
The Asymptotic information rate
function in coding theory

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Ajinkya Ramdas Gaikwad

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Dr. Krishna Kaipa

c© Ajinkya Ramdas Gaikwad 2019

All rights reserved





Certificate

This is to certify that this dissertation entitled The Asymptotic information rate function

in coding theorytowards the partial fulfilment of the BS-MS dual degree programme at the

Indian Institute of Science Education and Research, Pune represents study/work carried

out by Ajinkya Ramdas Gaikwad at Indian Institute of Science Education and Research

under the supervision of Dr. Krishna Kaipa, Assistant Professor, Department of

Mathematics , during the academic year 2018-2019.

Dr. Krishna Kaipa

Committee:

Dr. Krishna Kaipa

Dr. Anindya Goswami





This thesis is dedicated to my parents and my brother





Declaration

I hereby declare that the matter embodied in the report entitled The Asymptotic

information rate function in coding theory are the results of the work carried out by me at

the Department of Mathematics, Indian Institute of Science Education and Research,

Pune, under the supervision of Dr. Krishna Kaipa and the same has not been submitted

elsewhere for any other degree.

Ajinkya Ramdas Gaikwad





Acknowledgments

I am very grateful to my supervisor Prof. Krishna Kaipa for patiently guiding and encourag-

ing me throughout this thesis. I am thankful to my TAC member Prof. Anindya Goswami

for his constant support. Finally, I thank my family and friends for all their love and care.

ix



x



Abstract

Transmission of information through a unreliable communication channel introduces noise

in the data. The process of introducing redundancy in this data in order to recover it later

is called an error correcting code. Error correcting codes are frequently used for reliable

storage in CD’s, DVD’s, SSD’s and in many other cases. A good code must have high error

correcting capacity and efficiency which are measured by relative minimum distance and rate

of transmission respectively, however these two requirements are mutually conflicting. The

trade-off between these quantities is studied through the question of finding the largest size

of the code for minimum distance at least d. In general, it is hard to calculate the exact

value of this quantity. Therefore, it is important to have good upper and lower bounds for

the same. This question become more tractable by defining the asymptotic rate function. It

is the asymptotic version of the above quantity which captures the trade-off between these

quantities. This in turn raises more mathematical questions about the properties of asymp-

totic rate function like convexity and differentiability.

The distance enumerator polynomial determines the distance distribution of a code. Bi-

nomial moments provide an alternate way to deal with the distance enumerator polynomial

which helps in finding bounds on the size of the code. The most intuitive upper bound on

the size of the code is sphere packing bound or Hamming bound. The codes attaining this

bound are called perfect codes. The problem of existence of perfect codes is a very interesting

problem which is still unresolved for case of double error correcting perfect codes. In this

thesis, we attempt the above problem by generalizing the differential equation derived by

Lloyd in [5] for binary case to find necessary conditions on the existence of perfect codes. We

will also present a different proof of the non-linear Mac-Williams identities using binomial

moments. The bounds on the size of the code are discussed in Chapter 1 and later we have

used them to derive bounds and properties of the asymptotic rate function. We study the

recent improvement in Elias bound on the asymptotic rate function due to K. Kaipa. In

Chapter 4, We discuss about the open problem of ∪−convexity property of the asymptotic

rate function.

xi



xii



Contents

Abstract xi

1 Error correcting codes in Hamming metric 5

1.1 Main problem in coding theory . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Bounds on the largest size of the code . . . . . . . . . . . . . . . . . . . . . . 7

2 Binomial Moments 13

2.1 Relation to distance enumerator polynomial . . . . . . . . . . . . . . . . . . 13

2.2 Mac-Williams identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Properties of Binomial Moments . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Perfect codes 25

3.1 Generalized differential equation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Distance enumerator polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Alternate proof of Lloyd’s theorem . . . . . . . . . . . . . . . . . . . . . . . 35

4 Asymptotic rate function 41

4.1 Basic properties of asymptotic rate function . . . . . . . . . . . . . . . . . . 41

4.2 Non-linear upper bounds on αq(x) . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



4.3 Convexity property of αq(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Results and Conclusion 53

xiv



Introduction

If we transmit a set of messages through a unreliable or noisy communication channel then

some of the data might get corrupted due to noise. To avoid it, we do not send the data in

exact form. The main idea of error correcting codes is to add some redundant information

to the data which helps us recover the information that was transmitted in the first place

without re-transmission. This enables the receiver to correct errors but this is achieved at

cost of decrease in rate of transmission.

To translate it mathematically, let us assume that we have a set of messagesM. We denote

the size of a setM by M . We also have a set F of size q. The set F is called as alphabet set.

The set Fn is a set of words of length n where the letters in the word are coming from a set

F . The Hamming distance in space Fn between any two words x, y is number of positions in

which x and y differ. We assume that the set M is either the full space Fk or some subset

of it where k is a positive integer less than n. Next, we take a one-one map from the set M
to the space Fn. The image of this map is called a code of length n and size M and it is

represented as C. Elements in the set C are called codewords. The reason behind this map-

ping is to add redundant bits to the data to correct errors in the information due to noise.

The minimum distance of a code C is a least distance between any two distinct elements x, y

from a code C. The code C of length n, minimum distance d and size M over alphabet of

size q is denoted as a [n,M, d]q code C. The two important parameters related to code are

relative minimum distance (δC = d/n) and rate of transmission (RC) which determines the

error correcting capacity and efficiency of the code. The rate of transmission is defined as

RC =
logqM

n

1



For a good code, we need δC and RC to be high but this is a mutually conflicting requirement.

We are interested in the problem of finding the maximum rate of transmission of a code such

that the relative minimum distance is at least δ. It depends on the largest size of the code

in space Fn. Let Aq(n, d) denotes the maximum value of M such that [n,M, d]q code exists.

The exact formula of Aq(n, d) for general n and d is unknown and therefore it is important to

have good upper and lower bounds for it. In Chapter 1, we discuss the bounds and properties

of Aq(n, d).

The distance distribution of a code is expressed in the distance enumerator polynomial of

a code. The binomial moments provide an alternate way of studying the distance distribution

of a code and therefore it help us in finding bounds on the size of the code. In Chapter 2,

we study properties of binomial moments and non-linear Mac-Williams identities which led

to a linear programming bound on the rate of transmission of a code given in [7] for binary

case. Hamming bound or sphere packing bound is the simplest upper bound on the size of

the code and it is given as

M ≤ qn

Vq(n, e)

where e = d−1
2

and Vq(n, r) is a size of ball of radius r. The codes attaining the Hamming

bound are called perfect codes. The problem of non-existence of perfect codes for e ≥ 3

is settled for any size of alphabet. Hamming codes and Golay codes are the only known

examples of non-trivial perfect codes. The question is unresolved for e = 2 case, when size

of the alphabet is non-prime power. In 1956, Lloyd gave a strong necessary condition on

existence of binary perfect codes for general n and d in [5]. In Chapter 3, we will generalize

the differential equation derived by Lloyd for binary case to any size of the alphabet to

discuss about the unresolved problem of existence of double error correcting perfect codes

for any size of the alphabet.

If a perfect code exists for some n, d and q then in that case we know the exact value

of Aq(n, d) but perfect codes exist in only some cases. As we do not know the exact value of

Aq(n, d), it is hard to calculate the maximum rate of transmission. This problem becomes

tractable by defining the asymptotic rate function αq(x) which captures the trade-off between

δC and maximum rate of transmission. The asymptotic rate function αq(x) : [0, 1]→ [0, 1] is

2



given as

αq(x) = lim sup
n→∞

logq Aq(n, xn)

n

The exact value of αq(x) is unknown. In Chapter 4, we use bounds and properties of Aq(n, d)

to study the asymptotic rate function. We also study the recent improvement in Elias bound

due to K. Kaipa in [4]. The question of ∪−convexity property of αq(x) is an open problem.

It is discussed at the end of the Chapter 4.

3



4



Chapter 1

Error correcting codes in Hamming

metric

1.1 Main problem in coding theory

We will begin this section by presenting the terminology used in the following chapters. In

the Hamming space Fn, the Hamming metric is defined as follows

Definition 1.1.1. Hamming distance: The Hamming distance between any two words x, y

is given as

d(x, y) = Number of positions at which x and y differ

For any code C, we define minimum distance d(C) as

Definition 1.1.2. Minimum distance: The minimum distance of a code C is the least dis-

tance between any distinct two codewords x and y such that x, y ∈ C.

A code C of size M and minimum distance d in a space Fn where |F| = q is represented

as [n,M, d]q code. To make our notations compact, without loss of generality we assume

that if |F| = q then F is Z/qZ. We will only use additive structure of Z/qZ.

5



Definition 1.1.1. Hamming weight: For any word x in Fn, Hamming weight of x is non-

zero entries in x.

Hamming distance between any two words x, y can be defined in terms of hamming

weight in a following way

d(x, y) = #non-zero entries in x− y

There are two important parameters for a [n,M, d]q code C and they are relative minimum

distance and rate of transmission.

Definition 1.1.2. Relative minimum distance: The relative minimum distance for a code C
is d/n and it is represented as δC.

For a code C, the error correcting capacity is measured by relative minimum distance.

For a good code, we need high error correcting capacity and therefore high relative minimum

distance.

Definition 1.1.3. Rate of transmission: The rate of transmission of a code C is

RC =
logqM

n

Rate of a transmission is a rate at which information is transmitted. For a good code,

we need a rate of transmission to be high. The important question in coding theory is that

for a given code with fixed minimum distance d in space Fn, what is the maximum rate of

transmission can be achieved. This question can be answered by counting the maximum size

of a code in space Fn with minimum distance d.

Definition 1.1.4. Aq(n, d) represents the maximum value of M such that a [n,M, d]q code

exists.

It is very hard to calculate the exact value of Aq(n, d) for general n and d. So, the next

best thing to do is to calculate good upper and lower bounds.

6



1.2 Bounds on the largest size of the code

In this section, we state and prove bounds on the size of the code. We also study basic

properties of Aq(n, d) as a function of n and d.

Lemma 1.2.1. Hamming bound: Let C be any [n,M, d]q code then

M ≤ qn

Vq(n, bd−12 c)
(1.1)

where Vq(n, r) is a volume of ball of radius r in space Fn.

Proof. If we draw a ball of radius bd−1
2
c around every codeword then we observe that these

balls are disjoint because least distance between any two codewords is d. If any two balls

with centre c1 and c2 have a intersection then we can easily prove that the d(c1, c2) < d

which is a contradiction.

Hamming bound is also known as sphere packing bound. Codes which attain equality in

Hamming bound are called perfect codes. Hamming bound was based on the fact that the

diameter of balls was less than d. This bound can be generalized by defining anticodes.

Definition 1.2.1. Anticode of diameter D is any subset L of Fn such that distance between

any two elements in L is at most D.

Lemma 1.2.2. Anticode bound: Let C be any [n,M, d]q code and L be any anticode of

diameter d− 1 then

M ≤ qn

|L|
(1.2)

Proof. Let us assume that set L contains origin. If not then we can translate it such that

it contains origin. For every c ∈ C, consider a set {c + L : c ∈ C}. We will show that any

two sets of the form {c1 + L} and {c2 + L} are disjoint using contradiction. Let us assume

there’s exist c1, l1, c2, l2 such that c1 + l1 = c2 + l2. Therefore using c1 − c2 = l2 − l1, we get

d(c1, c2) = wt(c1 − c2) = wt(l2 − l1) = d(l2 − l1) ≤ d− 1

7



which is a contradiction. It implies that M |L| ≤ qn.

Lemma 1.2.3. Singleton bound: For a [n,M, d]q code C,

M ≤ qn−d+1 (1.3)

Proof. We note that L = Fd−1×{0̄} a subset of Fn is an aniticode of diameter d− 1. Using

it in lemma (1.2.2) proves the result.

Lemma 1.2.4. Plotkin bound: For a [n,M, d]q code C,

M ≤
⌊

1

1− (θ/δ)

⌋
(1.4)

provided δ > θ where θ = 1− q−1 and δ = d/n.

Proof. We know that the minimum distance between any codewords is d. It implies that the

average distance between pair of distinct codewords is also at least d.

dM(M − 1) ≤
∑

(c,c′)∈C×C

d(c, c′) (1.5)

Right hand size of the above inequality can be written as

∑
(c,c′)∈C×C

d(c, c′) =nM2 −
n∑
i=1

∑
v∈F

#{(c, c′) ∈ C × C : ci = c′i = v}

=nM2 −
n∑
i=1

∑
v∈F

n(i, v)2

where n(i, v) = #{c ∈ C : ci = v}. We also note that
∑

v∈F n(i, v) = M . Using Cauchy-

Schwartz inequality, we can write∑
v∈F n(i, v)2

q
≥
[∑

v∈F n(i, v)

q

]2
=
M2

q2

8



Therefore, we get

∑
(c,c′)∈C×C

d(c, c′) ≤ nM2 − nM2

q
= nM2θ (1.6)

Using (1.5) and (1.6), We can write

d(M − 1) ≤ nMθ

It implies that 1
M
≥ 1− θ

δ
. we know that θ < δ, so taking reciprocal and using the fact that

M is an integer, we get

M ≤
⌊

1

1− (θ/δ)

⌋

Lemma 1.2.5. Gilbert-Varshamov bound: Let C be a code of minimum distance d in Fn of

size Aq(n, d) then

Aq(n, d) ≥ qn

Vq(n, d− 1)
(1.7)

Proof. Let us assume that ∃ x ∈ Fn\C such that d(x, c) ≥ d ∀c ∈ C. If we add word x

to the code then the new code C ∪ {x} will be of size greater than Aq(n, d) with minimum

distance d which is a contradiction. It implies that for every word in Fn there’s exists at

least one codeword in C such that d(x, c) ≤ d−1. Therefore, if we draw a ball of radius d−1

around every codeword then the set of balls will exhaust the whole space but note that the

balls are not necessarily disjoint. This argument proves the Gilbert-Varshamov bound.

Next, we prove some basic properties of Aq(n, d).

Theorem 1.2.6. 1. Aq(n, d) is an increasing function of n and decreasing function of d.

Aq(n, d) ≥ Aq(n− 1, d) ≥ Aq(n, d+ 1)

2. Aq(n, ≥d) = Aq(n, d) where Aq(n, ≥d) is the largest size of the code with minimum at

least d and length n.

9



Proof. For the first part let us assume that we have a code C of size Aq(n−1, d) of minimum

distance d in space Fn−1. Consider a new code C ′ where we add an extra coordinate to every

codeword such that C ′ = {(c, 0) : c ∈ C}. The new code C ′ is a [n,Aq(n − 1, d), d]q code.

Using the definition of Aq(n, d), we get the first inequality. For the second inequality, let us

assume that we have a [n,Aq(n, d+ 1), d+ 1] code C ′′. There must exists a pair of codewords

(c, c′) ∈ C ′′×C ′′ such that d(c, c′) = d+ 1. Consider the i-th coordinate such that ci 6= c′i and

define a projection map φ : Fn → Fn−1 such that i-th coordinate is dropped. The image

of the code under the map φ generates new [n − 1, Aq(n, d + 1), d] code. Again using the

definition of Aq(n, d), we get the required result.

For the second part, we know that Aq(n, d) ≤ Aq(n,≥ d). To prove the opposite inequality let

us assume a [n,Aq(n, d+t), d+t] code. Using the above idea of projection mapping and adding

an extra fixed coordinate, we can generate a new [n,Aq(n, d+ t), d+ t− 1] code. Repeating

the process t times gives a [n,Aq(n, d+ t), d] code. It implies that Aq(n, d) ≥ Aq(n,≥ d).

The next lemma is generalization of anticode bound lemma (1.2.2) and it is called

Bassalygo-Elias lemma.

Lemma 1.2.7. Bassalygo-Elias lemma:

Aq(n, d) ≤ qnAq(n, d;L)

|L|
(1.8)

where |L| is size of the set L and Aq(n, d;L) represents largest possible size of code of length

n and minimum distance at least d.

Proof. Consider a [n,M, d′]q code C such that d′ is at least d. For every fixed word v ∈ Fn,

we get a new code (C + v) ∩ L such that it is contained in L and minimum distance is at

least d. It implies that Aq(n, d;L) must be greater than or equal to average of #{(C+v)∩L}
over v ∈ Fn. Therefore, we can write the following

qn.Aq(n, d;L) ≥
∑
v∈Fn

|(C + v) ∩ L| (1.9)

10



We can rewrite RHS as

∑
v∈Fn

|(C + v) ∩ L| =
∑
c∈C

∑
v∈Fn

1, if c+ v ∈ L

0, otherwise

For every fixed c ∈ C, there are |L| number of v′s such that c can be translated to a word in

L. It implies that ∑
v∈Fn

|(C + v) ∩ L| = |C||L|

Substituting above value in equation (1.9) and using theorem(1.2.6), we get

Aq(n, d;L)qn

|L|
≥M ≥ Aq(n, d)

Lemma 1.2.8. Cross-sectional bound:

Aq(n, d) ≤ Aq(n− t, d)qt (1.10)

where t ∈ {0, 1, . . . , n}. If n− t < d then we take Aq(n− t, d) = 1.

Proof. If we substitute L = Fn−t×{0̄} ⊂ Fn in the Bassalygo-Elias lemma then we get the

required result.

In the next chapter, We will discuss about binomial moments which help us calculate

bounds on the size of the code.

11



12



Chapter 2

Binomial Moments

In this chapter, we will discuss about properties of binomial moments which is an alternate

description for distance enumerator polynomial. We will also present a different proof of

non-linear Mac-Williams identities using binomial moments. The non-linear Mac-Williams

identities led to an linear programming upper bound on the rate of transmission of the code

given in [7] for binary case.

2.1 Relation to distance enumerator polynomial

We will begin this section by defining a distance enumerator polynomial for a [n,M, d]q code

C.

Definition 2.1.1. The distance enumerator polynomial for code C is defined as

WC(Z) =
n∑
i=0

AiZ
i (2.1)

where Ai = 1
M

#{(c1, c2) ∈ C × C : d(c1, c2) = i}.

Let Ir,n is a set of all possible r positions out of n positions. It is given as Ir,n =

(i1, i2, . . . , ir) : 1 ≤ i1 < i2 < · · · < ir ≤ n}. The r-th binomial moment is denoted by γr(C).
We have mentioned two equivalent forms of γr(C) in the definition.

13



Definition 2.1.2. The r-th binomial moment for a code C is

γr(C) =
1

M
(
n
r

) ∑
I∈Ir,n

#{(c1, c2) ∈ C × C : c1|I = c2|I} (2.2)

γr(C) =
1(
n
r

) n∑
j=0

(
n− j
r

)
Aj (2.3)

This gives a linear transformation from A′rs to γ′rs. Consider a matrix T ∈ GL(n + 1,Z)

such that the elements in T are given as Tij =
(
n+1−i
n+1−j

)
. We can write a relation between

Ar/
(
n
r

)
and γr in a following way

T


An/

(
n
n

)
An−1/

(
n
n−1

)
...

A0/
(
n
0

)


(n+1)×1

=


γ0

γ1
...

γn


(n+1)×1

such that, we get

γr =
n−r∑
j=0

(
n−r
j

)
Aj(

n
j

) (2.4)

Inverse of the linear transformation T maps γ′rs to A′rs. The elements of T−1 are given

as (T−1)ij = (−1)i+j
(
n+1−i
n+1−j

)
. This gives a expression for Ar/

(
n
r

)
in terms of γ′rs.

An−r(
n
n−r

) =
n∑
k=r

(−1)k+r
(
n− r
n− k

)
γk (2.5)

Some of the properties of binomial moments are deeply motivated from Mac-Williams iden-

tities. The Mac-Williams identities are discussed in the next section.

14



2.2 Mac-Williams identities

Definition 2.2.1. Linear codes: Any k dimensional subspace of a n dimensional vector

space over any field F of size q is called [n, k]q linear code.

A common way to construct a [n, k]q linear code C is by giving a linear map from a space

Fk to space Fn. The matrix G corresponding to the linear map is a full rank matrix of size

k × n. The range space of G is the linear code C and the matrix is called generator matrix.

The same can be achieved by taking a full rank matrix H of size (n− k)× n and the kernel

space of the matrix will be the linear code C. In this case, H is called parity check matrix.

The code generated by parity check matrix H is called dual of a code C and it is denoted as

C⊥.

Definition 2.2.2. Dual code: A dual of a [n, k]q linear code C is a n−k dimensional subspace

of Fn denoted by C⊥ such that C⊥ = {x̄ ∈ Fn : < x̄, c̄ >= 0 ∀ c̄ ∈ C}.

Linear codes have an interesting property that corresponds to their distance distribution

known as distance invariant property.

Definition 2.2.3. Distance invariant code: A code is said to be distance invariant if the

number of codewords at distance k from a fixed codeword depends only on k and not on the

fixed codeword.

Lemma 2.2.1. Linear codes are distance invariant.

Proof. Let us assume that Ak(C;x) = #{c ∈ C : d(c, x) = k}. As the linear combination of

codewords is again a codeword implies that c − x = c′ is also a codeword. It implies that

Ak(C;x) = #{c′ ∈ C : wt(c′) = k} which is independent of x.

Let us assume that we have a [n, k]q linear code C with distance enumerator polynomial

WC(Z) =
n∑
i=0

AiZ
i

For linear codes, it is easy to observe that Ai in distance enumerator polynomial become

number of codewords of weight i due to distance invariant property. The distance enumerator

15



polynomial of dual of a code C is represented as

WC⊥(Z) =
n∑
i=0

A⊥i Z
i

Theorem 2.2.2. For linear codes, Mac-Williams identities gives a transformation from

WC(Z) to WC⊥(Z) in a following way

WC⊥(Z) =
(1 + (q − 1)Z)n

#C
WC

(
1− Z

1 + (q − 1)Z

)
(2.6)

Proof. We will prove the Mac-Williams identities using binomial moments. For [n, k]q linear

code C, definition of binomial moment can be modified to

γr(C) =
1(
n
r

) ∑
I∈Ir,n

#{c ∈ C : c|I = 0} (2.7)

Let G be the generator matrix of code C. If I ∈ Ir,n then GI represents a submatrix

of size k × r. We have a one-one map φ : Fk → Fn given as φ(x) = xG. Assume that

rank(GI)=rI .

#{c ∈ C : c|I = 0} = #{x ∈ Fk : xGI = 0} = size of (kerGT
I ) = qk−rI

Now, for I ∈ Ir,n assume that I⊥ ∈ In−r,n such that I⊥ is complement of I.

#{c ∈ C⊥ : c|I⊥ = 0} = #{v ∈ Fn : Gv = 0 and v|I⊥ = 0} = #(ker(GI)) = qr−rI

From above two equations and (2.7), we observe that γr(C⊥) = qn−r−kγn−r(C).

Next, we know that if we expand polynomial f(Z) around Z = 1 then f(Z) =
∑

i ai(Z− 1)i

where ai = 1
i!
dif
dZi

∣∣
Z=1

. Taking f(Z) = ZnWC(
1
Z

), we get

ai =
1

i!

di

dZi
ZnWC(1/Z)

∣∣∣∣
Z=1

=
n∑
j=0

(
n− j
i

)
Aj =

(
n

i

)
γi(C)

16



Using the expansion of ZnWC⊥(1/Z), we have

ZnWC⊥(1/Z) =
n∑
i=0

(
n

i

)
γi(C⊥)(Z − 1)i =

n∑
i=0

(
n

i

)
qn−i−kγn−i(C)(z − 1)i

Substituting 1/Z = X and adjusting the summation, we get

WC⊥(X) =
(qX)n

qk

n∑
j=0

(
n

j

)
γj(C)

(
1−X
qX

)n−j

=
(1−X)n

qk

n∑
j=0

(
n

j

)
γj(C)

(
qX

1−X

)j

=
(1−X)n

qk

n∑
j=0

(
n

j

)
γj(C)

(
1 + (q − 1)X

1−X
− 1

)j

=
(1−X)n

qk

(
1 + (q − 1)x

1− x

)n n∑
j=0

(
n

j

)
γj(C)

(
1 + (q − 1)X

1−X
− 1

)j

=
(1 + (q − 1)X)n

#C
WC

(
1−X

1 + (q − 1)X

)

In the next section, we will use Mac-Williams identities to derive properties of binomial

moments.

2.3 Properties of Binomial Moments

Let C be any non-trivial [n,M, d]q code (Size of a code is strictly greater than one).

17



Lemma 2.3.1. γr(C) ≥ 1 with equality if and only if n− d(C) < r ≤ n.

Proof. Notice that in the definition of γr(C) in (2.2), For every I ∈ Ir,n there’s exist at

least M pairs of codewords of the form (c, c) such that {(c, c) ∈ C × C : c|I = c|I} which

proves the first part. For the second part, let us assume that γr(C) > 1. This is true if

and only if for some I ∈ Ir,n there exists at least one pair of distinct codewords such that

{(c1, c2) ∈ C×C : c1|I = c2|I}. Two distinct codewords can have same entries on at most n−d
positions otherwise distance between them will be less than d. It implies that r ≤ n− d.

Lemma 2.3.2. γ0 > γ1 > · · · > γn−d > 1.

Proof. We define a new quantity βr in a following way

βr := (γr − γr+1)−
(
n− r − 1

d− 1

)
(γn−d − 1)

where 0 ≤ r ≤ n− d− 1. It is enough to prove that βr > 0. Using value of γi from equation

(2.3) we can rewrite βr as

βr =
n−d−r−1∑

i=0

An−r−i
(
n−r−1

i

)(
n

n−r−i

)
We already know that A′rs are non-negative which implies that βr > 0.

Lemma 2.3.3. γi(C) ≥ M/qi. Also there exists a unique integer d⊥(C) such that γi(C) =

M/qi if and only if i ≤ d⊥(C)− 1. In case of linear code, we note that d⊥(C) = d(C⊥).

Proof. For every I = {1 ≤ i1 < i2 < · · · < ir ≤ n}, we define a map φI : C → F r such that

φI(c) = {ci1 , ci2 , . . . , cir}. Using a definition (2.2), we can write

M

(
n

r

)
γr(C) =

∑
I∈Ir,n

∑
v∈Fr

m(I, v)2

18



where m(I, v) = #{c ∈ C : φI(c) = v}. Using the Cauchy-Schwartz inequality

∑
v∈Fr m(I, v)2

qr
≥

[∑
v∈Fr m(I, v)

qr

]2

Using the fact that
∑

v∈Fr m(I, v) = M , we get the first part. For the second part, we note

that

γr(C) =
M

qr
if and only if m(I, v) =

M

qr
∀I ∈ Ir,n and ∀v ∈ F r.

If for a fixed I ∈ Ir,n and ∀v ∈ Fn, we have #{c ∈ C : φI(c)} = M
qr

then it implies that

for J ∈ Ir−1,n and J ⊂ I, we get #{c ∈ C : φJ(c)} = M
qr−1 .

This proves that for a fixed integer d⊥(C), γr(C) = M
qr

if and only if r < d⊥(C).

Definition 2.3.1. We define γ⊥i (C) = γn−iq
n−i

M
. We also define A⊥i using Mac-Williams

identities in a following way

n∑
i=0

A⊥i (C)Zi = WC⊥(Z) :=
1

M
WC

(
1− Z

1 + (q − 1)Z

)
(2.8)

If a code C is linear then we observe that γ⊥i (C) = γi(C⊥).

The A′is in the distance enumerator polynomial are non-negative for any code C. It

follows from the Delsarte’s inequalities in [2] that A⊥i
′s are also non-negative. However, it is

not clear from definition (2.3.1). Here, we state a theorem by Delsarte.

Theorem 2.3.4. Non-linear Mac-Williams identities: For any [n,M, d]q code C, we have

A⊥i (C) ≥ 0 (2.9)

where i ∈ {0, 1, . . . , n}.

We provide an alternate proof for Delsarte’s inequalities and it is based on the fact that

variance of random variable is non-negative.

19



Definition 2.3.2. For each non-empty I ⊂ {1, . . . , n} we define a random variable

XI : Fn → R defined by XI(v) = q|I|m(I, vI)/M.

where m(I, vI) = #{c ∈ C : cI = vI}. Here, Fn is the probability space with each v ∈ Fn

being equally likely.

Lemma 2.3.5. For I ∈ Ir,n random variable XI , we have E(XI) = 1 and Var(XI) = qrmI

M2 −1

where mI = {(c, c′) ∈ C × C : cI = c′I}

Proof. E(XI) is given as

E(XI) =
1

qn

∑
v∈Fn

q|I|m(I, vI)/M =
qr

qnM

∑
v∈Fn

m(I, vI) =
qr−n

M

∑
v∈Fr

qn−rm(I, v) =
1

M

∑
v∈Fr

m(I, v) = 1

As we know E(XI), we only need to calculate E(X2
I ).

E(X2
I ) =

1

qn

∑
v∈Fn

q2rm(I, vI)
2/M2

=
q2r

M2qn

∑
v∈Fn

m(I, vI)
2

=
q2r

M2qn

∑
v∈Fr

qn−r[#{c ∈ C : cI = v}]2

=
qr

M2
#{(c, c′) ∈ C × C : cI = c′I} =

qrmI

M2

Therefore, we get the var(XI) as given in the lemma.

Theorem 2.3.6. For 1 ≤ r ≤ n.

var

 ∑
{J :|J |≤r}

(−1)r−|J |
(
n−|J |
n−r

)
XJ

 =
∑

{J :|J |≤r}

(−1)r−|J |
(
n−|J |
n−r

)
var(XJ) = A⊥r .

20



Proof. Let Zr : Fn → R be the random variable defined by:

Zr =
∑

{J :|J |≤r}

(−1)r−|J |
(
n−|J |
n−r

)
XJ

we can write the var(Zr) in a following way

var(Zr) =
∑

{J :|J |≤r}

∑
{K:|K|≤r}

(−1)r−|J |
(
n−|J |
n−r

) (
n−|k|
n−r

)
cov(XJ , XK)

Using lemma (2.3.5), we can calculate that E(XKXJ) = E(X2
(K∩J)) which implies that

cov(XJ , XK) = var(XJ∩K). Let 1 ≤ s ≤ r and let L ∈ Is,n. We can split the summation

over K in a following way

var(Zr) =
r∑
s=1

∑
L∈Is,r

var(XL)
∑
{J :J⊃L}

(−1)s+|J |
(
n− |J |
n− r

) ∑
K′:K′∩J=∅

(−1)|K
′|
(
n− |K ′| − s

n− r

)

We note that

∑
K′:K′∩J=∅

(−1)|K
′|
(
n− |K ′| − s

n− r

)
=

r−s∑
i=0

(−1)i
(
n− |J |

i

)(
n− i− s
n− r

)

Next, we will show that

r−s∑
i=0

(−1)i
(
n− |J |

i

)(
n− i− s
n− r

)
= δr,j (2.10)

Let n− s = m, r − s = ρ and j − s = l . The sum then becomes

ρ∑
i=0

(−1)i
(
m− l
i

)(
m− i
m− ρ

)

We further simplify this by setting m− l = µ

µ+l∑
i=0

(−1)i
(
µ

i

)(
µ− i+ l

ρ− i

)
(2.11)

21



We have, (
µ− i+ l

ρ− i

)
=

l∑
t=0

(
µ− i

ρ− i− t

)(
l

t

)
Using this, (2.11) becomes.

µ+l∑
i=0

(−1)i
(
µ

i

) l∑
t=0

(
µ− i

ρ− i− t

)(
l

t

)

Switching the order of summation and multiplying and dividing by (p− t)!, we get

∞∑
t=0

l∑
i=0

(−1)i
(
ρ− t
i

)(
µ

ρ− t

)(
l

t

)
(2.12)

Note that
l∑

i=0

(−1)i
(
ρ− t
i

)
= (1− 1)ρ−t

which is 0 except when ρ = t. Therefore, we get

∞∑
t=0

δρ,t

(
µ

ρ− t

)(
l

t

)
=

(
l

ρ

)
=

(
j − s
r − s

)
= δr,j

Because j ≤ r,
(
j−s
r−s

)
is 0 whenever j 6= r and 1 when j = r. Therefore, we get

var(Zr) =
r∑
s=1

∑
L∈Is,r

var(XL)(−1)s+r
(
n−s
r−s

)
=

∑
{J :|J |≤r}

(−1)r−|J |
(
n−|J |
n−r

)
var(XJ)

To show the second equality in the theorem, we use var(XJ) = −1 + q|J|mJ

M2 to get

∑
{J :|J |≤r}

(−1)r−|J |
(
n−|J |
n−r

)
var(XJ) =

r∑
j=1

(−1)r−j
(
n− j
n− r

)(
n

j

)
(γ⊥n−j − 1)

Using equation (2.5) for dual of the code, We have(
n

r

) r∑
j=1

(−1)r−j
(
r

j

)
(γ⊥n−j − 1) = A⊥r (2.13)

22



Lemma 2.3.7. For a code C,
1

q
≤ γi
γi−1

< 1 (2.14)

for i ≤ n− d.

Proof. Using the properties of binomial moments for dual of the code, we get

γ⊥n−i ≥ γ⊥n−i+1

with equality if and only if i ≤ d⊥ − 1. Using the definition (2.3.1), we get

γiq
i

M
≥ γi−1q

i−1

M

For i ≤ n− d, we get
1

q
≤ γi
γi−1

< 1

23



24



Chapter 3

Perfect codes

In this chapter, we will discuss the unresolved problem of existence of double error correcting

perfect codes by generalizing the differential equation derived by Lloyd for binary case to

any size of the alphabet. By solving the differential equation for d = 5 and q = 2, we prove

that the only double error correcting binary perfect code is a repetition code. we derive

the distance enumerator polynomial for double error correcting perfect codes for any size of

the alphabet. Later using the distance enumerator polynomial, we will recover some of the

necessary conditions on existence of perfect codes given by Reuvers and Olof Heden in [8, 3].

At the end of this chapter, we present an alternate proof of Lloyd’s theorem.

3.1 Generalized differential equation

Let us start by recalling the Hamming bound for a [n,M, d]q code C. It states that

M ≤ qn

Vq(n, bd−12 c)

where Vq(n, r) is a volume of ball of radius r in space Fn.

Definition 3.1.1. Perfect code: If a code C attains equality in Hamming bound then it is

called perfect code.

To generalize the differential equation by Lloyd for any q, We will follow the discussion

25



in [5]. Let us assume that there exists a perfect code C with alphabet size q and length n

in Fnq with balls are of radius e. There are total qn words in the space. We partition our

words based on their distance from codeword. The distance of a word from a perfect code is

the least distance from a set of codewords i.e. d(x, C) = min∀c∈C d(x, c). Let νj,s represents

number of words at distance j from the perfect code which are of weight s. Since every word

lies inside one and only one ball around codeword, we can write

ν0,s + ν1,s + · · ·+ νe,s =

(
n

s

)
(q − 1)s

Multiplying both sides by xs and taking sum over s, we get

G(x) +G1(x) +G2(x) + · · ·+Ge(x) = [1 + (q − 1)x]n

where Gj(x) =
∑n

s=0 νj,sx
s . We need to Gj(x) in terms of G(x) which is a distance enumer-

ator polynomial of the code. Suppose codeword w is of weight s i.e. w consist of s non-zero

terms and n-s zeroes in some order. Number of words at distance j from w is
(
n
j

)
(q− 1)j. we

choose m non-zero entries out of s and j-m zero entries out of n-s. Now out of m non-zero

entries we turn k entries into zero’s and m-k are still non zero entries. It implies that out of(
n
j

)
(q − 1)j words which are at distance j exactly

∞∑
m=0

(
s

m

)(
n− s
j −m

)(
m

k

)
(q − 1)j−m(q − 2)k

are of weight s+k+j-2m. We observe that(
n

j

)
(q − 1)j =

∞∑
m=0

(
s

m

)(
n− s
j −m

)
(q − 1)j−m(q − 1)m

which also can be written as(
n

j

)
(q − 1)j =

∞∑
m=0

(
s

m

)(
n− s
j −m

)
(q − 1)j−m

[ m∑
k=0

(
m

k

)
(q − 2)k

]

This ensures that we are not missing any word which is at distance j. Now we can write

26



Gj(x) as

Gj(x) =
n∑
s=0

νs

[ ∞∑
m=0

m∑
k=0

(
s

m

)(
n− s
j −m

)
(q − 1)j−m

(
m

k

)
(q − 2)k

]
xs+j+k−2m

Now we observe that

[x+ (q − 2)xy + y]s[1 + (q − 1)xy]n−s =

∞∑
j=0

yj
[ ∞∑
m=0

m∑
k=0

(
s

m

)(
n− s
j −m

)
(q − 1)j−m

(
m

k

)
(q − 2)k

]
xs+j+k−2m

Multiply above equation on both sides by νs and taking summation over s we get

∞∑
s=0

νs[x+ (q − 2)xy + y]s[1 + (q − 1)xy]n−s =

∞∑
s=0

∞∑
j=0

yj(νs)

[ ∞∑
m=0

m∑
k=0

(
s

m

)(
n− s
j −m

)
(q − 1)j−m

(
m

k

)
(q − 2)k

]
xs+j+k−2m

Substituting value of Gm(x), we get

∞∑
s=0

νs[1 + (q − 1)xy]n
[
x+ (q − 2)xy + y

1 + (q − 1)xy

]s
=

∞∑
m=0

Gm(x)ym

Now, we put z = x+(q−2)xy+y
1+(q−1)xy in above equation to get

G(z)

[
(1− x)(1 + (q − 1)x)

1 + (q − 2)x− (q − 1)xz

]n
=

∞∑
m=0

Gm(x)

[
z − x

1 + (q − 2)x− (q − 1)xz

]m

Multiplying above equation by [1 + (q − 2)x− (q − 1)xz]j−1 on both sides we get

27



G(z)

[
(1− x)(1 + (q − 1)x)

1 + (q − 2)x− (q − 1)xz

]n
[1 + (q − 2)x− (q − 1)xz]j−1 =

∞∑
m=0

Gm(x)

[
[z − x]m

1 + (q − 2)x− (q − 1)xz]m−j+1

]

Now, we will partially differentiate above equation j times w.r.t. z at z = x. We observe

that RHS will contribute only when m=j. So RHS will be

Gj(x)
∂j

∂zj

[
[z − x]j

1 + (q − 2)x− (q − 1)xz

]∣∣∣
z=x

= Gj(x)

[
j!

1 + (q − 2)x− (q − 1)x2

]

Now, on LHS we will get

[(1− x)(1 + (q − 1)x)]n
∂j

∂zj
G(z)

[1 + (q − 2)x− (q − 1)xz]n−j+1

∣∣∣
z=x

Equating RHS and LHS, we get

Gj(x) =
[(1− x)(1 + (q − 1)x)]n+1

j!

∂j

∂zj
G(z)

[1 + (q − 2)x− (q − 1)xz]n−j+1

∣∣∣
z=x

Gj(x) =

j∑
p=0

(
n− p
j − p

)
[(1− x)(1 + (q − 1)x)]p[(q − 1)x]j−p

p!

dpG(x)

dxp

Now taking summation over j=0 to e , we get

e∑
p=0

[(1− x)(1 + (q − 1)x)]p

p!

e−p∑
r=0

(
n− p
r

)
[(q − 1)x]r

dpG(x)

dxp
= [1 + (q − 1)x]n (3.1)

28



This is a generalize differential equation given by Llyod for binary case to any q. Solving

the above differential equation for q = e = 2, we get the following result.

Theorem 3.1.1. The only double error correcting binary perfect code is repetition code

C = {(0, 0, 0, 0, 0), (1, 1, 1, 1, 1)}

Proof. Using the equation (3.1) for e = q = 2, we get

2∑
p=0

[1− z2]p

p!

2−p∑
r=0

(
n− p
r

)
zr
dpW (z)

dzp
= [1 + (q − 1)z]n (3.2)

Next, we substitute Lr = (1− z2)r dr
dzr

and calculate L2 in terms of L1 = L.

L2 =

[
(1− z2) d

dz

][
(1− z2) d

dz

]
= (1− z2) d

dz

[
(1− z2) d

dz

]

= (1− z2)
[
(−2z)

d

dz
+ (1− z2) d

2

dz2

]
= −2zL + L2

Using the above equation, we can rewrite the differential equation in a following way

(L2 + 2(1 + nz)L+ 2(1 + nz + n(n−1)
2

z2))W (z) = 2(1 + z)n (3.3)

We consider a linear operator T′ on vector space V of smooth functions from R to R. Let

T′ : C∞(−1, 1)→ C∞(R) is given as

(T′f)(z) = f(tanhx) (3.4)

This is a invertible linear transformation. If D = d
dx

is a differential operator on V then we

note that T′−1 ◦D ◦ T′ = L. we can rewrite equation (3.3) as

(D2 + 2(1 + n tanh(x))D + 2(1 + n tanh(x) + n(n−1)
2

tanh2(x)) ·W (tanh(x))

= 2(1 + tanh(x))n (3.5)

29



We note that

e
∫ x
0 1+n tanh(t) dt = ex coshn(x)

Substituting H(x) = ex coshn(x)W (tanhx), we can rewrite the equation (3.5) in a following

way

[D2 − (n− 1)]H = 2ex(1+n) (3.6)

We will solve the above differential equation by symbolic method.

H = (D2 − (n− 1))−1(2ex(1+n))

= (D −
√
n− 1)−1( e

x(1+n)
√
n−1 )− (D +

√
n− 1)−1( e

x(1+n)
√
n−1 )

Now for a scalar λ, we have (D − λ)f = g implies f =
∫
g(t)e(x−t)λ dt and hence

(D − λ)−1g = c eλxg +

∫
dt e(x−t)λ g where c is a constant.

Therefore

√
n− 1H(x) =

∫ x

0

dt e(x−t)
√
n−1 et(1+n)

−
∫ x

0

dt e−(x−t)
√
n−1 et(1+n) + aex

√
n−1 + be−x

√
n−1

for some constants a, b determined by H(0) = H ′(0) = 1.

√
n− 1H(x) = ex(1+n)−ex

√
n−1

1+n−
√
n−1 − ex(1+n)−e−x

√
n−1

1+n+
√
n−1 + aex

√
n−1 + be−x

√
n−1

We can rewrite the above equation as

H(x) = n(n+1)
n2+n+2

cosh(x
√
n− 1) + n

√
n−1

n2+n+2
sinh(x

√
n− 1) + 2

n2+n+2
ex(1+n) (3.7)

We assume that k =
√
n− 1 (not necessarily an integer). Additionally, let a = 1 +

(
k
2

)
and

b = 1 + k +
(
k
2

)
. Note that b − a ≥ 2 since n ≥ d = 5. We also observe that a + b = n + 1

and 2ab = (1 + n +
(
n
2

)
) = V2(n, 2) = 2n/M . W (z) = H(tanh−1(z))e− tanh−1(z)n(tanh−1(z))

30



can be written as follows.

W (z) = (1+z)a−1

4ab

[
2(1 + z)b + n(1− z)a

(
b(1 + z)b−a + a(1− z)b−a

)]
Using Mac-Williams transform on WC(z), we get the following expression for WC⊥(z)

W⊥(z) = 1 + n
2
(bza + azb) (3.8)

This implies that a, b are non-negative integers. we also know that 2n

V2(n,2)
= M where M is

size of the code and therefore integer. It implies that a, b are of the form 2A, 2B respectively.

2ab = 1 +
n(n+ 1)

2
= 1 +

(a+ b)(a+ b− 1)

2

This gives

2A+B+1 = 1 + (2A + 2B − 1)(2A−1 + 2B−1) = 1 + 2A−1(2A + 2B − 1)(1 + 2B−A)

For A > 1, RHS is odd and LHS is even which is a contradiction. Therefore we substitute

A = 1 in above equation to get

21+B = 1 + (1 + 2B)(1 + 2B−1) = 1 + 3 · 2B−2 + 4B−1

This implies B = 2. So, we get a = 2 and b = 4. Substituting values of a, b in WC(z), we get

the distance enumerator polynomial of a perfect binary code

WC(z) = 1 + z5 (3.9)

It is easy to observe that the above polynomial is a distance enumerator polynomial of a

repetition code C = {(0, 0, 0, 0, 0), (1, 1, 1, 1, 1)} .

3.2 Distance enumerator polynomial

In this section, we will solve the differential for e = 2 and general q case to get the distance

enumerator polynomial of double error correcting perfect code. The differential equation for

31



e = 2 and general q is given as

2∑
p=0

[(1− x)(1 + (q − 1)x)]p

p!

2−p∑
r=0

(
n− p
r

)
[(q − 1)x]r

dpG(x)

dxp
= [1 + (q − 1)x]n

To simplify the polynomial, we define

Lr = (1− x)r(1 + (q − 1)x)r
dr

dxr

We calculate relation between L2 and L1 = L in a following way

L2 = (1− x)(1 + (q − 1)x)
d

dx

[
(1− x)(1 + (q − 1)x)

d

dx

]

= (1− x)(1 + (q − 1)x)
[
((q − 2)− 2(q − 1)x)

d

dx
+ (1− x)(1 + (q − 1)x)

d2

dx2

]

= ((q − 2)− 2(q − 1)x)L+ L2

We rewrite the differential equation in terms of L to get(
(1 + n(q − 1)x+

(
n

2

)
(q − 1)2x2) + (1− q

2
+ 1 + n(q − 1)x)L+

L2

2

)
W (x) = (1 + (q − 1)x)n

We consider a linear operator T on vector space V of smooth functions from R to R which

is a generalization of the linear operator T′ defined in (3.4). Let T : C∞( −1
q−1 , 1) → C∞(R)

such that

(Tf)(x) = f(
eqy − 1

eqy + q − 1
) (3.10)

This is a invertible linear transformation. If D = d
dy

is a differential operator on V then we

note that T−1 ◦D ◦ T = L. we can rewrite differential equation as

32



(
(1 + n(q − 1)Tx+

(
n
2

)
(q − 1)2(Tx)2)

+ (1− q
2

+ 1 + n(q − 1)Tx) d
dy

+ 1
2
d2

dy2

)
(TW ) = ( qeqy

eqy+q−1)n

To convert the above differential equation with constant coefficients, we define

γ := 3
2

+ (n− 2)(1− 1
q
)

and let

φ(y) = exp

(∫ y

0

qγ + n−q(q−1) exp(−qt)
1+(q−1) exp(−qt)dt

)
= exp(qyγ)

(
1+(q−1) exp(−qy)

q

)
We assume that H(y) = (TW )y φ(y). We can rewrite the differential equation as

d2H

dy2
−
(
qµ

2

)2

H = 2 exp(qyγ) (3.11)

where µ =
√

1 + 4(q−1)(n−2)
q2

. Now, we have a second order differential equation with constant

coefficients with initial conditions H(0) = 1 and H ′(0) = 2 − 2
q
. To make our notations

simpler, we assume that a = γ − µ
2

and b = γ + µ
2
. We also note that Vq(n, 2) = q2ab

2
. It

implies that a, b are non-zero numbers. Solving the differential equation, we get the following

unique solution

H(y) =
2 exp((a+ b)qy/2)

q2ab
+

exp((b− a)qy/2)

2(b− a)
(b− a− 1 + 4

q
− 4

q2a
)

+
exp((a− b)qy/2)

2(b− a)
( 4
qb

+ b− a− 4
q

+ 1)

Now, substituting the value of H(y) we get

33



(TW )y

(1 + (q − 1)Tx)n
=

2

q2ab
+

exp(−aqy)

2(b− a)
(b− a+ 2− q

2
− 1

a
)

+
exp(−bqy)

2(b− a)
(1
b

+ b− a+ q
2
− 2)

Next, we substitute Z = e−qy. Using the Mac-Williams transformation, we replace W (Z) in

terms of W⊥(Z) to get the following expression for W⊥(Z)

W⊥(z) = 1 +
nq(q − 1)

4

[
zab

(
1 +

2/q − 1

b− a

)
+ zba

(
1− 2/q − 1

b− a

)]
(3.12)

This implies that a, b are positive integers. Using Mac-Williams transformation, we get the

following distance enumerator polynomial for double error correcting perfect codes

Vq(n, 2)Wc(z) =

(1 + (q − 1)z)n +
nq(q − 1)

4

[
(1 + (q − 1)z)n−a(1− z)ab

(
1 +

2/q − 1

b− a

)
+

(1 + (q − 1)z)n−b(1− z)ba

(
1− 2/q − 1

b− a

)]

where a+ b = 4−q+2n(q−1)
q

and b− a =
√

1 + 4(q−1)(n−2)
q2

.

Using the fact that a, b are positive integers, we will prove the result due to Reuvers given

in [8]. Let us assume that q is odd. The fact that b − a is integer implies that q2 divides

n− 2. Next, we can write

a+ b− 3 = 2q(q − 1)(n−2
q2

) (3.13)

As we know that a and b divides 2qn, we observe that 3 is the only common prime factor

between a and b. We consider the case gcd(q, 6) = 1. In this case, we get a, b to be coprime.

Let us assume that q is of the form q = pr11 p
r2
2 where p1 and p2 are primes such that p2 ≡ 1

mod p1. As the numbers a, b are coprime they must be of the form a = 2.pα1
1 , b = pα2

2 or

34



a = pα1
1 , b = 2.pα2

2 where α1, α2 ∈ N. In the first case, we observe that RHS of equation

(3.13) is divisible by p1. It implies that

2.pα1
1 + pα2

2 − 3 ≡ 0 mod p1

−2 ≡ 0 mod p1

which is a contradiction. We can get contradiction for second case in a similar way. It implies

that there do not exist any perfect code for alphabet of size q = pr11 p
r2
2 where p1 and p2 are

primes such that p2 ≡ 1 mod p1.

The following lemma is a generalization of the result by Olof Heden for e = 1 case given in

[3].

Lemma 3.2.1. If there exist a q-ary perfect code C of minimum distance d and length n

then Vq(n, e) divides qn−d
⊥(C)+1 where d⊥(C) is the smallest positive power of Z in W⊥(Z)

with non-zero coefficient.

Proof. We will recall a lemma (2.3.3) proved in second section. It state that γi(C) ≥ M/qi.

Also there exists a unique integer d⊥(C) such that γi(C) = M/qi if and only if i ≤ d⊥(C)− 1.

Taking i = d⊥(C) − 1, we get that M

qd
⊥(C)−1

is an integer. In case of perfect code, we have

M = qn

Vq(v,e)
. It implies that qn−d⊥+1

Vq(n,e)
is an integer.

3.3 Alternate proof of Lloyd’s theorem

In order to state Lloyd’s theorem, we will first define a set of orthogonal polynomials known

as Krawtchouk polynomials.

Definition 3.3.1. For k ∈ Z+, we define Krawtchouk polynomial Kk(x) by

Kk(x;n, q) := Kk(x) :=
k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
(q − 1)k−j,

35



where (
x

j

)
:=

x.(x− 1) . . . (x− j + 1)

j!
x ∈ R

We also define Lloyd’s polynomial,

ψj(n, x) :=

j∑
k=0

Kk(n, x) = Kj(x− 1, n− 1; q)

The second equality is given in [9, p. 17].

Theorem 3.3.1. Lloyd’s theorem: If a binary perfect e-error correcting code exists, then

ψe(n, x) has e distinct zeroes among the integers 1, 2, . . . , n where e = d−1
2
.

Proof. We can rewrite the differential equation (3.5) in a following way

On,eW (x) = (1 + (q − 1)x)n

where On,e is an linear differential operator given in a following way

On,e =
e∑
i=0

(1− x)i(1 + (q − 1)x)i

i!
(1 + (q − 1)x)n−i|e−i D

i
x

where

(1 + (q − 1)x)n−i|e−i =
e−i∑
j=0

(
n− i
j

)
[(q − 1)x]j

and Dx = d
dx

. Next, we will show that On,e satisfies the following recurrence relation.

Lemma 3.3.2.

eOn,e = On,e−1{On,1 − (e− 1)(q − 2)} − (q − 1)(n− e+ 1)On,e−2

Proof. We note that On,1 = 1 + n(q− 1)x+ (1− x)(1 + (q− 1)x)Dx . To make the notation

36



simpler, we denote

(1− x)i(1 + (q − 1)x)i

i!
= bi(x)

Our strategy to prove above recurrence relation is to compare coefficients of xmbk(x)Dk
x

for k ∈ {0, 1, . . . , e} and m ∈ {0, 1, . . . , e− k} on both sides of the equation. The coefficient

of xmbk(x)Dk
x in eOn,e is given as

Coefficient of xmbk(x)Dk
x = e

(
n− k
m

)
(q − 1)m

The RHS of equation (2.51) can be written as

On.e−1{On,1 − (e− 1)(q − 2)} − (q − 1)(n− e+ 1)On,e−2 = C1 + C2 + C3 + C4

where C1, C2, C3 and C4 are given as

C1 = 1− (e− 1)(q − 2))
e−1∑
i=0

bi(x)(1 + (q − 1)x)n−i|e−1−i D
i
x

C2 = n(q − 1)
e−1∑
i=0

bi(x)(1 + (q − 1)x)n−i|e−i−1[xD
i
x + iDi−1

x ]

C3 = − (q − 1)(n− e+ 1)
e−2∑
i=0

bi(x)(1 + (q − 1)x)n−i|e−2−i D
i
x

C4 =
e−1∑
i=0

bi(x)(1 + (q − 1)x)n−i|e−1−i{(1− x)(1 + (q − 1)x)Di+1
x

+ i[(q − 2)− 2(q − 1)x]Di
x +

(
i
2

)
[−2(q − 1)Di−1

x ]}

37



The coefficient of xmbk(x)Dk
x on RHS is given as

Coefficient of xmbk(x)Dk
x =(q − 1)m

(
n− k
m

)[
1− (e− 1)(q − 2) +

nm

n− k −m+ 1

+ (q − 1)(n− k −m) + (q − 2)m− m(m− 1)

n− k −m+ 1
+

k(n− k + 1)

n− k −m+ 1

− 2km

n− k −m+ 1
+ k(q − 2)− (q − 1)(n− e+ 1)

]

= e(q − 1)m
(
n− k
m

)

We use linear operator T defined in (3.10). We can rewrite the differential equation as

(T ◦On,e ◦ T−1)TW (x) =

[
qeqy

eqy + q − 1

]n

(T ◦On,e ◦ T−1)W
(

eqy − 1

eqy + q − 1

)
=

[
qeqy

eqy + q − 1

]n
Using the Mac-Williams transformation above equation can be written as

(T ◦On,e ◦ T−1)
W⊥(e−qy)

1 + (q − 1)e−qy
= Vq(n, e)

[
eqy

eqy + q − 1

]n
Rearranging the terms in above equation, we get[

(1 + (q − 1)e−qy)n ◦ T ◦On,e ◦ T−1 ◦ 1
(1+(q−1)e−qy)n

]
W⊥(e−qy) = Vq(n, e) (3.14)

Let us denote Pn,e = (1 + (q − 1)e−qy)n ◦ T ◦ On,e ◦ T−1 ◦ 1
(1+(q−1)e−qy)n

. The recurrence

relation for Pn,e can be written as

ePn,e = Pn,e−1{Pn,1 − (e− 1)(q − 2)} − (q − 1)(n− e+ 1)Pn,e−2

38



The term Pn,1 is given as

Pn,1 =1 + n(q − 1)
eqy − 1

eqy + q − 1
+Dy +

nq(q − 1)

eqy + (q − 1)

=Dy + (n− 1)(q − 1) + q

Therefore, we get

ePn,e = Pn,e−1{Dy + (n− 1)(q − 1) + q − (e− 1)(q − 2)} − (q − 1)(n− e+ 1)Pn,e−2

Now, we recall the Lloyd’s polynomial defined in equation (2.32). The recurrence relation

satisfied by Krawtchouk polynomial is given in [9, p. 16].

(k + 1)Kk+1(x) = {k + (q − 1)(n− k) + qx}Kk(x)− (q − 1)(n− e+ 1)Kk−1(x)

From above relation, we easily get the recurrence relation satisfied by ψe and it is given as

eψe(−T/q) = {e+ (q − 1)(n− e+ 1) + T}ψe−1(−T/q)− (q − 1)(n− e+ 1)ψe−2(−T/q)

It is easy to observe that Pn,e(T ) = ψe(−T/q) and we also have ψe(0) = Vq(n, e). Therefore,

we get

ψe

(
−1

q

d

dy

)
(W⊥(e−qy)− 1) = 0

We know that W⊥(e−qy) is a polynomial in variable e−qy. If we substitute

W⊥(e−qy)− 1 =
n∑
i=1

A⊥i e
−qyi

in the above differential equation then we get

n∑
i=1

A⊥i ψe(i)e
−qyi = 0

Next, we can prove that fi(y) = e−qyi for i ∈ {1, . . . , n} are linearly independent functions

using Wronskian method. The matrix in the Wronskian method is Vandermonde matrix and

39



therefore we get

∣∣∣∣∣∣∣∣∣∣∣∣

e−qy e−2qy · · · e−nqy

(−q)e−qy (−2q)e−2qy · · · (−nq)e−nqy

(−q)2e−qy (−2q)2e−2qy · · · (−nq)2e−nqy
...

...
...

(−q)n−1e−qy (−2q)n−1e−2qy · · · (−nq)n−1e−nqy

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 (3.15)

It implies that A⊥i ψe(i) = 0 ∀ i ∈ {1, 2, . . . , n}. If A⊥i 6= 0 then it implies that ψe(i) = 0.

Let λi for i ∈ {1, 2, . . . , e} are roots of ψe(x) and there are s⊥ number of powers in W⊥(z)

with non-zero coefficient except constant. The roots of ψe(x) are distinct and lie in interval

[0, n] is given in [9, p. 17]. Let the powers in the W⊥(z) with non-zero coefficient be lj for

j ∈ {1, 2, . . . , s⊥}. It implies that

{l1, l2, . . . , ls⊥} ⊂ {λ1, λ2, . . . , λe}

therefore, we have s⊥ ≤ e. It is also proved in [6, p. 175] that s⊥ ≥ e. It implies that s⊥ = e.

As there are exactly e non-zero coefficients in W⊥(z) except the constant term, we get the

result by Lloyd for any q that ψe(x) must have e distinct integral roots in interval [0, n].

If a perfect code exists for parameters n, d and q then in that case we can calculate the

exact value of Aq(n, d) but perfect codes exist in only few cases. As we do not know the

exact value of Aq(n, d), it is hard to calculate the maximum rate of transmission for for

general n and d. This question becomes more tractable by defining a function known as the

asymptotic rate function. The asymptotic rate function is discussed in more details in the

next chapter.

40



Chapter 4

Asymptotic rate function

In this chapter, we will study about the maximum rate of transmission of a code asymptot-

ically as a function of relative minimum distance. We want both of these quantities to be

high for codes. As we have discussed in Chapter 1, these are mutually conflicting require-

ments. The trade-off between these quantities is captured in a function called asymptotic

rate function. The asymptotic rate function is defined as follows

Definition 4.0.1. Asymptotic rate function for codes is a function αq : [0, 1]→ [0, 1] defined

by:

αq(δ) = lim sup
n→∞

logq Aq(n, δn)

n
(4.1)

The exact value of αq(δ) is unknown because calculating exact value of Aq(n, d) is very

hard. To study the nature of asymptotic rate function, we will use the bounds and properties

of Aq(n, d) discussed in Chapter 1.

4.1 Basic properties of asymptotic rate function

In this section, we will discuss about the special case of convexity of αq(x) along with basic

properties. We will also prove the continuity of αq(δ).

Lemma 4.1.1. αq(0) = 1 and αq(1) = 0.

41



Proof. It is easy to observe that Aq(n, 0) = qn. It implies that n−1 logq Aq(n, 0) = 1. Taking

lim supn→∞ we get the first result. For the second part, we will first prove that Aq(n, n) = q.

Using Singleton bound (1.2.3), we get Aq(n, n) ≤ qn−n+1 = q. Now, size of a repetition

code is q with minimum distance n in Fn. It implies that Aq(n, n) = q and therefore

n−1 logq Aq(n, n) = 1/n. Taking lim supn→∞ we get the second result.

Lemma 4.1.2. αq(x) is a decreasing function of x.

Proof. As we know that Aq(n, d) is a decreasing function of d. It implies that

n−1 logq Aq(n, xn) ≥ n−1 logq Aq(n, yn) for x ≤ y

Taking lim supn→∞ we get αq(x) ≥ αq(y) for x ≤ y.

Next, we will calculate the asymptotic version of singleton bound.

Lemma 4.1.3. αq(x) ≤ 1− x

Proof. The singleton bound can be written as follows

Aq(n, xn) = Aq(n, dxne) ≤ qn−dxne+1 (4.2)

It implies that

αq(x) = lim sup
n→∞

logq Aq(n, xn)

n
≤ lim sup

n→∞

n− dxne+ 1

n
= 1− x (4.3)

Lemma 4.1.4. 1−αq(x)

x
is a decreasing function of x.

Proof. Let us take x, y such that 0 ≤ x ≤ y ≤ 1. We need to show that

αq(x) ≤ 1−
[
x

y
(1− αq(y))

]

42



Now, substitute 1− x/y = τ . The above inequality can be written as follows

αq(x) ≤ 1− (1− τ)

[
1− αq

(
x

1− τ

)]

= 1−
[
1− αq

(
x

1− τ

)
− τ + ταq

(
x

1− τ

)]

= τ + (1− τ)αq

(
x

1− τ

)
where 0 ≤ x ≤ 1− τ ≤ 1

We will show that the above inequality is a special case of convexity of αq(x). The convexity

of αq(x) is an open question. Convexity condition is as follows

αq(λx+ (1− λ)y) ≤ λαq(x) + (1− λ)αq(y) (4.4)

Fixing x = 0 and λ = τ , we get

αq

(
0 + (1− τ)

x

1− τ

)
≤ ταq(0) + (1− τ)αq

( x

1− τ

)

αq(x) ≤ τ + (1− τ)αq

( x

1− τ

)
So, proving the above inequality is equivalent to prove the special case of convexity. Cross

sectional bound on Aq(n, d) for a sequence dn = xn and tn = dτne gives

Aq(n, xn) ≤ Aq(n− tn, xn)qtn

= Aq

(
n− tn, (n− tn)

xn

n− tn

)
qtn

= Aq

(
n− tn, (n− tn)

x

1− tn/n

)
qtn

We have tn/n ≥ τ and Aq(n, d) is a decreasing function of d implies that

Aq(n, xn) ≤ Aq

(
n− tn, (n− tn)

x

1− τ

)
qtn (4.5)

43



To get the asymptotic version of the above equation we will multiply and divide by n − tn
to get

n−1 logq Aq(n, xn) ≤
(n− tn

n

) logq Aq

(
n− tn, (n− tn) x

1−τ

)
n− tn

+
tn
n

We can observe that

lim sup
n→∞

logq Aq

(
n− tn, (n− tn) x

1−τ

)
n− tn

≤ lim sup
n→∞

logq Aq

(
n, (n) x

1−τ

)
n

= αq(
x

1− τ
)

because sequence on left hand side is a subsequence of sequence on right hand side. Taking

lim supn→∞ and using the above inequality, we get

αq(x) ≤ (1− τ)αq(
x

1− τ
) + τ (4.6)

Using lemma (4.1.4) and lemma (4.1.2), we will now show that αq(x) is a continuous

function.

Lemma 4.1.5. αq(x) is a continuous function of x.

Proof. We have to show that

lim
x→x0

αq(x) = αq(x0)

Let us take y such that y < x0 . Using lemma (3.1.4), we can write

1− αq(y)

y
≥ 1− αq(x0)

x0

αq(y) ≤ 1− y

x0
(1− αq(x0))

44



As the function αq(x) is a decreasing function, we get

αq(y) ≥ αq(x0)

Therefore, we get

αq(x0) ≤ αq(y) ≤ 1− y

x0
(1− αq(x0))

It implies that

lim
y→x−0

αq(y) = αq(x0)

Similarly for x > x0, we get

αq(x0) ≥ αq(x) ≥ 1− x

x0
(1− αq(x0))

Therefore, we get

lim
x→x+0

αq(x) = αq(x0)

Using Plotkin bound, we get another linear bound on αq(x) and it also determines the

exact value of αq(x) in a particular interval.

Lemma 4.1.6.

αq(x) ≤ 1− x

θ
if x ∈ [0, θ]

αq(x) = 0 if x ∈ [θ, 1]

Proof. Using Plotkin bound (1.2.4) for a [n,M, d]q code C, we get

M ≤ b 1

1− (θ/δ)
c

45



where θ = 1− q−1 and δ = d/n provided that δ > θ. To get the asymptotic version, we take

d = xn.

n−1 logq Aq(n, xn) = n−1 logq Aq(n, dxne) ≤ n−1 logq(1− (nθ/dxne))

Now taking lim supn→∞ on both sides, we get

αq(x) ≤ lim sup
n→∞

n−1 logq(1− (nθ/dxne))

For x > θ we get αq(x) ≤ 0, but we already know that αq(x) ≥ 0. It implies that αq(x) = 0

when x > θ. We also get αq(θ) = 0 due to continuity property of αq(x). Using lemma (4.1.4)

in interval x ∈ [0, θ], we have

1− αq(x)

x
≥ 1− αq(θ)

θ
=

1

θ

αq(x) ≤ 1− x

θ
.

4.2 Non-linear upper bounds on αq(x)

In this section, we discuss the asymptotic version of Hamming and Gilbert-Varshamov bound.

We will also state Elias bound which is a better upper bound than Hamming and Plotkin

bound for αq(x) for a low relative minimum distance. Let us begin this section by defining

Shannon-Hilbert q-ary entropy function.

Definition 4.2.1. Shannon-Hilbert q-ary entropy function is a function Hq : [0, 1]→ [0, 1]

Hq(x) = −
(

(1− x) logq(1− x) + x logq

( x

q − 1

))
(4.7)

The importance of the above function can be understood from the next two theorems.

Theorem 4.2.1. Let Sq(n, r) denote the size of sphere of radius r in space Fn where |F| = q

46



and a sequence of numbers tn such that limn→∞ tn/n = t then

lim
n→∞

logq(Sq(n, tn))

n
= Hq(t) (4.8)

Theorem 4.2.2. Let xn be a sequence of numbers such that limn→∞ xn/n = x and xn/n ∈
[0, 1] then

lim
n→∞

logq(Vq(n, xn))

n
=

Hq(x), if 0 ≤ x ≤ θ

1, if θ ≤ x ≤ 1
(4.9)

The first theorem is a standard theorem in coding theory. The second theorem is a

result of first theorem which can be proved using the following relation between Sq(n, r) and

Vq(n, r).

Vq(n, r) = Sq(n, 0) + Sq(n, 1) + · · ·+ Sq(n, r)

Next, we will calculate the asymptotic version of Hamming and Gilbert-Varshamov bound

using the above theorem.

Theorem 4.2.3. Asymptotic version of Hamming bound:

αq(x) = αH(x) ≤ 1−Hq(x/2) for x ∈ [0, 1]

Proof. First, we note that

Aq(n, xn) = Aq(n, dxne)

To get the asymptotic version of Hamming bound, We will take d = xn.

Aq(n, xn) ≤ qn

Vq(n,
dxne−1

2
)

Let us assume that xn = dxne−1
2

. It is easy to observe that xn/n → x/2 as n → ∞ and

47



also 0 ≤ x/2 ≤ θ. Using the theorem (4.2.2), we get

αq(x) = lim sup
n→∞

logq Aq(n, xn)

n
≤ 1− lim sup

n→∞

logq Vq(n, xn)

n
= 1−Hq(x/2)

Theorem 4.2.4. Asymptotic version of Gilbert-Varshamov bound:

αq(x) ≥ 1−Hq(x) for x ∈ [0, θ] (4.10)

Proof. To get the asymptotic version of Gilbert-Varshamov bound, we take d = xn.

Aq(n, xn) ≥ qn

Vq(n, dxne − 1)

Let us consider a sequence xn = dxne − 1. We get that limn→∞
dxne−1

n
= x. As we have

assumed that 0 ≤ x ≤ θ, using the theorem (4.2.2) we get

αq(x) = lim sup
n→∞

logq Aq(n, xn)

n
≥ 1− lim sup

n→∞
Vq(n, xn) = 1−Hq(x)

To discuss about the Elias bound, we will first recall Bassalygo-Elias lemma given in the

Chapter 1. It states

Aq(n, d) ≤ qnAq(n, d;L)

|L|

where |L| is size of the set L and Aq(n, d;L) represents largest possible size of code of length

n and minimum distance at least d. If we choose a sequence of particular balls Ln as L then

the above inequality asymptotically gives the Elias bound and it is represented as αE(x).

Theorem 4.2.5. Elias bound:

αq(x) ≤ αE(x) = αH(2θ(1−
√

1− x/θ)) (4.11)

where θ = 1− q−1 and x ∈ [0, θ].

48



The following graph shows comparison of Elias, Hamming and Plotkin bound for q = 8

in Fig. 4.1

Figure 4.1: The Elias, Hamming and Plotkin bounds shown in magenta, green and blue
respectively.

4.3 Convexity property of αq(x)

In this section, we discuss about improvement in the asymptotic version of Hamming and

Elias bound due to K. Kaipa. We also discuss about the open question on ∪−convexity of

αq(x).

Let us recall the anticode bound stated in the Chapter 1. It states that for any [n,M, d]q

code C and L be any anticode of diameter d− 1, we have

M ≤ qn

|L|

To get good upper bound on the size of the code, we must choose the anticode with maximum

size and radius d − 1. Let the maximum size of an anticode of radius d − 1 and length n

is represented by A∗q(n, d− 1). Therefore, we can rewrite the anticode bound in a following

49



way

Aq(n, d) ≤ qn

A∗q(n, d− 1)

The asymptotic version of the above bound is

αq(x) ≤ 1− α∗q(x) (4.12)

where α∗q(x) is given by

α∗q(x) = lim inf
n→∞

logq Aq(n, xn)

n

For α∗q(x), we have a following (in)equality 1 due to Ahlswede and Khachatrian in [1].

α∗(x) ≥

{
Hq(x/2) 0 ≤ x ≤ 2/q

1− (1− x)Hq(1) 2/q ≤ x ≤ 1
.

Using the above expression in asymptotic version of anticode bound, we get a new upper

bound and it is called as hybrid Hamming-Singleton bound. This upper bound improves

both Hamming and Singleton bound. It is given by

α(x) ≥ αHS(x) =

{
1−Hq(x/2) 0 ≤ x ≤ 2/q

(1− x)Hq(1) 2/q ≤ x ≤ 1
.

We can observe that the hybrid Hamming-Singleton bound is equal to Hamming bound in

the interval [0, 2/q]. The function in interval [2/q, 1] is a tangent to αH(x) at x = 2/q. The

improvement of Hamming and Singleton bound for q = 8 is compared in a Fig. 4.2

The improvement in Elias bound for non-binary codes is achieved by replacing the set L
in the Bassalygo-Elias lemma by a sequence of specific anticodes Ln to asymptotically give

improvement in Elias bound. The new upper bound is called as hybrid Elias-Plotkin bound.

It improves both Elias and Plotkin bound.

1It was proved by Ahlswede and Khachatrian that this is actually an equality. For our purposes, however,
we only need the inequality and it is much easier to prove.

50



Figure 4.2: Improvement in Singleton and Hamming bound

αEP (x) =

{
1−Hq(θ −

√
θ2 − xθ) 0 ≤ x ≤ 2q−3

q(q−1)

(θ − x) (q−1)Hq(1)

q−2
2q−3
q(q−1) ≤ x ≤ θ

The proof of the hybrid Elias-Plotkin bound is given in [4]. We observe that the hybrid

Elias-Plotkin bound is equal to Elias bound in the interval [0, 2q−3
q(q−1) ]. The improvement in

the interval [ 2q−3
q(q−1) , θ] is a tangent to αE(x) at x = 2q−3

q(q−1) . Hybrid Elias-Plotkin bound is a

correction to the non-convex part of Elias bound. The improvement of Elias bound for q = 8

is compared in Fig. 4.3

The convexity condition on αq(x) is given as follows

αq(tx+ (1− t)y) ≤ tαq(x) + (1− t)αq(y)

The above property holds for x = 0. It is proved in lemma(3.1.3). In the paper [4] it has

been conjectured by K. Kaipa that the above conditions also holds for x = θ. If we assume

this conjecture is true then the improvement in Elias and hamming bound can easily be seen.

51



Figure 4.3: Improvement in Elias and Plotkin bound

52



Chapter 5

Results and Conclusion

In coding theory, we require codes with high error correcting capacity and efficiency which are

determined by parameters relative minimum distance and rate of transmission respectively.

As these requirements are mutually conflicting, we have studied their trade-off by asking the

question that what is the largest size of the code Aq(n, d) for minimum distance d. As the

exact value of Aq(n, d) is hard to calculate, in Chapter 1, we have discussed the bounds and

properties of Aq(n, d). The most intuitive upper bound for the size of the code is Hamming

bound. The codes attaining this bound are called perfect codes. The problem of existence of

perfect codes is a very interesting problem and it is unresolved for e = 2 case. We attempted

this problem in Chapter 3. Our work in Chapter 3 is motivated from the differential equation

derived by Lloyd for binary case. In this thesis, we have generalized the differential equation

by Lloyd for binary case to any size of the alphabet. By solving the differential equation for

e = 2 case, we provide the expression for distance enumerator polynomial of double error

correcting perfect codes. In this work, we also present an alternate proof for Lloyd’s theorem

for any size of the alphabet. We have recovered and generalized some necessary conditions on

existence of perfect codes by Reuvers and Olof Heden for any e. As the necessary condition by

Lloyd is not enough to solve the e = 2 case, we will need more stronger necessary conditions

to resolve the problem.

The question of finding the maximum rate of transmission became more tractable by

defining asymptotic rate function which captures the trade-off between these quantities. As

we do not know the exact value of Aq(n, d), the exact value of asymptotic rate function

53



is unknown. Understanding the properties of asymptotic rate function is a very important

problem in coding theory. In Chapter 4, we studied the properties and bounds on asymptotic

rate function by finding the asymptotic version of bounds on Aq(n, d) discussed in Chapter

1. The work done in [4] by K. Kaipa gives insights into the special case of an open problem of

∪−convexity property of the asymptotic rate function which is consider as simpler problem

compared to the problem of finding the exact value of the asymptotic rate function or the

question to check if the asymptotic rate function is differentiable or not.

54



Bibliography

[1] Rudolf Ahlswede and Levon H. Khachatrian. The diametric theorem in hamming spaces-
optimal anticodes. Adv. Appl. Math., 20(4):429–449, May 1998.

[2] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Res. Rep. Suppl., (10):vi+97, 1973.

[3] Olof Heden and Cornelis Roos. The non-existence of some perfect codes over non-prime
power alphabets. Discrete Math., 311(14):1344–1348, 2011.

[4] Krishna Kaipa. An improvement of the asymptotic Elias bound for non-binary codes.
IEEE Trans. Inform. Theory, 64(7):5170–5178, 2018.

[5] S. P. Lloyd. Binary block coding. Bell System Tech. J., 36:517–535, 1957.

[6] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II. North-
Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Mathemat-
ical Library, Vol. 16.

[7] Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch.
New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE
Trans. Information Theory, IT-23(2):157–166, 1977.

[8] Henricus Franciscus Hubertus Reuvers. Some non-existence theorems for perfect codes
over arbitrary alphabets. Technische Hogeschool Eindhoven, Eindhoven, 1977. Writ-
ten for conferment of a Doctorate in Technical Sciences at the Technische Hogeschool,
Eindhoven, 1977.

[9] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in Mathemat-
ics. Springer-Verlag, Berlin, third edition, 1999.

55


	Abstract
	Error correcting codes in Hamming metric
	Main problem in coding theory
	Bounds on the largest size of the code

	Binomial Moments
	Relation to distance enumerator polynomial
	Mac-Williams identities
	Properties of Binomial Moments

	Perfect codes
	Generalized differential equation
	Distance enumerator polynomial
	Alternate proof of Lloyd's theorem

	Asymptotic rate function
	Basic properties of asymptotic rate function
	Non-linear upper bounds on q(x)
	Convexity property of q(x)

	Results and Conclusion

