freedom, after choosing an appropriate

boundary conditions, become physical degrees of freedom on the boundary. Similarly, in a

S=1 antiferromagnetic Heisenberg open spin chain, if one does a rotation by 360 degrees on
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one of the ends, a negative sign is observed, suggesting the presence of spin 1/2 degrees of

freedom on the edge.

These edge states in the antiferromagnetic spin 1 chain has interesting characters which

we explore in the later part of this thesis. It is shown that the antiferromagnetic Heisenberg

spin chain can be mapped to the O(3) quantum rotor model and using this mapping we

calculate the effective interaction Hamiltonian between the two spin 1/2 particles on the

either sides of the chain and see that they form a singlet and triplet. The interaction is

ferromagnetic for odd length chain and antiferromagnetic for even length of chain and the

coupling decays exponentially as the length of the chain. And we do a numerical calculation

to support our result.
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Chapter 2

Chern Simons theory

Let us start with a review of Chern-Simons theory. Chern Simons theories are a kind of

quantum field theories which do not have any local degrees of freedom, i.e. topological

quantum field theories. It is a gauge theory, very different from the familiar Maxwell theory.

We would be working with Chern-Simons theory in 2+1 dimensions. The action of this

theory is devoid of the metric, so the theory is diffeomorphism invariant. This means that one

cannot write down a non-trivial quantity in this theory which is a function of the position.

Because you can always do a diffeomorphism and change positions, relative distances or

more generally the local geometry, but the theory would be invariant and all the measurable

quantities will be invariant.

It can be seen more clearly why the theory is diffeomorphism invariant by looking at the

Action, which we will introduce of the Abelian version now.

2.1 Abelian Chern-Simons Theory

The familiar 3+1 dimensional Maxwell Lagrangian, coupled with charges and currents from

which Maxwell’s equations are derived is:

L “ ´1

4
FµνF

µν
´ AmuJ

ν (2.1)
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If we reduce the spatial dimensions from 3 to 2, we have another allowed gauge invariant

term, which leads to a richer structure. We can have an additional term, the Chern-Simons

term which is gauge invariant, Poincare invariant and local.

L “ k

2
εµνρAµBνAρ (2.2)

There is no metric gµν present in the action as it was in the previous Lagrangian, used to

lower the indices. The Levi-Civita symbol is used here to contract the indices. This is the

reason that the theory is manifestly invariant under coordinate transformations. Under first

glance, the presence of the vector field itself in the Lagrangian makes it look like it won’t be

gauge invariant. Let’s check that for a gauge transformation Aµ Ñ Aµ ` Bµλ :

δL “ k

2
Bµpλε

µνρ
BνAρq (2.3)

So we have got a total derivative term which we can ignore if the manifold is compact. If

the manifold has boundaries, the above term leads to some interesting physics which we will

see later.

Even though the Chern Simons Lagrangian, which has only first order quadratic terms,

looks trivial, having equations of motion Fµν “ 0. It can be made non-trivial by various

ways, of which the one we are interested in is putting it on a manifold with non-trivial

topology.

A very useful feature of Chern Simons theory is if you couple some source fields, it

attaches some flux to them. We can see this classically in the following way, by writing one

of the Maxwell’s equation from the 3 dimensional electromagnetism Lagrangian including

the Chern-Simons term:

∇ ¨̈̈ E ` kB “ ρ (2.4)

By integrating this equation over the whole space, we obtain the following:

ż

d2x∇ ¨̈̈ E ` k

ż

d2xB “

ż

d2xρ (2.5)

The first term, by Stoke’s theorem is just the line integral of a curve which can be made

arbitrarily far from the sources, where the electric field is small, hence making this term

zero. The next term involving be gives the total flux, φ and right hand side of the equation
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is the total charge, q. So we have,

φ “
q

k
(2.6)

Just to be clear, this magnetic flux is not the usual magnetic flux that is obtained from

magnetic dipoles rather the Chern-Simons theory is attaching a flux to every charged particle.

These particles’ spin also get changed and hence their statistics also get modified making

them anyons.

2.2 Non Abelian Chern-Simons Theory

Just like in Maxwell’s theory, we can have Non-Abelian vector fields, we can have the same

in Chern-Simons too, which gives rise to very interesting physics that is not present in the

Abelian case. The Non-Abelian case is based on a Lie group G and its elements are generally

non-commuting. If T a are the generators of the group elements, then they follow the Lie

algebra:

rT a, T bs “ ifabcT c (2.7)

Where fabc are the structure constants of the Lie group. They follow the following trace

condition

trpT aT bq “
1

2
δab (2.8)

The vector fields are defined in the following way, making them vectors with matrix compo-

nents in the euclidean space M.

Aµpxq “ AaµpxqT
a (2.9)

The action, is written usually given by:

SrAs “
k

4π

ż

M

trpA^ dA`
2

3
A^ A^ Aq (2.10)

Written component wise for more clarity,

SrAs “
k

8π

ż

M

d3xεµνρpAµBνAρ ´
1

3
fabcAaµA

b
νA

c
ρq (2.11)

For consistency check, we can put fabc “ 0 and obtain the previous abelian Chern Simons

action with a redefinition of k to include the 4π.
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The promised interesting physics will be seen now in this action’s test for gauge invariance.

Unlike the simple gauge transformations allowed in the abelian case, one can have gauge

transformations like:

Aµ Ñ Agµ “ g:Aµg ´ ig
:
Bµg (2.12)

Here, g P G. We can see that apart from an additive term, the transformation also

transform the vector field itself like a rotation of sorts. Substituting the transformation in

the action:

SrAgs “ SrAs ` i
k

4π

ż

M

d3xεµνρBµtrpBνgg
:Aρq `

k

12π

ż

M

d3xεµνρtrpg:Bµgg
:
Bνgg

:
Bρgq (2.13)

The total derivative term on the right hand side can again be ignored for a compact manifold

but the other term is something you can’t get rid of. So, it seems that the action is not gauge

invariant, which would mean that Abelian Chern Simons is not a legitimate gauge theory.

But looking closely at the non-vanishing troublesome term, we find, it is proportional to the

winding number ω:

ωrgs “
1

24π2

ż

M

d3xεµνρtrpg:Bµgg
:
Bνgg

:
Bρgq (2.14)

It is an integer which counts the number of times the gauge transformation spans the group

it belongs to. To see this, let us look at gpxq which is a function of the euclidean space. If

gpxq is a permissible gauge transformation, its value at infinity should be specified. We can

take it to be identity.

We see that g(x) is defined in the whole real space including the point at infinity, so we

can treat it as an object living in S3. gpxq is a mapping from S3 to the parametric space

of the group, in the case when the group is SU(2), this mapping is from S3 to S3, in this

case, it is clear that this mapping will be labelled by a winding number which is an integer,

this fact is true for general non-abelian compact gauge groups. It is invariant under small

deformations of gpxq, which is clear from the definition of ω because it doesn’t involve the

metric, hence we can call it a topological quantity. So, this action is invariant under small

gauge transformations whose winding number is zero. But it is not invariant under large

gauge transformations (eq. 2.12):

S Ñ S ` 2πkN (2.15)
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For any physically relevant gauge theory, we need the measurable quantities of the theory

to be gauge invariant. Action is not a measurable quantity, but appears in the path integrals

as exppiSq, for this quantity to remain invariant, we need k to be an integer. So we find

that non-abelian Chern-Simons theories only exist when k P Z and is called the level of the

theory.

2.3 Chern-Simons theory with a boundary

In the last section, we had ignored the boundary terms in the variation of the Chern-Simons

action because we assumed the manifold Σ to be compact. But in the cases when the

manifold Σ is not compact and has a boundary BΣ, new interesting physics can be seen at

the edges. Namely, we find an infinite dimensional Hilbert space of the chiral currents of a

CFT defined on BΣˆR. Keeping the boundary term, the variation in the action is:

δS “
k

4π

ż

Σ

d3xεµνρtrpδAµFνρq `
k

4π

ż

Σ

d3xBµrε
µνρAνδAρs (2.16)

From this we can see that the appropriate boundary condition would be the one in which

integral of AδA on the boundary is zero. Choosing the boundary condition A0 “ 0. The local

symmetry which is remaining corresponds to the gauge transformations that are identity on

the boundary and the rest, they have to be time independent transformations (which are

global) to be compatible with the boundary condition.

With this boundary condition, we have the action:

S “ ´
k

4π

ż

ΣˆR

d3xεijtrpAiB0Ajq `
k

12π

ż

ΣˆR

d3xεijtrpA0Fijq (2.17)

Now performing the variation with respect to A0 which acts as a Lagrange multiplier, gives

us the equation of motion, which is Fij “ 0

The solution to this is, pure gauge. that means the degrees of freedom in the bulk are

flat connections:

Ai “ g´1
Big (2.18)
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Substituting it back in the action, we get:

trpεijAiB0Ajq “ trpεijBigg
´1
B0Bjgg

´1
q ´ trpεijBigg

´1
Bjgg

´1
B0gg

´1
q (2.19)

We see that the first term in the above equation is a total derivative because g´1Bµgg
´1 “

´Bµg
´1 so we have:

trpεijBigg
´1
B0Bjgg

´1
q “ ´Bjptrpε

ij
Big

´1
B0gqq (2.20)

Explicitly writing component wise in polar coordinates:

BrtrpBθg
´1
B0gq ´ BθtrpBrg

´1
B0gq (2.21)

Integrating the second term gives zero because of the single-valudeness of g. So, the boundary

integral term:

´
k

4π

ż

Σ

trpεijBigg
´1
B0Bjgg

´1
q “

k

4π

ż

BΣ

dθdt trpg´1
Bθgg

´1
B0gq (2.22)

Finally, we get

S “ ´
k

4π

ż

BΣˆR
dθdt trpg´1

Bθgg
´1
B0gq `

k

12π

ż

ΣˆR
εµνρtrpg´1

Bµgg
´1
Bνg

´1
Bρgq (2.23)

This is the WZW action, quantising it, we get a chiral current algebra of the same gauge

group, with the boundary values of the connection, Aθ “ Bθgg
´1 being identified with the

chiral Kac-Moody currents. So, the Hilbert space of the theory on the boundary is the trivial

representation of the Kac-Moody algebra, with the highest weight state dual to the identity

operator. In other words, the Hilbert space is the descendents of the the identity operator

of the corresponding WZW model.
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2.4 Quantising Chern Simons theory on a compact man-

ifold

Witten’s famous paper ”Quantum Field theory and Jones Polynomial”r5s, solves the pure

Chern Simons theory on compact manifolds. It was shown that the physical Hilbert space

obtained by canonically quantizing CS theory of a gauge group at level k can be interpreted as

the space of conformal blocks of a WZW model with the corresponding Kac-Moody algebra

at level k. A consequence of this result is that for CS theory on a Riemann surface of the

form ΣˆR, with no insertion of a Wilson line, the Hilbert space is one-dimensional because

no insertions correspond to the vacuum block of the CFT.

Then the paper introduces a way to use the results obtained above to calculate the

partition function of CS theories on compact manifolds, while introducing a method called

surgery which can be used to calculate the partition function on one manifold from another.

The result relevant to us was the calculation of partition function on the manifolds

S2ˆS1 and on S3. Partition function on S2ˆS1 is easily calculated, since the Hilbert space

is one-dimensional, Partition function will be of the form ZpS2 ˆ S1q “ e´βH but since the

Hamiltonian is vanishing, ZpS2 ˆ S1q “ 1

Now, surgery, which involves removing a tubular manifold from a manifold M and then a

diffeomorphism is made on the boundary and then the tubular manifold is glued back which

results into a new manifold N which differs from M. A general equation is obtained:

ZpNq “
ÿ

j

Kj
0ZpM ;Rjq

Where Rj represents a Wilson line insertion in the manifold M and K represents the diffeo-

morphism matrix.

This equation is used to calculate ZpS3q, the diffeomorphism here being a modular trans-

formation. We can see why a modular transform is the relevant diffeomorphism connecting

S3 and S2 ˆ S1 by noting that S2 ˆ S1 can be constructed using two solid tori by gluing

contractible cycles of torus 1 with contractible cycles of torus 2, because the non-contractible

cycle formed this way would correspond to S1 and the rest of it gluing together two disks at

each point of solid torus along the S1, which would give a S2, hence obtaining a S2 ˆ S1.
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Now if we instead glue together non-contractible cycles to the contractible cycles, we

would obtain an object which topologically is a S3. Exchanging the cycles that have to be

glued is equivalent to performing a modular transform on one of the torus, so we have:

ZpS3
q “

ÿ

j

Sj0ZpS
2
ˆ S1;Rjq

Since with no Wilson line insertion, ZpS2 ˆ S1q “ 1, we get that ZpS3q “ S0
0
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Chapter 3

Entanglement Entropy

Entanglement of a region in a quantum system with its complement is a non local quantum

correlation between the two regions. Such correlations are not seen in classical systems, the

reason for this can be traced down to the possibility of superposition of states which is not

allowed in classical systems. More precisely, when the wavefunction of a system cannot be

written in the form of a product of a region, say A and its complement B, the regions are

entangled.

|ψy ‰ |ψAy |ψBy (3.1)

But in this above definition we have assumed that the system is in a pure state. Generally,

if the system is in a mixed state in a Hilbert state HA bHB, the criteria for a state being

entangled is the existence of a decomposition of the state ρ in the following form:

ρ “
ÿ

j

pjρ
pjq
A b ρ

pjq
B

where
ř

pj “ 1 and ρ
pjq
A and ρ

pjq
B are density matrices. So if such a decomposition is found

then the state is separable and not entangled and if such a decomposition is not found then

the test is inconclusive as there is no prescription available to find the possible decomposition.

These tests just tell if the state is entangled or not. But in recent years, entanglement

has come to be recognized as a new kind of resource which can be used to perform different

tasks which are inefficient or impossible to do in the classical realm. But for that, one needs

to be able to quantify entanglement. For this, a number of different measures have been
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proposed which follow some basic rules. Some examples are: Entanglement entropy (Von

Neumann entropy), Renyi entropy, Entanglement Negativity, Concurrence etc. We wish to

calculate in a Quantum field theory, so let’s look at a general prescription to do so Von

Neumann entropy is, where ρA is the reduced density matrix:

S “ TrpρA lnpρAqq

In a quantum field theory where one deals with infinite degrees of freedom, this density

matrix is infinite dimensional and the logarithm of such a matrix is a bigger problem. We

instead we use the form:

Spρq “ lim
nÑ1

B

Bn
Trpρnq

“ lim
nÑ1

B

Bn

ÿ

i

λni

“ lim
nÑ1

ÿ

i

λni lnpλiq

“ Trpρ lnpρqq

(3.2)

3.1 The replica trick

We have to calculate the trace of the nth-power of the density matrix. For this, Cardy and

Calabrese invented a novel way called the replica trick, it was an old trick used in condensed

matter but calculating euclidean path integrals on an n-sheeted Riemann surface to calculate

Trρn was proposed first by Cardy and Calabrese in 2004.

First we need to write down the vacuum density matrix. To do that, consider a scalar

field φ̂px, tq and use the basis formed by this operator at t = 0 as:

φ̂px, 0q |αy “ αpxq |αy

The vacuum wavefunction where N is a normalisation

x0|αy “ N´ 1
2

φpx,´∞q“0
ż

φpx,0q“αpxq

Dφ e´SErφs (3.3)
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The functional integral is over the lower half time (´∞ to 0) to select the ground state.

We can write down the vacuum density matrix is:

ρpα, α1q “ xα|0y x0|α1y

“ N´1

ż φpx,0´q“αpxq

φpx,´∞q“0

Dφe´SEpφq
ż φpx,0q“0

φpx,0`q“α1
Dφe´SErφs

This can be written in a different form which is probably more illuminating and also it

is clear that the normalization N is the partition function Z because when we integrate over

α , we get Z so that trace becomes 1.

1

Z

ż

Dφ
ź

x

δpφpx, 0`q “ α1pxqqδpφpx, 0´q “ αqe´SErφs (3.4)

Below is a figure showing the path integral. Here φ` “ α; and φ´ “ α

Now, it is much more easy to write the reduced density matrix: just restrict the product

to the region of space, A εpu, vq whose complement we want to trace over. This essentially

means that we are integrating over field configurations in the region B “ Ac

13



ρA “
1

Z

ż

Dφ
ź

x εA

δpφpx, 0`q “ α1pxqqδpφpx, 0´q “ αqe´SErφs (3.5)

Now we need to calculate the nth power of the matrix we have got, then take the trace

and then take the limit. To do that, we need to join the multiply the matrices and equate

the indices between them which in our case translate to sewing n Riemann sheets together

and identifying the field configurations between two consecutive sheets along the region A.

Then to take the trace, we have to equate the field configuration on the 1st and the last

sheets and then integrate over all the fields. So we have:

TrpρnAq “
Zn
Zn

(3.6)

Where Zn is the partition function on the n sheeted Riemann surface and and Z is the

regular path integral on the single plane which is there to ensure that the in the limit n goes

to 1, the trace is 1.

3.2 Entanglement in Chern Simons theory

Now we use the above general prescription to calculate the topological entanglement entropy

of Chern-Simons theory for a general compact gauge group at level k while giving exact results

for SUp2qk and Up1qk. This way, we would have calculated the topological entanglement

entropy of some Fractional Quantum Hall Effect systems, the other non-topological part

of their entanglement entropy cannot be obtained by the entanglement calculated in the

topological effective field theories as these terms, like the area terms become zero here because

of the topological nature of these theories.

Now let’s set up the replica trick calculation for the Chern-Simons theoryr4s. The first

issue, that we face is that the ground state is not necessarily unique here. In fact, for every

Hilbert space that is not 1 dimensional, all the states have the same energy, i.e. zero, because

the Hamiltonian is zero. So, the above procedure just suggests that we will work with a glued

geometry here, but we can’t borrow the whole discussion for the case of Chern-Simons theory.

We can formally write down the glued geometry path integral by using the Chern Simons

wave functional, that we calculate in a later section. Assuming holomorphic factorization,
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we have the following WZW path integral (the measure of the integral contains the Kahler

potential term):

@

βi
∣∣ xαi|Ψy „ ż

rdgα,idgβ,isexpp´kWαpgα,iq´kWβpgβ,iqq´
k

2π

ż

Σα

trpαig
´1
α,iBgα,iq´

k

2π

ż

Σβ

trpβig
´1
β,iBgβ,iq

(3.7)

Where W(g) represents the WZW action. And α, β correspond to the different regions

in the space between which we are calculating the entanglement.

Since the above expression is a wave functional, so to formally write down ρn we need to

glue together 2n copies of the above quantity:

ż n
ź

k“1

rdµpαkqdµpβkqs
@

β1

∣∣ xα1|Ψy xΨ|β1y |α2y
@

β2

∣∣ xα2|Ψy xΨ|β2y |α3y . . .
@

βn
∣∣ xαn|Ψy xΨ|βny |α1y

(3.8)

Now this is the glued geometry equivalent for the Chern-Simons theory.

Before moving forward, we need to review some ideas briefly which will be required in

the future:

Modular S matrix and the quantum dimension: For a set of characters of a CFT,

we have:

χp´1{τq “ Sχpτq (3.9)

The characters are labelled by quantum numbers which label the representations. For SUp2qk

the characters’ representations are labelled by half integers j “ 0, 1{2, ..., k{2:

χ
pkq
j p´1{τq “

ÿ

j1

Spkq j
1

j χ
pkq
j1 pτq (3.10)

Where

Spkq j
1

j “

c

2

k ` 2
sinr

πp2j ` 1qp2j1 ` 1q

k ` 2
s (3.11)

This S matrix is usually unitary. We define the quantum dimension in the following way:

dj “
Sj0
S0

0

(3.12)
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Noting that the quantum dimension for SUp2qk is:

dj “
sinrπp2j`1q

k`2
s

sinr π
k`2
s

(3.13)

Using the unitarity of S matrix, we can multiply eq 4.8 by its conjugate and sum over k to

get:

pS0
0 q
´1
“

d

ÿ

k

‖dk‖2
“ D (3.14)

Now let’s begin with a concrete problem: We want to compute the entanglement entropy

between the two hemispheres of a spatial S2 slice of a Chern Simons theory. We have seen

in the previous section that the Hilbert space is one dimensional, so there is no ambiguity

of choosing a state. Regions A and B are connected and these hemispheres can be thought

of s being disks. The wavefunctional corresponds to the solid 3 ball shown in the figure

while the spatial slice in the boundary S2. We need to construct the glued geometry, so it is

Figure 3.1: Representation of a wavfunctional. Source: [4]

instructive to think of the 3 ball as the rotation of a disk about any axis passing through the

origin, as shown in the above figure. Each 3 ball represents a wavefunctional, so we would

need to glue together 2n copies of these balls to construct trpρnAq.

In the figure below, it is shown, how to do the gluing for n “ 2. The numbers 1, 2, 3 and

4 represents |ψ1y , xψ1| , |ψ2y and xψ2| respectively. So these rotated disks which are , when

glued together gives a rotated S2 which has a S3 topology. So, trpρAq which was a path

integral on S3 is same as trpρnAq which is again now a path integral on S3, this is the power

of a Topological QFT.
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Figure 3.2: Representation of trpρ2. Source: [4]

The same geometry will result, if one asks the question, what is the entanglement en-

tropy of a disk on a spatial R2 slice with the rest of the plane. This is because there is a

conformal map between the plane and S2 and the entanglement between disks can again be

thought of as entanglement between hemispheres, which we have discussed above, because

of diffeomorphism invariance.

Now, moving forward, because of the analysis is the 2n- glued object we have:

trρnA
ptrρAqn

“
ZpS3q

ZpS3qn
“ pZpS3

qq
1´n (3.15)

We have seen in the previous section that the Path integral on S3 is the object we

introduced earlier: S0
0 .

trρnA
ptrρAqn

“ pS0
0q

1´n (3.16)

From this, calculating the entanglement entropy:

SA “ lim
nÑ1

d
dn
pS0

0q
1´n

d
dn
p1´ nq

“ lnS0
0 (3.17)

From the definition of the total quantum dimension, this is same as the topological

entanglement entropy that was derived by Kitaev and Preskill, Levin and Wen.

SA “ ´ lnD (3.18)

Let us look at some specific cases now:
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For Up1qk, the S matrix is well known:

S0
0 “

1
c

ř

j

‖dj‖2
“

1
?
k

(3.19)

Hence, the entanglement entropy between two hemispheres of a spatial slice S2 for a

Up1qk Chern-Simons theory is:

SA “ ´ ln
?
m (3.20)

Now for SUp2qk also, from eq (4.7), we have:

SA “ ln

c

2

k ` 2
sinr

π

k ` 2
s (3.21)

Here, we are done with the problem of calculating the Chern Simons entanglement en-

tropy. These calculations heavily use the fact that Chern Simons is a topological field theory.

Even if one looks at an analogous calculation done for a CFT, it would be clear that the

most simplifying steps of the calculation, like finding that the partition function on the n

sheeted surface is the same as the partition function on the original manifold, will not hold

true. The problem we had in mind was to perform this entanglement calculation for Chern

Simons theory with matter, where the matter degrees of freedom are gapless hence the final

QFT is still conformal.

But to generalize to a CFT, we first need to do a calculation in Pure Chern Simons theory

in the most general way, without using any tricks that used the topological nature of the

underlying QFT. So we cannot use surgery as well. In the next chapter, we try to set up the

straightforward calculation without using any tricks by first evaluating the wave functional

on S2.
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Chapter 4

Wavefunctional calculation on

two-sphere for abelian CS theory

In this section, we will calculate the wavefunction of abelian Chern Simons on two sphere in

two ways. First, using canonical quantization, second, by a path integral way.

We consider Chern Simons theory at level k on a three manifold M given by path inte-

gration over U(1) gauge field A with measure eiS, where the action is given by 1

S “ ´
k

4π

ż

M

A^ dA (4.1)

We take M “ R ˆ Σ. R is assumed to be direction of time and Σ is spatial surface at

constant time on which we construct Hilbert space of the theory in what follows next.

1We normalise length of the U(1) circle to 2π. We stress that action is independent of the metric on the
manifold.
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4.1 Cannonical Quantization

Here we are concentrating on the simplest case of Σ being S2. We work with conformal

Cartesian coordinates px1, x2q on the sphere. Following are the conventions that we adopt

ε012
“ 1, d2x “ dx1

^ dx2, d3x “ dx0
^ d2x (4.2)

In A0 “ 0 gauge action given in equation (5.1) becomes

S “ ´
k

4π

ż

M

d3xεµ0ρAµB0Aρ (4.3)

“
k

4π

ż

M

d3xεµρAµB0Aρ

At this point we emphasize that above form (5.3) of the action is valid in any coordinate

system as long as ε appearing is the tensorial transformation of the Cartesian one. As an

example we note that for

z “
1
?

2
px1

` ix2
q, z “

1
?

2
px1

´ ix2
q (4.4)

We have

εzz “ ´i, d2Z ” dz ^ dz “ εzzdx1
^ dx2 (4.5)

Collectively we denote w “ pz, z on Σ. IN Cartesian coordinates canonical conjugate mo-

mentum to Aµ is 2

Πµ
“ ´

ik

2π
εµρAρ (4.6)

Commutation relations becomes

rAµpt, x
1, x2

q,Πν
pt, x11, x12qs´ “ iδµν δpx

1
´ x11qδpx2

´ x12q (4.7)

ùñ rAµpt, x
1, x2

q, Aνpt, x
11, x12qs´ “

2π

k
ε´1
µν δpx

1
´ x11qδpx2

´ x12q

Here we have defined

εµνενρ´1
“ δµρ (4.8)

2We have integrated by parts as needed
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In general coordinates covariant version of above commutation is 3

rAµpt, w1q, Aνpt, w2qs´ “
2π

k
εµν´1δp2qqpw1 ´ w2q

rAzpt, w1q, Azpt, w2qs´ “
2π

k
εzzδp2qqpw1 ´ w2q (4.9)

rAzpt, w1q, Azpt, w2qs´ “ ´i
2π

k
δp2qqpw1 ´ w2q

Where
ż

d2zδp2qpwq “ 1 (4.10)

Since Az, Az are conjugates of each other in a quantum theory we cannot specify both

of them together. We choose to work in holomorphic polarization, i.e., wave function ψ is a

functional of Az only. Az is represented as

Azpwq “ ´i~
δ

δAzpwq
, ~ “ ´

2π

k
,

δ

δAzpwq
Azpw

1
q “ δp2qpw ´ w1q (4.11)

Next we impose Gauss law as an operator equation to see the space of gauge invariant

wavefunctions.

FzzψrAzs “ 0 ùñ r´i~Bz
δ

δAzpwq
´ BzAzpwqsψrAzs “ 0 (4.12)

This implies upto normalization factor

ψrAzs “ exp

#

i

2~

ż

BM

d2z1Azpw
1
qBz1

ż w1

Azpw
2
qdz2

+

(4.13)

To see that this is indeed the case, we plug back it to the equation (2.12) above and note

that

3We stress here ε is the covariant one defined above
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δ

δAzpwq

ż

BM

d2z1Azpw
1
qBz1

ż w1

Azpw
2
qdz2

“

ż

BM

d2z1δp2qpw ´ w1qBz1

ż w1

Azpw
2
qdz2 `

ż

BM

d2z1Azpw
1
qBz1

ż w1

δp2qpw ´ w2qdz2

“

ż

BM

d2z1p´Bz1qδ
p2q
pw ´ w1q

ż w1

Azpw
2
qdz2 `

ż

BM

d2z1p´Bz1Azpw
1
qqδpz ´ z1q

“

ż

BM

d2z1Bzδ
p2q
pw ´ w1q

ż w1

Azpw
2
qdz2 `

ż

BM

d2z1Azpw
1
qBz1δpz ´ z

1
q

“ Bz

ż

BM

d2z1δp2qpw ´ w1q

ż w1

Azpw
2
qdz2 `

ż

BM

d2z1Azpw
1
qp´Bzqδpz ´ z

1
q

“ Bz

ż w1

Azpw
2
qdz2 ` Bz

ż

BM

d2z1Azpw
1
qδpz ´ z1q

“ Bz

ż w1

Azpw
2
qdz2 ` Bz

ż w

dz1Azpw
1
q

“ 2Bz

ż w

dz1Azpw
1
q

(4.14)

In above manipulations one has to be very careful that there is no differential with respect

to the variable which we are integrating over with a delta function.

4.2 Path integral

Next we turn to path integral approach. To get wave function on t = 0 surface, we path

integrate from t “ 8 to t “ 0 surface where boundary conditions are specified. At this point

we note that action given by (3.3) requires a boundary term to define well posed variational

problem with our boundary condition of specifying Az on t “ 0 slice. To see this we vary

action

δS “ ´
k

4π

ż

M

d3xεµνρr2δAµBνAρ ` BνpAµδAρqs (4.15)

In A0 “ 0 gauge to specify Az on the boundary the term that we need to add to action (3.3)

to get rid of the boundary variation is

Sb “
k

4π

ż

M

d3xεz0zrB0pAzAzs “ ´
k

4π

ż

BM

d2xεzzpAzAzq (4.16)
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Now we proceed to evaluate the wavefunction on t=0 slice

ψrAzs “

ż

DAeipS`Sbq (4.17)

To evaluate it we gauge fix to A0 “ 0 and take into account corresponding Gauss law

(equation of motion)

Fzz “ BzAz ´ BzAz “ 0 (4.18)

This equation is easily solved by

Az “ Bzχ,Az “ Bzχ (4.19)

On Σ “ S2 only Az is specified. This determines χ upto a constant 4. Faddeev Popov gauge

fixing procedure gives

ψrAzs “

ż

DAeipS`Sbq|Az“Bzχ,Az“Bzχ (4.20)

First we simplify S term

S|Az“Bzχ,Az “ ´
k

4π

ż

BM

d2xεz0zrBzχB0Bzχ´ BzχB0Bzχs (4.21)

“
k

4π

ż

BM

d2xεz0zrBzBzχB0χ´ BzBzχB0χs “ 0 (4.22)

Here we used the fact that partial integration over compact co-ordinates z, z does not produce

any boundary term.

Sb|Az“Bzχ,Az “ ´
k

4π

ż

BM

d2xεzzBzBzχ (4.23)

Putting these things together we get

ψrAz “ Bzχs “ e´
ik
2π

ş

BM d2zBzBzχ (4.24)

To convince ourselves that wavefunction that we are computing is really independent of the

choice of gauge, we redo the calculations in Az “ 0 gauge below. Note that in this gauge we

dont need to add any boundary term to the action. Arguing in same manner as before one

4This follows from the fact that on R2 any anti-holomorphic function except constant blows up at infinity
and only entire function is a constant. On S2 point at infinity on R2 maps to an ordinary point and we
expect regularity at that point.
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gets

ψrAzs “

ż

DAeiS|Az“Bzχ,A0“B0χ (4.25)

Now we simplify

S|Az“Bzχ,A0“B0χ “ ´
k

4π

ż

M

d3xεzz0rAzBzA0 ´ A0BzAzs

“ ´
k

4π

ż

M

d3xεzzrBzχBzB0χ´ B0χBzBzχs

“ ´
k

4π

ż

M

d3xεzzrBzχBzB0χ´ B0pχBzBzχq ` χB0BzBzχs

“ ´
k

4π

ż

M

d3xεzzrBzχBzB0χ´ B0pχBzBzχq ´ BzχB0Bzχs

“ ´
k

4π

ż

M

d3xεzzr´B0pχBzBzχqs

“ ´
k

4π

ż

BM

d2xεzzrBzχBzχs

“ ´
k

4π

ż

BM

d2zrBzχBzχs

And as we can see, this agrees with our previous answer. Now we have to write down

the density matrix and regulate it to get the entanglement spectrum and entanglement

entropy, but before that, we need to normalize this wavefunction which seems pure phase

in first glance, but χ is a complex valued field, so it isn’t pure phase. We keep in mind,

the calculation done here was on the manifold S2 ˆ R, to get the result SA “ lnS0
0 , we

need to derive the result at a finite temperature. We faced troubles in normalizing the wave

function and moving forward from here because that involved a path integral on S3 which

we struggled with. We plan to look at it again and this work is still in progress.
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Chapter 5

Topological phases and SPT phases

In the last few chapters, we focused on calculating the topological entanglement entropy in

the Chern Simons theory, it is an artifact of the long-range entanglement phase that the

system is in. By long range entanglement we informally mean that the entanglement isn’t

just coming from neighbouring degrees of freedom, which would mean that the apart from the

area term that is usually seen in entanglement entropy for QFTs, we will have an additional

universal term which indicates the presence of topological order. A more proper definition

of long range entanglementr8s is if a state can’t be transformed to a direct product state by

the action of local unitary evolution operators, then it has long range entanglement. We saw

that the topological phases, whose low energy physics is described by Chern-Simons theory,

have some edge states which are the degrees of freedom through which transport phenomena

happen as the bulk is gapped. So, topological phases have a characteristic edge behaviour.

But there are other models that we see in nature, that have such characteristic edge

behaviour. These are not ”topological phases” and they don’t have long range entanglement,

but are called symmetry protected topological phases. One such phase that we will look at

is the Haldane phase, the thought of which germinated from the Haldane’s conjecturer13s,

which was given by Duncan Haldane in 1983, which says: Anti-ferromagnetic Heisenberg spin

chains of integer spins have a gap in their energy spectrum and the spin-spin correlations die

down exponentially. While anti-ferromagnetic Heisenberg spin chains of half integer spins

don’t have such a gap in their energy spectrum and spin-spin correlations are power laws

rather than exponential.
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Here by anti-ferromagnetic Heisenberg spin chains we mean Hamiltonian of spins on a 1

D lattice which have this following term:

H “ J
ÿ

ăiją

~Si ¨ ~Sj (5.1)

There have been a lot of experimental and theoretical studies of this conjecture, one

of them being the exactly solvable model proposed by Affleck, Kennedy, Lieb and Tasaki,

which shows the validity of the conjecture for integer spins, by calculating the gap and the

correlation functions. Also, there is a beautiful pictorial way to see that this model has

characteristic edge states.

5.1 The AKLT Model

This exactly solvable model displays all the properties of the Haldane phase very well and

agrees with the Haldane’s conjecture. The AKLT modelr12s is S “ 1, 1 D model with nearest-

neighbour interactions. Before writing down the Hamiltonian, let’s see what happens when

you have 2 S “ 1 particles and you add their spins. They can add to give Stot “ 2, 1, 0. The

Hamiltonian is the sum of projectors acting on neighbouring sites which project them onto

the S “ 2 subspace.

H “
ÿ

i

P i2pSi ` Si`1q (5.2)

Using the Casimir, one can work out the projector, so the Hamiltonian os:

H “
ÿ

i

r
1

2
Si ¨ §i`1 `

1

6
pSi ¨ Si`1q

2
`

1

3
(5.3)

From the form of the Hamiltonian, we can say that the ground state would be the one having

no adjacent spins having total S “ 2. To construct such a ground state, we break up each

S “ 1 at each site into two S “ 1{2 particles. The spin half particles belonging to the same

site are projected to the Stot “ 1 subspace and the adjacent spin half particles belonging to

different sites are made into a spin singlet, i.e.

|ψy
´
“
|Öy ´ |Œy
?

2
(5.4)
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So, the complete ground state for periodic boundary condition is:

|GSy “ pbNk“1Pkkq |ψy
12
´
|ψy23

´
. . . |ψyN´1N

´
|ψyN1

´
(5.5)

Where k in the sum labels the site and k and k represents the 2 spin halves at each site.

If we have ope boundary conditions, we immediately see that two end spin halves will

have no neighbour to form a spin singlet with. The two dangling spin halves are the edge

states in this model, it is one of the simplest example of a model where one observes edge

states. These spin halves have a 2 dimensional Hilbert space, so the ground state is 4-fold

degenerate. These edge states are characteristics of the Haldane phase.

Figure 5.1: A size 7 spin chain with open boundary condition. We can see the dangling spin
halves are labelled by α and β, giving rise to a four fold degeneracy.

This model is exactly solvable and spin spin correlations were calculated in this and was

found out to be exponentially decaying with distance. Again according to the Haldane’s

conjecture.

One can also calculate the entanglement entropy of a block of spins with the rest and in

this model and it comes to ber7s 2 ln 2 in the large block size limit. This is understandable

because if one forgets about the spin 1 projectors, the groundstate is a product of spin

singlets, so the two cuts made to pick the spin block, will contribute ln 2 each. For half

integer spin chains, it is found that the entanglement goes as logarithm of the block size.

These two facts together, add to the Haldane’s conjecture that for integer spin chains,

the entanglement is a constant term for large block sizes and for half integer spin chains, it

goes as the logarithm of the block size.

We have seen that edge states exist in the AKLT model in a beautiful pictorial way. But

to see the same edge states in different models which are in the Haldane phase is not an easy

task. In the next section, we will develop some machinery to display the existence of edge

states in general 1 D antiferromagnets.

Also, due to finite size effects, one would expect some interaction between between the
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two edge spins, which would make the 4 fold degenerate groundspace split. We would work

out this interaction between the two edge spins for the spin 1 Heisenberg antiferromagnet in

the next section.
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Chapter 6

Effective theory for quantum

anti-ferromagnets

Let us consider a spin system with spin 1/2s on a square lattice with antiferromagnetic

nearest neighbour interaction of the following form:

H “ J
ÿ

ăiją

Si ¨ Sj (6.1)

Here, J ą 0 that means the coupling is anti-ferromagnetic. The interaction Hamiltonian is

invariant under lattice symmetries and SU(2) rotational symmetry. Although this is a very

generic looking model, it is actually an effective Hamiltonian for Mott insulators.

The classical lowest energy state that we associate with such a Hamiltonian is the Neel

state which is basically the alternating spins state, i.e. the classical groundstate is the state

where m “ Sz “ `1{2 on sublattice A and m “ ´1{2 on the complement sublattice B.

The order parameter of Neel state, which is called the staggered magnetization, doesn’t

commute with the Hamiltonian. This means that this classical groundstate is not the actual

groundstate of the quantum problem. So it is interesting to see if the Neel order atleast

appears in a long range in the quantum state or not. The real reason for Neel state not

bein the quantum groundstate is quantum fluctuations which decrease as the the value of S

increases. It was shown rigorously for above type of Hamiltonian on a hypercubic lattice at

d ě 3 for all values of S, the groundstate has Neel order. Same goes with d “ 2 but with
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S ě 1. The case which is never in Neel order is spin halves on a square lattice. The Neel

state is labelled by a Neel vector, ~N , which is the order parameter and is used to define

staggered magnetization:
~Si “ ηi ~Nr (6.2)

Where η is +1 on sublattice A and -1 on the complement sublattice B. Neel state is marked

by
A

~Ni

E

‰ 0 and the excited states in the spectrum are spin waves which are gapless.

After this generic discussion, our main aim is to show a mapping between Neel phase

(or light deviation from it) and the quantum O(3) rotor model, first in the continuum limit,

which is also called the O(3) non linear sigma model.

To do that, first we need to develop path integral for quantum spins

6.1 Path Integral for Quantum Spins

We will now set up the partition function calculation of spins interacting with the Heisenberg

Hamiltonian using path integrals. For the current purposes, we will consider the case of spin

half in detail. The final generalized expressions will also be mentioned later.

6.1.1 Spin Coherent basis

We begin by pointing out that the Sz “ 0, 1 basis won’t work for a path integral, we need to

come up with a basis which has continuous parameters. So we go over to an over-complete

basis
∣∣∣ ~NE

which is defined as follows for a spin half.

~S ¨ ~N
∣∣∣ ~NE

“
1

2

∣∣∣ ~NE

(6.3)

The vector ~N actually is fixing a direction on the unit sphere and just like the Bloch sphere,

one can fix the north pole to be the state |Òy. Then one can define ~N in terms of the north

pole by a rotation:
∣∣∣ ~NE

“ expp´iθ ~M ¨ ~Sq |Òy, we have defined the unit vector ~M in the figure

and ~S are the spin operators (half multiplied with Pauli matrices: We can also write
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∣∣∣ ~NE

“ cos
θ

2
|Òy ` sin

θ

2
|Óy (6.4)

Now if one calculates the norm,
∥∥∥A ~N ˇ

ˇ

ˇ

~N 1

E
∥∥∥2

“ p1 ` ~N ~N 1q{2. So, the basis is over-

complete. Let us write down the resolution of identity in this basis:

ż

d ~N

2π

∣∣∣ ~NEA

~N
∣∣∣ “ ż

dpcos θqdφ

2π

∣∣∣ ~NEA

~N
∣∣∣ “ I (6.5)

We also have
A

~N
∣∣∣ ~S ∣∣∣ ~NE

“
1

2
~N (6.6)

Now we get to the path integral calculation of the partition function Z. Starting with

the case of a single spin:

Z “
ÿ

α

xα| expp´βHq |αy (6.7)

“

ż

D ~Np0q
A

~Np0q
∣∣∣ expp´βHq ∣∣∣ ~Np0qE (6.8)

We now break-up the exponential into a large number of infinitesimal parts:

Z “

ż

D ~Npτ0qD ~Npτ1q...D ~Npτnq
n
ź

i“0

A

~Npτi ` εq
∣∣∣ expp´εHq ∣∣∣ ~NpτiqE (6.9)

Where we use periodic boundary condition (nε “ β) and
∣∣∣ ~Npτ0 ` nεq

E

“

∣∣∣ ~Npτ0q

E

. Now we
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need to calculate this matrix element in the limit εÑ 0

A

~Npτi ` εq
∣∣∣ expp´εHq ∣∣∣ ~NpτiqE “ expr´εp

C

~N

ˇ

ˇ

ˇ

ˇ

ˇ

d ~N

dτ

G

`HpS ~Nqqs (6.10)

Now we take the limit ε Ñ 0 keeping nε constant and get the partition function, with the

boundary condition
∣∣∣ ~Np0qE “ ∣∣∣ ~NpβqE

Z “

ż

D ~Npτqexpp´
ż β

0

dτp

C

~N

ˇ

ˇ

ˇ

ˇ

ˇ

d ~N

dτ

G

`HpS ~Nqqq (6.11)

We can see that
şβ

0
dτp

A

~N
ˇ

ˇ

ˇ

d ~N
dτ

E

q is a pure phase term (which we would pay more attention to

in the next section) it would lead to interesting geometric interpretations and some elegant

physics. To see this:

The derivation of the coherent state path integral for a single spin is over, generalizing it

to interacting d dimensional systems is not so difficult for a class of Hamiltonians which are

multilinear in spin operators, that means in a coherent state
∣∣∣ ~N1pτq, ~N2pτq... ~NLdpτq

E

, the

matrix element element of any multilinear Hamiltonian Hp~S1, ~S2...~SLd can be written as:

A

~N1pτq, ~N2pτq... ~NLdpτq
∣∣∣Hp~S1, ~S2...~SLdq

∣∣∣ ~N1pτq, ~N2pτq... ~NLdpτq
E

“ HpS ~N1pτq, S ~N2pτq...S ~NLdpτqq

(6.12)

So we can carry forward the above derivation without any significant change. Thus, for

a Heisenberg antiferromagnet in d dimensions with the following Hamiltonian

H “ J
ÿ

ăiją

~Sp~riq ¨ ~Sp~rjq (6.13)

we have the partition function:

Z “

ż

~Np~ri,βq“ ~Np~ri,0q

D ~Np~ri, τqexpp´
ż β

0

dτ r
ÿ

i

B

~Np~ri, τq

ˇ

ˇ

ˇ

ˇ

d

dτ
~Np~ri, τq

F

`

JS2
ÿ

ăiją

~Np~ri, τq ¨ ~Np~rj, τqsq
(6.14)

We see that apart from the first term which is the overlap of ~Npτq with its own derivative
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the other term is same as the Boltzmann weight that we would have in the expression of the

partition function if we were solving the classical problem. This is a great advantage because

it allows us to carry forward all the classical intuition we have because this term would play

a significant role in determining the paths that are dominated in the path integral of the

quantum problem.

We yet have to analyze the first term, which essentially bears all the quantum dynamics.

so to continue our quantum anti-ferromagnet discussion, we will now analyze this term which

is also called the berry phase.

6.1.2 The Berry phase term

The first term in the final formula of the partition function in the last section is an example

of a Berry phase:

SB “ ´

ż β

0

dτ
ÿ

i

B

~Np~ri, τq

ˇ

ˇ

ˇ

ˇ

d

dτ
~Np~ri, τq

F

(6.15)

This is a purely imaginary term, as we can see

S˚B “ ´

ż β

0

ÿ

i

B

d

dτ
~Np~ri, τq

ˇ

ˇ

ˇ

ˇ

~Np~ri, τq

F

(6.16)

Now using
d

dτ
p

A

~Npτq
ˇ

ˇ

ˇ

~Npτq
E

q “ 0 (6.17)

We have

S˚B “ `

ż β

0

dτ
ÿ

i

B

~Np~ri, τq

ˇ

ˇ

ˇ

ˇ

d

dτ
~Np~ri, τq

F

“ ´SB (6.18)

Since this is a pure phase, it is necessary to understand in more detail how this term adds

a phase factor to every path.

First we consider again the case of a single spin and define ~Mpτq again through the

following relation:
∣∣∣ ~NpτqE “ expp´iθpτq ~Mpτq ¨ ~Sq |Òy We also introduce additional notation

by introducing a parameter u,∣∣∣ ~Npu, τqE “ expp´iuθpτq ~Mpτq ¨ ~Sq |Òy
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Where u is in the interval r0, 1s. Thus
∣∣∣ ~Np0, τqE “ |Òy and

∣∣∣ ~Np1, τE “

∣∣∣ ~NpτqE. THe

evolution of u from 0 to 1 is rotating our vector from the north pole to the final vector on

the unit sphere along the circle of a constant u. Now, we have ~Mpτq ¨ ~Npu, τq “ 0, using this

we get:
B

~Npτq

ˇ

ˇ

ˇ

ˇ

d

dτ
~Npτq

F

“ iS

ż 1

0

duθpτq ~Mpτq ¨
d ~Npu, τq

dτ
(6.19)

To simplify it further, we will use the following identity:

~Npu, τq ˆ
B ~Npu, τq

Bu
“ θpτq ~Mpτq (6.20)

We finally obtain:

ż β

0

dτ

B

~Npτq

ˇ

ˇ

ˇ

ˇ

d

dτ
~Npτq

F

“ iS

ż β

0

dτ

ż 1

0

du ~Npu, τq ¨ p
B ~Npu, τq

Bu
ˆ
B ~Npu, τq

Bτ
q (6.21)

This quantity has a beautiful geometric interpretation: It is iS times the area Az of the

spherical cap like area swept by the periodic path ~Npτq we have put a subscript z to signify

that the north-pole is always included in this area as is visible from the figure:

Figure 6.1: The arrowed path is the path inscribed by ~Npτq and the shaded area is the area
that appears in the Berry phase term. Source:

Finally writing the full expression of the path integral for antiferromagnetic Heisenberg

34



Hamiltonian:

Z “

ż

D ~Np~ri, τqexpp´
ż β

0

dτ r
ÿ

i

iS

ż β

0

dτ

ż 1

0

du ~Npu, τq ¨ p
B ~Npu, τq

Bu
ˆ
B ~Npu, τq

Bτ
q`

JS2
ÿ

ăiją

~Np~ri, τq ¨ ~Np~rj, τqsq
(6.22)

With the condition ~Np~ri, βq “ ~Np~ri, 0q

6.2 Long-wavelength expansion in the Neel state

Now we will come to our main aim of developing an effective theory for the anti-ferromagnetic

Heisenberg spin chainr6s. The ground state of the classical Heisenberg Hamiltonian will be

the Neel state in which spins are either parallel or anti-parallel so the ordering is collinear.

Let us look at the case of quantum antiferromagnets which in their ground state have Neel

ordering that is present at least over short distances.

If we assume the survival of Neel ordering even for a few lattice spacings, we can convert

our problem to a continuum problem of two new fields ~L and n̂. Where n̂ is the local Neel

order parameter while ~L corresponds to the fluctuations from the Neel state. In terms of

these fields, we write:

~Nipri, τq “ ηin̂pri, τqp1´ p
ad

S
q
2~L2
pri, τqq

1{2
`
ad

S
~Lpri, τq (6.23)

where d is the dimension of the lattice and a is the spacing. We also have n̂i ¨ n̂i “ 1. Now

since ~Li is fluctuations about the uniform vector n̂. Let’s handle the Berry phase term later

and first focus on the enegy term:

JS2

ż β

0

dτ
ÿ

ăiją

~Npri, τq ¨ ~Nprj, τq (6.24)

Now we substitute from eq (6.22) and using the fact that n̂ and ~L are orthogonal at each

site, we see that we will have three terms. First would be from the n̂ piece of each ~N , the

other from ~L piece of each ~N and the third part is the cross term between n̂ and ~L part of
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the two different ~Ns. Now for the first contribution we do an expansion of the square root

to leading order and use the fact that for nearest neighbours the product of η would always

be -1. We get

JS2
ÿ

ăiją

p
pn̂pri, τq ´ n̂prj, τqq

2

2
´ 1qr1´

1

2

a2d

S2
~Lpri, τq ´

1

2

a2d

S2
~Lprj, τqs (6.25)

«
JS2

2

ÿ

µ“x,y

ÿ

j

p∆µn̂q
2
prj, τq `

2dJa2d

2

ÿ

j

~L2
prj, τq (6.26)

Above we have introduced a convenient notation p∆µn̂q
2q “

ř

µ,αpBµnαq
2.

For the second contribution, we use the fact that ~L is slowly changing and hence we

ignore its spatial dependence to leading order. So product of cross ~Li is ~L2
i .

For the third contribution, we see that there is an oscillatory spatial dependence because

of the sublattice factor, ηpriq and since we have slowly varying n̂ and small ~L, this term

would be very small, hence we ignore it at leading order.

Taking the continuum limit by replacing finite differences with derivatives and summa-

tions with integrals, we get:

JS2

ż β

0

dτ
ÿ

ăiją

~Npri, τq ¨ ~Nprj, τq “

1

2

ż

Λ

ddr

ż β

0

dτ rρsp∇µn̂q
2
pr, τq `

1

χK
~L2
pr, τqs

(6.27)

Where we introduced the notation ρs « JS2a2´d;χ´1
K « 4dJad The subscript Λ in the

integral denotes that although we have taken a continuum limit, we are actually working with

variables which are defined on a course grained lattice. The coefficient ρs can be interpreted

as a stiffness parameter which controls the spatial fluctuation from the anti-ferromagnetic

ordering but we see that there is no term that penalizes the temporal fluctuation. This is

obvious because all the information about the quantum dynamics is stored in the berry phase

term. We also note the fact that ~Lpri, τq can be interpreted as the total angular momentum

density because if we sum over S ~Ni, the oscillatory term gets cancelled and we are left with

an integral over ~L in the continuum limit.
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Let us consider the left out berry phase terms now. We again substitute the parametriza-

tion of ~N term and just retaining terms till first order of ~L

SB “ iS
ÿ

i

ż β

0

dτ

ż 1

0

du ~Npu, τq ¨ p
B ~Npu, τq

Bu
ˆ
B ~Npu, τq

Bτ
q

“ iS
ÿ

i

εi

ż β

0

dτ

ż 1

0

dun̂ ¨ p
Bn̂

Bu
ˆ
Bn̂

Bτ
q

` i

ż

ddx

ż β

0

dτ

ż 1

0

durn̂ ¨ p
Bn̂

Bu
ˆ
Bn̂

Bτ
q ` n̂ ¨ p

Bn̂

Bu
ˆ
B~L

Bτ
q ` ~L ¨ p

Bn̂

Bu
ˆ
Bn̂

Bτ
qs

Now we will try to eliminate some terms, for that we note, ~L, Bn̂
Bτ

and Bn̂
Bu

are perpendicular

to n̂ hence they lie in the same plane and also the last term is zero in the above equation.

Also we note that

n̂ ¨ p
Bn̂

Bu
ˆ
B~L

Bτ
q ` ~L ¨ p

Bn̂

Bu
ˆ
Bn̂

Bτ
q “

B

Bτ
rn̂ ¨ p

Bn̂

Bu
ˆ ~Lqs `

B

Bu
r~Lˆ

Bn̂

Bτ
s (6.28)

Now we can perform a surface integral over τ and u in the two terms, we see that the first

term vanishes because of the periodic nature of n̂ and ~L. The u integral won’t vanish but

the u “ 0 term will vanish. So the final berry phase term is:

SB “ iS
ÿ

i

εi

ż β

0

dτ

ż 1

0

dun̂ ¨ p
Bn̂

Bu
ˆ
Bn̂

Bτ
q ´

ż

ddx

ż β

0

dτ ~L ¨ pn̂ˆ
Bn̂

Bτ
q (6.29)

We see that the first term here is again the area swept by the n̂pτq, we will call it S 1B.

We write down the total partition function as:

Z “

ż

n̂2“1

Dn̂D~Lδp~L ¨ n̂qexppS 1Bpn̂qq ´
ż β

0

dτ

ż

ddxr
ρs
2
p∇µn̂q

2
pr, τq `

~L2pr, τq

2χK
` i~L ¨ pn̂ˆ

Bn̂

Bτ
qs

(6.30)

Now that we have the expression of the partition function, let us for now forget the

presence of the S 1Bpn̂ term and try to link this partition function to some other system. To

move forward, we consider a spatial lattice with lattice spacing as the inverse of our coarse

graining scale. At each lattice point, we have a unit vector n̂ and the position vectors of

neighbouring sites interact with the strength given by ρs, so the nearest neighbours like to
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be aligned just like in the classical ferromagnetic O(3) model. The kinetic energy of these

terms bring the quantum mechanics in the system. If we think of the position vectors as

position of a particle of mass χK. So we need to find the corresponding angular momentum

and write the kinetic energy down

~L “ χKpn̂ˆ
Bn̂

Bτ
q; KE “

1

2χK
~L2 (6.31)

So, if we ignore the berry phase term, the phase space path integral of such a system would

be exactly of the same form as our partition function above. So we can make the statement

that without the S 1B term, our expression describes the partition function of O(3) quantum

rotors having moment of inertia χK and aligning interactions’ strength is given by ρs.

Now we can write down the coordinate-space path integral for this quantum rotor model

by integrating over the ~L in the previous phase space integral, this can be done by completing

the square and the final answer, which actually is the low energy effective theory of an

antiferromagnetic order displaying system ,is:

Z9

ż

n̂2“1

Dn̂exppS 1Bpn̂q ´
ρs
2

ż β

0

dτ

ż

ddxpp∇n̂q2 ` 1

c2
p
Bn̂

Bτ
q
2
qq (6.32)

Where the velocity c “
a

ρs{χK „ JSa. Now a;though we have written down the theory,

we do not know the value of these parameters and also the course graining parameter is

not fixed and its not a measurable quantity as it depends on the choice of the procedure

taken. But these can be re-expressed in terms of the gap in the theory which in turn can be

measured in the lab.

Also we need to know the dictionary between the microscopic observables and the quan-

tity in the effective field theory. This is actually clear from our derivation itself. The Fourier

components ~Sp~kq of the spin density operator at ~k “ Q` ~q where q is small are represented

by the corresponding Fourier components n̂p~qq of the n̂ field times S. And the Fourier com-

ponent ~Sp~qq of the spin density operator for small q is represented by the Fourier component
~Lp~qq of the ~L field:

~Sp ~Q` ~qq „ Sn̂p~qq (6.33)

~Sp~qq “ ~Lp~qq (6.34)

38



Where Q is the antiferromagnetic ordering wave vector where Fourier transform of the

oscillating variable ηp~rq is concentrated. So if one looks at the position basis variables, for

each spin variable at site x, we have a sign associated to the corresponding n̂ variable which

is just p´1qx.

Now we will do the final step, analyzing the Berry phase (S 1B) term. We will do it for

the d=1 case only since it is the easiest and also relevant to us. We consider a chain of L

sites with periodic boundary condition (assume L is even), for this case, we can write S 1B in

the followning way which has a good interpretation.

S 1B “ iS

L{2
ÿ

j“1

pAzpn̂pr2j, τqq ´Azpn̂pr2j´1, τqq (6.35)

with PBC pn̂pL, τq “ n̂p0, τqq. Now the geometric interpretation of this term is that it is the

area of the strip made by subtracting the area swept by two neighbouring site n̂i. We need

to sum up the areas of all such strips. This geometric interpretation helps us to get rid of

the internal coordinate u. So now we can write

iS

L{2
ÿ

j“1

pAzpn̂pr2j, τqq´Azpn̂pr2j´1, τqq “
iS

2
p2aq

L{2
ÿ

j“1

ż β

0

dτn̂ ¨ p
∆n̂pr2j, τq

a
ˆ
Bn̂

Bτ
pr2j, τqq (6.36)

where ∆n̂pr2j, τq “ n̂pr2j, τq ´ n̂pr2j´1, τq. We have also multiplied and divided by 2a to go

to the continuum limit which is valid if the variation of n̂ is slow:

iS

2

ż L

0

dx

ż β

0

dτn̂ ¨ p
Bn̂

Bx
ˆ
Bn̂

Bτ
q (6.37)

The integral in the above equation actually counts the number of time the path n̂px, τq wraps

itself around the unit sphere. Therefore, this integral is equal to 4πm where m is an integer.

So, we have

S 1B “
iS

2
4πm “ 2πiSm (6.38)

So the quantity which is relevant to us: exppS 1Bq “ p´1q2mS. We see that for integer

spins, this factor is just 1 for all configurations.

So we make the statement that the low energy effective field theory for integer antiferro-
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magnetic spin chains is just the quantum rotor model. But if S “ 1{2, 3{2... then the Berry

phase factor dramatically changes the physics because some configurations will have a -1

sign to them and some will have +1 depending on the covering number of the configuration.

This is actually the reason why integer and half integer chains have such striking dif-

ferences and these lead to the famous Haldane’s conjecture which we saw in a previous

chapter.

6.3 Edge states of antiferromagnetic spin chains

The derivation in the previous section was done for a spin chain with periodic boundary

condition. As we saw in the previous chapter, the spin 1 AKLT model had edge degrees

of freedom which were spin 1/2. This remarkable feature is not just limited to the AKLT

model, it is true for a class of models called the Haldane spin chains, they are characterized

by a gap and edge states also they have something called a string order parameter.

Now it was easy to see the edge states in the AKLT chain because of the beautiful

pictorial way of describing the ground state. For general Heisenberg antiferromagnets which

are not exactly solvable, it is difficult to see that they have edge states. But using the above

derivation of the Berry phase expression for Heisenberg chains, we can see (not rigorously)

how the edge states emerger10s.

Starting from the Berry phase expression:

S 1B “ S
ÿ

i

p´1qiAzpxiq „
S

2

ż

BAzpxq
Bx

dx (6.39)

This would be equal to the result from the periodic boundary condition case plus the con-

tributions from the edge

S 1B “
S

2
rAzpLq ´Azp0q ` 4πms (6.40)

Where m is the number of times the path of spin configuration n̂pτq covers the unit sphere.

For integer chains since Sm is always an integer, so the third term has no effect on the path

integral and can be dropped. If there was periodic boundary condition, the Berry phase

from the two ends would cancel each other. But for open chains, the edge corrections would
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survive. Looking at them, we can interpret them as Berry phase of two spins of magnitude

S{2 located at the edges of the chain.

We have established the presence of these edge states. They also have been observed

experimentally. We can go one step ahead and ask the question, is there any interaction

between these two spins for a chain of size L? Let’s try to think about this question in the

AKLT model’s case. We saw that in the AKLT case, the ground state is 4 fold degenerate

because of the 2 dangling spin 1/2s on the either side. Now the spin spin correlation function

decays exponentially in the AKLT model so we should expect an interaction between the

two spin 1/2s which also decays exponentially with the length of the chain. We expect the

same effect to be carried forward in the antiferromagnetic Heisenberg spin chain.

It is known in the literature that the coupling between the edge states of the antiferro-

magnetic Heisenberg spin chain goes asr9s J „ e´L{ξ and there is a striking difference between

the edge properties of chains with odd length vs the ones with even length. The ground state

for a S=1 spin chain of even length is a singlet state, on the other hand the ground state

for a odd length chain is a spin triplet. We will derive these two above results analytically

in the next section by computing the effective Hamiltonian by perturbation theory in the

next section and it will be of the form noted above. Also we will run an exact diagonaliza-

tion program to diagonalize the S=1 antiferromagnetic Heisenberg spin chain to observe the

interaction between the edge spins and to observe the odd-even effect.
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Chapter 7

Interaction between the edge spins

7.1 Schrieffer Wolff perturbation theory

Schrieffer Wolff method gives a way to calculate low energy effective Hamiltonians by con-

structing a Unitary transformation which decouples the low energy and high energy sub-

spaces. It can be thought of as a degenerate perturbation theory methodr11s.

We begin by considering a Hamiltonian H0 which describes an unperturbed system. Then

we specify a low-energy subspace of our interest P0 which is invariant under the action of

H0. We define Q0 to be the rest of the subspace. Also we introduce a perturbation λV which

allows transitions from P0. We want an effective Hamiltonian which acts only on P0 but it still

produces the spectrum of the perturbed Hamiltonian which is in the subspace of interest P0.

This SW transformation is actually generated by W such that the transformed Hamiltonian

e´iW pH0 ` λV qe
iW acts only on and is invariant in P0. So the effective Hamiltonian is

Heff “ P0H̃P0 “ P0e
´iWHeiWP0 (7.1)

Expanding in Taylor series

H̃ “ H ` irW,Hs `
i2

2!
rW, rW,Hss ` ... (7.2)
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Now we also imagine a Taylor expansion of W

W “ λW1 ` λ
2W2 ` ... (7.3)

We point out that the transformation generated by W won’t be unique. We can see it in

the following way: W decouples the high and low energy subspaces, but after that, one can

rotate among the decoupled subspaces to get different W s, all of which perform the necessary

work.

To remove such a large ambiguity, we constrain W to connect only the different decoupled

blocks

P0WP0 “ 0; Q0WQ0 “ 0 (7.4)

Now substituting the expansion of W in the expression of H̃ we obtain order by order:

λ0 : H0

λ1 : V ` riW1, H0s

λ2 : riW2, H0s ` riW1, V s `
1

2
riW1, riW1, H0s

and so on

From all this, we can write expressions of the effective Hamiltonian order by order after

a little algebra. At first order, it will be H
p1q
eff “ P0V P0 “ 0 by definition of the perturbation

term.

For the second order term we need to solve for W1. The equation to be solved are:

P0rV ` riW1, H0ssQ0 “ 0

Q0rV ` riW1, H0ssP0 “ 0
(7.5)

After doing a little algebra, we get

H
p2q
eff “ P0V R0V P0 (7.6)

Where R0 “ Q0{pE0´H0q. The denominator is the difference between the ground state and

the excited state energy in Q0.
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7.2 Effective Hamiltonian for edge spins of a Heisen-

berg antiferromagnet

We will now calculate the 2nd order effective Hamiltonian between the the two edge spins of

a S “ 1 anti-ferromagnetic Heisenberg spin chain. For that, first we need to use the mapping

between integer spin AFHC and the O(3) quantum rotor model. The quantum rotor model

will behave like the bulk and we will by hand couple 2 spin halves on both the ends of the

spin chain. These spin halves will be coupled to the first and the last n and L in a way such

that the full Hamiltonian reads:

H “ 1

2I

M
ÿ

i“1

L2
i ´ J

ÿ

ăiją

~ni ¨ ~nj ` λpσ1 ¨L1 `σ1 ¨ ~n1 `σM ¨LM ` p´1qM`1σM ¨ ~nM q (7.7)

What we need to do is to use the spectrum of the O(3) quantum rotor model and in

second order in perturbation, calculate the effective Hamiltonian using the Schrieffer Wolff

perturbation method.

For that, we need to specify the following:

• The sub space of the Hilbert Space in which we want to calculate the effective Hamil-

tonian, that is P0

• From the rest of the Hilbert space, the subspace that is relevant to us (which will have

nonzero matrix elements at second order) will be called Q0

• The perturbation term V

• The energy difference between the ground state and the excited states in Q0, labelled

by εk,m, where k labels the momentum and m labels the Sz component

Using these symbols, the effective Hamiltonian is:

Hp2qeff “
P0V Q0V P0

´εk,m
(7.8)

Let us specify them one by one:
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P0 is the ground state projector of the bulk O(3) quantum rotor model tensor product

with the 4 dimensional Hilbert space of 2 spins:

P0 “

M
ź

i“0

|li “ 0,mi “ 0y xli “ 0,mi “ 0|b p|Òy ` |Óy ` |Öy ` |ŒyqpxÒ|` xÓ|` xÖ|` xŒ|q

(7.9)

Which we will write in a shorthand as:

P0 “ |0, udy x0, ud| (7.10)

V , the perturbation term is the following:

V “ pσ1 ¨L1 ` σ1 ¨ n̂1 ` σM ¨LM ` p´1qM`1σM ¨ n̂M q (7.11)

As we can see from the form of H and V , we would require only those states in Q0 which

have non zero matrix elements with the ground states, which are the first excited states,

tensored with the 4 dimensional space, so Q0 is:

Q0 “
ÿ

j

|lj “ 1,my
M
ź

i“0

|li “ 0,mi “ 0y xli “ 0,mi “ 0|bp|Òy`|Óy`|Öy`|ŒyqpxÒ|`xÓ|`xÖ|`xŒ|q

(7.12)

Which we would write in a shorthand as:

Q0 “
ÿ

j

|j, udy xj, ud| (7.13)

Now we need to calculate the eigenvalue of the first excited state. To do that, first we

need to workout the matrix elements of n̂i between the ground state and the first excited

state:

n̂ |l,my “ n̂
ż

dn̂ |n̂y xn̂|l,my

“
ÿ

i“x,y,z

n̂i

ż

dn̂ |n̂yY l
mpn̂q

Just calculating the z component for now, since n̂ is a unit position vector, we have n̂z “ cos θ
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, for l “ 1,m “ 0 and pre-multiplying with the ground state then taking the complex

conjugate:

xl “ 1,m “ 0| cos θ |l “ 0,m “ 0y “

ż ż

cos θ
A

n̂
ˇ

ˇ

ˇ
n̂111
E

Y 1
0 Y

0
0 dn̂dn̂

111 (7.14)

“

ż

cos θ sin θY 1
0 Y

0
0 dθ

Performing this integral with normalized Y L
m we get:

xl “ 1,m “ 0| cos θ |l “ 0,m “ 0y “
1
?

3
(7.15)

Now, redefining σ and n̂ in the following way:

σ` “
1

2
pσx ` iσyq

σ´ “
1

2
pσx ´ iσyq

n` “ nx ` iny

n´ “ nx ´ iny

σ ¨ n̂ “ σznz ` n`σ´ ` n´σ` (7.16)

Performing all the integrals to calculate the matrix elements, we find the following non-zero

matrix elements (matrix elements for the spin raising and lowering operators is 1), notation

being |l my:

x1 0|nz |0 0y “
1

3
(7.17)

x1 1|n` |0 0y “ ´

c

2

3
(7.18)

x1 ´ 1|n´ |0 0y “

c

2

3
(7.19)

We will calculate the first excited state in the momentum basis. We have noticed above that

the first excited state, which is three-fold degenerate, has one of the l=1. Now, the nini`1

term acts like a hopping term and hops the l=1 excitations to neighbouring sites. Let’s
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calculate the matrix element for that, the notation would be as following: |li mi, li`1 mi`1y

x1 0, 0 0|nzinzj ` n`i n´j ` n´i n`j |0 0, 1 0y “ x1 0, 0 0|nzi |0 0, 0 0y x10 0, 0 0|nzj |0 0, 1 0y “
1

3
(7.20)

We could insert the ground state in the middle because even if we insert the whole basis,

only these matrix elements would be non zero. And we could ignore the raising and lowering

operators because m = 0 in initial and final state.

Similarly, we can calculate for other bands (m = 1, -1) but the answer is the same.

So we have for every band:

xi|´ Jni ¨ ni`1 |i` 1y “ ´
J

3
(7.21)

We calculate the difference between ground state and first excited state now by first writing

the states in the momentum basis:

|ky “ 1
?
M

ÿ

i

eikxi |iy (7.22)

Now, we calculate ( H “ H ´ V ) at first excited level:

xk|H |ky “ 1

I
`

1

M

ÿ

i,j

e´ikxj xj|´ Jni ¨ ni`1 |iy eikxi (7.23)

This matrix element would be non zero only for neighbouring i and j:

xk|H |ky “ 1

I
`

1

M

ÿ

i

pe´ikxi xi|´ Jni ¨ ni`1 |i` 1y eikxi`1 ` e´ikxi`1 xi` 1|´ Jni ¨ ni`1 |iy eikxi

(7.24)

“
1

I
´
J

3
peik ` e´ikq (7.25)

“
1

I
´

2J

3
cospkq (7.26)

Now we have all the ingredients for the calculation and we can now, calculate the final
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effective Hamiltonian

Hp2qeff “
P0V Q0V P0

´εk,m
(7.27)

This Hamiltonian would be a 4ˆ 4 matrix. Let us calculate a diagonal term first and let

us omit p´1qM (not M+1 because we will add another site to enforce a boundary condition)

for clarity, we will put it back in the end:

ÿ

k

x0 Ò|σz1nz1 ` σ`1 n´1 ` σ´1 n`1 ` σzMnzM ` σ´Mn`M ` σ`Mn´M |k Òyˆ

xk Ò|σz1nz1 ` σ`1 n´1 ` σ´1 n`1 ` σzMnzM ` σ´Mn`M ` σ`Mn´M |0 Òy

Here we have dropped Li terms because matrix elements of it connecting ground state and

excited state is zero. Now analysing the different kinds of terms we can have here, we

notice that since it is a diagonal element, only σznz terms will be non-zero. Also, the terms

which are product of matrix elements of the same site, will just give a constant term in the

Hamiltonian which we can forget about. So we need to calculate the elements which connect

the two ends. This is how the two spins will talk to each other, via the excited rotor state

on the either side talking to the one on the other end. Such a term is:

ÿ

k

x0 Ò|σz1nz1 |k Òy ˆ xk Ò|σzMnzM |0 Òy (7.28)

Before moving forward, let us write down the momentum space wavefuntion with the bound-

ary condition taken care of. Let us imagine, that instead of having sites labelled from 1 to M,

we had sites from 0 to M. Now we will enforce the boundary condition that the wavefunction

at this site is zero. Writing the first excited state in momentum basis

|ky “ ck
ÿ

i

eikxi |iy (7.29)

Just like the particle in a box calculation, we can write it as:

|ky “
M
ÿ

i“0

pAk sinpkxiq `Bk cospkxiqq |iy (7.30)

49



Now, the boundary condition is ψp0q “ 0. So,

|ky “ Akpsinpk ˚ 0q `Bk cospk ˚ 0qq |0y `
M
ÿ

i“1

pAk sinpkxiq `Bk cospkxiqq |iy (7.31)

Now, since the site 0 wavefuntion should be zero, we see that Bk also should be zero. That

means now we have the following expansion of a momentum basis state after normalization:

|ky “ 1
?
L

ÿ

i

sin kxi |iy (7.32)

Going back to eq. (6.22) we insert the full basis |iy xi| with the states |ky and only that state

corresponding to the ni will survive:

ÿ

k

x0 Ò|σz1nz1 |k Òy ˆ xk Ò|σzMnzM |0 Òy “
ÿ

k

x0 Ò|σz1nz1 x1|k Òy ˆ |My xk Ò|σzMnzM |0 Òy

After putting the appropriate denominator and using the matrix elements evaluated above

and including the previously ommited p´1qM :

“ p´1qM
1

M

ÿ

k

1
3

sinpkq ˆ sinp´kp1` pM ´ 1qqq

´εk,m
“ p´1qM

1

M

ÿ

k

1

3

sinpkq sinpkMq
1
I
´ 2J

3
cospkq

(7.33)

Now let’s calculate an off diagonal term:

ÿ

k

x0 Ö|σz1nz1 ` σ`1 n´1 ` σ´1 n`1 ` σzMnzM ` σ´Mn`M ` σ`Mn´M |k Óyˆ

xk Ó|σz1nz1 ` σ`1 n´1 ` σ´1 n`1 ` σzMnzM ` σ´Mn`M ` σ`Mn´M |0 Œy

Evaluating in the same way as before and using the appropriate matrix elements:

p´1qM
ÿ

k

x0 Ö|σ`1 n´1 |k Óy ˆ xk Ó|σ´Mn`M |0 Œy “ p´1qM
1

M

ÿ

k

2

3

sinpkq sinpkMq
1
I
´ 2J

3
cospkq

(7.34)

Although we haven’t computed all the terms, but because of symmetry considerations, one

can say that each term is a multiple of the final sum that we obtain. This sum runs from

k “ 0 to π in steps of nπ{pM ` 1q This sum can’t be converted into an integral, because

that would mean taking the large M limit. But the aim for this calculation was to obtain a

coupling between the two edge spins for a finite length of chain.
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Performing this sum for various values of L, we see that the expression is of the form

p´1qMe´L{ξ. That means the coupling is anti-ferromagnetic for even length chains which

would result in a singlet as it’s ground state and for odd length chains, the coupling is

ferromagnetic and the triplet state is the ground state. The exponential coupling makes

sense because the spin-spin correlation function in anti-ferromagnetic S=1 Heisenberg spin

chain is exponentially decaying too.

We plot the graph between the length of the chain and the absolute value of the sum in

eq (6.27) and (6.28):

We make a semi-log plot to check if the above graph is exponential:

The semi-log plot is a straight line, so we can conclude that the coupling goes as the

exponential of the negative length. Where the prefactor of L would be I
J

7.3 Numerical calculation

To support our analytical results, we wrote a program which calculates the smallest few

eigenvalues of the S “ 1 Heisenberg anti-ferromagnetic spin chain for various system sizes.
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We used the Lanczos algorithm to obtain the eigenvalues. We see here also that for even

length chains (length here denotes the number of sites) the singlet state is groundstate and

for odd length chains, the triplet state is the groundstate.

To see which state is triplet or singlet, we diagonalize the Hamiltonian in different total

Sz sectors. If a groundstate is in the total Sz “ 0 sector as well as in the Sz “ 1 sector, then

it belongs to the triplet sector. If a groundstate is in Sz “ 0 sector but is absent from the

Sz “ 1 sector, then it belongs to the singlet sector.

Apart from the odd-even effect, we see that the gap between ground state and first excited

state is reducing as length is increasing, which is the exponential interaction we calculated

and the gap between 1st excited state and 2nd excited state remains almost constant. This

is the Haldane gap
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Chapter 8

Conclusion

We studied the calculation of entanglement entropy in pure Chern Simons theory for a spatial

slice of S2 and we saw that the methods used here won’t carry forward to the case where

Chern Simons theory is coupled to matter, we tried to do a path integral calculation to

compute the partition function on S3 but were unsuccessful although we plan to look at it

in the future.

We studied the coherent basis representation of the path integral of a Heisenberg spin

chain and saw the emergent edge states in case of open boundary conditions. We looked at

relations between an Op3q quantum rotor model and S “ 1 Heisenberg spin chains at low

energy and used it to calculate an effective Hamiltonian using Schrieffer Wolff perturbation

theory between the two edge spins and showed that the interaction decays exponentially with

the length of the chain, also we looked at the differences in the properties of this effective

Hamiltonian between odd and even length chains.
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