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Abstract

The interferometric data from gravitational wave detectors is neither Gaussian nor stationary

and contains noise transients or glitches. These glitches interfere with the search algorithms

by producing high SNR triggers. In particular, for the compact coalescing binary search

which is carried out by a bank of templates, the glitches in spite of their small overlap with

the templates, because of their high amplitude, can produce detectable triggers thus giving

false alarms. Usually, the Allen χ2 test is then used to distinguish between the signal and the

glitch. In a recent paper [1], a unified description of all possible χ2 discriminators is given,

and also a constructive procedure is described to construct an optimal χ2 discriminator

especially if the glitch can be modeled. One such type of glitch that often occurs in the

data can be modeled as a sine-Gaussian with parameters (Q, f0). An important property

of sine-Gaussian glitch is that there is a time-lag between the trigger and the occurrence of

the glitch. Therefore the time-lag is considered separately and we construct the parameter

space using uniformly distributed points on it. The total number of points on the parameter

space is associated with the degrees of freedom (d.o.f) of the χ2. To reduce the d.o.f, we

describe a method which uses Singular Value Decomposition that helps us to reduce and find

the optimal number of d.o.f for the χ2. Finally, we present a way to construct an optimal

χ2 discriminator for sine-Gaussian glitches using the procedure in the paper [1].
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Chapter 1

Introduction

1.1 General theory of Relativity

Newton’s laws can perfectly explain the motion of objects around us but, when it comes to

strong gravitational field regime, it fails to explain certain effects. Further, according to New-

ton’s theory of gravitation, local perturbation of masses can affect any place in the universe

instantaneously, implying that there is no limit on the speed of propagation of gravitational

force. To correct this problem, Einstein introduced the theory of special relativity which

states that information cannot be propagated faster than the speed of light. The theory

of special relativity explains the relativistic effects for inertial (non-accelerating) observers.

However, in 1915 a more generalized version of this theory was introduced by Einstein called

as the general theory of relativity.

According to General Relativity (GR) space and time are unified under a four-dimensional

continuum called spacetime. The curvature of spacetime is directly related to the mat-

ter/energy distribution present. Over the century several experiments have been performed

to test GR and, it is consistent with all of them. Eddington did the first test in 1919a,

where he observed the bending of light (from the stars) due to the gravitational field of the

sun during a solar eclipse. GR also predicted that whenever there is a change in the mass

distribution of the system to the quadrupole order, then the system will lose its energy in the

form of gravitational waves (GW). Gravitational waves are the ripples in the spacetime and

they were first indirectly observed in 1974. Hulse and Taylor discovered a binary pulsar (a
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binary system of a radiating neutron star and another neutron star) and observed decay in

its orbital period due to the emission of GWs as predicted by GR. The first direct detection

of GW was due to an event observed on September 14, 2015. After months of data screening

and analysis, it was confirmed that this signal was due to the merger of two black holes. We

will now briefly discuss the formalism of gravitational waves in the next section.

1.2 Formalism

Gravitational waves can be obtained by solving Einstein’s equation with a source term.

However, these equations are complicated to solve and in case of small perturbations we can

obtain linearized Einstein’s equations. We consider the weak field approximation where the

metric is approximately given by

gαβ = ηαβ + hαβ, (1.1)

where ηαβ is the Minkowski metric with signature [-1,1,1,1] and hαβ is small perturbation

such that |hαβ| � 1. Now we introduce a quantity called as the trace reverse tensor of hαβ

as

h̄αβ = hαβ −
1

2
ηαβh, (1.2)

where h = ηαβh
αβ and also h̄ = −h. Now using the Lorentz gauge condition h̄µν,ν = 0 and

expanding the Einstein tensor Gαβ only upto the first order in hαβ, the Einstein equation

becomes

Gαβ = −1

2
2h̄αβ, (1.3)

where 2 is the D’Alembertian operator. If we consider the vacuum state solutions, that is

Tαβ = 0, we get the travelling wave equation 2hαβ = 0. The solutions of which can be

represented as a plane polarised travelling wave given by

h̄αβ = Aαβe
ikγxγ , (1.4)
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where, the amplitude of the wave is denoted by Aαβ and the propagation vector is kγ. Using

the Lorenz gauge and gauge invariant conditions, we can put constraints on the Amplitude

and the propagation vector k

Aαβk
β = 0 , Aα,α = 0. (1.5)

Furthermore, we can write a relation for any four velocity vector U given by

AαβU
β = 0. (1.6)

The conditions (1.4) and (1.5), together define the Transverse-Traceless (TT) gauge. This

gauge is called traceless because of the second condition in (1.5). We can write the velocity

vector as Uα = δα0 and putting this in (1.6), we get Aα0 for all α.

Suppose we choose a frame in which the wave is travelling in positive z-axis. In this

frame using (1.6) we obtain Aα3=0 for all α. Using the constrained mentioned above, we

end up with only two degrees of freedom which are denoted by h+ and h×. These degrees

of freedom are the two possible polarization of GW named as plus and cross polarization

respectively.

(a) effect of plus (+) polarisation

(b) effect of cross (×) polarisation

Figure 1.1: Time sequence showing the effect of an oscillatory linear plane GW with (a) plus
and (b) cross polarisation.

Any generic GW strain signal is a linear combination of the plus and cross polarisation.
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Thus the observed strain signal h(t) can be represented as

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (1.7)

where F+ and F× are the detector response functions that corresponds to the sensitivity of

LIGO detectors at different sky coordinates (θ, φ) and polarisation ψ. The functional form

of F+ and F× are given as [5]:

F+(θ, φ, ψ) = − 1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (1.8)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ. (1.9)

The functional form of h(t) depends on the astrophysical source. In the next section we

discuss about the various sources of gravitational waves.

1.3 Astrophysical Sources of Gravitational Waves

Gravitational waves are created by non-symmetric motion of bodies that leads to change

in quadrupole moment. The magnitude of the strain produced by these waves is extremely

small which makes their detection very difficult. Therefore we need to detect sources which

can emit strong GW. In a crude way one can say that the characteristics of a strong GW

source should have massive bodies and their motion should be rapid. Examples of such

strong sources of GWs are mentioned below.

• Compact Binary Coalescence: Coalescing binaries such as black hole-black hole (BH-

BH), black hole-neutron star (BH-NS) and neutron star-neutron star (NS-NS).

• Stochastic GW background: Large number of GW sources can overlap in time and

frequency to give a GW background.

• Gravitational collapse of an asymmetric star.

• Primordial GW: The GWs from the era of Big Bang.
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Chapter 2

Detection of Gravitational Waves

As the GWs pass, they stretch and shrink the spacetime, creating strains of the order of

10−22. Detecting a strain of such small magnitude was a daunting task for scientists as well as

engineers. Resonant bar detectors were proposed by Weber to detect these waves. However,

these bars have a narrow frequency window and are not sensitive enough to detect changes

produced by GWs. Finally, the use of ground-based laser interferometers was proposed to

detect the GWs in a broader frequency range. And after 30 years of endeavor to detect

GWs, they were finally discovered on 14th September 2015. Since the first detection, there

have been a total of 11 GW events detected out of which ten are due to the merger of binary

black holes and one is due to binary neutron stars merger.

Figure 2.1: Masses of LIGO/Virgo detections. Image courtesy LIGO.
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2.1 Ground Based Interferometric Gravitational Wave

Detectors

As discussed in early sections, that in order to detect GWs we need an instrument that can

measure strain ∆L/L of the order 10−22 or below. Michelson interferometer is a device which

is capable of detecting changes in lengths. A Michelson interferometer has two arms of equal

lengths, a beam splitter in the middle, reflective mirrors at the end of both the arms, and a

photodiode as shown in the Fig. 2.2.

Figure 2.2: Schematic diagram of the Advanced LIGO setup [2].

As shown above, the laser sends out a coherent beam of light which is divided equally

into both the arms. These two beams of light are reflected from the end mirrors and are

recombined at the beam splitter to create an interference pattern which is detected by the

photodiode. If the arms are precisely of same lengths, then there would be no interference

pattern due to destructive interference. Thus, when a GW passes through an interferometer,

there is a minute change in the optical lengths of the beams due to the strain produced by

GW, and this strain is shown as interference patterns.

For an arm length of 4kms, the required sensitivity is of the order 10−18 m, which is

still extremely small to detect. To further improve the sensitivity, LIGO uses a Fabry-Perot
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cavity in which the light beam is recycled back and forth hundreds of times to increase the

optical length. Also power recycling cavities are used to increase the laser power in the arms.

Therefore the complete configuration is often called as Fabry-Perot Michelson Interferometer.

2.2 Sources of Noise

The distortions created by a GW signal is of the order 10−22, however, there are numerous

sources which can create strain of this order or even greater. Such distortions which are not

caused by GWs can contribute to the detector noise. Hence for the detection of GWs, it

is important to classify and understand the noise sources. The noise sources are classified

into two categories - fundamental and environmental. The main sources of noise for each

category is as follows:

• Environmental noise

1. Seismic noise: Vibrations caused due to motion of Earth, ocean waves or nearby

passing vehicles, all attribute to seismic noise. Suspended mirrors are used to

reduce this type of noise.

2. Thermal noise: Noise associated with any damped mechanical system due to the

thermal fluctuations.

3. Residual gas noise: The gas particles which were not removed from the instrument

can cause phase fluctuations of the laser light.

4. Coating thermal noise: The test mirrors are coated with dielectric materials. Due

to the brownian motion of the atoms of such coating materials, the laser light is

scattered erratically.

• Fundamental noise

1. Shot noise: The inherent error caused by the quantum fluctuations in the number

of photons reaching the photodiode is referred as shot noise.

2. Radiation pressure: Pressure exerted on the surface of mirrors by the laser beam

produces displacement of the mirrors.
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Figure 2.3: Different noise sources which affect the sensitivity of advanced LIGO [2].

2.3 Data Analysis of Gravitational Waves

The data recorded by the laser interferometers is the measure of the strain due to the change

in the arm lengths of the interferometers. To process this signal, we need to convert the

continuous signal into a discrete signal. For this, we have to sample the data points with

some frequency. And thus, the magnitude of these strains is recorded in the form of discrete

time series s(t). The sampling rate of the signal is crucial to the GW signals that we are

interested in. The Sampling theorem tells us that a continuous signal with highest frequency

component fs can be represented as a discrete data, if sampled with a frequency greater

than 2fs. GW signals pertaining to ground based detectors are usually below a few kHz, e.g.

Binary black hole inspiral < 1 kHz, Black hole quasi normal modes: ∼ few kHz and binary

neutron star inspiral reaches innermost stable circular orbit (ISCO) frequency at ∼ 1 to 1.5

kHz. Keeping this in mind, LIGO uses a sampling rate of 8192 Hz or 16384 Hz.
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2.3.1 Conventions

Suppose we have a function of time x(t). Let us denote the Fourier transform of x(t) by

x̃(f), which is given by

x̃(f) =

∫ ∞
−∞

e−2πiftx(t)dt, (2.1)

similarly, the inverse Fourier transform is given by

x(t) =

∫ ∞
−∞

e2πiftx̃(f)df. (2.2)

Consider a random process representing some time series x(t). If the statistical properties

of this random process do not vary with time, then we call it a stationary random process.

These process can be characterized by their statistical properties and one such property is

the expectation value. The expectation value 〈x〉 is the time average of x over a long period

of time

〈x〉 = lim
T→∞

1

T

T/2∫
−T/2

x(t)dt. (2.3)

If the random process follows a Gaussian distribution then it is called as a Gaussian random

process. We will encounter the Gaussian random process many times. Thus it is important

to characterize them. These processes can be characterized by two statistical properties -

expectation value and the power spectral density

2.3.2 Power Spectral Density

As earlier, we consider a stationary random process x(t). This time we use a window which

implies that the signal is zero outside the duration t ∈ [−T/2, T/2]. If we integrate the signal

over a large time duration T , then the time average of x2(t) becomes the expectation value
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denoted by 〈x2〉

〈x2〉 = lim
T→∞

1

T

T/2∫
−T/2

x2(t)dt

= lim
T→∞

1

T

∞∫
−∞

x2(t)dt. (2.4)

Using Parseval’s theorem
∫∞
−∞

∣∣x2(t)
∣∣ dt =

∫∞
−∞

∣∣x̃2(f)
∣∣ df , we obtain,

〈x2〉 = lim
T→∞

1

T

∫ ∞
−∞

∣∣x̃2(f)
∣∣ df

= lim
T→∞

2

T

∫ ∞
0

∣∣x̃2(f)
∣∣ df

=

∞∫
0

Sx(f)df. (2.5)

Therefore the PSD Sx(f) of x is defined by

Sx(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2
x(t)e−2πiftdt

∣∣∣∣∣
2

. (2.6)

For stationary signals, the expectation value of 〈x(t1)x(t2)〉 is a function of the difference

t1 − t2 and is known as the autocorrelation function

Rx(τ) = 〈x(t)x(t+ τ)〉. (2.7)

The PSD can be obtained by doing a Fourier transform of the autocorrelation function along

with a factor of two.

Sx(f) := 2

∞∫
−∞

Rx(τ)e−2πifτdτ (2.8)
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By using the defination of PSD Eq. (2.8), one can obtain an important relation between the

expectation value of the frequency components x̃(f) and Sx(f), which is given by:

〈x̃∗(f ′)x̃(f)〉 =
1

2
Sx(f)δ(f − f ′). (2.9)

The PSD for white noise 〈x〉 = 0 is constant in frequency. While PSD for a coloured noise

will be a function of frequency. If we consider the noise to have a gaussian distribution, then

we can define a noise-weighted inner product of two time-series,

(a, b) := 4Re

∞∫
0

ã(f)b̃∗(f)

S(f)
df. (2.10)

2.3.3 Optimal Detection Statistics

Detecting a signal buried under noise is a daunting task due to the random nature of noise.

However, this random nature can be characterized by the statistical properties of the noise.

Once, we know these properties and the exact form of the signal we are interested in, then

we can obtain a quantity which gives us the probability of the data containing the expected

signal. And, this quantity is called as the optimal detection statistics.

Let us denote the signal recorded by the GW detectors as s(t), and the random noise

process as n(t). If any astrophysical GW event of the known form occurs, then we denote it

as h(t). We can construct two hypotheses from this information,

• Null hypothesis H0: s(t) = n(t), Data contains only noise,

• Alternative hypotheis H1: s(t) = n(t) + h(t), Data contains noise and an anticipated

signal.

Now we want to discriminate between these two hypotheses. We first calculate the probability

of alternative hypothesis H1 being true, given the data s(t) and that is P(H1|s). Similarly,

the probability that null hypothesis H0 is true given the same data, is given by P(H0|s).
The ratio of these two probabilities will help us discriminate the two hypotheses and is called

as the odds ratio O(H1|s) = P(H1|s)/P(H0|s). We can compute the probabilities that H1

or H0 is true given the data, using the Bayesian Inference.
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2.3.4 Bayesian Inference

Consider two events A and B, we denote the probability of an event A being true as P (A)

and similarly for the event B as P (B). The joint probability of both events A and B being

true is represented as P (A,B). Also, the conditional probability of A being true given that

B is true, is defined by,

P (A|B) :=
P (A,B)

P (B)
. (2.11)

Using the equations for P (A|B) and P (B|A), we can write the Bayes’s theorem,

P (B|A) =
P (B)P (A|B)

P (A)
. (2.12)

Let us denote the probability of B being false as P (B̃) = 1−P (B). Then using the conditional

probabilities, we can write,

P (A) = P (B)P (A|B) + P (B̃)P (A|B̃). (2.13)

From the above Eq. (2.13), Bayes’s theorem can be written differently as,

P (B|A) =
P (B)P (A|B)

P (B)P (A|B) + P (B̃)P (A|B̃)

=
λ(B|A)

λ(B|A) + P (B̃)/P (B)
, (2.14)

where we define the likelihood ratio as

λ(B|A) :=
P (A|B)

P (A|B̃)
. (2.15)

2.3.5 Matched Filter

In the section (2.3.3), we introduced the optimal detection statistics and if we consider the

noise to be Gaussian then we can obtain its functional form. In this case we call it as the

Matched filter. In general, the amplitude of the signal is small compared to the noise and

therefore it is difficult to see the waveform of the signal in the data (as shown in Fig. 2.4).
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Figure 2.4: This image shows a GW signal buried under the noise. Image taken from [3].

When we know the waveform of the anticipated signal then matched filtering is the optimal

process to extract signal out of stationary noise processes. To obtain the matched filter, we

again consider the same hypotheses as in section [2.3.3],

• Null hypothesis H0 : s(t) = n(t), Data contains only stationary Gaussian noise,

• Alternative hypothesis H1 : s(t) = h(t) + n(t), Data contains a GW signal h(t) and

noise.

We can write the likelihood ratio in terms of the probability densities,

λ(H1|s) =
p(s|H1)

p(s|H0)
. (2.16)

Now we need to compute the probability densities. As mentioned earlier we have considered

only stationary Gaussian noise. Therefore the probability density of Null hypothesis

(s(t) = n(t)) under the assumption of Gaussian noise is,

p(s|H0) = p(s(t)) ∝ e−(s,s)/2. (2.17)

And, the probability density of alternative hypothesis where n(t) = s(t)− h(t) is

p(s|H1) = p(s(t)− h(t)) ∝ e−(s−h,s−h)/2. (2.18)
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Therefore the likelihood ratio is given by,

λ(H1|s) =
e−(s−h,s−h)/2

e−(s,s)/2

=e(s,h)e−(h,h)/2. (2.19)

We see that the likelihood ratio has a dependence on the data s only through the inner

product (s, h). The term containing the data is e(s,h), which is a monotonically increasing

function. Therefore the inner product defined in Eq. (2.10),

(s, h) := 4Re

∞∫
0

s̃(f)h̃∗(f)

Sn(f)
df, (2.20)

is the matched filter and also the optimal detection statistics. The matched filter is a linear

operator which gives the noise weighted correlation between the data s and the signal h.

As mentioned earlier, if we know the waveform of the anticipated signal then matched

filtering is the optimal strategy to detect the signal. In this thesis we exclusively study the

GW signals from compact binary coalescing sources (CBC). GW signals from CBC sources

are known waveforms of high-accuracy which have been thoroughly tested using numerical

simulations. We will discuss more about the CBC waveforms in the next section. However

without going into the details, we also need to know that the signal with known waveform

can have an unknown arrival time. In this case the matched filter will give different output

when computed at different times. Suppose that the true signal has a waveform given by

h(t) = k(t− t0), (2.21)

where t0 is the unknown arrival time and the template is the known waveform of the signal

k(t). To compute the matched filter we have to consider the template in the Fourier domain,

that is

h̃(f) = k̃(f)e2πift0 . (2.22)
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Now let us define the output of matched filter as z, which in this case is given by

z = 4Re

∞∫
0

s̃(f)k̃∗(f)

Sn(f)
e2πift0df, (2.23)

Notice that the output z is parameterized by the unknown arrival time t0 and therefore the

output of the matched filter becomes a function of time

z(t0) = 4Re

∞∫
0

s̃(f)k̃∗(f)

Sn(f)
e2πift0df. (2.24)

The Signal to Noise Ratio (SNR) is defined as,

SNR : ρ =
z√

〈z2〉 − 〈z〉2
=

z

(h, h)1/2
(2.25)

If we normalise the templates (h, h) = 1 then the SNR is equal to the matched filter output

z. This suggests us that, to detect a signal, we need to maximize the SNR. Thus, we need to

time slide the template to find the time tmax where the maximum correlation occurs. This

can be done easily because Eq. (2.24) is just an inverse Fourier transform, and if the data

stream has N points, then this process takes order of N lnN operations.

Figure 2.5: Matched filtering: The figure shows the chirp signal in the top part, the middle
part shows the data where the signal is embedded in the noise. The last part shows the
matched filter output which peaks at the arrival time of the signal [4].
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To filter out signals, we set a threshold value for the SNR ρmin. So that only the data

segments which give SNR above the ρmin are considered and can possibly contain a GW

signal.

2.3.6 CBC Waveform and Template Bank

In the section (1.2) we saw how gravitational waves are generated under the weak field

approximations. However, we cannot use such approximation in case of binary inspiral

events because of strong gravitational fields. In such cases, one has to solve the Einstein’s

equation with source terms and that involves solving coupled non-linear partial differential

equations. Till date no analytical solutions exists and we have to use computational methods

to approximate the waveforms. A generic CBC signal has three phases

• Inspiral - The two components of the binary go around each other in an unstable orbit.

This orbit gradually shrinks due to the emission of GW.

• Merger - This unstable orbit results into the merger of the two components into a

single body.

• Ringdown - Following the merger, the final body will have damped oscillations due to

the emission of GW.

Figure 2.6: A generic CBC waveform showing the Inspiral, Merger and Ringdown part.
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The inspiral part waveform is generated using the Post-Newtonian (PN) theory which is

basically the Taylor series expansion of Einstein’s equation in powers of
√
v/c. Furthermore,

these waveforms are tuned to agree Numerical Relativity (NR) simulations. Because the

physics of merger is still not completely known, it makes the merger part the most difficult

and, only NR simulations can be used to compute this part. For the final ringdown part we

use black hole perturbation theory to calculate the normal modes due to the oscillations of

the final body. Finally all the three parts are combined together to give the Inspiral, Merger

and Ringdown (IMR) approximant that can generate GW waveforms.

The anticipated GW signal waveform is not a single waveform but a family of signals

parametrized by various intrinsic and extrinsic parameters

• Intrinsic Parameters

– Component masses: m1 and m2.

– Spins of the two bodies: S1 and S2.

• Extrinsic Parameters

– Coalescence time: t0.

– Coalescence phase: φa.

– Distance of binary from Earth.

– Inclination of orbital plane

– Sky location.

Therefore one needs to account for these parameters in the signal waveform and this is done

by creating a bank of templates on the given parameter space. The template bank is created

such that the mismatch between a signal and some template in the bank is minimum. After

obtaining the template bank, we use the matched filter to maximize its output across the

bank. For the template bank with parameters µi, the matched filter can be redefined as

ρ(t, µi) = 4Re

∞∫
0

s̃(f)h̃∗(f, µi)

Sn(f)
e2πiftdf (2.26)

Max SNR: Λ = max [ρ(t, µi)]
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After maximizing the SNR, we compare it with a pre-assigned threshold which is equal to

the SNR due to noise only. In the Ref. [6], it has been shown that templates need not be

defined over all the parameters but only the intrinsic parameters - mass and spin. In this

thesis we study only the spinless case of CBC signals and therefore the parameter space

consists only of the component masses m1 and m2.

The extrinsic parameters such as the coalescence time t0 can be searched over by scanning

over different times using Fourier transform as described earlier. Maximisation of coalescence

phase can be done by considering templates at only two intital phases 0 and π/2. This is

done because template with an arbitrary phase is a linear combination of the templates at

phase 0 and π/2, and we denote the SNR c0 and cπ/2 at the respective phases. The total

SNR is then given by

ρmax =
√
c0(τ)2 + cπ/2(τ)2, (2.27)

where τ is the time-lag. We can define the parameter space in terms of the chirp time

variables which are defined as:

τ0 :=
5

256πηfa

(
πGMfa
c3

)−5/3

, τ3 :=
1

8ηfa

(
πGMfa
c3

)−2/3

(2.28)

where fa is the starting frequency of the binary coalescence also called as the fiducial

frequency, M = m1 + m2 is the total mass of the binary and η = m1m2/(m1 + m2)2 is the

ratio of reduced mass to total mass. We choose the units in which G = c = 1. To compute

the distance between between templates one can define a metric on the parameter space [7].

This metric on the parameter space is almost independent of τ0 and τ3 [4], because of which

these parameters can be considered as Cartesian coordinates in the parameter space.

2.3.7 Detection in Non-Gaussian noise

We saw earlier, that we can use the technique of matched filtering to filter out events that are

above the threshold SNR (false alarm rate) due to noise only events. In that case noise was

considered to be stationary and Gaussian. However in real detector data these assumptions
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may not hold true and there are Non stationary and Non Gaussian components of noise. The

sources of such noise artefacts could be either instrumental or environmental. Impact of these

glitches on the detector data can be severe which can give SNR values above the minimum

threshold. Thus glitches mimic GW events by giving large values of SNR and lowers the

confidence of detection of a true GW event. Therefore, we need to construct different veto

procedures in addition to match filtering in order to discriminate between glitches and a true

signal.
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Chapter 3

χ2 discriminator test

When we want to detect signals with known waveforms, then one can perform waveform

consistency tests to determine certain properties associated to the anticipated waveforms

in the data stream. For CBC signals, one of these properties is the power distributed as a

function of frequency. Any glitch will have different power spectrum than the true signal.

Hence using this property, we can define a type of waveform consistency test known as the

χ2 discriminator to distinguish between a glitch and a true signal.

One of the χ2 tests is the Bruce Allen χ2 test. As the name suggests, it was introduced by

Bruce Allen in 2005 [5] [8]and is currently the most widely used test for glitch discrimination.

In the following section we will describe the method to construct the Bruce Allen chi-squared

statistics which we will term as traditional χ2 and denote by χ2
t .

3.1 Traditional χ2
t discriminator

The main idea of this test is to divide the the broadband data into several smaller sub-bands.

Then we check whether the observed power in each sub band is consistent with the expected

power from the template (signal). We start by partitioning the frequency range f ∈ [0,∞]

into a set of p distinct sub-bands ∆f1,∆f2, .....∆fp. The sub-bands are constructed in the

23



following way:

∆f1 ={f |0 ≤ f < f1}
∆f2 ={f |f1 ≤ f < f2}

.

.

∆fp−1 ={f |fp−2 ≤ f < fp−1}
∆fp ={f |fp−1 ≤ f <∞}

These sub-bands are non-overlapping bands such that there union (∆f1 ∪∆f2 ∪ .. ∪∆fp) is

the complete frequency range that we wish to consider. Now to get the sub-bands, we put

a condition that the power of the template in each sub-band should be equal. With this

condition we can determine f1, f2...fp, but first we have to define the inner-product on these

sub-bands analogous to Eq. (2.10) by

(s, h)j =

∫
∆fj

s̃(f)h̃∗(f)

Sn(f)
df, (3.1)

where i is an integer ∈ [1, p]. As mentioned earlier, because the sub-bands do not overlap

each other, the sum of the power in each sub-bands is equal to the total power. That is the

sum of the inner products on ∆fj is equal to the inner product on the whole frequency range

(s, h) =

p∑
j=1

(s, h)j (3.2)

We choose the template to be normalised such that the total power is equal to unity (h̃, h̃ =

1). Implying the condition of equal power of the template in sub-bands we can obtain the

frequency bands by choosing ∆fj such that the expected power in each sub-band is equal to

the total power by the number of the bands

(h̃, h̃)j =
1

p
. (3.3)

After obtaining the frequency sub-bands, we will evaluate the observed power of the data

in these bands and compare it with the expected power that is the SNR of the data. We
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denote the SNR in the sub-band ∆fj as zj, where

z =

p∑
j=1

zj with zj ≡ (s̃, h̃)j. (3.4)

Now we evaluate some statistical properties of the matched filter output. Using the Eq.

(2.24), we can easily calculate the expectation of z and it is given by

〈z〉 = 〈(s̃, h̃)〉
= 〈(ñ, h̃)〉+ (h̃, h̃)

= (h̃, h̃)

= 1 (3.5)

also, the expectation of z2 can be found using the Eq. (2.9) and is given by

〈z2〉 = 〈(s̃, h̃)2〉

= 〈
[
(ñ, h̃) + (h̃, h̃)

]2〉
= 〈(ñ, h̃)2〉+ 2〈(ñ, h̃)〉(h̃, h̃) + (h̃, h̃)2 (3.6)

= σ2
n + 1 (3.7)

= 2 (3.8)

where σ2
n = 1 is the variance of the noise and because the mean of the noise is zero, the term

〈(ñ, h̃)〉 is zero. Similarly, using Eq. (3.5) and (3.6) we can compute the average values for

the sub-bands. The average value 〈zj〉 is given by

〈zj〉 =(h̃, h̃)j

=
1

p
, (3.9)

and the average value 〈z2
j 〉 is given by

〈z2
j 〉 = 〈(ñ, h̃)2

j〉+ 2〈(ñ, h̃)j〉(h̃, h̃)j + (h̃, h̃)2
j

=
1

p
+

1

p2
. (3.10)
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Now we define the following quantity

∆zj := zj −
z

p
.

Based on the definition of ∆zj, we can compute some properties such as

p∑
j=1

∆zj = 0 , 〈∆zj〉 = 0. (3.11)

Now we have to calculate the quantity 〈zjz〉. This can be done by observing that the sum

over j in 〈zjz〉 is equal to 〈z2〉/p

〈zjz〉 =
〈z2〉
p

=
2

p
. (3.12)

Hence we can compute the average value of (∆zj)
2, which is

〈(∆zj)2〉 =

〈(
zj −

z

p

)2〉
=〈z2

j 〉+
〈z2〉
p2
− 2
〈zjz〉
p

=
1

p

(
1− 1

p

)
. (3.13)

While computing 〈(∆zj)2〉, no assumptions were made regarding the presence or absence of

the signal and, therefore we finally define the χ2
t statistics by

χ2
t := p

p∑
j=1

(∆zj)
2. (3.14)

Statistical properties of χ2
t Using the Eq. (3.13) we can easily see that the average

value 〈χ2
t 〉 and 〈(χ2

t )
2〉 are respectively

〈χ2
t 〉 = p− 1 , 〈(χ2

t )
2〉 = p2 − 1 (3.15)

In the Ref. [8], it has been shown that χ2
t follows a chi-squared distribution with p−1 degrees

of freedom and that’s why it is called as χ2 statistics. Furthermore, we can also calculate
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the width of the χ2 distribution and that is
√

2(p− 1). Hence, the χ2
t test discriminates

between a signal and a glitch by giving high χ2
t values for the glitch and low values for

signals. To be more specific, if the data consists of only signal then the χ2
t value be close to

zero and if the data contains stationary Gaussian noise, then χ2
t value will lie in the range

[p− 1−
√

2(p− 1), p− 1 +
√

2(p− 1)]. In case of glitches, we would expect the χ2
t values to

be higher than 3
√

2(p− 1) times the average value.

Figure 3.1: The figure here shows the probability density of traditional χ2
t for p = 8 bands

which is in excellent agreement with the classical χ2 distribution with p − 1 degrees of
freedom.

In the Ref. [9] many different χ2 tests are introduced and hence the traditional χ2
t test

is not the only only way to discriminate between glitches and signals. Moreover, these tests

do not have the same performance in different cases, some tests are more successful than

others. Therefore, there is a need to provide a formalism which will unify all the possible χ2

discriminator. Such formalism may provide an explanation for performances of different χ2

tests. In the next section we discuss the unified χ2 formalism from the Ref. [1].
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3.2 Unified χ2 formalism

To give a general framework of the χ2 discriminator, we need to provide a rigorous math-

ematical framework which will help us in constructing different possible χ2 discriminators.

The recent paper [1] provides such framework under which it is possible to create all possible

χ2 tests. We will also discuss the property associated to various χ2 statistics that makes

them different.

3.2.1 Mathematical structure

We consider the space of functions that describes the strain of a single detector. This space

is a Hilbert space of data trains over some fixed time interval [0, T ].

Definition 3.2.1 (Hilbert Space). A Hilbert space H is a real or complex inner product

space that is also a complete metric space with respect to the distance function induced by

the inner product.

We denote this Hilbert space as D = L2([0, T ], µ). The L2 represents the norm of the

vectors along with the measure µ that is defined in the Fourier space as dµ = df/Sh(f),

where Sh(f) is the one-sided noise PSD. According to the definition of Hilbert space we need

to define an inner-product on D, which is considered to be the same as previously defined. To

explain the unified χ2 formalism, we first take a simple case of one signal (template) vector

h in D. Now consider the orthogonal space to this vector and we denote this orthogonal

space by Nχ2(h) which is defined as

Nχ2(h) = x ∈ D|(x,h) = 0.

The χ2 is defined in terms of finite p dimensional subspace of Nχ2(h). We denote this

subspace as S and then project the data vector x onto S. The χ2 statistics is then given by

χ2(x) = ||xS ||2,

where xS is the projection of the data vector onto S. Let the subspace S be spanned by

a set of orthonormal basis vectors, eα, α = 1, 2..., p such that (eα, eβ) = δαβ. Then we can

deduce few properties of χ2, such as
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• For a general x vector, the χ2 can be written as

χ2(x) =
p∑

α=1

|(x, eα)|2.

• Because S is orthogonal to h, we can easily see that

χ2(h)=0.

• If the data vector is a Gaussian noise with mean zero, then the χ2 turns out to be sum

of p normal random variable. The χ2(n) will follow a χ2 distribution with p degrees of

freedom.

χ2(n) =
p∑

α=1

|(n, eα)|2

We can see that χ2 statistics is associated with the orthogonal subspace to the template.

Thus, computing the χ2 boils down to finding the orthogonal subspace S and the basis vectors

that spans S. And, since there is no unique S, there can be a plethora of χ2 discriminators

possible.

Till now we had considered only a single template. However, we know from previous

sections that in context of CBC searches, we have a template bank based on the intrinsic

parameters. We denote these parameters as ξa, where a = 1, 2...,m. The templates in the

bank then trace out an m-dimensional manifold P , where each point is a normalised vector

||h(ξa)|| = 1. Now each point on P , we attach a p dimensional vector space S. If this is

done in smooth manner then we obtain a vector bundle of m+ p dimensions.

Hence, the χ2 discriminator for a template h(ξa) is the L2 norm of the given data vector

x projected on the fibre at h(ξa).

3.2.2 Construction of a generic χ2 discriminator

As mentioned earlier that the main goal is to obtain the orthogonal subspace S. So we begin

by considering an arbitrary set of linearly independent vectors yα, where α = 1, 2, 3...p.

Now we denote the trigger vector by h, and as mentioned earlier the extrinsic parameters

of this template can be separately maximized. The reference time tc is maximized by doing

FFT and the coalescence phase can be decomposed into templates with phase 0 and π/2.

Templates with phase 0 and π/2 are represented as h0 and hπ/2 respectively. Considering
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perfect match between the signal and the trigger template, the signal vector is given by

s = (s,h0)h0 + (s,hπ/2)hπ/2. (3.16)

We obtain the expected correlations when the data is just signal. Let us denote the expected

correlation of signal vector s with yα as ceα. The observed values of correlations of data with

trigger vectors are

c0 = (x,h0) cπ/2 = (x,hπ/2), (3.17)

and they have mean values

〈c0〉 = (s,h0) 〈cπ/2〉 = (s,hπ/2), (3.18)

because the noise has zero mean. Therefore, we can write the scalar product of s with the

vector yα as

(s,yα) = c0(h0,yα) + cπ/2(hπ/2,yα). (3.19)

The observed correlation is denoted by coα of any data vector x is simply given as

coα = (x,yα) (3.20)

The χ2 statistics is given by taking the differences between the expected and observed cor-

relations

∆cα(x) = coα(x)− ceα(x) ≡ (x,∆yα), (3.21)

where we have defined the vectors ∆yα as

∆yα = yα − (yα,h0)h0 − (yα,hπ/2)hπ/2. (3.22)

We consider only noise to compute the covariance matrix of ∆cα for a general x. This is

because ∆cα(s) = 0 and therefore ∆cα(x) = ∆cα(n). Using the identity for any two vectors

x and y in D,

〈(x,n)(n,y)〉 = (x,y),
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we get the covariance matrix of ∆cα using the above identity as

Cαβ =〈∆cα(n)∆cβ(n)〉
=(∆yα,∆yβ). (3.23)

In general the matrix C is not diagonal and one can do an orthogonal transformation to

obtain a diagonal matrix. After obtaining the diagonalised form of C, we can write the χ2

discriminator as

χ2 = ∆cα[C−1]αβ∆cβ. (3.24)

Therefore we have obtained a general method to construct χ2 from a given set of vectors.

The performance of χ2 can be tuned by choosing yα judiciously. In case of modeled glitches

one can find a particular set of vectors that are expressed in terms of a given family of

glitches [1]. One such family of glitches are the sine-Gaussians and we discuss further about

them in the next chapter.
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Chapter 4

Effect of sine-Gaussian glitches on

searches of gravitational waves from

compact binary coalescence

4.1 Introduction

The interferometric data from the GW detectors can also contain short-duration noise tran-

sients that are called glitches. Glitches can mimic a signal by passing through the match-

filtering test which can create spurious triggers. The trigger occurs when the matched filter

output of a signal stream containing the glitch is above the threshold SNR.

Since the first LIGO scientific run, there have been many glitches detected. These glitches

are classified based on their morphology in the time-frequency map as shown in Fig. 4.1a.

Many of these glitches occur due to a transient burst which can be either instrumental or

environmental in origin. To reduce the false alarm rate due to these glitches, it becomes

imperative to develop better characterisation of the glitches and better vetoing techniques.

Hence, we need to model the primary types of glitches and choose the yα vectors from the

modeled family of glitches. It can be shown that the transient bursts are best represented

in the form of Gaussian windowed sinusoids [10]. Therefore we can model a wide class of

glitches by using a sine-Gaussian model with parameters central frequency f0, central time
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t0 and quality factor Q. Further, it has been observed that there is a significant time-lag

between the time of occurrence of these glitches and the trigger time of the template. Hence

it is important to study the effect of these glitches on the matched filter output.

(a) Different classes of glitches identified [11].

(b) Sine Gaussian in time-domain.

Figure 4.1: (a) Different classes of sine-Gaussians, (b) Sine Gaussian in time domain having
unit amplitude, central frequency f0 = 60 and quality factor Q = 20.

The time domain expression for a sine-Gaussian (shown in Fig. 4.1b) with central fre-
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quency f0 and quality factor Q is given by:

s(t) = s0e
−t2/τ2

sin 2πf0t, (4.1)

where, s0 is the amplitude and τ is the decay time constant related by quality factor as

Q = 2πf0t.

The frequency domain expression can be obtained by doing a Fourier transform of s(t),

which happens to be a Gaussian centered around f0 and is given by:

s̃(f) =
(Q
f0

)1/2( 2

π

)1/4

e
− (f−f0)2Q2

4f2
0 . (4.2)

Here we have considered the central time t0 of the sine-Gaussian to be zero. However, for a

non-zero t0 there will be a factor of e2πift0 in the above expression. Now we study the effect

of matched filter output in case of sine-Gaussians as described in [12]. We consider a simple

case, where the template is a Newtonian template given by

h̃(f) = h0f
−7/6e−iψ(f), (4.3)

where h0 is the normalisation constant determined by the normalisation equation,

fupper∫
flower

∣∣∣h̃(f)
∣∣∣2

Sh(f)
df = 1 (4.4)

and Sh(f) is the PSD of the noise. The phase ψ(f) contains the information about the

binary component masses and is given by:

ψ(f) = 2πftc − φc −
π

4
+

3

128η

(
πGMf

c3

)−5/3

, (4.5)

where tc is the coalescence time, φc is the coalescence phase, and M the total mass, and η

is the ratio of the reduced mass to the total mass of the binary. If the component masses of

the binary are m1 and m2, then M = m1 +m2 and η = m1m2/(m1 +m2)2.

As described in the section (2.3.6), instead of M and η we can represent the CBC tem-

plates in terms of the chirp time variables τ0 and τ3. The physical significance of τ0 is the
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Figure 4.2: Chirp waveform in time domain: An unnormalised CBC template corresponding
to m1 = m2 = 5M� obtained using TaylorF2 approximant.

time taken by the binary to coalesce, starting from some fiducial frequency fa and if fa is set

equal to the seismic-cutoff frequency, then τ0 represents the duration of the signal. We will

take fa to be the central frequency f0 of the glitch. The variable τ0 with starting frequency

f0 is given as

τ0 =
5

256πf0η

(
πGMf0

c3

)−5/3

. (4.6)

We will set tc and φc equal to zero so that the chirp appears at the end of time-series. In

terms of τ0 the phase ψ(f) of the Newtonian inspiral template becomes

ψ(f) =
6πf0τ0

5

(
f

f0

)−5/3

− π

4
(4.7)

4.2 Matched filter for sine-Gaussians

The matched filter outputs a complex correlation time series C(t), where t denotes the time-

lag between the signal and template. Now we consider that the signal consists of only a

glitch of a specific Q and f0. Then we find the complex correlation C(t) between a glitch
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and a template in the following way:

C(t) =

fupper∫
flower

s̃(f)h̃∗(f)

Sh(f)
e2πiftdf

=
Qh0e

−iπ/4

4i
√
πf0

fupper∫
flower

e
− (f−f0)2Q2

4f2
0 eiφ(f)

f 7/6Sh(f)
df. (4.8)

where the phase φ(f) is

φ(f) = 2πft+
6πf0τ0

5

(
f

f0

)−5/3

.

We can find the stationary frequency (fs) by differentiating φ(f) w.r.t f and setting it to

zero,

φ′(f) = 2πt− 2πτ0

(
fs
f0

)−8/3

≡ 0, (4.9)

=⇒ fs(t) = f0

(
t

τ0

)−3/8

. (4.10)

We can further differentiate φ′(f) to get the second derivative of φ(f) at f = fs,

φ′′(fs) =
16πτ0

3f0

(
fs
f0

)−11/3

(4.11)

Since there is no analytical solution to compute C(t), we will approximately write φ(f) up

to the quadratic order in frequency. After obtaining φ′(fs) and φ′′(fs), we can Taylor expand

the phase φ(f) about the stationary point fs(t)

φ(f) ' φ(fs) +
1

2
(f − fs)2φ′′(fs). (4.12)

After using the Taylor expansion of φ(f), the correlation C(t) can be written as a product of

a real Gaussian centered at f0 with standard deviation σsg and a complex Gaussian centered
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at fs with standard deviation σφ, given by,

C(t) =
Qh0e

iπ/4

4i
√
πf0

eiφ(fs)

f 7/6Sh(fs)

fupper∫
flower

e
− (f−f0)2

2σ2
sg e

i
(f−fs)2

2σ2
φ df, (4.13)

where

σφ(t) =

√
3f0

16πτ0

(
fs(t)

f0

)11/6

,

σsg =

√
2f0

Q
.

Now we define the following quantities,

Σ(t) =
σφ
σsg

=
Q

Q0

(
fs(t)

f0

)11/6

, (4.14)

Q0 =

√
32πf0τ0

3
. (4.15)

It is shown in the Ref.[13], that after substituting these quantities and by performing integral

of C(t) in the complex plane using the Cauchy’s theorem. We get a simplified result as,

κ(t) ≡
∣∣C(t)

∣∣ =
1

2

h0Σ

f
7/6
s Sh(fs)(1 + Σ4)1/4

e
−Q

2

4
(1− fs

f0
)2 Σ4

1+Σ4 . (4.16)

4.3 Time lags of sine-Gaussian triggers

The parameter space that we are interested in is Q ∈ [5, 50] and f0 ∈ [30, 120]. This choice

of the parameter values gives Σ ≥ 2, and, by which (Σ4/1+Σ4) is approximately unity. Now

we have to maximize κ(t) over time. For this we first define a new variable r and maximize

over this variable,

r =
fs
f0

=

(
t

τ0

)−3/8

(4.17)
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Substituting r and Σ in κ(t), we get,

κ(r) =
1

2
h0f

−7/6
0

Q

Q0

[
1 +

(
Q

Q0

)4]−1/4
r2/3

Sh(f0r)
e−

Q2

4
(1−r)2

. (4.18)

The maximum of κ(r) is obtained by differentiating the above equation and setting it to

zero. In this process we define a new quantity,

ζ = −f0
S ′h(f0)

Sh(f0)
, (4.19)

where S ′h(f0) represents
d

df
Sh(f)|f=f0 . We finally obtain a quadratic equation in terms of r

and the root of this equation gives the time-lag tm at which the correlation
∣∣C(t)

∣∣ is maximum,

r2 − r
[
1 +

2ζ

Q2

]
− 4

3Q2
= 0, (4.20)

r =
1

2

(
1 +

2ζ

Q2
+

√(
1 +

2ζ

Q2

)2

+
16

3Q2

)
. (4.21)

From Eq. (4.17) we get,

tm =

[
1

2

(
1 +

2ζ

Q2
+

√(
1 +

2ζ

Q2

)2

+
16

3Q2

)]−8/3

τ0. (4.22)

The above expression gives the time lag associated with a sine-Gaussian of specific Q and f0

values. Fig. 4.3 shows the time lags between sine-Gaussians with Q ∈ [5, 50] and template

with m1 = m2 = 5M�, along with the three curves representing different f0 values, f0 ∈
[35, 40, 60] Hz.

39



Figure 4.3: This figure shows the time lags in seconds for Q ranging from 5 to 50, m1 =
m2 = 5M� and the values in the box represents f0 = 35, 45, 60 Hz. The dots are obtained
numerically by computing the max of |C(t)| whereas the continuous curve is the analytical
expression.

The central time parameter t0 is not an intrinsic variable for the family of sine-Gaussians

and can be separately maximized over by computing the FFT of the matched filter. Therefore

while constructing the parameter space one needs to consider only the intrinsic parameters

Q and f0. In the next section we discuss about the parameter space of sine-Gaussians and

how to efficiently cover the parameter space.
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Chapter 5

Parameter space of sine-Gaussians

5.1 Introduction

To efficiently cover the complete parameter space for sine-Gaussians, we need to cover the

space by placing uniformly distributed points. These points should be dense enough such

that the maximum match of an arbitrary sine-Gaussian (within the parameter range) with

the uniformly distributed points should be greater than 95%. For this purpose, we start with

a sample set of Sine-Gaussians. Since it is desirable that these sample vectors are uniformly

distributed, this is best done by defining a metric on the parameter space of sine-Gaussians

[14].

ds2 =
4πf 2

0

Q2
dt20 +

2 +Q2

4f 2
0

df 2
0 +

1

2Q2
dQ2 − 1

f0Q
df0dQ (5.1)

However, the parameters Q, f0 are not very suitable for this purpose because we get cross

terms in the metric which may be inconvenient. Therefore, we go over to a set of new

parameters: f0 → w and Q→ w/ν. We then get a diagonalised form of the metric Eq. (5.1)

given by

ds2 = ν2dt20 +
1

2

dν2

ν2
+

1

4

dw2

ν2
. (5.2)
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We can ignore the term corresponding to the central time t0 of the sine-Gaussian because

it is not an intrinsic parameter and can be separately maximized. Now, one can figure out

from the metric components that the set of points which uniformly cover the parameter

space are distributed logarithmically in ν and linear in w. Keeping this in mind, we do a

further transformation: lnw → x & ln ν → y. In these coordinates the parameter space is

a parallelogram as shown in the Fig. 5.1.

y = x− lnQ

=⇒ Q = e(x−y). (5.3)

(5.4)

And, the metric becomes

ds2 =
dy2

2
+

1

4
e2(x−y)dx2,

=
dy2

2
+
Q2

4
dx2. (5.5)

In order to get uniformly distributed points on the parameter space of w and ν, we have

to integrate over their respective metric components to get the cumulative distance in the

directions:

1) y-direction

ds =

ymax∫
ymin

√
dy2

2

dsy =
1√
2

(ymax − ymin) (5.6)
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2) Constant Q

ds =

xmax∫
xmin

√
1

2

dy

dx
+
Q2

4
dx

ds =

xmax∫
xmin

√
2 +Q2

4
dx

dsQ =

√
2 +Q2

4
(xmax − xmin) (5.7)

We wish to make a parameter space that is covered by optimal number of points. The

range of parameters used are Q ∈ (5, 50) and f0 ∈ (30, 120) which gives ν ∈ (0.6, 24). We

consider the frequency of the sine-Gaussians from 0 Hz to 512 Hz.

5.2 Methodology to obtain the uniformly distributed

points on the parameter space of sine-Gaussians

The total number of uniformly distributed points depends on the number of constant-Q lines.

Hence, the first step is to make a choice of this number. Since we want the number of points

in the parameter space to be around few hundreds, we find that choosing five constant-Q

lines gives us 205 points in the parameter space. The method to obtain the points in the

parameter space is described below.

As we move down the y−axis, the value of Q decreases. To start the placement of points

we pick up the point with the lowest x and y value that lies on the line y = x− ln(50) which

is (x, y) = (3.40,−0.51). Now we move in the +ve y-direction keeping the x coordinate fixed.

Consider the line y = x− ln(5) and using this line equation, we get a starting point in this

line which is (3.40, 1.79). Since, we have fixed the number of Q values equal to five, therefore

we have to divide the y− axis in five points. This can be done iteratively in the following

way

yi = ymin +
(ymax − ymin)

4
i, (5.8)
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where ymax = 1.79, ymin = y0 = −0.51 and i is an integer ∈ [0, 4]. Using this we get

∆y = (ymax − ymin)/4, that is the spacing in y-direction.

After obtaining the y-values, we can get the boundary points of the parameter space.

However by the metric obtained, we know that each point on the parameter space spans an

ellipse around it. Using this property, instead of starting on the boundary, we can start from

inside the parameter space. Such that the ellipses spanned by the interior points will just

touch the boundary. Keeping this in mind we can define the new y− values at x = 3.40.

This can be done iteratively in the following way:

yi = ymax −
(ymax − ymin)

5
(0.5 + i), (5.9)

where ymax = 1.79, ymin = −0.51 and i is an integer ∈ [0, 4].

Using the above obtained yi’s values, we can obtain the Q values by

Qi = exi−yi

Qi = e3.40−1.79+2.3/5(0.5+i)

Qi = 50× 10
−(5−i−0.5)

5 . (5.10)

The Q values that we obtain are listed in the table below.

Q values

6.29

9.98

15.81

25.06

39.72

Here, we can see that the Q values are distributed logarithmically. Using the derived cumu-

lative distances in y and constant-Q directions, one can see that they are not equal, unlike in

case of Euclidean/flat metric. Therefore, the number of equidistant points will be different

in these two directions. We denote the number of equidistant points in the y direction as Ny

and in constant Q direction as NQ. The relation between Ny and NQ can be easily found

using dsy & dsQ in the following way
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Distance between two consecutive points in the y direction is =
dsy
Ny

. And, distance between two consecutive points in the constant Q direction is =

√
2 +Q2

4
dsQ

.

We need to equate the distances to get points which are equidistant to their neighbours.

dsQ = dsy√
2 +Q2

4

(
xmax − xmin

NQ

)
=

1√
2

(
ymax − ymin

Nx

)

NQ =

√2 +Q2

2

(
xmax − xmin
ymax − ymin

) (5.11)

From the above equation, one can notice that the line y = x − lnQ with a larger value

of Q will have more number of points on it. Therefore, going down in the y-direction, the

number of points in the parameter space increases.

We start with the constant-Q line having the highest Q− value (39.72) in the list, and, the

starting point on this line is (x0, y0) = (3.40,3.40-ln(39.72)). The equidistant points on this

line can be iteratively obtained from the following equations:

xi = xmin + i

(
xmax − xmin

NQ

)
, (5.12)

yi = xi − lnQ, (5.13)

where i is an integer in ∈ [0, NQ] and xmin = 3.40. In the next step we consider the following

Q in the list where the starting point is (x0, y0) = (3.40, 3.40 − lnQ), and repeat the steps

mentioned previously.

After obtaining points on every constant-Q line, we obtain the desired points on the

parameter space. The points in the parameter space x − y obtained are shown in the

following diagram along with lines of constant Q.
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Figure 5.1: Parameter space of (x − y) showing a total of 205 equidistant points. The
coloured lines represents lines of constant Q and the values of which are shown in the box
at the bottom right.

5.3 Template Bank generation

The search parameters used for the first GW event considered mass ranges from 1M� ≤
m1,m2 ≤ 99M� along with the dimensionless spins ≤ 0.99. Therefore the number of tem-

plates obtained in the template bank were approximately 250,000 [15]. However, we are

considering a much simpler case of Non-spin bank where the spins of the component black-

holes are neglected. We have used an open source python based software package PyCBC to

generate the template bank. Thus the template bank is generated according to the following

parameters.
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(a) m1 −m2 parameter space

(b) τ0 − τ3 parameter space

Figure 5.2: Template bank with the component masses in the range 3M� ≤ m1,m2 ≤ 30M�

• PN order - 2.

• minimum match - 0.97

• cutoff frequency - 30 Hz.
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• frequency range for integration - 30Hz to 512 Hz.

• ∆f = 1/32 Hz.

• component mass range - 3M� ≤ m1m2 ≤ 30M�.

• Noise PSD - Zero detuned, high power noise PSD for advanced LIGO.

According to these parameters, we obtain 554 templates in the template bank, which is

shown in the Fig. 5.2. The template bank gives us the mass parameters m1 and m2 and we

feed in these parameters to the TaylorF2 approximant to generate the CBC waveforms.

We obtain 205 total number of points (vectors) on the parameter space of x and y. The

next step is to remove the parallel components of the trigger template from the obtained

sine-Gaussian vectors. And we repeat this procedure for every CBC template in the template

bank. This procedure according to the unified χ2 formalism is same as associating a 205-

dimensional orthogonal subspace to each point of the signal manifold (template bank). The

template bank is a two dimensional manifold which is densely covered by 554 points on it.

Therefore this procedure produces a fibre bundle with 205-dimensional vector space attached

to each point of the two dimensional template bank. Hence the χ2 is then given by the L2

norm of the data vector projected onto the fibre at the trigger template h.

Instead of using the complete 205-dimensional orthogonal subspace, we can approximate

the orthogonal subspace by an even lower dimensional subspace using the Singular Value

Decomposition (SVD). This will reduce the number of degrees of freedom of χ2 and also

would reduce the computational costs. We will discuss about the SVD and how it can be

used to approximate a set of vectors by a lower dimensional subspace in the next section.
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Chapter 6

Approximating set of vectors by a

subspace using the Singular Value

Decomposition

The motivation for reducing the number of dimensions is to reduce the number of degrees of

freedom of χ2 and in turn reduce the computational costs involved. As we mentioned, this

can be done with the help of Singular Value Decomposition, so we discuss this first.

6.1 Introduction

The Singular Value Decomposition theorem states that any rectangular matrix of size m×n
can be decomposed in the following way:

Amn = UmmΣmnV
T
nn (6.1)

such that:

• The columns of U are the orthornormal eigenvectors of AAT .

• The rows of V T are the orthonormal eigenvectors of ATA.
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• Σ is a diagonal matrix containing the square root of the eigenvalues of both AAT and

ATA arranged in decreasing order. These are also called as the singular values and are

denoted by σ1 ≥ σ2..... ≥ σn ≥ 0

In the intuitive sense, the SVD of any data matrix returns the vectors (directions) along

which the data is distributed. It also associates a weight (singular value) to each vectors,

which can represent the variability of the data. Using these properties of SVD, we can

approximate the data using fewer number of vectors. This is done by finding the singular

vectors and selecting only few of them.

Consider a set of n vectors in d dimensional space. In order to find out an optimal

subspace of k dimension (k < n << d), we have to find a subspace which minimizes the sum

of the squares of the perpendicular distances of these n vectors from the subspace also known

as best least square fit problem. This problem is equivalent to maximizing the sum of the

squares of the lengths of projections onto the subspace. For this we use a greedy approach

to find the best-fit k dimensional subspace.

6.2 Singular Vectors and Best-fit Subspaces

Consider a matrix A of size n×d, where the rows of A are n points in a d-dimensional space.

We define the first singular vector, v1 of A which satisfies the property

v1 = max
|v|=1
|Av|.

Thus v1 is the best-fit line that maximizes |Av|. The first singular vector is obtained from the

relation σ1 = |Av1|. Now the greedy approach is to take the v1 as the first basis vector and

then try to find a unit vector that will maximize |Av| amongst all the vectors perpendicular

to v1. And, we find the second singular vector v2 as

v2 = max
v⊥v1,|v|=1

|Av|.
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Similarly, we can find the next singular vectors as

vi = max
v⊥v1,..,vi−1,|v|=1

|Av|.

The process stops when we have found v1,v2, ...,vr as singluar vectors and max
v⊥v1,..,vr,|v|=1

|Av| =

0. Hence by greedy algorithm, we have found the best subspaces of every dimension. This

is supported by the following theorem.

Theorem 6.2.1. Let A be a n×d matrix where v1, v2, ...., vr are the singular vectors defined

above. For 1 ≥ k ≥ r, let Vk be the subspace spanned by v1, v2, ....vk. Then for each k, Vk is

the best-fit k−dimensional subspace for A.

Although we are not mentioning the proof of this theorem, it can be easily done using

the induction hypothesis. Therefore by choosing the first k singular vectors, we get a set of

basis vectors which span the best k-dimension subspace of A.

The singular vectors can be directly obtained from SVD. These singular vectors are the

row vectors of V T arranged in decreasing order according to the singular values corresponding

to them. Thus to find the best k-dimension subspace, we consider only the first k rows of

the matrix V T . By the properties of SVD, the singular vectors obtained are orthonormal

and therefore we have found a set of k orthonormal basis vectors that defines the lower

k-dimensional orthogonal subspace to the trigger template.

6.3 Construction of the sine-Gaussian matrix A

The sine-Gaussian matrix denoted by A is constructed by first removing the parallel compo-

nents of the trigger template h from each of the 205 sine-Gaussian vectors and then adding

them as rows of A. We will denote the sine-Gaussian vectors as gα, where α = 1, 2..., 205

and the template vector as hβ, where β = 1, 2..., 554. It is important to consider the time

lag associated to each sine-Gaussian vector. We will denote the time lag between the sine-

Gaussian vector gα and the template vector hβ by δtβα, where α and β are same as previously

defined. We first consider the simple case of a single template to show our method. Hence

we consider a specific template vector h and calculate the time-lag for each g.
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After obtaining the time-lags δtα, we need to remove the parallel component of h (at

δtα) from gα. To do so, we first time shift the template h by δtα, and this can be done by

hα = h× diag(e2πifδtα), (6.2)

where h is a row vector and is multiplied with a diagonal matrix whose diagonal elements are

varying with frequency f . Now to maximise over the coalescence phase, we decompose the

time shifted template hα into two templates with phase 0 and π/2 and denote it by hα,0 and

hα,π/2 respectively. We then remove the components of the template by taking the overlap

of gα with hα,0 and hα,π/2 and then subtracting it out from the original sine-Gaussian vector

gα. This has to be done for all gα where α = 1, 2, ..., 205

g⊥α = gα − (gα,hα,0)hα,0 − (gα,hα,π/2)hα,π/2 (6.3)

Therefore, the obtained g⊥α vectors are perpendicular to the template vector h. We then

finally construct the sine-Gaussian matrix A by putting g⊥α vectors as the rows of A matrix.

Next, we compute the SVD of the matrix A to get the best orthogonal subspace to the

template h.

However while computing the SVD, the eigenvectors are normalised according to the

Euclidean inner product. But in fact we need the eigenvectors to be orthonormal according

to the inner product defined previously. This problem can be easily solved by dividing the

vectors (rows of A) by
√
Sh(f) which makes the Euclidean inner product same as the desired

inner product

A′ = A× diag
(
1/
√
Sn(f)

)
. (6.4)

And then after computing the SVD of the new matrix A′, we multiply the rows of V T with√
Sh(f)

svd(A′) = UΣV T , (6.5)

V T
n = V T × diag

(√
Sn(f)

)
. (6.6)

Thus the rows of V T
n are the basis vectors that span the best lower dimensional subspaces.

The general proof is difficult to prove, however, it can be shown with some examples that

this process indeed gives the best k-dimension subspace basis vectors that are orthonormal
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according to the defined inner product.

At this point, the only part remaining is to decide the number of dimensions k of the

orthogonal subspace. This is done by putting a cutoff on the sum of the squares of the

singular values. The square of the singular value represents the total power associated with

the sine-Gaussian vector. Thus, we put a cutoff of 98% of the sum of the squares of the

singular values implying that we recover at least 98% power of any arbitrary sine-Gaussian

in the parameter space.

By adding this constraint, we find that the sum of the squares of only first 20 singular

values adds to the 98% of the total sum. Therefore we can say that 20 is the optimum

number of dimensions required for the best orthogonal subspace. Thus we have found the

best orthogonal subspace which is spanned by the first 20 singular vectors of the A matrix.

6.4 Conclusion

In the quest to distinguish triggers due to glitches and a true signal it is essential to develop

better discriminators. In the Sec. (3.2) we discussed the unified χ2 formalism which provides

a method to describe all possible χ2 discriminators. This formalism also gives us insight to

fine tune the χ2 discriminator in case of modeled glitches. Hence, we consider an important

family of glitches which are modeled as sine-Gaussians. In the Sec. (4) we discuss their

effects on the searches for GWs, and it turns out that there is a time-lag between the trigger

and the time of occurrence of the glitch. Therefore the time-lag is considered separately and

we construct the parameter space of sine-Gaussians.

To efficiently cover the parameter space (Q,f0) of sine-Gaussians, we have found 205 uni-

formly distributed points on the parameter space. To generate the CBC waveforms, we use a

Non-spin template bank with a minimum match of 0.97 which contains 554 templates. Then

we use TaylorF2 approximant to obtain the waveform in the Fourier domain. According to

the unified χ2 formalism, the χ2 of a data vector is associated with the orthogonal subspace

of the trigger template and therefore, it is important to check the overlap of sine-Gaussian

with the CBC template. We have observed that there is a significant overlap between them.

Further, we find that the overlap increases as we consider higher mass templates. Having

a significant overlap implies that the sine-Gaussians are not orthogonal to the template.
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Therefore we need to remove the parallel components of the trigger template from the 205

sine-Gaussians. After removing the parallel components of the template, the new vectors

become orthogonal to the template and can be used as basis vectors that span the orthogonal

subspace determining the χ2 discriminator. To reduce the dimensions of the orthogonal sub-

space, we perform SVD on the set of sine-Gaussian vectors. We have found that putting 98%

cutoff on the sum of the squares of singular values, gives us 20 vectors. Therefore, we can

construct the best approximate 20-dimensional subspace of the original space represented by

205 sine-Gaussians.

After obtaining the basis vectors of the orthogonal subspace of reduced dimensions, we

plan to construct the χ2 statistics for the family of sine-Gaussians. Further, we intend to

compare the efficacy of the proposed χ2 with traditional χ2
t using simulated injections. If

the performance of our χ2 turns out to be better than χ2
t , then this discriminator can be

tested on real data from LIGO.
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