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Abstract

Finding the rank of an elliptic curve is a difficult problem. The Birch and Swinnerton-

Dyer Conjecture relates the rank of an elliptic curve to the vanishing of a certain L-function

attached to the elliptic curve. This thesis looks at the construction of Heegner points which

prove the existence in some cases of points of infinite order. This provides some insight

into solving the Birch and Swinnerton-Dyer conjecture. The construction of these points is

explained in detail in the second chapter. The classical method of getting Heegner points is

limited by assumption on the splitting of certain primes. Considering Shimura curves and

imitating the construction leads to new algebraic points. The conjectures in the last two

chapters suggest that the theory of Heegner point construction can be extended in various

contexts.
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Chapter 1

Introduction

An elliptic curve is a non-singular projective curve together with a group structure defined

by regular maps. It can be defined over an algebraically closed field k (for char(k) 6= 2, 3) as

the projective plane cubic curve over k of the form

y2z = x3 + axz2 + bz3 such that 4a3 + 27b2 6= 0

Let F be a number field and E(F ) the group of F -rational points on the elliptic curve, points

with coordinates in the field F .

Theorem 1.0.1. (Mordell-Weil) The group E(F ) is finitely generated,

E(F ) = Zr
⊕

E(F )tors

where r is the rank and E(F )tors is the set of torsion points.

Some bounds on the torsion points of elliptic curves are known. Bounding the rank of

an elliptic curve is difficult. Any elliptic curve over the rational numbers can be described

by the minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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where the coefficients ai are integers and the discriminant is minimal. The reduced equation

modulo a prime p describes another elliptic curve over Fp if p does not divide the discriminant.

This is to ensure that the reduced curve is also elliptic. Such primes are called primes of

good reduction. If the reduced curve has a cusp or a node, then the elliptic curve is said to

have additive and multiplicative reduction respectively.

Define ap to be the number

ap = p+ 1− |E(Fp)|

for primes p which do not divide the discriminant. Set ap = 0 for primes of additive reduction

and +1 and -1 for split and non-split multiplicative reduction respectively. Split and non-split

reduction depends on slopes of the tangent curves. We can define the L-function associated

to the elliptic curve E/Q of conductor N as

L(E, s) =
∏

p-N(1− app−s + p1−2s)−1
∏

p/N(1− app−s)−1 =
∑
ann

−s

where an’s are obtained by expanding the product. The L-function converges for Re(s)> 3
2
.

Since the L-function has analytic continuation, we can make sense of it’s value at s = 1.

Conjecture 1.0.1. (Birch and Swinnerton-Dyer) The rank r of E(Q) is equal to the order

of vanishing of L(E, s) at s = 1.

For an elliptic curve defined over an imaginary quadratic field F , the L-fuction of E over

the ring class field K factors as

L(E/K, s) =
∏
χ

L(E/F, χ, s) (1.1)

where χ ranges over complex characters on Gal(K/F ) −→ C×. Ring class field is an

abelian extension and will be defined precisely in the third chapter. It is known that

L(E/F, χ, s) = L(E/F, χ, s). The L-function satisfies a functional equation relating s and

2−s. L(E/F, χ, s) = 0 for all χ ∈ Gal(K/F ) −→ C× when a certain factor sign(E,F )= −1.

This factor does not depend on χ. Putting together the factorization of L(E/K, s) and the

vanishing of L(E/F, χ, s), we get the following inequality
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ords=1L(E/K, s) ≥ [K : F ].

The Birch and Swinnerton-Dyer conjecture leads to the following conclusion

rank(E(K)) ≥ [K : F ].

The above inequality leads to the conjecture that if sign(E,F )=-1, then there is a collec-

tion of algebraic points attached to the elliptic curve E with complex multiplication by F .

To gain more insight into the Birch and Swinnerton-Dyer conjecture, it might be helpful to

examine these algebraic points called the Heegner points.

3



4



Chapter 2

Preliminaries

Modular forms form another essential component in the construction of Heegner points. This

chapter introduces modular forms and explains the connection with Elliptic curves.

2.0.1 SL2(Z) and its congruence subgroups

The general linear group GL2(R) (R is a commutative ring) is the set of matrices with

entries in R and whose determinant is invertible in R. The subgroup consisting of matrices

of determinant one is denoted by SL2(R). Let C̃ = C ∪ ∞ be the complex plane with a

point at infinity (Riemann sphere). An element of g =

(
a b

c d

)
∈ SL2(R) acts on z ∈ C by

gz = az+b
cz+d

This map is called fractional linear transformation, and it defines a group action on C.

Identity matrix and negative of identity matrix both define the same action z ∈ C. Therefore

the quotient group SL2(R)/ ± I acts faithfully on C, i.e., each element other than identity

acts nontrivially.

Let H = {z ∈ C|Im z > 0}. Any g ∈ SL2(R) preserves H because of the following

equality

5



Im(gz) = |cz + d|−2Im(z)

The subgroup of SL2(R) with integer entries is SL2(Z) denoted by Γ. For a positive

integer N define

Γ(N) = {

(
a b

c d

)
∈ SL2(Z)|a ≡ d ≡ 1mod(N), b ≡ c ≡ 0mod(N)}

The subgroup Γ(N) is a normal subgroup of Γ as it is the kernel of group homomorphism

from Γ to SL2(Z/NZ) obtained by reducing entries modulo N . A subgroup of Γ is called

congruence subgroup of level N if it contains Γ(N). Two points z1, z2 ∈ H are G-equivalent

to each other if ∃g ∈ G such that z2 = gz1.

Definition 2.0.1. A closed, simply connected region F is said to be a fundamental domain

for subgroup G of Γ if every z ∈ H is G-equivalent to a point in F , but no two points in the

interior of F are G-equivalent to each other.

Proposition 2.0.1. The fundamental domain for Γ, F = {z ∈ H| − 1
2
≤ Re(z) ≤ 1

2
and

|z| ≥ 1}

Proof. The group Γ is generated by two elements.

T =

(
1 1

0 1

)
: z 7→ z + 1

S =

(
0 −1

1 0

)
: z 7→ −1/z

Move a point z ∈ H inside the strip −1
2
≤ Re(z) ≤ 1

2
by using multiple translations. If it

does not land inside F then use S to invert the element i.e., to bring it outside unit circle

and repeat the same procedure.

2.1 Modular forms for SL2(Z)

Let f(z) be a meromorphic function in the upper half plane H satisfying the relation
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f(γz) = (cz + d)kf(z)

for all γ =

(
a b

c d

)
∈ SL2(Z). In particular for γ = T and S defined above, f(z+ 1) = f(z)

and f(−1/z) = (−z)kf(z). In addition if f is meromorphic at infinity, then f(z) is called a

modular function of weight k for SL2(Z). If f(z) is holomorphic on H and at ∞, then f(z)

is called a modular form of weight k for SL2(Z). This set is denoted by Mk(Γ).

We can map the upper half plane H to the punctured unit disc by z 7→ q = e2πiz and

∞ 7→ 0. Given a function f of period 1, the Fourier series expansion of f is given by

f(z) =
∑

n∈Z ane
2πiz =

∑
n∈Z anq

n

We say f is meromorphic at ∞ if the fourier expansion has atmost finitely many negative

terms and f is holomorphic at ∞ if an = 0 for all negative n. If a0 = 0, then the modular

form vanishes at infinity and is called cusp form of weight k for Γ. This set of functions is

denoted by Sk(Γ).

Remarks 2.1.1. 1. For odd weight, there are no non-zero modular forms.

2. Zero function is a modular form of every weight.

3. The set of modular forms of a given weight form a complex vector space.

Example 1. Eisenstein series

Gk(z) =
∑

m,n
1

(mz+n)k

where the summation is over pairs of integers m, n not both zero. For k ≥ 4, the double sum

is absolutely and uniformly convergent in a compact subset.

Theorem 2.1.1. The meromorphic function Gk(z) ∈Mk(Γ)

Proof. Gk(z + 1) =
∑

m,n
1

(mz+m+n)k
=
∑

m,n′
1

(mz+n′)k
= Gk(z)

As m,n varies over Z2−{(0, 0)}, m,n′ varies over Z2−{(0, 0)} and the sum is absolutely

convergent.
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Similarly Gk(−1/z) =
∑

m,n
1

(−(m/z)+n)k
=
∑

m,n
zk

(−m+nz)k
= zkGk(z)

Holomorphy at ∞ - Gk(z) approaches a finite limit as z → i∞

Gk(z) =
∑
n6=0

1

nk
+
∑
m 6=0

∑
n

1

(mz + n)k

The second term goes to 0 and the first term is equal to 2ζ(k).

Example 2. The discriminant modular form ∆(z). Let g2(z) = 60G4(z) and g3(z) =

140G6(z). Define

∆(z) = g3(z)2 − 27g3(z)2 = (2π)12

1728
(E4(z)3 − E6(z)2)

∆(z) is a modular function of weight 12 for Γ. Both E4(z) and E6(z) have constant term 1

in their q-expansions. Thus ∆(z) has constant term 0 and is therefore a cusp form of weight

12.

Proposition 2.1.2. Let f(z) be a nonzero modular function of weight k for Γ. For P ∈ H,

let vP (f) denote the order of zero of f(z) at P . Let v∞(f) denote the index of first non-

vanishing term in the q-expansion of f(z). Then

v∞(f) + 1
2
vi(f) + 1

3
vω(f) +

∑
P 6=i,ω vP (f) = k

12

Proof. Counting the zeros and poles by integrating the logarithmic derivative of f(z) along

the boundary of fundamental domain F .

Proposition 2.1.3. Let k be an even integer, Γ = SL2(Z)

1. The only modular forms of weight 0 for Γ are constants.

2. The space Mk(Γ) = 0 if k is negative or k = 2.

3. The space Mk(Γ) is one-dimensional generated by Ek if k = 4,6,8,10 or 14; In other

words Mk(Γ) = CEk for the above values of k.

4. The space can be decomposed as Mk(Γ) = Sk(Γ)
⊕

CEk for k > 2.
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Proof. For modular forms the terms on left of the equation in the previous proposition are

non-negative (by definition of modular form, could be 0’s).

1. Let f ∈M0(Γ) and let c be any value taken by f(z). Then f(z)− c is also a modular

form of weight 0 and it has a zero. One of the terms in left of (4) is strictly positive

and the right hand side is 0. Therefore f(z)− c has to be the zero function.

2. The non-negative terms on the left of equation in the previous proposition cannot add

to k/12 in these cases.

3. Equation in the previous proposition is satisfied if any two non-zero elements f1(z) and

f2(z) have the same zeros. f1(z)/f2(z) is a modular form of weight 0. Therefore by

the first part of this proposition, f1(z) and f2(z) are proportional. (f1(z)/f2(z)-c=0

for some c ∈ C). We can choose f2(z) to be Ek(z), a modular form of weight k. Thus

Mk(Γ) = CEk.

4. Since Ek does not vanish at infinity, given f ∈ Mk(Γ) we can subtract a multiple of

Ek such that the difference is in Sk(Γ).

Proposition 2.1.4. Any f ∈Mk(Γ) can be written in the form

f(z) =
∑

4i+6j=k ci,jE4(z)iE6(z)j.

Proof. By induction on k. For k = 4, 6, 8, 10 and 14 we know that Mk(Γ) = CEk. The

modular forms E4, E6, E2
4 , E4E6 and E2

4E6 respectively span Mk(Γ). For k > 14, k can be

written in the form 4i+ 6j for some i, j ∈ Z in which case Ei
4E

j
6 ∈ Mk(Γ). By the previous

proposition, there exists c ∈ C such that f − cEi
4E

j
6 ∈ Sk(Γ). Therefore f = cEi

4E
j
6 + ∆f1,

where f1 is a modular form of weight k − 12. By induction f is of the desired form.

2.1.1 Modular forms for congruence subgroups

Let f(z) be a function on H = H ∪ Q ∪ {∞} which takes values on C, let k ∈ Z and let

γ ∈ Γ. Define

9



f(z)|[γ]k = (cz + d)−kf(γz)

for γ ∈ Γ. This condition is called the weak modularity condition. More generally for

γ ∈ GL+
2 (Q) consisting of matrices with positive determinants with entries in Q, define

f(z)|[γ]k = (detγ)k/2(cz + d)−kf(γz)

Any modular function of weight k satisties f(z)|[γ]k = f(z) for all γ ∈ Γ. With the above

notation, the following property is satisfied.

f |[γ1γ2]k = (f |[γ1]k)|[γ2]k

for any γ1, γ2 ∈ GL+
2 (Q). This can be proved by expanding on both sides.

Definition 2.1.1. Let f(z) be a meromorphic function on H, let Γ′ ⊂ Γ be a congruence

subgroup of level N . Let k ∈ Z. f is a modular function of weight k for Γ′ if f(z)|[γ]k = f

for all γ ∈ Γ′ and if for any γ0 ∈ Γ,

f(z)|[γ0]k has the form
∑
anq

n
N with an = 0 for n� 0.

The above condition implies that the meromorphic function f(z), in addition to satisfying

weak modularity condition, also has a qN -expansion (qN = e2πiz/N), where an = 0 for finitely

many negative integers n.

Reason for existence of qN -expansion - Let g = f |[γ0]k for fixed γ0 ∈ GL+
2 (Q). If f is

invariant under Γ′, i.e., if f |[γ]k = f for all γ ∈ Γ′, then g is invariant under the group

γ−1
0 Γ′γ0 because for every γ−1

0 γγ0 ∈ γ−1
0 Γ′γ0,

g|[γ−1
0 γγ0]k = (f |[γ0]k)[γ

−1
0 γγ0]k = f |[γγ0]k = f |[γ0]k = g

The group γ−1
0 Γ′γ0 is conjugate of Γ′ and therefore contains Γ(N). Since TN ∈ Γ(N),

g(z +N) = g(z). Therefore g(z) has Fourier series expansion in powers of qN .

A modular function of weight k is called a modular form of weight k for a given congruence

subgroup if it is holomorphic on H and if ∀γ0 ∈ Γ, an = 0 for all negative n. It is called a

cusp-form if in addition a0 = 0.

10



2.1.2 Hecke operators

Any two subgroups Γ1 and Γ2 of a group G are called commensurable if their intersection

has finite index in each group. If Γ1, Γ2 ⊂ G and α ∈ G, then the double coset Γ1αΓ2 is the

set of all elements of G of the form γ1αγ2 with γ1 ∈ Γ1 and γ2 ∈ Γ2. Let Γ′ = Γ1 ∩ α−1Γ1α

and [Γ1 : Γ′] = d. Then Γ1αΓ1 = ∪dj=1Γ1αγj whenever Γ1 = ∪dj=1Γ′αγj.

Definition 2.1.2. Let Γ′ be a congruence subgroup of Γ, and let α ∈ GL+
2 (Q). Let Γ′′ =

Γ′∪α−1Γ′α, Let d = [Γ′ : Γ′′], Γ′ = ∪dj=1Γ′′γ′j. Let f(z) be a function on H which is invariant

under [γ]k for γ ∈ Γ′. Then

f(z)|[Γ′αΓ′]k =
∑d

j=1 f(z)|[αγ′j]k

f(z)|[Γ′αΓ′]k does not depend on the choice of representative modulo the double coset.

If f ∈Mk(Γ
′) then f(z)|[Γ′αΓ′]k ∈Mk(Γ

′)

Definition 2.1.3. Let n be a positive integer and f(z) ∈Mk(Γ
′). Then

Tnf = n(k/2)−1
∑
f(z)|[Γ′αΓ′]k.

2.1.3 The Petersson scalar product

Let Γ be a congruence subgroup and F be a fundamental domain for Γ. For f, g ∈ Sk(Γ)

define the Petersson scalar product as

(f, g) = 1
[SL2(Z):Γ]

∫ ∫
F y

kf(z)g(z)dxdy
y2

This integral is well defined and independent of the choice of fundamental domain. The

integral converges because f and g are cusp-forms. The integral converges even if just one

of f or g is a cusp-form. It is easily seen that (f, g) is linear in f , is conjugate symmetric

((f, g) = (g, f)) and (f, f) > 0 for any cusp form f . Therefore Petersson product defines a

Hermitian inner product on Sk(Γ). This makes the space of cusp forms a Hilbert space.
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2.1.4 L-functions of Modular Forms

We can associate to every newform g of level N an L-function

L(g, s) =
∞∑
n=1

ann
−s (2.1)

where an is the nth Hecke eigenvalue. This L-function has Euler product expansion similar

to that of elliptic curves and a functional equation. This similarity between L-functions lead

to the Modularity conjecture which was later proved.

Theorem 2.1.5. Let g be a normalized eigenform whose Fourier coefficients an(g) are in-

tegers. Then there exists an elliptic curve Eg over Q such that

L(Eg, s) = L(g, s) (2.2)

The proof of this theorem involves constructing an elliptic curve as a quotient of the

jacobian of the modular curve X0(N), where N is the level of the eigenform. This is referred

to as the Eichler-Shimura construction. It was conjectured that every elliptic curve can be

obtained from a modular form through the Eichler-Shimura construction. This was proved

by Andrew Wiles.

Theorem 2.1.6. Let E be an elliptic curve over Q of conductor N . Then there exists a

newform g ∈ S2(Γ0(N)) such that

L(g, s) = L(E, s) (2.3)

and E is isogenous to the elliptic curve Eg obtained from the Eichler-Shimura construction.

As a corollary of the above theorem, we obtain an explicit complex uniformization

ΨN : H/Γ0(N) −→ E(C). (2.4)

12



2.2 Eichler Shimura Construction

The quotient H/Γ0(N) can be given a compact Riemann surface structure. For any such

compact Riemann surface X we can fix a base point x0 and consider all the path integrals

to some other point x with respect to a holomorphic differential.

x −→ (ω 7→
∫ x
x0
ω)

This is a map from the Riemann surface to the set of all linear functions of holomorphic

differentials on X modulo integration by loops. In particular for an elliptic curve, by uni-

formization theorem, there is an identification to C/Λ for some lattice Λ. We observe that

the set {
∫ z+λ

0
dζ : λ ∈ Λ} = z + Λ for any z ∈ C. The integral is dependent on the path.

Any two paths differ by a loop. If we mod out all the path integrals by integrals over loops,

we get a group isomorphism using the translation invariant property of dζ.

Definition 2.2.1. The Jacobian of X is the quotient group

Jac(X)= Ω1
hol(X)/H1(X,Z)

where Ω1
hol(X) is the C vector space of maps from Ω1

hol(X) to C and H1(X,Z) is the group

of integer sums of integration over loops also called the first homology group of X.

The degree-0 divisor group of X is

Div0(X) = {
∑

x∈X nxx : nx ∈ Z,
∑

x nx = 0}

where only finitely many nx are non-zero. We can consider all the degree zero divisors modulo

principal divisors which measures the extent by which degree 0 divisors fail to be principal.

The latter quotient group is denoted by Pic0(X). By choosing a base point x0 ∈ X, we can

embed X into Pic0(X) by the map x 7→ [x−x0], where [x−x0] denotes the equivalence class

of degree 0 divisor x − x0 in the Picard group. We have a well defined map from Div0(X)

to the Jacobian given by

13



∑
x

nxx 7→
∑
x

nx

∫ x

x0

Theorem 2.2.1. The above map dscends to divisor classes inducing an isomorphism Pic0(X) −→
Jac(X).

If the genus of the Riemann surface is greater than 0, we have an embedding X −→
Jac(X) given by x 7→

∫ x
x0

.

Let h : X −→ Y be any holomorphic function between two Riemann surfaces. This map

descends to a map between the Jacobians(hJ) and the Picard groups(hP ) of the respective

Riemann surfaces such that the following diagram commutes.

Pic0(X) Pic0(Y )

Jac(X) Jac(Y )

hP

hJ

Theorem 2.2.2. Let f ∈ S2(Γ1(N)) be a normalized eigenform for the Hecke operators Tp.

Then the eigenvalues an(f) are algebraic integers.

The Hecke algebra TZ over Z is the algebra of endomorphisms of S2(Γ1(N)) generated

over Z by the Hecke operators.

Let f ∈ S2(Γ1(N)) be a newform and define the homomorphism λf : TZ −→ C given by

Tf = λf (T )f for any T ∈ TZ. Let kerλf = If . The algebra TZ acts on the Jacobian and

preserves IfJ0(N). We have the following commutative diagram,

J0(N) J0(N)

Af Af

TP

ap(f)

where Af = J0(N)/IfJ0(N) and J0(N) denotes the Jacobian of H/Γ0(N).

Theorem 2.2.3. For a non-singular projective curve C with good reduction at prime p, a

map is induced on degree 0 divisors by reduction and the following diagram commutes:

14



Pic0(C) Pic0(C ′)

Pic0(C̃) Pic0(C̃ ′)

h∗

h̃∗

Theorem 2.2.4. (Modularity theorem) Let E be an elliptic curve over Q with conductor

NE. Then for some newform f ∈ S2(Γ0(N)) such that ap(f) = ap(E) for all primes p.

Theorem 2.2.5. Let E/Q be an elliptic curve with conductor NE. Let N be a positive

integer and let

α : X0(N) −→ E (2.5)

be a non-zero morphism over Q of curves over Q. Then for some newform f ∈ S2(Γ0(Mf ))

such that Mf/N , we have

ap(f) = ap(E), ∀p - NEN

Proof. The correspondence between ap(f) and ap(E) can be understood by the following

series of commutative diagrams. They are slight variants of the commutative diagrams

described in this chapter.

⊕f,nA′f ⊕f,nA′f

J0(N) J0(N)

Pic0(X0(N)) Pic0(X0(N))

Pic0( ˜X0(N)) Pic0( ˜X0(N))

ap(f)

TP

Tp

σ
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Chapter 3

Complex Multiplication and Heegner

points

3.1 Elliptic curves with Complex Multiplication

We know that the endomorphism ring of an elliptic curve contains Z (Multiplication by m

isogeny ∀m ∈ Z). If the endomorphism ring is strictly greater than Z, say some order in an

imaginary quadratic field F , then the elliptic curve is said to have complex multiplication by

that order. Order in F is defined as a subring of F which generates F as a Q vector space

and is a finitely generated Z-module. Any order is uniquely determined by it’s conductor c,

a unique integer such that O = Z + Zcω where F = Q(ω).

Example 3. Consider the elliptic curve E : y2 = x3 + x. The isogeny (x, y) 7→ (−x, iy)

corresponds to the element i ∈ Z[i]. E is said to have complex multiplication by Z[i].

Let F be an imaginary quadratic field and RF denote the ring of integers of F which is

also the maximal order. Let EL(R) denote the set of all elliptic curves with endomorphism

ring R upto isomorphism. By the uniformization theorem of elliptic curves, this is also equal

to set of lattices Λ, with End(EΛ) ∼= R upto homothety of lattices.

Given F , it is easy to construct an elliptic curve with complex multiplication by RF .

Consider any ideal a in F . Any ideal in imaginary quadratic field is a 2 dimensional Z-
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module, therefore it can be viewed as a lattice. Hence we have an elliptic curve Ea whose

endomorphism ring is the set {α ∈ C : αa ⊂ a} which is equal to RF . Homothetic lattices

give isomorphic elliptic curves. To get non-isomorphic elliptic curves, consider the set of

fractional ideals modulo the principal ideals, which is the ideal class group. Denote the ideal

class group by CL(RF ).

Let [a] denote the equivalence class of a fractional ideal a in CL(RF ). EΛ denotes the

elliptic curves in EL(RF ) associated to the lattice Λ. There is a well defined, simply transitive

action of CL(RF ) on EL(RF ) given by

[a] ? EΛ = Ea−1Λ.

Theorem 3.1.1. The j-invariants are algebraic numbers i.e., j(τ) ∈ Q.

Theorem 3.1.2. Let E/C be an elliptic curve with complex multiplication by RF and let

L = F (j(E), Etors), the field generated by the j-invariant of the elliptic curve and coordinates

of all torsion points of E. Then L is an abelian extension of F (j(E)).

There is a natural action of Gal(F/F ) on EL(RF ) defined by σ ∈ Gal(F/F ) sends

isomorphism class of E to the isomorphism class of Eσ. But, simply transitive action of

CL(RF ) on EL(RF ). Therefore there is a unique [a] ∈ CL(RF ) depending on σ such that

[a] ? E = Eσ. This leads to the definition of a map

F : Gal(F/F ) −→ CL(RF )

characterized by Eσ = F(σ) ? E, ∀σ ∈ Gal(F/F ).

This map F is also a homomorphism. This action of the Galois group commutes with

the action of the class group which is captured precisely by the following proposition.

Proposition 3.1.3. Let E/Q be an elliptic curve representing an element of EL(RF ), let

a ∈ CL(RF ) and σ ∈ Gal(Q/Q). Then

([a] ? E)σ = [a]σ ? Eσ.
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3.2 Results from Class Field Theory

Let F be a totally imaginary number field and L be any abelian extension of F . Let RL and

RF denote their ring of integers respectively. Let p be a prime of F which does not ramify

in L and β be a prime of L lying over p. We have a homomorphism from the decomposition

group of β to the Galois group of the residue fields RL/β over RF/p. Since p is unramified, the

kernel of the homomorphism, called the inertia group is trivial. The Galois group of residue

fields is generated by the Frobenius automorphism. There is a unique element σp ∈ Gal(L/F )

which maps to the Frobenius. Let c be an integral ideal of F divisible by all primes that

ramify in L/F . Define I(c) to be the group of fractional ideals of K relatively prime to c.

We know that ring of integers of number fields are Dedekind domains. Therefore for any

integral ideal a in RF , we have factorization of a as

a =
∏

pnp .

Definition 3.2.1. For every ideal in a ∈ I(c), define the Artin map to Gal(L/F ) by

(a, L/F ) =
∏
p

σ
np
p

.

Proposition 3.2.1. There exists an integral ideal c ∈ RF , divisible by only those primes

that ramify in L such that all the principal ideals (α) in the kernel of the reciprocity map are

such that α ∼= 1(mod(c)).

The congruence above is defined multiplicatively, i.e. the prime factorization on both

sides are equivalent. The maximal such c is called the conductor of the extension L/F .

Definition 3.2.2. For an integral ideal c, a ray class field of F modulo c, Fc is an abelian ex-

tension such that if the conductor of that extension divides c, then the extension is contained

in Fc.

In other words, it is the largest abelian extension unramified outside the primes dividing

the conductor. Class field theory asserts that the Artin map is surjective and guarantees the

existence of ray class field. The Artin map induces an isomorphism to the Galois group of

Hilbert Class field which is isomorphic to the ideal class group.
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3.3 Heegner points

Theorem 3.3.1. Main theorem of complex multiplication Let t be an element of upper half

plane which is quadratic over Q. Then j(t) ∈ H, where H is the ring class field attached to

the order O = Ot. In particular, for all α ∈ Pic(O), and t ∈ CM(O),

j(α ? t) = rec(α)−1j(t).

Corresponding to every element in t ∈ H, we have an order in M0(N), upper triangular

modulo N

O
(N)
t = {γ ∈M0(N) : det(γ) 6= 0 and γt = t} ∪ {0}.

Theorem 3.3.2. Let t ∈ H∩K. Let O
(N)
t be the associated order and H/F be the ring class

field attached to O
(N)
t . Then Pt := ΨN(t) ∈ E(H).

For any order O in F , define

CM(O)= {t ∈ H/Γ0(N) : O
(N)
t = O}.

For any order O of discriminant prime to N , CM(O) is non-empty if and only if all

primes dividing N are split in F/Q. If CM(O) is non-empty then there exists t ∈ H/Γ0(N)

for which O
(N)
t = O. O

(N)
t is a subgroup of M0(N). Therefore we have an embedding of O

in M0(N) and a ring homomorphism O −→ Z/NZ.

Theorem 3.3.3. Shimura Reciprocity If α ∈ Pic(O), and t ∈ CM(O),

ΨN(α ? t) = rec(α)−1ΨN(t).

Shimura reciprocity will be a recurrent theme. It is important because it converts the

algebraic action of the Galois group into the analytic action of multiplication of lattices.

Lattice multiplication could be easier in many contexts. Especially when we are dealing

with rings of integers which are Dedekind domains.
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Chapter 4

Shimura Curves and Rigid Analytic

parametrization

4.1 Modular forms on quaternion algebras

Definition Let F be a field (char(F ) = 0) , a quaternion algebra over F is a 4-dimensional

central simple F -algebra B(a, b) = F ⊕Fi⊕Fj⊕Fk with the multiplication defined by the

relations : i2 = a, j2 = b, ij = k = −ji where a, b ∈ F×. A quaternion algebra B over F

is said to be split if it is isomorphic to M2(F ), the ring of 2×2 matrices with entries in F .

For any prime p in ring of integers of F , let Fp denote the completion with respect to the

p-adic norm. Let Bp = B ⊗ Fp, a quaternion algebra over Fp. B is split at p if Bp is a split

quaternion algebra. Else B is said to be ramified at p.

The reduced norm map is defined as x + yi + zj + wk 7→ x2 − ay2 − bz2 + abw2. This

map is multiplicative.

Let B be a quaternion algebra over F , R be the ring of integers of F . An Eichler order

O in B is the intersection of two maximal R-orders in B. The level m of O is the index of

O in any maximal order containing it. A few theorems about the arithmetic of quaternion

algebras will be assumed without proof in this section.

Example 4. Let B(1, 1) be the quaternion algebra over Q. We can embed it into M2(Q) by
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i 7→

(
1 0

0 −1

)
and j 7→

(
0 1

1 0

)
. O = M2(Z) is a maximal order in B(1, 1).

Let B be a quaternion algebra over Q which splits at ∞. We have an identification

ι : B ⊗Q R ' M2(R). For a fixed order R in B, consider the image under this identification

of all the invertible elements of reduced norm 1, i.e. Γ = ι(R×1 ). This is a subgroup of

SL2(R) and acts properly discontinuously on H and the quotient is compact.

Definition 4.1.1. A modular form of weight k on Γ is a holomorphic function f on H such

that

f(γz) = (cz + d)kf(z) for all γ =

(
a b

c d

)
∈ Γ.

Definition 4.1.2. A factorization N = N1N2 is called an admissible factorization if N1 and

N− are coprime and N2 is squarefree and product of even number of primes.

To every admissible factorization of N , we can associate a discrete subgroup of SL2(R)

as described below. Consider a quaternion algebra B over Q which is ramified only at

primes dividing N2. We require N2 to be squarefree, product of even number of primes for

guaranteeing the existence of such a quaternion algebra. Since B is ramified only at primes

dividing N2, it is split at ∞ and at all primes dividing N+. The set of all elements in

M2(Z) which are upper triangular modulo N1 for an Eichler order R. With respect to the

identification ι : B ⊗Q R ' M2(R), define ΓN1,N2 := ι(R×1 ). Since ΓN1,N2 acts on H with

compact quotient, there are no cusps. The space of modular forms of weight 2 denoted by

S2(ΓN1,N2) can be identified with the space of holomorphic differential forms. This space is a

Hilbert space and is also endowed with action of Hecke operators. Analogous to the classical

case, we can define the notion of oldforms in S2(ΓN1,N2) as the forms arising from S2(Γd,N2)

where d/N1. The space of newforms is the orthogonal complement.

4.1.1 Shimura curves

The compact Riemann surfaceH/ΓN1,N2 can be interpreted as complex points on an algebraic

curve over Q called the Shimura curve associated to the admissible factorization N = N1N2.
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4.1.2 Eichler Shimura for Shimura curves

Let g ∈ S2(ΓN1,N2) be an eigenform having integer Hecke eigenvalues an(g).

Theorem 4.1.1. There exists an elliptic curve E over Q such that an(g) = an(E) for all

integers (n,N) = 1.

Theorem 4.1.2. (Shimura-Taniyama-Weil) Let E/Q be an elliptic curve with conductor

N and let N = N1N2 be any admissible factorization of N . Then there exists a unique

eigenform g ∈ S2(ΓN1,N2) such that Tl(g) = al(E)g, for all primes l - N

The above theorem follows from the Shimura Taniyama Weil conjecture in the classical

case. Associated to E/Q with conductor N we have a newform g ∈ Γ0(N) and by Jacquet-

Laglands correspondence we get an eigenform f ∈ S2(ΓN1,N2). As a corollary, we get a

modular parametrization

ΨN1,N2 : Div0(H/ΓN1,N2) −→ E(C)

Definition 4.1.3. For any t ∈ H/ΓN1,N2, define the order associated to t,

Ot = {γ ∈ R : norm(γ) 6= 0, ι(γ)(t) = t} ∪ {0}.

For a fixed order O, define CM(O) = {t ∈ H/ΓN1,N2 : Ot = O}

Theorem 4.1.3. (Complex Multiplication for Shimura curves) Let O be an order in an

imaginary quadratic field F and let H/F be the ring class field associated to O. Then,

ΨN1,N2(Div0(CM(O))) ⊂ E(H)

4.2 Rigid analytic modular forms

Let Γ ∈ SL2(Qp) be a discrete subgroup such that Hp/Γ is compact.

Definition 4.2.1. A form of weight k on Hp/Γ is a rigid analytic modular function on Hp

if
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f(γz) = (cz + d)kf(z) for all γ =

(
a b

c d

)
∈ Γ.

Definition 4.2.2. A factorization N = pN+N− is called a p-admissible factorization if

p,N+ and N− are pairwise coprime and N− is squarefree and product of odd number of

primes.

To every p-admissible factorization of N , we can associate a discrete subgroup ΓpN+,N− of

SL2(Qp) as described below. Consider a quaternion algebra B over Q which is ramified only

at primes dividing N− and at∞. The set of all elements in M2(Z) which are upper triangular

moduloN+ form an Eichler orderR. With respect to the identification ι : B⊗QQp 'M2(Qp),

define ΓpN+,N− := ι(R×1 ). Since ΓpN+,N− acts on H with compact quotient, there are no cusps.

4.2.1 Bruhat-Tits tree

Let p be a rational prime and | |p be the p-adic norm associated to p. Qp denote the

completion of Q with respect to the p-adic norm. Qp is not algebraically closed. For example

2 is not a square mod 3. Therefore
√

2 does not belong to Q3. We can consider the algebraic

closure of Qp, but it is not complete.

We can consider the completion and denote it by Cp. Cp and C are isomorphic as fields.

The p-adic topology makes Cp a totally disconnected space. We need to define a new topology

on Cp to be able to do analysis and Bruhat-Tits tree is a combinatorial approximation for a

subspace defined as follows

Definition 4.2.3. The p-adic upper half plane Hp := P1(Cp)− P1(Qp).

The space P1(Qp) can be thought of as the boundary of the p-adic upper half plane

analogous to R being the boundary of the complex upper half plane.

Two lattices L1 and L2 are said to be equivalent if L1 = αL2 where α ∈ Cp. Consider

the tree in which equivalence class of lattices form the vertices and two lattices L1 and L2

are joined by an edge if pL1 ⊂ L2 ⊂ L1. This is an infinite, unordered tree and each vertex

has a valency of p+ 1.

24



Holomorphic functions are replaced by rigid analytic functions. We have rigid analytic

uniformization given by

Φ
(p)

N+,N− : Div0(Hp/Γ
(p)

N+,N−) −→ E(Cp)

where N = pN+N− is a p-admissible factorization of N and Γ
(p)

N+,N−
is as defined in the last

section.
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Chapter 5

Stark-Heegner points and Rigid

Meromorphic Cocycles

5.1 Stark Heegner points

Let N = pM such that p -M . Fix an Eichler order R of level M Let F be a real quadratic

field in which prime p remains inert. Fix an embedding of F into R and Cp. Let ψ : F −→
M2(Q) be any algebra embedding and ψ : K −→ PGL2(Q) be the homomorphism induced

by ψ. Let Γ = ψ(R×1 ), where R×1 is the set of invertible elements of reduced norm 1.

For a general Q algebra embedding ψ, we say that ψ is optimal of conductor c if O :=

ψ−1(R) is a Z[1/p] order of conductor c such that O = {(u, v) : u ≡ v mod(c)}. The

embedding is said to be oriented if there exists a ring homomorphism φ : O −→ Z/MZ.

For any factorization of M into two relatively prime integers, we can define an orientation

by sending the tuple (u, v) to entries modulo the factors respectively. This defines a ring

homomorphism to Z/MZ as the two factors are relatively prime. We can also define an

orientation associated to an optimal embedding by sending the upper left hand entry to it’s

class modulo M . An embedding is said to be oriented if the one arising from the embedding

is equal to factorization M = M × 1.

The group ψ(F×) acts on Hp with two fixed points z and z which are Galois conjugates

of each other. Since p is inert, Gal(F/Q) ∼= Gal(Fp/Qp). The group ψ(F×) ∩ Γ is generated
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by some element γ.

Define, for a fixed point x ∈ P(Q) and for a 2-form on (Hp ×H)/Γ

Iψ :=

∫ z

z

×
∫ γx

x

ω ∈ C×p (5.1)

Γ acts on Hp and on H∗ = H∪∞. The action on the product is properly discontinuous.

We need to make precise the notion of integration with respect to the two-form on (Hp×H)/Γ.

Definition Let z, z ∈ Hp and x, y ∈ P(Q).

∫ z

z

∫ γx

x

ω =

∫
P(Qp)

log(
t− z
t− z

)dµf{x→ y}(t) (5.2)

where µf{x → y} is a measure over P(Qp) and the integration over P(Qp) is as defined in

the last chapter. To recall the setting we are in, E/Q, an elliptic curve with conductor N .

Φ : H∗/Γ0(N) −→ E(C) is the modular parametrization. We have the pull-back Φ∗(ωE) =

2πicΦf(z)dz where f is the modular form attached to the elliptic curve. Define a complex

valued map from edges of the tree T as

kf{x→ y}(e) := 2πicΦ

∫ y

x

fe(z)dz (5.3)

Associated to kf{x→ y} we can define a distribution on P(Qp) as

µ{x→ y}(U(e)) = kf{x→ y}(e)

where U(e) is the open set associated to the edge e.

The double integral satisfies additive property for both the integrals.

Lemma 5.1.1. Iψ does not depend on the choice of x. It depends on the Γ-conjugacy class

of ψ.

Any element of the a field is said to be totally positive if for each embedding of the field

into R, the element has a positive image. Narrow class group can be defined as the quotient
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of group of fractional ideals by the group of principal ideals which are generated by a totally

positive element. The fixed field of this group is called the narrow class field.

Conjecture 5.1.1. The local point

S−ψ := ΦTate(Iψ)

is a global point in E(K+) where K is the narrow ring class field.

But these points do not satisfy the Shimura reciprocity law. We can tweak these points

a little to obtain a correct generalization.

Define an indefinite multiplicative integral by fixing x ∈ P(Q) as follows

Jψ :=

∫ z

×
∫ γx

x

ω ∈ K×p /Q (5.4)

We can raise Jψ to an appropriate power t such that J tψ is a well defined element of

K×p /q
Z.

Conjecture 5.1.2. The local point

Sψ := ΦTate(J
t
ψ)

is a global point in E(K+).

These points are the correct generalization as they satisfy a conjectural Shimura reci-

procity and certain Galois actions like classical Heegner points.

Lemma 5.1.2. An embedding ψ of conductor c exists iff there is a homomorphism from O

to Z/MZ.

For a fixed orientation φ : O −→ Z/MZ, define ΣO to be the set of all optimal embeddings

ψ : K −→M2(Q) of conductor c such that φ = Oψ.

Proposition 5.1.3. The orbits of ΣO under conjugation by Γ are in natural bijection with

Pic+(O).
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We therefore have an action of Pic+(O) on ΣO/Γ.

Conjecture 5.1.3. The points Sψ ∈ E(K+) satisfy the following property

Sc?ψ = rec(c)−1(Sψ)

for all c ∈ Pic+(O).

5.2 Rigid meromorphic cocycles

The results in this section try to generalize the techniques used previously to find analogues

of Stark-Heegner points and the analogue of Shimura reciprocity law that these elements

satisfy. The exposition will try to copy the order of results in the previous chapter.

Notation for this chapter -

1. M× - Rigid meromorphic functions on Hp i.e., ratios of rigid analytic functions whose

denominator is non-zero.

2. Γ = SL2(Z[1/p])

3. RM points - Points of degree 2 over Qp

Definition 5.2.1. A class in quasi parabolic elements of the first cohomology group H1(Γ,M×)

is called a rigid meromorphic cocycle.

An element of H1(Γ,M×) is parabolic if it’s restriction to upper triangular matrices is

trivial and is called quasi parabolic if this restriction is a constant in C×p .

Let τ be an RM-point in Hp. Define the order associated to τ by

Oτ := {

(
a b

c d

)
∈M2(Z[1/p]) : aτ + b = cτ 2 + dτ}.

We can embed Oτ into the real quadratic field K = Q(τ) by
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(
a b

c d

)
7→ cτ + d.

The generator of Γτ , the stabilizer of τ in Γ is denoted by γτ . To evaluate any rigid

meromorphic cocycle (an element in J ∈ H1(Γ,M×)), J(γτ ) ∈ M× a ratio of meromorphic

functions on Hp which can be evaluated at any RM-point τ . Therefore J(γτ )(τ) ∈ Cp ∪∞.

τ can be a pole for J(γτ ). It can be proved that J(γτ )(τ) depends only on the class of J in

the first cohomology group and on the Γ orbit of τ .

Let S =

(
0 1

−1 0

)
and define j := J(S). Since S2 = −1, j satisfies certain additional

functional relations. LetR× denote the subset ofM× which satisfy these functional relations.

Theorem 5.2.1. The group R× is of infinite rank. The zeros and poles of any j ∈ R× are

contained in finite union of Γ-orbits of τ .

Let Hτ be the narrow ring class field associated to Oτ . The Galois group of this field is

associated to Pic+(Oτ ). Let Hj denote the composite of all Hτ for τ such that j(τ) =∞.

If J is a rigid meromorphic cocycle and τ ∈ Hp is an RM-point, then the value J [τ ] is

algebraic belonging to the composite of fields HJ and Hτ .

Conjecture 5.2.1. (Shimura reciprocity) Let h = (h1, h2) be any element of GD1,D2. Then

Jp(τh1 , τh2) belongs to H12 and, for all g = (g1, g2) ∈ GD1,D2

Jp(τg1h1 , τg2h2) = Jp(τh1 , τh2)
rec(g)−1

(mod εZ1 ).

The above conjecture is stated here only for the purpose of comparing it with the earlier

We have the following parametrization similar to classical modular parametrization,

J+
E : HRM

p /Γ −→ E(Cp).

Conjecture 5.2.2. Let E be an elliptic curve of prime conductor p. For an RM-point

τ ∈ Hp, J
+
E [τ ] ∈ E(Cp) belongs to the ring class field of order Oτ .

This conjecture predicts the existence of global points on E that can’t be obtained

through the previous methods. Below is a table summarizing the properties of all these

points.
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Property Heegner

points

Stark-Heegner

points

Conjectural

equivalents

j-invariant

is algebraic

j(t) is an alge-

braic integer

- J [t] is algebraic

belonging to the

composite of

fields HJ and Ht

Order as-

sociated to

the point

O
(N)
t = {γ :

γt = t} ∪ {0}
O = ψ−1(R) Ot := {γ ∈

M2(Z[1/p]) :

γt = t}
Existence

theorem

ΨN(τ) ∈ E(H) ΦTate(J
t
ψ) ∈

E(H+)

J+
E [τ ] ∈ E(H)

Shimura

Reci-

procity

ΨN(α ? t) =

rec(α)−1ΨN(t)

Sc?ψ =

rec(c)−1(Sψ)

Jp(τg1h1 , τg2h2) =

Jp(τh1 , τh2)
rec(g)−1
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