
Derivative-Free Optimization to
model Continuous Glucose

Monitoring in Type 2 Diabetes

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Durga M Parkhi

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019



Supervisor: Prof. Pranay Goel

c© Durga M Parkhi 2019

All rights reserved



Certificate

This is to certify that this dissertation entitled Derivative-Free Optimization to

model Continuous Glucose Monitoring in Type 2 Diabetestowards the partial

fulfilment of the BS-MS dual degree programme at the Indian Institute of Science

Education and Research, Pune represents study/work carried out by Durga M

Parkhi at Indian Institute of Science Education and Research under the supervision

of Prof. Pranay Goel, Associate Professor, Department of Biology , during the

academic year 2018-2019.

Prof. Pranay Goel

Committee:

Prof. Pranay Goel

Prof. Santhanam





This thesis is dedicated to everyone suffering from diabetes and its complications.





Declaration

I hereby declare that the matter embodied in the report entitled Derivative-Free

Optimization to model Continuous Glucose Monitoring in Type 2 Diabetes are the

results of the work carried out by me at the Department of Biology, Indian Institute

of Science Education and Research, Pune, under the supervision of Prof. Pranay

Goel and the same has not been submitted elsewhere for any other degree.

Durga M Parkhi





Acknowledgments

I would like to take this opportunity to thank everyone who has contributed in mak-

ing this study successful.

First of all, I would like to express my deep gratitude to my guide, Professor Pranay

Goel, who has mentored me for the past 3 years and has groomed me to be a research

student. I am indebted to him for teaching me to learn on my own, and in particu-

lar, through my mistakes. He always urged me to discern my mistakes and correct

them myself. He gave me a vast exposure to the real scientific research environment.

The learnings from his emphasis on the quality of work and perfection will be very

valuable in the future, too. I feel blessed to have had him as my guide.

Next, I would like to thank Dr. Anil Vaidya and Dr. Mita Shah for providing

the clinical data for this study.

Arjun and Sandra, who are Ph.D. students from our lab, have constantly supported

me all throughout this work and have been a source of motivation and inspiration.

Sandra’s relentless efforts in helping me write a final report on modeling for gastro-

paresis are truly commendable.

At a broader level, I would like to thank IISER for providing a platform to get

a glimpse of scientific research, from all the semester projects and this final year

project, that has been included in our curriculum. The entire IISER fraternity was

always ready to help, whenever needed.

Last but not the least, my family has always been extremely supportive during all

ix



x

my endeavors.



Abstract

Continuous Glucose Monitoring (CGM) is a novel technique to monitor plasma

glucose levels in response to food and other daily activities of people diagnosed with

Type 2 Diabetes (T2D). In an earlier study (Goel et al., 2018), we proposed a new

dynamic diagnostic test, called ‘Isolated Liquid Meal Tolerance Test’ (ILMTT) to

obtain personalized estimates of clinically important parameters like Insulin Sensi-

tivity index (SI) and maximum Insulin Secretion (Imax). This is achieved through

the fitting of the CGM data, with isolated liquid meals, to the model glucose graph

by following a standardized optimization procedure. The formal optimization is per-

formed in Matlab, using the function fmincon. However, as CGM data is noisy and

contains discrete points, it is not smooth. Here, we develop an optimization code

based on derivative free methods, (directional direct search method) and test it on

more CGM data sets to obtain personalized SI and Imax. In addition to this, we use

derivative-free optimization to model glucose and insulin data obtained from mixed

meal tolerance test (MMTT) of a person diagnosed with gastroparesis. In the long

term, the aim of this study is to develop a robust algorithm that should give out

the indices SI and Imax when the CGM data is given as input, for as many people

as needed, in a very short time. Thus, we present a novel approach for modeling

CGM data in type 2 diabetes using derivative-free optimization. We propose that

our technique will be useful for developing a personalized medicine in T2D: Personal-

ized analysis of CGM will not only help in prescribing the diet for T2D patients but

also be useful in testing the exact effect of drugs.

Keywords: continuous glucose monitoring, minimal model, type 2 diabetes, insulin

secretion, derivative free methods
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Introduction

What is Derivative-free optimization (DFO)?

Derivative-free optimization focuses on developing algorithms to optimize a function

without having the analytical knowledge of that function [1]. Most of the optimiza-

tion algorithms that have been developed till now are based on the information of

the derivatives of the function. For instance, Taylor models have been widely used

in derivative-based optimization. However, it always may not be possible to find

the derivative of the function to be optimized. For the purpose of optimizing such

functions, a considerably new field, called derivative-free optimization, is emerging.

There are mainly three reasons for requiring to use derivative-free optimization [2]:

1. The objective function to be optimized may not be known in the explicit func-

tional form. In this case, since the functional form is not known, computing its

derivative is not possible.

2. The explicit functional form of the objective function may be known, but it may

be too expensive to compute its derivative. This case arises especially when the

objective function is very complex.

3. The objective function may have a simple functional form, but it may be very

noisy. In this case, the computed derivatives of the objective function may not

be accurate.

Derivative-free optimization can be used in unconstrained as well as constrained op-

timization. However, the field of constrained derivative-free optimization is very new.
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2 CONTENTS

We will only look at unconstrained derivative-free optimization and its applications

as a part of this work. Both smooth and non-smooth problems can be addressed

using derivative-free optimization [3].

Why is DFO used in this study?

The number of people getting affected by diabetes is continuously rising over the

years. At the same time, a lot of efforts are being directed to using technology in

the study of diabetes. Continuous glucose monitoring (CGM) is one such novel way

for measuring blood glucose at regular intervals, and gives us a broad insight into

the glycemic excursions after meals and other regular activities throughout the day

[4]. In an earlier study, we have already modeled the glucose pulsatility observed in

CGM data of a non-diabetic and diabetic person, and recovered the model parameters,

which can potentially be useful in developing personalized medicine for type 2 diabetes

[5]. The optimization was carried out using derivative-based methods like fmincon

and patternsearch, in Matlab. However, since CGM data is very noisy, and consists

of discrete points, it is not smooth. Therefore, using derivative-based methods for

optimization of CGM data may not yield the best results. Therefore, we propose to

extend the work from [5] by using derivative-free optimization.

Goal of this study

To the best of our knowledge, this study is a first attempt at using derivative-free

optimization for modeling Continuous Glucose Monitoring data in type 2 diabetes.

Towards the end, we will also use derivative-free optimization to model both glucose

and insulin data simultaneously, obtained from mixed meal tolerance test (MMTT) of

a patient diagnosed with gastroparesis. In general, the goal of this study is to attempt

to solve the problem: arg minx∈Rn f(x), where f(x) is the objective function to be

optimized and x is the set of parameters over which the derivative-free optimization

will take place.



Chapter 1

Preliminaries

1.1 Introduction

Insulin sensitivity index (SI) and maximum insulin secretion index (Imax) are the two

major indices in the study of type 2 diabetes. SI describes how sensitive our body is

to the effects of insulin and Imax is the maximum capacity of the β cells to secrete

insulin in order to lower the blood glucose concentration. Hence, when insulin sensi-

tivity is lowered, the β cells get a false feedback that blood glucose concentration is

still higher than normal due to insufficient secretion of insulin. In order to compensate

for this condition, the β cells tend to secrete even more insulin. This is known as ‘hy-

perinsulinemia’ which occurs in the early stages of type 2 diabetes. As this condition

progresses, even the maximum secretory capacity of the β cells starts deteriorating.

Thsis leads to the phenomenon known as ‘β cell exhaustion’ in the later stages of type

2 diabetes. As most of all these stages of type 2 diabetes can be described with the

help of the indices SI and Imax, they play a crucial role in the study of type 2 diabetes.

It is already known that the indices SI and Imax vary from person to person. However,

to the best of our knowledge, there is no study yet published to estimate the actual

values of SI and Imax for a particular person. The novel idea of this research is that we

can obtain a good estimate of the actual values of SI and Imax for a particular person

as output when the Continuous Glucose Monitoring (CGM) data of that person is

3
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provided as input to our model. Inside the model: The model glucose obtained from

the glucose differential equation is dependent on the model parameters. The aim is

to obtain the optimized set of model parameters such that the model glucose curve

best fits the input CGM data. As SI and Imax are two of the model parameters, we

obtain their optimized values as the output of this fitting process.

Through our analysis, it has been observed that liquid meals from the CGM data

can be captured well by our model, and hence, we proposed the ‘Isolated Liquid

Meals Tolerance Test’ (ILMTT). ILMTT essentially means that during the course of

CGM measurement, the person should intake liquid meals, which are separated from

each other by a sufficient time interval. The estimation of the indices SI and Imax

can potentially lead to the development of personalized medicine for type 2 diabetes.

1.2 Continuous Glucose Monitoring (CGM)

CGM is a novel technique used to measure blood glucose levels at regular intervals.

The sensor, which is attached to either the arm or the abdomen of the person, mea-

sures blood glucose at every 15 minutes for a period of 14 days. The time series

obtained from CGM data helps us get broad insight into the variation of blood glu-

cose in a day, following meals and other regular activities. It can be observed that the

average blood glucose is much higher in the diabetic CGM data (around 200 mg/dl)

than that in the non-diabetic CGM data (around 100 mg/dl). Also, the width and

the amplitude of the glucose pulses in the diabetic CGM time series is much larger

than that in the non-diabetic CGM time series. CGM not only depends on the food

intake the person has during the course of measurement, but it also depends on the

individual physiology of the person. Hence, a complete dynamic modeling of the

CGM time series is difficult at this point of time. In this study, our aim was to

model the ’glucose pulsatility’ involved in CGM time series. Glucose pulsatility is the

variation of glucose following a meal. In other words, we tried to model the glucose

peaks observed in the CGM data following breakfast, lunch, dinner, etc.
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Figure 1.1: The figure shows the Continuous Glucose Monitoring (CGM) time series
of a non-diabetic person. It can be seen from the time series that the average blood
glucose is approximately 100 mg/dl. Also, the width and the amplitude of the glucose
pulses appears to be smaller than in the diabetic CGM time series.

Figure 1.2: The figure shows the Continuous Glucose Monitoring (CGM) time series
of a diabetic person. It can be seen from the time series that the average blood glucose
is approximately 200 mg/dl. Also, the width and the amplitude of the glucose pulses
appears to be larger than in the non-diabetic CGM time series.

1.3 The CGM model

For this purpose, we adopted the Topp model for glucose-insulin dynamics and de-

veloped a two compartmental food dynamics model. The stomach and the gut are

the two compartments.

The CGM Model is given as follows:

dG

dt
= R0 − (EG0 + SII)G+ kgutqgut (1.1)
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dI

dt
=
ImaxG

2

α +G2
(1.2)

dqsto
dt

= −kstoqsto (1.3)

dqgut
dt

= kstoqsto − kgutqgut (1.4)

Food enters the stomach and leaves to enter the gut with rate constant ksto. It leaves

the gut with rate constant kgut and then enters the bloodstream. The glucose differ-

ential equation in the Topp model for G-I dynamics contains terms for constant rate

of increase of glucose (R0), insulin-independent disposal of glucose from the blood

(EG0 · G), insulin-dependent disposal of glucose from the blood (−SI · I · G) and a

term responsible for the the rate of increase of glucose in the blood due to the intake

of food (kgut ·qgut). In the insulin differential equation, the rate of increase of insulin in

the blood is given by the term ImaxG2

α+G2 , which is a sigmoidal function and the clearance

of insulin from the blood is given by the term −kI · I.

The cost function to be optimized is the sum of squared difference between CGM

data and the model glucose. This is a function of the model parameters over which

the optimization is carried out. The optimization was carried out in Matlab using a

combination of the functions fmincon and patternsearch using suitable constraints

and the tolerance was set to 10−6 for the termination of the code.

1.4 Results

1.4.1 Non-diabetic CGM

The figure depicts a 24-hr period non-diabetic CGM data (Red). The black curve is

the model glucose curve. We can see that the first peak, which is due to a liquid meal

fits well as compared to the other two peaks, which are due to mixed meals.
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Figure 1.3: The figure shows a 24 hr period non-diabetic CGM data (red), starting
at 12:00 hrs in the night, overlaid with the model simulation glucose curve (black).
Out of the three selected foods, as can be seen in the figure, the first is a liquid meal
and other two are mixed meals. Liquid meal can be seen to fit very well as compared
to mixed meals.

1.4.2 Diabetic CGM

Similar procedure was followed for fitting the liquid meal from diabetic CGM data.

We captured this liquid meal from the food diary we asked the patients to maintain

during the course of CGM measurement. As it can be seen from the figure, the peak

due to a liquid meal from the diabetic CGM data can be fit well by the CGM model.

Figure 1.4: The figure shows a 24 hr period diabetic CGM data (red), starting at
about 04:00 hrs in the night, overlaid with the model simulation glucose curve (black).
An isolated liquid meal was selected from the diet diary of the patient and can be
seen to fit very well by the model.



8 CHAPTER 1. PRELIMINARIES

1.5 Objective of the current study

Further, we decided to extend this study by using derivative-free method for opti-

mization. We decide to use derivative free methods for two reasons:

1. CGM data may involve noise.

2. CGM data is not smooth, it is discontinuous.

As a result, use of derivative-based methods like fmincon and patternsearch may

induce some errors in the optimized values of the model parameters. Therefore, we

resorted to using derivative-free optimization. Derivative-free optimization and its

numerous applications are described in this thesis in the chapters ahead.

The objective of this work is as follows:

1. To study derivative optimization algorithm and develop codes in Matlab to test

on various applications

2. To study if derivative-free optimization can be used to recover the parameters

of the Continuous Glucose Monitoring (CGM) model

3. To evaluate the model parameters of the modified CGM model as well as the

model having gut dynamics given by the Lehmann-Deutsch model, to fit glu-

cose and insulin data obtained from Mixed Meal Tolerance Test (MMTT) of a

patient suffering from gastroparesis
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1.6 Defining the Problem

1. For Objective 2:

Unconstrained optimization of the cost function f, where f is the sum of squared

difference between the CGM data and model glucose, at particular time values.

x is the set of model parameters over which the optimization will take place.

arg min
x∈Rn

f(x) = arg min
x∈Rn

∑
(CGM−model glucose)2 (1.5)

2. For Objective 3: Unconstrained optimization of the cost function f, where f is

the sum of sum of squared difference between observed glucose data and model

glucose and observed insulin data and model insulin, at particular time values.

x is the set of model parameters over which the optimization will take place.

arg min
x∈Rn

f(x) = arg min
x∈Rn

(
∑

(observed glucose data - model glucose)2 (1.6)

+
∑

(observed insulin data - model insulin)2) (1.7)
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Chapter 2

Derivative free Optimization

In this chapter, we will discuss part of the theory behind derivative-free optimiza-

tion and see numerous applications. Our focus will be on ‘directional direct search

method’ which is an important class of derivative-free methods, used to optimize a

given objective function. The essence of directional direct search method is that the

objective function is sampled at finite number of points in the neighborhood of the

current iterate at each iteration and the next action to be taken is based on these

function values at the sampled points [2].

Definition 2.0.1. D⊕ = [I − I] is the Polling vector.

Definition 2.0.2. xk is the current iterate

Definition 2.0.3. The sample points of the form

Pk = {xk + αk · d | d ∈ D⊕} (2.1)

are the Poll points.

The algorithm samples the poll points in a predefined order and tries to decrease

the value of the objective function for any one of the poll points sampled.

11
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2.1 Directional Direct Search Method

2.1.1 Algorithm

Let the objective function to be minimized be f (as defined in Equations (1.5) and

(1.6)).

1. Initialization -

Fix x1 > 0 and α1 > 0.

2. Poll step -

Evaluate the objective function at the polling points in the polling set and set

xk+1 = xk + αkd if f(xk + αkd) < f(xk) (2.2)

xk+1 = xk otherwise (2.3)

(2.4)

3. Parameter update -

αk+1 = 2αk if poll step is successful(Equation (2.2)) (2.5)

αk+1 =
1

2
αk otherwise(Equation (2.3)) (2.6)

Note -

The poll step must terminate after a finite number of steps, since ∃ at least one descent

direction d ∈ Dk where Dk is a positive basis, provided the following assumptions

hold:

1. The objective function possesses some differentiability properties

2. The current iterate xk is not a stationary point for the objective function
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2.2 Global Convergence in the continuously differ-

entiable case

In this section, we list the theorems for global convergence of continuously differen-

tiable functions. The proofs of these theorems can be found in [1].

Following is a list of assumptions needed for the theorems.

1. Assumption 1 - The level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} is compact.

2. Assumption 2 - If ∃α > 0 such that αk > α∀k, then the algorithm visits only a

finite number of points.

3. Assumption 3 - Let ξ1 and ξ2 > 0 be fixed constants. The positive bases Dk

used in the algorithm are chosen from the set D = {D̄positivebasis|cm(D̄) >

ξ1, ||d̄|| < ξ2, d̄ ∈ D̄}.

4. Assumption 4 - When |D| =∞, and ∇f is Lipschitz continuous with Lipschitz

constant ν > 0 in an open set containing L(x0). This assumption is not needed

when |D| <∞.

Also,

||∇f(x)|| ≤ ν
2
cm(D)−1 maxd∈D ||d||α.

5. Assumption 5 - |D| <∞.

6. Assumption 6 - f is continuously differentiable in an open set contaioning L(x0).

(This assumption is needed as ∇f is needed to be continuous).

Theorem 2.2.1. Let Assumption 2 hold. Then, lim inf
k→0

αk = 0.

Corollary 2.2.2. Let Assumptions 1 and 2 hold. Then, ∃ a point x∗ and a subse-

quence ki of unsuccessful iterates for which lim
i→∞

αki = 0 and lim
i→∞

αki = x∗.

Theorem 2.2.3. Let Assumptions 1, 2, 3 and 4 hold. Then, lim inf
k→∞

||∇f(xk)|| = 0

and the sequence of iterates {xk} has a limit point x∗ (as in corollary) for which

∇f(x∗) = 0.

Theorem 2.2.4. Let Assumptions 1, 2, 5 and 6 hold. Then, the sequence of iterations

{xk} has a limit point x∗ for which ∇f(x∗) = 0.
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2.3 Application of Directional Direct Search Method

to test functions

In this section, examples of application of derivative free optimization to a lot of

test suite problems is shown. All the functions are examples of unconstrained opti-

mization. The function was given as input to the DFO code developed in Matlab

(an example of which is given in Appendix (6.1)) and an initial guess for parameters

was provided. The optimized values of the parameters obtained as output from the

optimization process were compared to the known global minima for that function.

The same process is followed for all functions in this section.

Figure 2.1: Beale function: The figure
depicts convergence to the point of
minimum from the initial guess, with
every iteration.

f(x, y) = (1.5 − x + xy)2 + (2.25 −
x+ xy2)2 + (2.625− x+ xy3)2

Figure 2.2: Booth function: The
figure depicts convergence to the point
of minimum from the initial guess, with
every iteration.

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2
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x y
Initial guess 10 10
Optimized value 2.999832 0.4999542
Known global min 3 0.5

Table 2.1: Table of parameters for
Beale function.

x y
Initial guess 10 10
Optimized value 1 3
Known global min 1 3

Table 2.2: Table of parameters for
Booth function.

Figure 2.3: Matyas function: The
figure depicts convergence to the point
of minimum from the initial guess, with
every iteration.

f(x, y) = 0.26(x2 + y2)− 0.48xy

Figure 2.4: Levi function: The figure
depicts convergence to the point of
minimum from the initial guess, with
every iteration.

f(x, y) = sin2(3πx) + (x − 1)2(1 +
sin2(3πy)) + (y − 1)2(1 + sin2(2πy))

x y
Initial guess 10 10
Optimized value 0 0
Known global min 0 0

Table 2.3: Table of parameters for
Matyas function.

x y
Initial guess 10 10
Optimized value 1 1
Known global min 1 1

Table 2.4: Table of parameters for Levi
function.
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Figure 2.5: Himmelblau function:
The figure depicts how the algorithm
converges from different initial guesses
to different points of minimum with
every iteration.

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2

Figure 2.6: Goldstein price function:
The figure depicts how the algorithm
does not converge to the point of global
minimum (shown in red) with every
iteration, on starting with a different
initial guess (shown in purple).

f(x, y) = [1 + (x + y + 1)2(19 −
14x+ 3x2− 14y+ 6xy+ 3y2)][30 + (2x−
3y)2(18−32x+12x2+48y−36xy+27y2)]

Initial guess Optimized value Known Global Minima
(x,y) (-10,10) (3,2) (3,2)
(x,y) (10,-10) (-2.805115,3.131317) (-2.805118,3.131312)
(x,y) (10,10) (-3.779312,-3.283188) (-3.779310,-3.283186)
(x,y) (4,-2) (3.584427,-1.848129) (3.584428,-1.848126)

Table 2.5: Table of parameters for Himmelblau’s function.

Initial guess Optimized value Known Global Minima
(x,y) (0,10) (0,-1) (0,-1)
(x,y) (10,10) (1.800217,0.2001495) -

Table 2.6: Table of parameters for Goldstein price function.



2.3. APPLICATIONOF DIRECTIONAL DIRECT SEARCHMETHODTO TEST FUNCTIONS17

Figure 2.7: Ackley function: The fig-
ure depicts how the algorithm converges
from the initial guess to the point of
global minimum with every iteration,
inspite of various local minimas in
between..

f(x, y) = −20e[0.2
√

0.5(x2+y2)] −
e[0.5(cos(2πx)+cos(2πy))] + e+ 20

Figure 2.8: Eggholder function: The
figure depicts how the algorithm con-
verges from the initial guess to the point
of local minimum with every iteration.
The algorithm is unable to converge to
the global minimum even for an initial
guess in a small neighborhood of the
global minimum.

f(x, y) = −(y+ 47)sin

√∣∣∣x2 + (y + 47)
∣∣∣−

xsin

√∣∣∣x− (y + 47)
∣∣∣

x y
Initial guess 10 10
Optimized value 0 0
Known global min 0 0

Table 2.7: Table of parameters for
Ackley function.

x y
Initial guess -350 0
Optimized value -408.7198 -156.1012
Known global min 512 404.2319

Table 2.8: Table of parameters for
Eggholder function.
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2.4 Applications of Directional Direct Search Method:

Linear Regression

The directional direct search method algorithm was applied to obtain the best fit

line through the points (1,1), (2,4) and (5,8) in the cartesian plane. For this linear

regression problem, the cost function can be shown to be:

f = 30x2 + 3y2 + 16xy − 98x− 26y + 81 (2.7)

Derivative free optimization of this cost function yields the following results:

Table 2.9: Parameter Comparison Table.

slope (x) intercept (y)
Initial guess 5 0
Point of minima 1.6539 -0.0769

Thus, the equation of the best fit line through the points (1,1), (2,4) and (5.8) is:

y = 1.6539 · x− 0.0769 (2.8)

Figure 2.9: The figure depicts how the algorithm converges from the initial guess to
the point of minimum with every iteration.
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2.5 Applications of Directional Direct Search Method:

Decay fit

The directional direct search method was applied to a hypothetical simple exponen-

tial decay system. The decay constant (par1) and the step height (par2) were the

parameters optimized in this case. Data corresponding to par1 = 0.1 and par2 =

20 was generated and the parameters par1 and par2 in the ode were optimized using

derivative free optimization to obtain the best fit of the generated data. The following

table summarizes the output obtained:

Table 2.10: Parameter Comparison Table.

par1 par2
Data values 0.1 20
IC 0.9 1
Optimized values 0.1000169 20.00854

It took 8950 iterations to reach these optimized values for the tolerance of 1e-06.

Figure 2.10: The figure depicts how the algorithm converges from the initial guess
to the point of minimum of the cost function, corresponding to the best fit of the
generated data, with every iteration.
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2.6 Applications of Directional Direct Search Method:

Non-Diabetic CGM fit

The directional direct search method was applied to fit the CGM data of a non-

diabetic subject. R0 and SI were the parameters from the CGM model (Equations

(1.1) to (1.4)) optimized in this case to obtain the best fit of the three selected foods.

The following table summarizes the output obtained:

Table 2.11: Parameter Comparison Table.

par1 par2
Optimized values from literature 2.1 3.06
IC 10 10
Optimized values 3.000147 3.959921

The code was run for 10000 iterations.

Figure 2.11: The figure depicts how the algorithm converges, with every iteration,
from the initial guess to the point of minimum of the cost function, corresponding to
the best fit (red) of the CGM data (blue).

Note - We note here that the first peak fits almost perfectly to the CGM peak.

The second and the third peaks being double peaks, are not expected to fit accurately.



Chapter 3

Applications of Directional Direct

Search Method: Diabetic CGM fit

3.1 Introduction

If we do not eat food for some time, the glucose concentration in the blood starts

decreasing. A gradual rise in the blood glucose concentration is seen as soon as we

eat food. The glucose concentration in the blood reaches a peak value and it again

starts declining once the insulin sets into action. The rise and fall of the blood glucose

concentration, after having food, together form a ‘glucose peak’. We will use the term

‘fall of glucose before the intake of food’ for the decrease in blood glucose concentration

before having food and ‘fall of glucose after the intake of food’ for the decrease in

blood glucose concentration after having food. The term ‘rise of glucose after the

intake of food’ will be used to describe the increase in blood glucose concentration

after having food, till the insulin action begins.

21
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3.2 Singularly perturbed system

In a coupled differential equation system, when the solution does not change on chang-

ing the initial condition of one variable, the system is called ‘singularly perturbed’.

The glucose insulin subsystem in the CGM model is a singularly perturbed system

as the solution does not change on changing the initial condition of insulin. In other

words, insulin relaxes to the slow manifold, given by dI
dt

= 0. As a result, the informa-

tion of the initial condition of insulin is lost and the only information that remains is

that obtained from the surface of the manifold to which insulin relaxes. This can be

numerically explained as:

dI

dt
=
ImaxG

2

α +G2
− kI · I Insulin dynamics from CGM model (3.1)

dI

dt
= 0 gives (3.2)

I∗ =
ImaxG

2

kI(α +G2)
(3.3)

The following plot is obtained by superimposing the insulin dynamics from equation

(3.1) with I∗ from equation (3.3).

Figure 3.1: Plot of insulin (microU/ml) vs tim (min). The figure shows that irrespec-
tive of the initial condition, insulin dynamics (I) closely follows the trajectory of the
steady state insulin (I∗).
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It can be seen from figure (3.1) that irrespective of the initial condition, insulin

follows the trajectory of the steady state insulin I∗. Therefore, we can replace the

insulin from the glucose-insulin subsystem in the CGM model by I∗ and reduce to

a linear ordinary differential equation in one variable, G. This allows us to derive

an exponential decay form of the glucose dynamics during fall before and after the

intake of food. This is described in the next section.

3.3 Fall of glucose follows standard exponential de-

cay dynamics

We observed that the fall of glucose before and after intake of food can be fit by an

exponential function ae−bt + c. The exponential decay can also be derived by solving

the glucose differential equation in the CGM model analytically, assuming a constant

amount of insulin I∗ (from equation (3.3)) in the blood. The derivation is given below

as:
dG

dt
= R0 − (EG0 + SI · I∗)G (3.4)

We solve analytically the linear ordinary differential equation (3.4) in one variable G.

Rearranging the terms and integrating on both sides,∫
1

R0 − (EG0 + SI · I∗)G
=

∫
dt (3.5)

− ln(R0 − (EG0 + SI · I∗)G)

EG0 + SI · I∗
+K = t; where K is a constant (3.6)

− ln(R0 − (EG0 + SI · I∗)G) + (EG0 + SI · I∗)K = (EG0 + SI · I∗)t (3.7)

ln(R0 − (EG0 + SI · I∗)G) = (EG0 + SI · I∗)(K − t) (3.8)

R0 − (EG0 + SI · I∗)G = e(EG0+SI ·I∗)(K−t) (3.9)

G =
R0

(EG0 + SI · I∗)
− e(EG0+SI ·I∗)(K−t)

(EG0 + SI · I∗)
(3.10)

G =
R0

(EG0 + SI · I∗)
− e(EG0+SI ·I∗)Ke−(EG0+SI ·I∗)t

(EG0 + SI · I∗)
(3.11)
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Rearranging the terms,

G =
−e(EG0+SI ·I∗)K

(EG0 + SI · I∗)
e−(EG0+SI ·I∗)t +

R0

(EG0 + SI · I∗)
(3.12)

Equation (3.12) is the exponential decay form of the glucose dynamics seen during

the fall before and after the intake of food. On comparing the standard exponential

decay equation ae−bt + c to equation (3.12),

a =
−e(EG0+SI ·I∗)K

(EG0 + SI · I∗)
(3.13)

b = EG0 + SI · I∗ (3.14)

c =
R0

(EG0 + SI · I∗)
(3.15)

In equations (3.13) to (3.15), I∗ is a constant. Thus, equations (3.13) to (3.15) give

an algebraic relationship between the standard exponential equation parameters a, b,

c and the parameters R0, EG0, SI of the derived exponential glucose dynamics, given

by equation (3.12).

3.4 Designing the procedure to fit the model glu-

cose to CGM data

Our aim is to obtain the best values for the model parameters R0, EG0, SI so that

the model glucose best fits the glucose peak after the intake of food as well as the fall

of glucose before the intake of food. Since derivative-free optimization identifies the

local minimum, it is observed that the optimized values of the model parameters R0,

EG0, SI change on changing their initial guesses. Thus, the problem now reduces to

finding a good approximation for the initial guesses of these parameters.
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3.4.1 Fitting the standard exponential decay equation ae−bt+c

to the fall of glucose before and after intake of food

The optimized values of the parameters a, b, c corresponding to the fall of glucose

before and after intake of food can be obtained by fitting the standard exponential

decay equation ae−bt + c to the fall of glucose, before and after intake of food, from

CGM data. Let us denote these optimized parameter values by aopt, bopt, copt for the

fall of glucose before food.

3.4.2 Obtaining initial guesses of the model parameters R0,

EG0, and SI

After obtaining aopt, bopt, copt, we can now proceed to find the initial guesses of the

model parameters R0, EG0, and SI . From equation (3.15),

Rig
0 = bopt · copt, (3.16)

where Rig
0 is the initial guess for R0.

Similarly, from equation (3.14),

Eig
G0 + SigI · I

∗ = bopt, (3.17)

where Eig
G0, S

ig
I are the initial guesses for EG0, SI respectively.

Equation (3.17) is a constraint equation. In other words, if we fix Eig
G0, we can make

an appropriate initial guess for SI and if we fix SigI , we can make an appropriate

initial guess for EG0. We choose to set Eig
G0 to 2.5e-03, as known from the literature

for diabetic data, and find SigI from the constraint equation (3.17). So,

SigI =

∣∣∣∣∣bopt − Eig
G0

I∗

∣∣∣∣∣, since SI is not negative (3.18)

where usually, Eig
G0 = 2.5e− 03. We can state this as the following theorem:

Theorem 3.4.1. We can find the initial guess values for the model parameters R0

and SI , of the reduced glucose dynamics equation (3.4), provided we fix an initial
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guess value for EG0. Moreover, Rig
0 = bopt · copt and SigI =

∣∣∣∣∣ bopt−Eig
G0

I∗

∣∣∣∣∣.

3.4.3 Optimizing R0, EG0, and SI to fit the model glucose to

CGM data

Once we provide the initial guesses of the model parameters from equations (3.16) and

(3.18) to the derivative-free optimization code in Matlab, we obtain their optimized

values as the output. The optimized model parameters correspond to the best fit of

the model glucose to CGM data.

We can now summarize the entire process of fitting the model glucose to CGM data,

as discussed above.

1. Step 1- Fit the standard exponential decay equation ae−bt + c to the fall of

glucose before and after intake of food and obtain the optimized values of the

parameters a, b, and c, which we denote by aopt, bopt, copt, respectively.

2. Step 2- Obtain a good approximatiion for the initial guesses of the model pa-

rameters R0, EG0, and SI by using equations (3.16) and (3.18).

3. Step 3- Use the initial guesses from Step 2 to obtain the optimized values of

the model parameters R0, EG0, and SI by fitting the reduced glucose dynamics
dG
dt

= R0− (EG0 +SI · I∗)G to CGM data. These model parameters correspond

to the best fit of the model glucose to the CGM data.

3.5 Results

We describe the results obtained after applying this procedure to a few examples:

Notation: We will use the term ‘algebraic parameters’ for the parameters a, b, c of

the standard exponential decay equation ae−bt + c and the term ‘ode parameters’ for

the model parameters R0, EG0, SI of the reduced glucose dynamics (equation (3.4)).
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3.5.1 Example 1: Demonstration of postprandial hypoglycemia

We fitted the data of fall of glucose before food and fall of glucose after food, sepa-

rately, and obtained optimized values for the algebraic as well as the ode parameters.

It can be seen from figures (3.11) and (3.12) that the glucose settles at a lower con-

centration (70.6 mg/dl) for the fall after food and at a higher concentration (114.3

mg/dl) for the fall before food. This observation is suggestive of the phenomenon

of ‘postprandial hypoglycemia’. In other words, hypoglycemic event is seen to occur

some time (around 2 hours) after a diabetic patient has food. That is why, a diabetic

patient should eat small meals at regular intervals of around 2 hours during the day.

Figure 3.2: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose
before food (blue) by algebraic (red)
and ode (green) method is seen from
this figure. Glucose achieves steady
state concentration of 114.3 mg/dl.

Figure 3.3: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose af-
ter food (blue) by algebraic (red) and
ode (green) method is seen from this
figure. Glucose achieves steady state
concentration of 70.6 mg/dl.

a b c

92.4 0.01 114.3

Table 3.1: Optimized algebraic param-
eters for the fall of glucose before food

R0 EG0 SI

0.62 0.00173 0.000456

Table 3.2: Optimized ode parameters
for the fall of glucose before food

a b c

90.6 0.01 70.6

Table 3.3: Optimized algebraic param-
eters for the fall of glucose after food

R0 EG0 SI

0.38 0.00285 0.00045

Table 3.4: Optimized ode parameters
for the fall of glucose after food
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3.5.2 Example 2: Fitting diabetic CGM data

This is an example of fitting the model glucose to the experimental CGM data by

following the procedure described above. Initially, the fall of glucose before food was

fit using the standard exponential decay ae−bt + c, shown in figure (3.4) and aopt, bopt,

and copt were obtained (table (3.5)).

Figure 3.4: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose
before food by standard exponential
decay ae−bt + c can be seen from the
figure.

Figure 3.5: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose
after food by reduced glucose dynam-
ics dG

dt
= R0 − (EG0 + SI · I∗)G given

by equation (3.4) can be seen from the
figure.

a b c
ig 100 0.011 150
opt 86.08 0.0188 170.855

Table 3.5: Optimized algebraic param-
eters for the fall of glucose before food

R0 EG0 SI
ig 3.212 0.0025 0.001304
opt 2.22 0.0002012 0.0010735

Table 3.6: Optimized ode parameters
for the fall of glucose before food

Further, the initial guesses for R0, EG0, and SI were computed as:

Rig
0 = bopt · copt from equation (3.16) (3.19)

= 0.0188× 170.855 (3.20)

= 3.212 (3.21)

Let us fix Eig
G0 = 0.0025 (3.22)
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Therefore, from equation (3.18) SigI =

∣∣∣∣∣bopt − Eig
G0

I∗

∣∣∣∣∣ (3.23)

=

∣∣∣∣∣0.0188− 0.0025

12.5

∣∣∣∣∣ (3.24)

= 0.001304 (3.25)

The fit corresponding to the optimized model parameters R0, EG0, and SI for the fall

of glucose before food is shown in figure (3.5).

The optimized model parameters R0, EG0, and SI for the postprandial glucose were

adapted from the literature [5] and are mentioned in table (3.7).

R0 EG0 SI
opt 2.5 0.0025 0.00114

Table 3.7: Table of optimized parameters for the exponential fit for decay before meal
of diabetic patient.

Thus, the complete fit corresponding to the optimized model parameters R0, EG0,

and SI from table (3.6) and (3.7) is shown in figure (3.6).

Figure 3.6: Plot of glucose (mg/dl) vs time (min). The fit of fall of glucose before
food as well as the postprandial glucose peak can be seen from this figure. Only the
model parameters R0 and EG0 vary for the fall and peak of glucose.
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By comparing the values of the optimized model parameters R0, EG0, and SI from

table (3.6) and (3.7) for fall of glucose before food and the postprandial glucose peak,

respectively, we can conclude that only R0 and EG0 vary for the fall and peak. All

other model parameters (including those of the gut dynamics) in the CGM model

remain the same. In general, we can state the following hypothesis:

3.5.3 Hypothesis

Only the parameters R0 and EG0 vary for the fall and the peak of glucose in the dia-

betic CGM data and all other model parameters of the CGM model remain the same.

The results obtained by fitting different sets of fall and postprandial peak of glu-

cose from diabetic CGM can be classified into the following 3 types:

Type Description

Type 1 (T1)

Only the parameters R0 and EG0 vary for the fall and the peak of
glucose in the diabetic CGM data and all other model parameters
of the CGM model remain the same.

Type 2 (T2)

Only the parameters R0, EG0, and SI vary for the fall and the
peak of glucose in the diabetic CGM data and all other model
parameters of the CGM model remain the same.

Type 3 (T3)
All model parameters of the CGM model remain the same for the
fall and the peak of glucose in the diabetic CGM data.

We performed exactly the same procedure described for Example 2, to fit CGM data

of 3 patients (ck, hd, and ms) and classified the results as T1, T2, and T3, as de-

scribed in the table above. The fits obtained, along with their classification are shown

below:

(Notation: We will use the term ‘FBF ’ for fall before food. )
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Figure 3.7: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T2.

Figure 3.8: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T3.

R0 EG0 SI
FBF 1.155 0.0054513 0.000349
Peak 2.2929 0.001 0.0015698

R0 EG0 SI
FBF 6.1139 0.001 0.003812
Peak 6.1139 0.001 0.003812

Figure 3.9: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T3.

Figure 3.10: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T2.
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R0 EG0 SI
FBF 0.001 0.001 0.0000705
Peak 0.001 0.001 0.0000705

R0 EG0 SI
FBF 0.1644 0.0027301 0.0000622
Peak 0.7722 0.001 0.0006701

Figure 3.11: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T3.

Figure 3.12: Plot of glucose (mg/dl) vs
time (min). The fit of fall of glucose be-
fore food as well as the postprandial glu-
cose peak can be seen from this figure.
The fit falls in category T3.

R0 EG0 SI
FBF 0.628 0.004161 0.0004199
Peak 1.6745 0.001 0.0029199

R0 EG0 SI
FBF 0.14405 -0.00768 0.0012785
Peak 1.5121 0.001 0.0024601

3.6 Conclusion

In this chapter, we described a formal procedure, that we designed, to fit diabetic

CGM data. It enabled us to fit both the fall of glucose before food as well as the

postprandial glucose peak. We hypothesize that only the parameters R0 and EG0

vary for fitting the fall and the peak, however this needs more elaborate mathematical

explanation. In the end, we demonstrated various fits using the designed procedure

and classified them into 3 types, depending on the parameters that varied for the fall

and the peak of glucose.



Chapter 4

Modelling for Gastroparesis

4.1 Introduction

Gastroparesis is a disorder which is defined as a delay in gastric emptying without

any mechanical obstruction in the stomach [6]. It affects people diagnosed with both

type 1 and type 2 diabetes. This is because high levels of blood glucose can cause

chemical changes that disturb the functioning of blood vessels that carry oxygen and

nutrients to the vagus nerve, which is responsible for controlling the movement of

food through the digestive tract [7]. Hyperglycemia is known to slow down gastric

emptying. There is a strong correlation between gastric emptying, incretin hormones

and postprandial glycemia [8]. Therefore, in order to study this relationship in more

detail, it is imperative to model the postprandial glucose and insulin data from a

patient diagnosed with gastroparesis. We obtained glucose and insulin data (shown

in figure (4.1)) from Mixed Meal Tolerance Test (MMTT) of a person diagnosed with

gastroparesis, from our collaborator at Apollo Hospital, Chennai. The data comprises

of 14 glucose and insulin measurements each, taken at the same time, spread over a

period of around 3 hours. The aim of this study is to model the postprandial glucose

and insulin data of this patient.

Initially, we expected the CGM model that we developed in Goel et al., 2018 to

fit the glucose and insulin data well. However, the observed data was not described

33
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Figure 4.1: Glucose and insulin data of a patient suffering from gastroparesis, obtained
from Mixed Meal Tolerance Test (MMTT). The data comprises of 14 glucose and
insulin measurements each, taken at the same time, spread over a period of around 3
hours.
Courtesy: Dr.Anil Vaidya, Apollo hospital, Chennai.

satisfactorily, since the CGM model contained only 2 stomach compartments in the

gut dynamics. Delayed gastric emptying is an important characteristic of gastropare-

sis, which was not getting accounted for in the CGM model from Goel et al., 2018.

We decided to incorporate the phenomenon of delayed gastric emptying in two ways

as follows:

1. Increase the number of stomach compartments in the gut dynamics

2. Use the trapezoidal gastric emptying function, given by the Lehmann-Deutsch

model [9, 10], in the gut dynamics

The number of stomach compartments determines the slope of the rise and fall of

the glucose and insulin in the model (Figure (4.3)). In other words, on changing the

number of stomach compartments taking part in the gut dynamics, the slope of rise

and fall of model glucose and insulin can be controlled.

We observed a linear relationship between measured glucose and insulin data and

modified the insulin dynamics (4.3)) accordingly.
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The modified CGM model, in which a variable number of stomach compartments

were used to model the gut dynamics, is given by equations (4.1) to (4.6)). Fits cor-

responding to 3, 4, and 5 stomach compartments were obtained as shown in figures

(4.4), (4.5), and (4.6), respectively. From the results obtained, the following hypoth-

esis can be stated:

Hypothesis: Smaller number of stomach compartments are required to model the

rise of glucose and insulin peak and larger number of stomach compartments are re-

quired to model the fall of glucose and insulin peak. However, if we were to model

the rise and fall of the glucose and insulin peak using the same number of stomach

compartments, n = 4 would be the best choice.

The model using the trapezoidal gastric function given by the Lehmann-Deutsch

model is given by equations (4.32) to (4.38). The resultant fit obtained, shown in

figure (4.8)), corresponding to the optimized model parameters obtained from deriva-

tive free optimization, was found to be better than the fit obtained from the modified

CGM model for n = 4, shown in figure (4.5)).

The modified CGM model and the gut dynamics from the Lehmann-Deutsch model,

that we used to fit the postprandial glucose and insulin data simultaneously, are

decribed in detail in the sections ahead and the results are discussed.

4.2 Modified CGM model for Gastoparesis

4.2.1 Modifications in the CGM model

The glucose and insulin data of a gastroparesis patient was analyzed. The following

two observations were noted:

1. We saw a linear relationship between insulin and glucose data as shown in figure

(4.2).
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Figure 4.2: Plot of insulin data (microU/ml) vs glucose data (mg/dl). A linear
relationship was observed between insulin and glucose data obtained from the Mixed
Meal Tolerance Test (MMTT).

2. A better control on the slope of the rise and fall of the glucose peak can be

obtained by varying the number of compartments in the stomach. It can be

observed from Figure (4.3) that the slope of the rise of glucose peak decreases

on increasing the number of stomach compartments. The magnitude of the

slope of fall of glucose peak decreases on increasing the number of stomach

compartments.

Figure 4.3: Plot of the glucose dynamics seen in different stomach compartments, as
a function of time. Different curves represent glucose dynamics in different number of
stomach compartments, as given in the legend. The number of stomach compartments
determines the slope of the rise and fall of the glucose in the model. The slope of rise
and magnitude of slope of fall of glucose peak decreases on increasing the number of
stomach compartments in the gut dynamics.
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We incorporated both these observations and modified our CGM model. That is,

instead of 2 stomach compartments, n stomach compartments were included in the gut

dynamics. Also, the sigmoidal function of glucose in the insulin differential equation

was replaced by a linear function.

Thus, the modified CGM model can be given as:

Glucose-insulin dynamics is as follows:

dG

dt
= R0 − (EG0 + SII)G+ kQn (4.1)

dI

dt
= iint + islpeG− kII (4.2)

(4.3)

Gut dynamics:

dQ1

dt
= −kQ1 (4.4)

dQ2

dt
= kQ1 − kQ2 (4.5)

For the nth stomach compartment,

dQn

dt
= kQn−1 − kQn, (4.6)

where Qi is the ith stomach compartment and n is the optimum number of stomach

compartments which allow the best fit of the model glucose and insulin to the observed

glucose and insulin data respectively. In the glucose differential equation, the term

R0 describes the constant rate of increase of glucose in the blood, −EG0 ·G describes

the rate of insulin-independent glucose disposal from the blood, −SI · I ·G describes

the rate of insulin-dependent glucose disposal from the blood, and the term kgut ·Qn

describes the rate of increase of glucose in the blood after intake of food. In the

insulin differential equation, iint and islpe are the parameters corresponding to the

intercept and slope of the linear dependence of insulin on glucose, as observed from

data and kI is the parameter for the clearance of insulin from the blood. k is a rate

constant of the gut dynamics.
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4.2.2 Stomach compartments

In this section, we will describe an explicit mathematical derivation to compute the

solution of the dynamics in each of the different number of stomach compartments.

Notation:

We will use the subscript ‘i’ for the ith stomach compartment. Thus, the matrix A5

(Equation (4.8)) represents the square matrix (n × n) of type A with diagonal ele-

ments −k and sub-diagonal elements k, for n = 5 stomach compartments. Similarly,

we define the n× n square matrices Bn and In.

The system of differential equations representing the compartments in the stomach

(for n = 5) can be written in matrix form as follows:

dQ1

dt
dQ2

dt
dQ3

dt
dQ4

dt
dQ5

dt

 =


−k 0 0 0 0

k −k 0 0 0

0 k −k 0 0

0 0 k −k 0

0 0 0 k −k




Q1

Q2

Q3

Q4

Q5

 (4.7)

Let A5 =


−k 0 0 0 0

k −k 0 0 0

0 k −k 0 0

0 0 k −k 0

0 0 0 k −k

 (4.8)

Equation (4.7) can be written as

dQ

dt
= A5Q (4.9)

The solution to equation (4.9) is

Q(t) = etA5Q(0) (4.10)
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where etA5 is computed by taking the exponential of the matrix tA5. Q(t) is the

solution matrix representing the dynamics observed in each of the stomach compart-

ments.

Computing exponential of the matrix tAn

A5 = k


−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

+ k


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 (4.11)

A5 = k(−I5 +B5) (4.12)

where

B5 =


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 and B4
5 6= 0; B5

5 = 0 (4.13)

In general,

dQ

dt
= AnQ (4.14)

Q(t) = etAnQ(0) (4.15)

Q(t) = etk(−In+Bn)Q(0) where Bn−1
n 6= 0; Bn

n = 0 (4.16)

For n = 5 in equation (4.16)

Q(t) = etk(−I5+B5)Q(0) where B4
5 6= 0; B5

5 = 0 (4.17)

e−tkI5 =


e−tk 0 0 0 0

0 e−tk 0 0 0

0 0 e−tk 0 0

0 0 0 e−tk 0

0 0 0 0 e−tk

 (4.18)
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etkB5 =
∞∑
n=0

tnknBn
5

n!
(4.19)

= I + tkB5 +
t2k2B2

5

2!
+
t3k3B3

5

3!
+
t4k4B4

5

4!
(since B5

5 = 0) (4.20)

=


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

+


0 0 0 0 0

tk 0 0 0 0

0 tk 0 0 0

0 0 tk 0 0

0 0 0 tk 0

+


0 0 0 0 0

0 0 0 0 0
t2k2

2!
0 0 0 0

0 t2k2

2!
0 0 0

0 0 t2k2

2!
0 0

 (4.21)

+


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
t3k3

3!
0 0 0 0

0 t3k3

3!
0 0 0

+


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
t4k4

4!
0 0 0 0

 (4.22)

=


1 0 0 0 0

tk 1 0 0 0
t2k2

2!
tk 1 0 0

t3k3

3!
t2k2

2!
tk 1 0

t4k4

4!
t3k3

3!
t2k2

2!
tk 1

 (4.23)

Substituting equation (4.18) and (4.23) in equation (4.17), we get

Q(t) =


e−tk 0 0 0 0

0 e−tk 0 0 0

0 0 e−tk 0 0

0 0 0 e−tk 0

0 0 0 0 e−tk




1 0 0 0 0

tk 1 0 0 0
t2k2

2!
tk 1 0 0

t3k3

3!
t2k2

2!
tk 1 0

t4k4

4!
t3k3

3!
t2k2

2!
tk 1




Q10

Q20

Q30

Q40

Q50

 (4.24)

Q(t) =


e−tk 0 0 0 0

tke−tk e−tk 0 0 0
t2k2e−tk

2!
tke−tk e−tk 0 0

t3k3e−tk

3!
t2k2e−tk

2!
tke−tk e−tk 0

t4k4e−tk

4!
t3k3e−tk

3!
t2k2e−tk

2!
tke−tk e−tk




Q10

Q20

Q30

Q40

Q50

 (4.25)

Equation (4.25) gives the algebraic solution of the dynamics in the different number

of stomach compartments (1 to 5).
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4.2.3 Adding a unit food impulse

A unit impulse function is:

u(t) =

1 if t = 0

0 otherwise

In our model for gastroparesis, we assume that food is of the form of a unit impulse

and it enters the first compartment of the stomach.

dQ1

dt
= −kQ1 + u(t) (4.26)

For t > 0, u(t) = 0, and, therefore, for t > 0, we should solve

dQ1

dt
= −kQ1; Q1(0) = 1 (4.27)

For the ith compartment, 2≤ i ≤ n,

dQi

dt
= kQi−1 − kQi; Qi(0) = 0 (4.28)

4.2.4 Modified CGM Model for Gastroparesis

We can now state the full modified CGM model for gastroparesis as:

dG

dt
= R0 − (EG0 + SII)G+ kQn (4.29)

dI

dt
= iint + islpe.G− kI .I (4.30)

Q(t) =


e−tk 0 0 0 0

tke−tk e−tk 0 0 0
t2k2e−tk

2!
tke−tk e−tk 0 0

..... ..... ..... ..... .....
tn−1kn−1e−tk

(n−1)!
tn−2kn−2e−tk

(n−2)! tke−tk e−tk


n×n


1

0

0

.....

0


n×1

(4.31)
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4.2.5 Results for different number of stomach compartments

The fits obtained by using equations (4.29) to (4.31) to model the postprandial glucose

and insulin data simultaneously, for n = 3, 4, and 5 stomach compartments, are shown

below in figures (4.4), (4.5), and (4.6) respectively.

Figure 4.4: Plot of glucose (mg/dl) and insulin (microU/ml) as a function of time.
The figure shows the best hand fit of model glucose and insulin to observed glucose
and insulin data, obtained in XPP for n = 3 stomach compartments. The rise of
both glucose and insulin is seen to fit well.

Figure 4.5: Plot of glucose (mg/dl) and insulin (microU/ml) as a function of time.
The figure shows the best hand fit of model glucose and insulin to observed glucose
and insulin data, obtained in XPP for n = 4 stomach compartments. The rise as well
as fall of both glucose and insulin are seen to fit well.
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Figure 4.6: Plot of glucose (mg/dl) and insulin (microU/ml) as a function of time.
The figure shows the best hand fit of model glucose and insulin to observed glucose
and insulin data, obtained in XPP for n = 5 stomach compartments. The fall of both
glucose and insulin is seen to fit well.

We can observe from the above figures that the rise of glucose and insulin peak

fits better when n = 3 (Figure (4.4)) and fall of glucose and insulin peak fits better

when n = 5 (Figure (4.6)). Thus, we can hypothesize that smaller number of stomach

compartments can be used to model the rise of glucose and insulin peak and larger

number of stomach compartments can be used to model the fall of glucose and insulin

peak. However, if we were to model both rise and fall of glucose and insulin using

the same number of stomach compartments, n = 4 would be the best choice (Figure

(4.5)).

4.3 Lehmann-Deutsch model for Gastroparesis

In this section, we will use the trapezoidal gastric emptying function given by Lehmann

and Deutsch to model the action of the gut on the food [9, 10].

Lehmann-Deutsch model for gut dynamics is as follows:

Tmax =
D − 1

2
Vmax(Tup + Tdown)

Vmax
(4.32)
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Gempt(t) =



Vmax

Tup
· t if t < Tup

Vmax Tup < t ≤ (Tup + Tmax)

Vmax − ( Vmax

Tdown
) · (t− Tup − Tmax) (Tup + Tmax) ≤ t ≤ (Tmax + Tup + Tdown)

0 elsewhere

dqgut
dt

= −kabsqgut +Gempt (4.33)

Ra = f · kabsqgut, (4.34)

where Vmax is the maximum velocity of gastric emptying, D is the ingested glucose

dose, Tup, Tmax and Tdown are the duration of rising up, staying and dropping periods

of the gastric emptying function respectively. qgut is the amount of glucose in the gut,

kabs is the rate constant of intestinal absorption and f is the fraction of the intestinal

absorption which actually appears in plasma.

The glucose-insulin dynamics equations are adopted from the modified CGM model,

incorporating the linear dependence of insulin on glucose.

Glucose-insulin dynamics is as follows:

dG

dt
= R0 − (EG0 + SII)G+Ra (4.35)

dI

dt
= iint + islpe ·G− kI · I, (4.36)

where

R0 = (EG0 + SI · 20) · 80 · 1e− 03 (4.37)

kI =
(iint + 80 · islpe)

20
(4.38)

in order to maintain the basal values for glucose and insulin at 80 micro · U/ml and

20 mg/dl respectively.

The hand fit in XPP (Figure (4.7)) and the optimized fit in Matlab (Figure (4.8))

are shown below. The corresponding optimized model parameters are as mentioned

in Table (4.1).
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Figure 4.7: Plot of glucose (mg/dl) and insulin (microU/ml) as a function of time.
XPP fit of the Lehmann-Deutsch model for gastroparesis can be seen.

Table 4.1: Parameters corresponding to the XPP hand fit and Matlab optimized fit,
simultaneously for both glucose and insulin data obtained from MMTT of a patient
diagnosed with gastoparesis.

Parameter XPP hand-fit value Matlab optimized value

Tup 20 28.16482

Tdown 40 51.29878

Vmax 9 5.024039

kabs 1 144.0635

f 0.9 1.873592

D 420 405.4846

EG0 · 10−3 40 -

SI · 10−3 0.22 -

iint -200 -

islpe 2.8 -

τi 0.86 -
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Figure 4.8: Plot of glucose (mg/dl) and insulin (microU/ml) as a function of time.
Matlab fit of the Lehmann-Deutsch model for gastroparesis can be seen.

4.4 Conclusion

The phenomenon of delayed gastric emptying in gastroparesis was captured in two

ways. We used two models, Model 1 (Figures 4.4 to 4.6) and Model 2 (Figures 4.7

and 4.8) to model the AD mixed meal glucose as well as insulin data. We found that

Model 2 fit the data slightly better than Model 1, which suggests that trapezoidal

gastric emptying function is slightly better at explaining the delayed gastric emptying

than increasing the number of stomach compartments in the gut dynamics. In this

way, both the models captured the presence of gastroparesis in the patient. Further,

the linear relationship between AD mixed meal insulin and glucose data can be used

to monitor the change in insulin sensitivity of the patient with time. Greater slope

implies higher insulin sensitivity. In other words, if the slope of the regression line

through insulin and glucose data of the patient decreases over time, we may conclude

that it is a sign of lowering insulin sensitivity of the patient.
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Conclusion

Derivative-free optimization (DFO) is an emerging field used to optimize functions

when the analytical information of the function is not known. The objective function

to be optimized can be smooth or non-smooth, and DFO can be applied to constrained

as well as unconstrained problems. In this study, we applied DFO to unconstrained

problems and almost all the objective functions were non-smooth. In particular, we

studied the directional direct search method algorithm in detail and saw its several

applications.

After studying the directional direct search method algorithm, we developed our

own codes in Matlab (provided in Appendix 6.1) and tested them on a variety of

test suite problems. The results of the optimization matched exactly to the known

global minima, for almost all the functions. In cases of multiple minima, the al-

gorithm converged to each of them, on giving appropriate initial guesses. However,

since the algorithm yields the local minimum, it was observed that different optimiza-

tion outputs were obtained on changing the initial guesses of the parameters. There

was only one function for which the optimization did not yield results equal to the

known minimum, inspite of starting from initial guesses within a small neighborhood

of the known minimum. We suspect that the algorithm might be getting stuck in

the numerous local minima of the function, and hence fails to reach the known global

minimum. All in all, the optimization codes we developed were successfully validated

from the results obtained on testing the codes on the test suite problems.

47
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As a next step, we successfully implemented derivative free optimization to recover

the parameters from the CGM model for non-diabetic CGM data. However, to model

diabetic CGM data, using derivative-free optimization, we designed a systematic pro-

cedure based on the finding that insulin dynamics is independent of its initial condi-

tion (in other words, the system is singularly perturbed). This procedure enabled us

to model both, the fall of glucose before intake of food as well as the glucose post-

prandial glucose peak, for a variety of CGM data sets.

Lastly, we used derivative-free optimization to model both glucose and insulin data

simultaneously, obtained from mixed meal tolerance test of a patient diagnosed with

gastroparesis. For this purpose, we developed two different gut dynamics models to

capture the ‘delayed gastric emptying’ phenomenon of gastroparesis. Comparing the

results obtained using both these models, we concluded that the trapezoidal gastric

emptying function in the gut dynamics yields better fit to the data than using variable

number of stomach compartments.

In our view, we have shown a proof of concept that derivative-free optimization can

be successfully implemented to model CGM data in type 2 diabetes. Despite being

an emerging field, it has the potential to optimize a variety of problems, as we have

demonstrated for a bunch of unconstrained, non-smooth functions. We hope that this

work will prove to be helpful for a further advanced study in this respect.
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Appendix

6.1 Matlab code for DFO of algebraic equation:

Ackley function

1 a = l i n s p a c e (−10 ,10 ,1 e+03) ;

2 b = l i n s p a c e (−10 ,10 ,1 e+03) ;

3 [A,B] = meshgrid ( a , b) ;

4 fun = −20.∗exp ( −0 . 2 .∗ ( 0 . 5 .∗ (A.ˆ2+B. ˆ 2 ) ) . ˆ ( 1 / 2 ) )−exp ( 0 . 5 . ∗ ( cos

( 2 .∗ pi .∗A)+cos ( 2 .∗ pi .∗B) ) ) +2.71828+20;

5 mesh (A,B, fun )

6 hold on ;

7

8 f = @(x , y ) −20.∗exp ( −0 . 2 .∗ ( 0 . 5 .∗ ( x.ˆ2+y . ˆ 2 ) ) . ˆ ( 1 / 2 ) )−exp

( 0 . 5 . ∗ ( cos ( 2 .∗ pi .∗ x )+cos ( 2 .∗ pi .∗ y ) ) ) +2.71828+20;

9

10 par no = 2 ;

11

12 dp = eye ( par no ) ;

13 dn = −eye ( par no ) ;

14

15 D = [ dp dn ] ;

49
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16

17 n = 100000;

18

19 p = ze ro s ( par no , 2 . ∗ par no ) ;

20 q = ze ro s ( 1 , 2 .∗ par no ) ;

21

22 x = ze ro s ( par no , n) ;

23 alpha = ze ro s (1 , n ) ;

24

25 par opt = ze ro s ( par no , 1 ) ;

26

27 x ( : , 1 ) = [10 1 0 ] ;

28 alpha (1 ) = 1 ;

29

30 f o r j = 1 : n

31 f p r i n t f ( ’ I t e r a t i o n no = ’ ) ;

32 f p r i n t f ( ’%d\n ’ , j )

33

34 index = 0 ;

35 found = 0 ;

36

37 s = f ( x (1 , j ) , x (2 , j ) ) ;

38

39 f o r i = 1 :2∗ par no

40 p ( : , i ) = x ( : , j ) + alpha ( j ) .∗D( : , i ) ;

41 q (1 , i ) = f (p (1 , i ) ,p (2 , i ) ) ;

42

43 i f q (1 , i ) < s

44 s = q (1 , i ) ;

45 index = i ;

46 f p r i n t f ( ’ index = ’ ) ;

47 f p r i n t f ( ’%d\n ’ , index ) ;

48 found = 1 ;

49 end
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50 end

51

52 i f found == 1

53 x ( : , j +1) = x ( : , j ) + alpha ( j ) .∗D( : , index ) ;

54 f p r i n t f ( ’ x = ’ ) ;

55 f p r i n t f ( ’%d\n ’ , x ( : , j +1) ) ;

56 alpha ( j +1) = (2/1) .∗ alpha ( j ) ;

57 f p r i n t f ( ’ alpha = ’ ) ;

58 f p r i n t f ( ’%d\n ’ , alpha ( j +1) ) ;

59 f p r i n t f ( ’ I t e r a t i o n s u c c e s s f u l \n ’ ) ;

60 e l s e

61 x ( : , j +1) = x ( : , j ) ;

62 f p r i n t f ( ’ x = ’ ) ;

63 f p r i n t f ( ’%d\n ’ , x ( : , j +1) ) ;

64 alpha ( j +1) = (1/2) .∗ alpha ( j ) ;

65 f p r i n t f ( ’ alpha = ’ ) ;

66 f p r i n t f ( ’%d\n ’ , alpha ( j +1) ) ;

67 f p r i n t f ( ’ I t e r a t i o n u n s u c c e s s f u l \n ’ )

68 end

69

70 i f a lpha ( j +1) < 1e−05

71 f o r i = 1 : par no

72 par opt ( i ) = x ( i , j +1) ;

73 end

74 f p r i n t f ( ’ par opt (1 ) = ’ ) ;

75 f p r i n t f ( ’%d\n ’ , par opt (1 ) ) ;

76 f p r i n t f ( ’ par opt (2 ) = ’ ) ;

77 f p r i n t f ( ’%d\n ’ , par opt (2 ) ) ;

78 break

79 end

80 end

81

82 xval = x ( 1 , : ) ;

83 yval = x ( 2 , : ) ;
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84 p lo t3 ( xval ( 1 : 1 0 0 ) , yval ( 1 : 1 0 0 ) , f ( xval ( 1 : 1 0 0 ) , yval ( 1 : 1 0 0 ) ) , ’ r∗−
’ , ’ LineWidth ’ , 2 , ’ MarkerSize ’ , 15)

6.2 Matlab code for DFO of gastroparesis data fit

using Lehmann-Deutsch gut model

6.2.1 Function for the odes

1 f unc t i on dy = cgmodes ( t , y , par1 , par2 , par3 , par4 , par5 , par6 )

2

3 dy = ze ro s (3 , 1 ) ;

4

5 EG0=40;

6 SI =0.22;

7 i i n t =−200;

8 i s l p e =2.8 ;

9 t ou i =0.86;

10

11 Tup=par1 ;

12 Tdown=par2 ;

13 Vmax=par3 ;

14 kabs=par4 ;

15 f=par5 ;

16 D=par6 ;

17

18 R0=(EG0+SI ∗20) ∗80∗1e−03;

19 kI=( i i n t +80∗ i s l p e ) /20 ;

20

21 Tmax = ( (D−(1/2)∗Vmax∗2∗(Tup+Tdown) ) /Vmax) ;

22

23 Gempt = (Vmax/Tup)∗ t∗ h e a v i s i d e (Tup−t ) + . . .

24 Vmax∗ h e a v i s i d e ( t−Tup)∗ h e a v i s i d e (Tup+Tmax−t ) + . . .
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25 (Vmax−(Vmax/Tdown) ∗( t−Tup−Tmax) )∗ h e a v i s i d e ( t−(Tup+Tmax) )

∗ . . .

26 h e a v i s i d e (Tup+Tmax+Tdown−t ) ;

27

28 %yp (3)=qgut

29 dy (3) = −kabs∗y (3 )+Gempt ;

30

31 Ra=f ∗kabs∗y (3 ) ;

32

33 %yp (1)=G

34 dy (1) = R0−(EG0∗1e−03+SI ∗1e−03.∗y (2 ) ) .∗ y (1 )+Ra ;

35

36 %yp (2)=I

37 dy (2) = tou i ∗( i i n t+i s l p e ∗y (1 )−kI∗y (2 ) ) ;

6.2.2 Function for the optimization

1 f unc t i on [T,Y] = f i tcgm

2

3 t0 = 0 ;

4 t f i n a l = 165 ;

5 y0 = [ 8 3 , 1 8 , 0 ] ’ ;

6

7 fd t imes = 1e−06;

8 fd t imes = [ t0 fdt imes t f i n a l ] ;

9

10 T=t0 ;

11 Y=y0 ’ ;

12

13 gdata = dlmread ( ’ g . dat ’ ) ;

14 gdata = gdata ( 1 : end ) ;

15 tdata = 0 :15 : 15∗ l ength ( gdata )−1;

16 time = l i n s p a c e (1 e−06 ,165 ,2001) ;

17 vq1 = in t e rp1 ( tdata , gdata , time ) ;
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18 p lo t ( time , vq1 , ’ r ’ )

19 hold on ;

20

21 i da ta = dlmread ( ’ i . dat ’ ) ;

22 i da ta = idata ( 1 : end ) ;

23 vq2 = in t e rp1 ( tdata , idata , time ) ;

24 p lo t ( time , vq2 , ’b ’ )

25

26 par no = 6 ;

27

28 dp = eye ( par no ) ;

29 dn = −eye ( par no ) ;

30

31 D = [ dp dn ] ;

32

33 n = 100000;

34

35 p = ze ro s ( par no , 2 . ∗ par no ) ;

36 q = ze ro s ( 1 , 2 .∗ par no ) ;

37

38 x = ze ro s ( par no , n) ;

39 alpha = ze ro s (1 , n ) ;

40

41 par = ze ro s ( par no , n) ;

42 par opt = ze ro s ( par no , 1 ) ;

43 f = ze ro s (1 , n ) ;

44

45 g1 = ze ro s ( l ength ( fdt imes ) −1 ,2001) ;

46 g2 = ze ro s ( l ength ( fdt imes ) −1 ,2001) ;

47 i 1 = ze ro s ( l ength ( fdt imes ) −1 ,2001) ;

48 i 2 = ze ro s ( l ength ( fdt imes ) −1 ,2001) ;

49

50 t = ze ro s (2001 ,2) ;

51 % t ( : , 1 ) = l i n s p a c e (0 ,1200 ,2001) ;
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52 t ( : , 2 ) = l i n s p a c e (1 e−06 ,165 ,2001) ;

53

54 % gdata1 = in t e rp1 ( tdata , gdata , t ( : , 1 ) ) ;

55 gdata2 = in t e rp1 ( tdata , gdata , t ( : , 2 ) ) ;

56 i data2 = in t e rp1 ( tdata , idata , t ( : , 2 ) ) ;

57

58 x ( : , 1 ) = [20 40 9 1 0 .9 4 0 0 ] ;

59

60 alpha (1 ) = 1 ;

61

62 f o r j = 1 : n

63 f p r i n t f ( ’ I t e r a t i o n no = ’ ) ;

64 f p r i n t f ( ’%d\n ’ , j )

65

66 index = 0 ;

67 found = 0 ;

68

69 f o r i = 1 : par no

70 par ( i , j ) = x ( i , j ) ;

71 end

72

73 f o r k = 2 : l ength ( fdt imes )

74 s o l 1 = ode45 (@( t , y ) cgmodes ( t , y , par (1 , j ) , par (2 , j ) , par

(3 , j ) , par (4 , j ) , par (5 , j ) , par (6 , j ) ) , . . .

75 [ fd t imes (k−1) fdt imes ( k ) ] , [Y( end , 1 : 3 ) ] ) ;

76 func1 = deval ( so l1 , t ( : , k−1) ) ;

77 g1 (k−1 , : ) = func1 ( 1 , : ) ;

78 i 1 (k−1 , : ) = func1 ( 2 , : ) ;

79 end

80

81 f ( j ) = sum ( ( gdata2 ’−g1 ( 2 , : ) ) .ˆ2+( idata2 ’− i 1 ( 2 , : ) ) . ˆ 2 ) ;

82

83 f o r i = 1 :2∗ par no

84
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85 p ( : , i ) = x ( : , j ) + alpha ( j ) .∗D( : , i ) ;

86

87 f o r k = 2 : l ength ( fdt imes )

88 s o l 2 = ode45 (@( t , y ) cgmodes ( t , y , p (1 , i ) ,p (2 , i ) ,p

(3 , i ) ,p (4 , i ) ,p (5 , i ) ,p (6 , i ) ) , . . .

89 [ fd t imes (k−1) fdt imes ( k ) ] , [Y( end , 1 : 3 ) ] ) ;

90 func2 = deval ( so l2 , t ( : , k−1) ) ;

91 g2 (k−1 , : ) = func2 ( 1 , : ) ;

92 i 2 (k−1 , : ) = func2 ( 2 , : ) ;

93 end

94

95 q ( i ) = sum ( ( gdata2 ’−g2 ( 2 , : ) ) .ˆ2+( idata2 ’− i 2 ( 2 , : ) ) . ˆ 2 )

;

96

97 i f q ( i ) < f ( j )

98 f ( j ) = q ( i ) ;

99 index = i ;

100 f p r i n t f ( ’ index = ’ ) ;

101 f p r i n t f ( ’%d\n ’ , index ) ;

102 found = 1 ;

103 end

104 end

105

106 i f found == 1

107 x ( : , j +1) = x ( : , j ) + alpha ( j ) .∗D( : , index ) ;

108 f p r i n t f ( ’ x = ’ ) ;

109 f p r i n t f ( ’%d\n ’ , x ( : , j +1) ) ;

110 alpha ( j +1) = (1/1 . 005 ) .∗ alpha ( j ) ;

111 f p r i n t f ( ’ alpha = ’ ) ;

112 f p r i n t f ( ’%d\n ’ , alpha ( j +1) ) ;

113 f p r i n t f ( ’ I t e r a t i o n s u c c e s s f u l \n ’ ) ;

114 e l s e

115 x ( : , j +1) = x ( : , j ) ;

116 f p r i n t f ( ’ x = ’ ) ;
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117 f p r i n t f ( ’%d\n ’ , x ( : , j +1) ) ;

118 alpha ( j +1) = (1/2) .∗ alpha ( j ) ;

119 f p r i n t f ( ’ alpha = ’ ) ;

120 f p r i n t f ( ’%d\n ’ , alpha ( j +1) ) ;

121 f p r i n t f ( ’ I t e r a t i o n u n s u c c e s s f u l \n ’ )

122 end

123

124 i f a lpha ( j +1) < 1e−03

125 f o r i = 1 : par no

126 par opt ( i ) = x ( i , j +1) ;

127 end

128 f p r i n t f ( ’ par opt (1 ) = ’ ) ;

129 f p r i n t f ( ’%d\n ’ , par opt (1 ) ) ;

130 f p r i n t f ( ’ par opt (2 ) = ’ ) ;

131 f p r i n t f ( ’%d\n ’ , par opt (2 ) ) ;

132 f p r i n t f ( ’ par opt (3 ) = ’ ) ;

133 f p r i n t f ( ’%d\n ’ , par opt (3 ) ) ;

134 f p r i n t f ( ’ par opt (4 ) = ’ ) ;

135 f p r i n t f ( ’%d\n ’ , par opt (4 ) ) ;

136 f p r i n t f ( ’ par opt (5 ) = ’ ) ;

137 f p r i n t f ( ’%d\n ’ , par opt (5 ) ) ;

138 f p r i n t f ( ’ par opt (6 ) = ’ ) ;

139 f p r i n t f ( ’%d\n ’ , par opt (6 ) ) ;

140 break

141 end

142 end

143

144 f o r k = 2 : l ength ( fdt imes )

145 [ t2 , y ] = ode45 (@( t2 , y ) cgmodes ( t2 , y , par opt (1 ) , par opt (2 )

, par opt (3 ) , par opt (4 ) , par opt (5 ) , par opt (6 ) ) , . . .

146 [ fd t imes (k−1) fdt imes ( k ) ] , [Y( end , 1 : 3 ) ] ) ;

147 g = y ( : , 1 ) ;

148 i = y ( : , 2 ) ;

149 p lo t ( t2 , g , ’ k ’ )
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150 p lo t ( t2 , i , ’ g ’ )

151 [Y] = [Y; y ( end , : ) ] ;

152 end
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