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Abstract

Perovskite solar cells have gained a great deal of attention in the energy research community,

both in academia and industry. They are considered as promising candidates for replacing

existing commercial solar cells, given their high e�ciency (up to 23%) and simple, cost

e↵ective synthesis. However, there are still numerous challenges for their commercialisation.

The two major issues are their short lifetimes and hysteresis in their current-voltage curve.

This thesis aims at studying ion transport in perovkites, which is considered as the culprit

behind these problems. Very little is known about the exact mechanism of ion transport in

perovskites and there exist conflicting results in literature about its relation to perovskite

solar cell e�ciencies.

Through this thesis, we aim at resolving some of the ambiguities revolving around ion

transport by discussing its dependence on phase of crystal and the type of ion in the per-

ovskite. In this regard, we have found, using nudged elastic band method, the activation

energy barriers for transport of halide ions, mediated by vacancy defects, in cesium halide

perovskites (CsPbX

3

, X = Cl, Br, I) for di↵erent crystal phases. Our study is important for

futher understanding of perovskites because there is no existing literature on dependency of

ion transport on phases of perovskites.

Our results show that the activation energy barriers for ionic transport in orthorhom-

bic phases (which exist at room temperature) are lower than the barriers for cubic phases,

indicating that the ions are more stable in cubic phase. However, interestingly, the va-

cancy formation energy for cubic phase is lower. These results have been compared with

experimental values of activation energies.

We have also found the di↵usivity of ions at di↵erent temperatures, which is found to

be of the order of 10

�8 � 10

�9cm/s2 around room temperature (300K). To put things in

perspective, the di↵usion coe�cient of intrinsic semiconductors, such as Si, Ge, As, are of

the order of 10

�13cm/s2 at temperatures as high as 1200K. Hence, perovskites have relatively

higher levels of di↵usion even at room temperatures.

The work presented in this thesis can be useful for further studies of ion migration in

perovskites and help in predicting more stable perovskite structures for the purposes of

photovoltaics.
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Chapter 1

Introduction

Our planet is facing a serious threat due to rapid global warming and climate change

1

.

The biggest factor contributing to this change is fossil fuel emissions[17]. Additionally,

fossil fuels are non-renewable resources and are soon going to deplete. Hence, it is high

time that we completely switch to alternate energy sources which are environment friendly,

renewable and sustainable. Out of the available renewable energy resources, solar energy

has an edge over others because of its universal availability, low cost, no requirement of

distribution infrastructure and minimal maintenance[8]. Furthermore, electricity generation

by solar energy using photovoltaics has almost zero environmental impact beyond device

manufacturing. Having e�cient methods to utilise this resource would basically opening

the doors to unlimited clean energy at a very low price. Although, there has been a rapid

growth in solar power generation in the past few years, its overall share in the global energy

generation is still as low as 1.7%.

Ever since the first silicon solar cell was manufactured in 1941 by Bell Labs[36][35],

there have been tremendous e↵orts made to manufacture more e�cient and less expensive

photovoltaics (PVs) all over the world. The first generation PVs are based on crystalline

silicon which require high temperatures for manufacturing and the resulting residual waste

is harmful to the environment. The second generation PVs are based on thin film inorganic

compounds such as a-Si:H (hydrogenated amorphous silicon), CdTe (cadmium telluride), and

CIGS (copper indium gallium selenide). Often, their thin film preparation requires vacuum

1Over 97% of the peer-reviewed research papers published by climate scientists endorse anthropogenic
global warming, i.e., global warming at the current rate is being caused by human activities.
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vapour deposition method that consumes high energy. Next, there are the third genera-

tion PV technologies, which are solution processed thin film solar cells. They are specially

designed to generate high power conversion e�ciency (PCE) at low device fabrication cost;

these include light condensed cells, organic photovoltaic cell (OPV), dye-sensitized solar cells

(DSSCs) and perovskite solar cells (PVCs).

1.1 Perovskite structure

In the year 1839, Gustav Rose (1798-1893), a German mineralogist, discovered a calcium

titanium oxide (CaTiO

3

) mineral in the Ural Mountains of Russia which was named “per-

ovskite” in honour of a Russian mineralogist, Lev Perovski (1792-1856). The perovskite

structure gained significant attention due to its stable geometry.

The general formula of a perovskite is ABX

3

, where A and B are cations, A being bigger

than B, and X is an anion, usually oxygen or halogen.

Figure 1.1: The ideal perovskite structure is a cubic closed packed structure with cation B enclosed in an
octahedral formed by X ions. Cation A sits at the centre of eight such octahedrals. Picture taken from [57]

Tolerance factor and Octahedral factor

In reality, perovskites somewhat deviate from their ideal structure as the octahedrals distort

to give di↵erent phases. This depends on the sizes of A,B and X ions. Depending on the

tolerance factor, t, and octahedral factor, µ, (defined below), one can roughly determine how

2



Figure 1.2: The range of the tolerance factor is usually between 0.89 and 1.00 for oxide perovskites and
between 0.85 to 1.11 for halide perovskites[27] Picture taken from [53]

geometrically stable the perovskite structure is.

t =
RA +RXp
2(RA +RB)

; µ =

RX

RB

(1.1)

Here, RA, RB and RX are radii of atom A, B and X respectively. If t = 1, the perovskite

is in perfect cubic phase. As t moves away from 1, the structure goes from cubic to tetrag-

onal and then towards orthorhombic phase. The tolerance factor gives the measure of the

octahedral tilting and the octahedral factor gives the ratio of radii of cation B and anion

X. For µ > 0.422, a halide perovskite structure would form[42]. Below this value, the BX

6

octahedron will become unstable and the perovskite structure will not be formed.

Perovskites exist in mainly three di↵erent phases - cubic, tetragonal and orthorhombic.

Phase transition occurs with decrease in temperature from cubic to tetragonal and from

tetragonal to orthorhombic.

1.2 Perovskite solar cells

Perovskites have emerged as promising candidates for the light harvesting layer of solar cells

in the past decade with their e�ciencies increasing at a rapid rate from 3.8% in 2009[24] to

3



23.7% at present

2

[21][34] (see Fig. 1.3).

Furthermore, unlike other photovoltaic technologies, perovskites don’t require complex

manufacturing procedures or high cost equipment for their production. They can be synthe-

sised using simple coating techniques at room temperature. Despite having high e�ciencies

and low-cost production with minimal technological sophistication, PSCs have major bar-

riers to cross before they can be commercialised[43][18][7]. The two major concerns that

are being extensively addressed are 1) rapid degradation of PSCs and 2) hysteresis in their

photocurrent-voltage curve. Resolving these two problems would result in a revolutionary

step towards sustainable energy development.

Figure 1.3: Maximum power conversion e�ciencies (PCE) of various photovoltaic cells since 1976. The
PCEs of perovskites and perovskite/Si tandem cells have grown fastest out of all the photovoltaics. However,
perovskite cells are still not stable enough for commercial use. Picture taken from NREL (National Renewable
Energy Laboratory) [34].

1.2.1 Stability

The maximum lifetime of PSCs on record is one year[12], which is not comparable to the

25 year-long lifetime of Si based cells. Furthermore, most of the perovskite based solar cells

2Recently, Oxford PVTM developed perovskite-silicon tandem solar cells with 27.3% e�ciency.[1]
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degrade within a few weeks, making them unavailable for commercial use as of now. Many

e↵orts have been made to understand the instability issues related to PSCs[30]. Extrinsic

factors that degrade these materials include moisture, oxygen, illumination and external

electric field. These can be taken care of, to a large extent, by encapsulating the solar

cell in a protective layer. However, intrinsic factors that a↵ect the stability of PSCs are

more di�cult to tackle. These include thermal instability (structural distortion or phase

transition due to temperature change) and ion migration[30]. Out of these, ion migration is

more troublesome because it can’t be avoided given that the solar cell is always under some

external potential and perovskites are known to have ionic conductance[40].

1.2.2 Hysteresis in J-V curve

Another concern about PSCs is the existence of hysteresis in their photocurrent density-

voltage (J-V) curve[6][49], which results in depletion of their e�ciencies over time. This

hysteric behaviour is attributed to various processes including ferroelectricity, charge trap-

ping/detrapping and ion migration[40]. It has been widely agreed that ion migration is the

more dominant factor out of these three.

Hence, the two major challenges for evolution of the PSC technology, stability and hys-

teresis, are attributed to ion migration. However, there is not enough theoretical under-

standing about the mechanism of ion migration within perovskites.

1.3 Inorganic lead halide perovskites

Currently, the best candidate for cation B is Pb, having the maximum power conversion

e�ciency amongst all perovskites so far. Zhang et. al. [56] have discussed the reasons

behind the special stature of lead. The reasons that they have given are as follows:

(i) a strong and quickly-rising direct-gap optical transition between the valence

Pbs/Xp and conduction Pbp states, (ii) a small exciton binding energy, (iii) low

e↵ective masses of both electrons and holes, (iv) energetically shallow intrinsic

defect levels, beneficial for bipolar conductivity and meanwhile minimizing carrier

5



trapping and scattering, and (v) suitability of low-cost, non-vacuum solution

routes for film deposition.

Therefore, ample literature is available on lead halide perovskite cells. Extensive studies have

been conducted on lead halide perovskites as solar harvesters and it has been established that

while organic-inorganic hybrid perovskites (e.g. MAPbX

3

) have a more stable geometry, due

to the larger organic cation sitting in the octahedron, as compared to inorganic perovskites

(e.g. CsPbX

3

), the latter are found to be thermodynamically more stable than their hybrid

counterparts

3

[48]. Zhou et al. showed that while Cs-based perovskites retained>99% of their

e�ciency after continued illumination for 1500 hours, CH

3

NH

3

PbI

3

perovskites degraded

rapidly after 50 hours of exposure[58]. Therefore, recently, there has been a shift towards

inorganic perovskites from hybrid organic-inorganic perovskites.

Hence, we have chosen to work on Cs-based inorganic lead halide perovskites for this

project.

Material

Temperature (°C)
Orthorhombic Tetragonal Cubic

CsPbCl

3

[15]

T<42 42<T<47 T>47

CsPbBr

3

[16]

T<88 88<T<130 T>130

CsPbI

3

[50]

T<290 290<T<316 T>316

Table 1.1: Di↵erent phases of CsPbX3 with respect to temperature.

The approximate temperature range which a solar cell has to bear is -20°C to 80°C[19].
Hence, perovskites need to be stable in this temperature range and not undergo any phase

transition. From the Table 1.1, it is evident that CsPbCl

3

is not suited for this purpose,

unless we stablize its structure (by doping perhaps) in this range. Furthermore, since the

temperature range of the tetragonal phase of CsPbCl

3

is very narrow, it is almost never

observed in nature and is extremely di�cult to obtain in lab. For this reason, we have not

considered this phase for further calculations.

3The geometry of the inorganic perovskites can be made better by putting more than one A cations in
place of just one. These are called double/triple perovskites.
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1.4 Ion migration in perovskites

Let us now have a look at the various ways of ion transport within halide perovskites and

the possible e↵ects it can have on the crystal lattice. Fig. 1.4 shows the possible pathways

through which ions can move in a crystal. These include Schottky (vacancy) defects, Frenkel

defects, lattice distortion by accumulated charges and dissolved impurities, through channels

in grain boundaries, and because of strain induced by external electric field and illumination.

Vacancy mediated ion transport has been considered in this project as these defects are

expected to have lower activation energies as compared to other local defects.

Figure 1.4: There are many pathways for ion migration. The easiest path for ions to migrate is through
grain boundaries, since the surface ions have comparatively lesser binding forces. Picture taken from [55]

In cesium lead halides, out of Cs

+

, Pb

2+

and X

-

ions, Pb

2+

is expected to have highest

activation energy for transport, given that 1) it has higher charge, so the binding energy

would be more and 2) it is caged inside the PbX

6

octahedron, so transport to another site

would be di�cult. Additionally, severeal computational studies have been conducted to find

activation energies of ions in hybrid halide perovskites and it has been found that Ea for

7



halide ions is much lower than Ea for the cations (MA, FA, Pb)[38] We have made the same

assumption for inorganic halide perovskites.

Despite several studies on ion migration in perovskites, its exact mechanism is still not

understood. Conflicting results have been reported about the the role of ion migration in

a↵ecting e�ciencies of perovskite solar cells. Tsai H. et al reported that lattice expansion

due to illumination leads to higher e�ciencies of mixed-cation halide perovskite device[51].

On the other hand, movement of charged ions can inhibit electron and hole collection at

electrode contacts[45] resulting in hysteresis, which negatively a↵ects the e�ciency of PSCs.It

has also has been shown that introduction of Cl in synthesis of MAPbI

3

perovskites enhances

the device performance[28]. Domanski K et. al. showed that the migration of cations in

perovskites, which happens over timescales of minutes or hours

4

reduces the initial e�ciency

by 10-15% after several hours of operation. However, on leaving the device in the dark for

comparable amount of time, the initial e�ciency is fully recovered[9]. All these observations

indicate that there is some role of ion di↵usion in deciding performance of perovskites as

solar cells.

Therefore, studying ion transport within perovskite crystals is crucial in further advance-

ment of PSCs. In this project, we have studied halide ion transport due to vacancy defects

in cesium lead halide perovskites.

4Halide ions on the other hand migrate over timescales much lesser than this, i,e, from 10-1 to 100 s.
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Chapter 2

Theoretical Framework and

Methodology

In this chapter, I have elaborated on the theoretical concepts that have been used in this

thesis. This includes discussion of ion di↵usion in solids, in particular, Fick’s laws and

calculation of di↵usivity using jump frequency. Emphasis has been put on solving many-body

Hamiltonion using Density Functional Theory and various exchange-correlation functionals

that can be used to approximate the interaction between electrons. The Kohn-Sham scheme

wherein an interacting system of particles is mapped to a non-interacting one, has been

explained in detail. Thereafter, the self-consistent iterative numerical method to find ground

state energies of many-body systems has been stated. Additionally, I have discussed the

nudged elastic band method, which is used to calculate activation energy barriers for ion

transport. In the last section, I have discussed the computational methods used in this

project.

2.1 Ionic di↵usion in solids

The theory of di↵usion in solids was majorly developed in mid-1900s with contributions from

pioneers like Arrhenius, Fick, Einstein and Wigner[29]. In this section, the basic theory of

di↵usion has been discussed, with special attention to di↵usion due to vacancy defects in

solids. For my systems, I have made the assumption that di↵usion is happening in isotropic

9



conditions and only nearest neighbour transport is looked at. The following Fick’s laws hold

for these conditions.

2.1.1 Fick’s Laws of Di↵usion

Fick’s First Law

This is an empirical law which states that the flux of the di↵usion of particles in a particular

direction is directly proportional to the change in concentration of those particles along that

direction. For a one dimensional flow, this can be written as:

Jx = �D
@C

@x
(2.1)

where Jx is the flux of particles in x direction (di↵usion flux), i.e. the number of parti-

cles passing a unit area (perpendicular to x axis) per unit time. C is the number density

(concentration), i.e. number of particles per unit volume. The constant of proportionality,

D, is the di↵usion coe�cient or di↵usivity.

This can be generalized

to three dimensions in a straightforward manner as:

J = �DrC (2.2)

where the vector of di↵usion flux, J , is directed opposite to the concentration gradient

vector, rC. Eqs. 2.1 and 2.2 give the simplest forms of Fick’s first law of di↵usion. The

expression can be modified to include anisotropy, concentration dependence of D, external

fields, and high-di↵usivity paths.In this thesis, we have assumed this simplest case.

Fick’s Second Law (Di↵usion Equation)

In most di↵usion processes, the number of particles is conserved, i.e., the particles are not

reacting to form new particles or change their form. Under this assumption, we can write
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the in-flux and out-flux and implementing the continuity constraints, we get the following

equation:

�r · J =

@C

@t
(2.3)

From Eq. 2.2 and 2.3, we get the following relation, which is Fick’s second law of di↵usion,

also called the di↵usion equation:

@C

@t
= r · (DrC) (2.4)

Here, the

@C
@t

term tells the rate at which the concentration of the particles is changing and

the vector (DrC) controls the magnitude of the spatial variation in the concentration in

di↵erent directions. The dot product with the gradient operator, r, finally gives the total

magnitude of change in concentration.

2.1.2 Jump Frequency, Flux and Di↵usivity

Considering the di↵usion of particles in solids as random walks, in which an atom jumps

from one site to another, we can express the di↵usion in terms of the frequency of these

jumps. For a standard solid, by assuming that atoms jump to nearest neighbours, we fix the

length of these jumps, which is of the order of the lattice parameters of the crystal. Using a

simplistic model of unidirectional di↵usion of interstitial atoms in a simple crystal, Mehrer

[29], in his book Di↵usion in Solids, has derived a relation between the flux of atoms, J , and

the and the jump frequency of the atoms, �,

J = ��2�@C
@x

(2.5)

Here, � is the fixed jump length and � is the jump rate or jump frequency (per unit time).

Comparing this with Fick’s first law, we get,

D = �2� (2.6)

This result has been obtained for a unidirectional flow. Extending this for all the six

11



directions (3 dimensions ⇥2 directions), we get the total jump frequency as:

�total = 6� (2.7)

Thus the final relation between di↵usivity and jump frequency for a simple cubic crystal is

given by:

D =

1

6

�total�
2

(2.8)

These jump processes occur due to thermal activation and can be represented by the Arrhe-

nius equation, given as

�total = ⌫
0

exp

✓
�Ea

kBT

◆
(2.9)

Here, ⌫
0

denotes the attempt frequency which is of the order of the Debye frequency of

the lattice (generally, 10

13s�1

), Ea is the activation energy for the ion transport, kB is the

Boltzmann constant and T is the absolute temperature. Using Eq. 2.8 and 2.9, we get the

following relation, which has been used later to find di↵usivities of halide ions at di↵erent

temperatures.

D =

1

6

�2⌫
0

exp

✓
�Ea

kBT

◆
(2.10)

Having established the basic theory of ion di↵usion, I will now move on to the theory

used to solve Hamiltonians of systems of many interacting particles.

2.2 Solving the many-body Hamiltonian

Let us consider a system of N atoms, each one with equal number of electrons. To simplify

the system, divide it into ions and (valence) electrons, where ions comprise of the nucleus

and core electrons. Let the total number of valence electrons in the system be n1

. The

Hamiltonian of the system is given by:

H = �
NX

I=1

~2
2MI

r2

I�
nX

i=1

~2
2mi

r2

i +
1

2

NX

I 6=J

ZIZJe
2

|RI �RJ |
+

N,nX

I=1,i=1

ZIe
2

|RI � ri|
+

1

2

nX

i 6=j

e2

|ri � rj|
(2.11)

1If the number of valence electrons per atom is v, then the total number of valence electrons in the system,
n = v ⇤N .
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where uppercase subscripts correspond to ions and lowercase subscripts correspond to elec-

trons. The first two terms describe the kinetic energy if ions and electrons respectively. The

last three terms are Coulomb potential energy of ion-ion, ion-electron and electron-electron

interaction respectively.

Putting this Hamiltonian in the Schrödinger equation, H = E , we obtain a coupled

di↵erential equation which is impossible to solve analytically. Hence, we need to make certain

approximations and try to solve it numerically.

Let us represent the above equation by the following shortened notation, for simplicity’s

sake.

H = Ti|{z}
K.E. of ions

+ Te|{z}
K.E. of electrons

+ Vii|{z}
ion-ion interaction

+ Vie|{z}
ion-elec interaction

+ Vee|{z}
elec-elec interaction

where the meaning of each term has been described under it. We will use this notation

in the subsequent sections. Let us now look at various approximations that help us simplify

this equation further so that it can be solved numerically.

2.2.1 Born-Oppenheimer approximation

The mass of ions (MI) is much larger than the mass of electron (mi) [ MI/mi > 1.8⇥ 10

3

].

As a result, the motion of ions with respect to that of electrons is negligible, i.e., for electrons,

the ions are fixed and can be treated at static entities for the purpose of relaxing the electrons

to an equilibrium position. This allows us to divide the Hamiltonian into ionic and electronic

part (Hence, we can de-couple the ionic and electronic parts of the Schrödinger equation (see

Eq. 2.12). This is called the Born-Oppenheimer or adiabatic approximation. Hence, we can

de-couple the ionic and electronic parts of the Schrödinger equation.

Hion = Ti + Vii (2.12)

Helectron = Te + Vee + Vie + Eii (2.13)

where Vie + Eii is treated as the e↵ective external potential, Veff , that the electrons

13



are subjected to as a result of the positions of ions. Eii is obtained by solving the ionic

Hamiltonian using the following wavefunction:

 tot(R, r) =  ion(R) ·  elec(r, R)

The e↵ective Schrödinger equation now becomes:

[Te + Vee + Veff ] elec = Etot elec (2.14)

where Veff = Vie + Eii and Etot is the total ground state energy of the system.

This equation needs to be further simplified before it can be solved since it still has

electron-electron interaction which gives rise to a complicated electron wavefunction,  elec.

To simplify this problem, Hartree gave another approximation.

2.2.2 Hartree and Hartree-Fock Approximations

Hartree proposed that assuming no interaction between electrons, we can represent the total

electron wavefunction as a product of wavefunctions of n individual electrons:

 elec = �
1

(r
1

) · �
1

(r
2

) · ... · �n(rn) (2.15)

where �i(ri) is the wavefunction of the ith electron. Hence, after putting this wavefunction

into Eq. 2.14, we get n independent equations for all the electrons given by:

[Te(ri) + Veff (ri) + Vee(ri)]�i(r) = ✏i�i(r) (2.16)

where ✏i is the energy of the ith electron. Expanding this notation and operating the Hamil-

tonian onto the wavefunction, we get the following equation:

� ~2
2mi

r2

i�i(r) + Veff (ri)�i(r) +
e2

2

Z P
i 6=j |�j(r

0
)|2

|r � r0| dr0�i(r)

| {z }
Vee(ri)

= ✏i�i(r) (2.17)

This is the Hartree equation. The total energy of the system is given by E =

P
i ✏i. The

14



Vee term in this equation represents the mean Coulomb potential field experienced by the

electron (whose wavefunction is �i(r)). This approximation reduces the number of variables

to a great extent, hence reducing the complexity of the equation.

However, this assumption has a fundamental problem. Representing the wavefunction as

merely a product of individual electron wavefunctions does not account for the Pauli exclusion

principle, which states that there can be no two electrons with the same set of quantum

numbers in the same position. This comes from the Fermi-Dirac statistics for electrons. This

has been rectified by the Hartree-Fock approximation where the wavefunction is given by

the Slater determinant. This is now an anti-symmetric wavefunction. This accounts for the

energy due to exchange interactions between the electrons.

 elec =
1p
n!

����������

�
1

(r
1

) �
2

(r
1

) · · · �n(r1)

�
1

(r
2

) �
2

(r
2

) · · · �n(r2)
.

.

.

.

.

.

.

.

.

.

.

.

�
1

(rn) �
2

(rn) · · · �n(rn)

����������

Putting this wavefunction in Eq. 2.14, we get the following equation:

[Te(ri) + Veff (ri) + Vee(ri, ri0)]�i(r) = ✏i�i(r) (2.18)

Expanding this notation and operating the Hamiltonian onto the wavefunction, we get the

Hartree-Fock equation:

� ~2
2mi

r2

i�i(r) + Veff (ri)�i(r)+

Coulomb interactionz }| {

e2
Z P

i 6=j |�j(r
0
)|2

|r � r0| dr0�i(r)�

Exchange interactionz }| {

e2
X

i 6=j

Z
�⇤
i (r)�j(r

0
)

|r � r0| dr0�i(r)

| {z }
Vee(ri)

= ✏i�i(r) (2.19)

Notice that this equation has an extra term due to interaction between electrons. This is

because of the asymmetric wavefunction which gives rise to the exchange interaction between

the electrons.
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The Hartree-Fock equation converts the many-particle Schrödinger equation into a set

of single particle equations and the final energy can be obtained by adding all the individ-

ual energies. This is significant progress so far, however, we still have a large number of

equations

2

. This would require large amount of computing power, which is not feasible.

Apart from this technical problem, there is a physical problem with this equation as

well. The kinetic energy written in this equation is for a system of non-interacting particles.

However, we know that our system has interacting particles. It is still unknown how to write

the kinetic energy for a system of interacting particles.

This is where Density Functional Theory comes into picture. In DFT, we use charge

density (| |2) as the fundamental quantity instead of wavefunction ( ), which further reduces

the degrees of freedom, and hence, the number of equations. This theory also takes care of

the kinetic energy of the interacting system, addressed by the Kohn-Sham scheme discussed

in section 2.3.2.

2.3 Density Functional Theory

Density Functional Theory allows us to obtain properties of systems based on their ground

state charge density ⇢
0

. This reduces the degrees of freedom of the Hamiltonian from 3N to

N , where N is the total number of particles in the system. The basis of this theory can be

understood by two important theorems given by Hohenberg and Kohn.

In the following sections, these theorems have been discussed and then applied to the

Hamiltoninan given in Eq. 2.19. It can be represented in short-hand notation in the following

way:

H = Te + Eii +

X

i

Vext(ri) + Ex (2.20)

Here, Eii = Veff (ri)�i(r), is a constant additive term to the potential energy,

P
i Vext(ri) =

e2
R P

i 6=j |�j(r
0
)|2

|r�r0| dr0, is the net external potential experienced by each electron due to all the

other electrons and Ex = �e2
P

i 6=j

R �⇤
i (r)�j(r

0
)

|r�r0| dr0, is the exchange interaction of electrons.

2Number of equations = number of electrons in the system (n). And for a system with 1023 atoms (1
mole of a substance), with v valence electrons on each atom, we will have n = v ⇤ 1023 number of equations.

16



2.3.1 Hohenberg-Kohn Theorems

Theorem 1

For any system of interacting particles in an external potential V
ext

, the external potential

V
ext

can be uniquely determined, except for an additive constant, by the ground state

density ⇢
0

(r) of the interacting particles.

Theorem 2

For a system of interacting particles in any external potential, V
ext

, there exists a universal

energy functional E[⇢(r)] where ⇢(r) is the charge density of interacting particles. For any

particular V
ext

, the global minimum of E[⇢(r)] gives the ground state energy E
0

of the sys-

tem and the charge density corresponding to this global minimum is the ground state charge

density, ⇢
0

(r), of the interacting particles.

Theorem 1 establishes a one-to-one correspondence between Vext and ⇢0(r), which means

that a system of interacting particles is uniquely determined by its ground state charge

density. Theorem 2 conveys that the minimisation of the energy functional, E[⇢(r)], with

respect to the charge density, ⇢(r), gives us the ground state energy and corresponding charge

density, which can be used to find all other properties of the system.

Therefore, we can represent our Hamiltonian, given in Eq.2.20, in terms of charge density.

E[⇢(r)] = Te[⇢(r)] +

Z
Vext(r)⇢(r)dr + Ex(⇢(r)) + Eii. (2.21)

2.3.2 Kohn-Sham Scheme

In the Kohn-Sham scheme, a system of interacting particles [A(⇢A)] is mapped on to a system

of non interacting particles [A’(⇢A)], with an additional correction term, keeping the same

ground state charge density (⇢A).

Under this scheme, the Hamiltonian of interacting electrons can be simplified to a Hamil-
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Figure 2.1: Block diagram of the Kohn-Sham scheme.

tonian of non interacting electrons which experience a net mean field due to all other elec-

trons. We have already expressed the electron-electron interaction in this manner, however,

the kinetic energy has not been looked into. The kinetic energy term in Eq. 2.21 is the

kinetic energy of interacting electrons. Therefore, we need to represent the kinetic energy as

the sum of T
non�interacting

and some error �T . This error is called the correlation-kinetic

energy of interacting electrons.

The final ground state energy that we get is represented as:

EKS[⇢(r)] = Ts[⇢(r)] +

Z
Vext(r)⇢(r)dr + Ex(⇢(r)) + Ec(⇢(r)) + Eii. (2.22)

here, Ts is the kinetic energy of non-interacting electrons, Ec is the correlation energy. We

can club Ex and Ec to write it as Exc, which is called the exchange-correlation energy.
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Applying variational principle, the above energy functional is minimized with respect

to the single particle wave functions �i(r), to obtain the ground state properties in a self-

consistent manner. The self consistent Kohn-Sham equations are given by plugging this

Hamiltonian into the Schrödinger equation.

{Ts[⇢(r)] +

Z
Vext(r)⇢(r)dr + Ex(⇢(r)) + Ec(⇢(r)) + Eii}�i(r) = ✏i�i(r) (2.23)

By using the self-consistent iterative method given in Fig. 2.1, we arrive at the ground

state energy of the system. Note that the single particle wave functions in Kohn-Sham equa-

tions do not represent the actual electronic wave functions. But they are important in ob-

taining the charge density in the self-consistent loops (using the relation ⇢(r) =
P

i |�i(r)|2).

2.4 Exchange-Correlation Functionals

As we have seen in the previous sections, the exchange-correlation energy arises from the

interaction between electrons and can only be approximated up to a limit. All of DFT

calculations, therefore, boil down to how well one has approximated the exchange-correlation

functional, Exc[⇢]. There are several approaches one can take depending on the system in

question.

2.4.1 Local Density Approximation (LDA)

Within LDA, the Exc[⇢] is written as a function of charge density at a local point and the

electron charge density is considered as a homogeneous density function throughout the

system. It is given by the following relation:

ELDA
xc [⇢] =

Z
⇢(r)Ehomo

xc (⇢(r))dr (2.24)

where Ehomo
xc is the exchangecorrelation energy for homogeneous electron density.
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2.4.2 Generalised Gradient Approximation (GGA)

In the GGA approach, the Exc[⇢] is considered as a function of not only the charge density

but also the gradient of charge density.

EGGA
xc [⇢] =

Z
⇢(r)Exc(⇢(r))dr +

Z
Fxc(⇢(r),r⇢(r))dr (2.25)

The additional exchange contribution from the enhancement factor, Fxc results in higher

exchange energies than LDA for high and moderate electronic densities, which is consistent

with the fact that exchange interaction dominates over correlation for the above density

regimes.

2.4.3 Hybrid Functionals

Typically, the exchange correlation functional of DFT is mixed with partial exchange contri-

bution from Hartree-Fock method. The Hyde-Scuseria-Ernzerhof hybrid functional (HSE06)

involves separation of the short range Hartree-Fock exchange and a rapid screening of the

long range Hartree-Fock exchange terms [14]. Further, only 1/4th short-range Hartree-Fock

exchange is mixed with the 3/4th shortrange DFT exchange.

EHSE
xc =

1

4

EHF (short)
xc +

3

4

EDFT (short)
xc + EDFT (long)

x + EDFT
c (2.26)

2.5 Nudged Elastic Band (NEB) Method

The nudged elastic band is a method to find saddle points and minimum energy pathway

(MEP) between known initial and final states. It starts with the creation of equally spaced

images through a linear interpolation scheme in-between the two states. All the images are

then optimised to reach their minimum possible energy while maintaining equal distances

between the neighbouring images.

The images are prevented to relax to their ground state energies (as would be the case
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with normal DFT minimisation) by applying only a part of the force. This is ensured by

adding spring forces between the images along the “elastic band” which connects them.

There is an additional force acting perpendicular to the MEP which pulls the image towards

it

3

.

The following graph illustrates this process of optimising an image quite well.

Figure 2.2: The NEB method: only the components of force on the ith image that are acting parallel and
perpendicular to the MEP is considered while minimisation of the energy functional of the said image. Here
the blue line is the linearly interpolated pathway and the black line is the MEP. Figure reproduced from [11]
with permission.

2.6 Computational Details

The work presented in this thesis has been carried out using Vienna ab initio Simulation

Package (VASP)[26][25]. The structural and electronic properties of the systems were calcu-

lated using Density Functional Theory with the Generalised Gradient Approximation (GGA)

using the Perdew-Burke-Ernzerhof (PBE)[39] exchange-correlation functional, along with

spin-orbit coupling. The unit cells were fully relaxed until all the forces became smaller

than 0.005 eV/

˚

A threshold energy. Since PBE+SO underestimates the band gap, the band

3Since in this process all the images are being optimised simultaneously, it is always better to assign the
number of processors as a multiple of the number of images for NEB calculations.
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structures were recalculated using the Heyd-Scuseria-Ernzerhof hybrid exchange correlation

functional (HSE06). All the calculations were performed within the projector augmented

wave (PAW) formalism[4] and the wave functions were expanded in a plane-wave basis with

400 eV kinetic energy cut-o↵. The Brillouin zone sampling using the Monkhorst-Pack k grids

[33]. Details for each phase are provided in Table 2.1.

Phase
K-mesh for optimisation

Unitcell Supercell
Cubic 4x4x4 2x2x4

Tetragonal 7x7x5 3x3x2

Orthorhombic 7x7x5 (5x5x7) 3x3x2

Table 2.1: K-mesh for unit cell and supercell optimisation of di↵erent structures.The values in the bracket
are for X = Cl-. Since the orthorhombic CsPbCl3 has higher symmetry than the other two along z-axis, the
number of atoms is lesser in that direction for this crystal. Hence, the Brillouin zone changes accordingly.

Thereafter, activation energies for ion di↵usion in the perovskites was calculated using

the Cl-NEB method[13]. Supercells with 160 atoms were created for all the systems and

optimised using PBE functional. Thereafter, two copies were made with a halide vacancy

in each one, making sure that they are nearest neighbour vacancies. These structures with

vacancies, after being optimised, were used as initial and final structures for conducting NEB

calculations.
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Chapter 3

Results and Discussion

In this chapter, I have presented the results of this thesis. In the first two sections, 3.1 and 3.2,

I have discussed the structural and electronic properties of the systems in focus and the trends

in their properties have been elaborated upon. They have been compared with previous

works, both experimental and theoretical. In section 3.3, I have presented the formation

energy and activation energy for vacancy formation and transport respectively. Results for

cubic and orthorhombic phase have been compared for di↵erent halide perovskites. Lastly,

the results for cubic phase have been compared with available experimental data. I have

concluded this chapter with a comment on the implications of these energy values for di↵erent

halide perovskites.

3.1 Structural Properties

The structural properties of CsPbX

3

have been obtained before both experimentally and

theoretically. Here, we have calculated the same using PBE functional and compared it to

previous results. Original .cif files for most

1

of the structures were taken from Materials

Project [20].

1For tetragonal CsPbI3, I used the tetragonal CsPbBr3 structure and replaced Br with I. Orthorhombic
CsPbI3 .cif file was taken from [47]
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Material Phase Calculated (Å) Experimental (Å) Others (Å)

CsPbCl

3

cubic a = 5.719 a = 5.605

[32]

a = 5.729

[10]

orthorhombic

a = 7.948

b = 7.948

c = 5.780

-

-

-

-

-

-

CsPbBr

3

cubic a = 5.972 5.874

[32]

a = 6.005

[2]

tetragonal

a = b = 8.433

c = 11.991

a = b = 8.48

c = 15.25

[2]

a = b = 7.978

c = 14.640

[2]

orthorhombic

a = 8.420

b = 11.948

c = 8.303

a = 8.244

b = 11.735

c = 8.198

[46]

a = 8.251

b = 11.751

c = 8.169

[2]

CsPbI

3

cubic a = 6.352 a = 6.289

[44]

a = 6.050

[5]

tetragonal

a = b = 8.984

c = 12.801

-

-

-

-

orthorhombic

a = 9.053

b = 8.777

c = 12.674

a = 8.856

b =8.576

c =12.472

[47]

-

-

-

Table 3.1: Lattice parameters are calculated using the PBE functional.

As discussed in chapter 1, the structure of perovskites is made up of eight BX
6

octa-

hedrons and cation A sitting in the centre of these octahedra. The lattice parameters of

CsPbX

3

increase in magnitude from Cl to Br to I for all the phases, as expected, because

the size of the halide increases in that order.

It is to be noticed that the volume of orthorhombic CsPbCl

3

is less than half of the

other two. This is because the number of atoms in its unit cell is also half of the number in

the other two. CsPbCl

3

has higher symmetry as compared to CsPbBr

3

and CsPbI

3

, most

probably because of the smaller size of Cl ion. This results in reduction of the unit cell by

half. However, there are .cif files available which have not considered the two halves of the

cell as symmetric. I realsied this fact much later and so did not use the other structure.

3.2 Electronic Properties

The band structures of all the crystal systems were calculated using PBE functional, and

recalculated by adding spin-obit coupling e↵ect and then using HSE06 hybrid functional.

The results have been compared with experimental data and previous theoretical results.
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Material Phase
Calculated (eV)

Exp.(eV) Others (eV)
PBE PBE+SO HSE+SO

CsPbCl

3

cubic 2.18 1.11 2.82

[41]

2.50 (GGA)

[22]

orthorhombic 2.35 1.43 2.13 - 2.33 (GGA)

[2]

CsPbBr

3

cubic 1.74 0.69 2.00

[41]

1.42 (LDA)

[5]

tetragonal 1.82 0.64 - 0.79 (GGA)

[2]

orthorhombic 2.03 1.12 1.67 2.24

[46]

1.80 (GGA)

[22]

CsPbI

3

cubic 1.44 0.34 1.44

[41]

1.32 (GGA)

[22]

tetragonal 1.53 0.51 - -

orthorhombic 1.76 0.84 1.29 1.72

[54]

1.70 (GGA)

[52]

Table 3.2: CsPbX3 systems have direct band gaps in all the three phases. PBE+SOC heavily underestimates
the band gaps. Hence, the HSE06+SOC functional was used to recalculate their band structures.

It seems that PBE functional gives results closer to the expected value but that is due to

numerical errors canceling out. If we consider spin-orbit coupling (and it is important that

we do, because spin-orbit coupling has significant e↵ects on energy levels of these materials

due to Pb

+2

ion) with the PBE functional, it is observed that the band gaps are heavily

underestimated. Therefore, a di↵erent approximation method is required for lead halide

perovskites. We used the HSE06 functional with spin orbit coupling to recalculate the band

structures

2

.

It is observed that the band gap increases when we go from bigger to smaller halide ion,

i.e., EI� < EBr� < ECl� . Comparing the phases, we find that the band gap increases with

the increase in the distortion of PX

6

octahedrons in the perovskite lattice, i.e., E
cubic

<

E
tetragonal

< E
orthorhombic

.

3.3 Vacancy/ion migration energy

The nearest neighbour vacancy structures, say vacancy 1 and vacancy 2, were used as initial

and final structures for NEB calculations. Here, we have provided the activation barriers for

halide ion migration along a given path and discussed how they vary with di↵erent halide

2The calculation with HSE+SO are still going on since they are quite computationally heavy.
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ions, di↵erent phases and theoretical approximations. Results have been compared with

experimental values as well. The path for cubic phase of CsPbBr

3

has been shown in fig.

3.1.

Initial state Transition state Final state

Figure 3.1: The path followed by Br� ion in cubic CsPbBr3.The given figures are in the a-c plane. The
green atom is Cs, black is Pb and brown is Br.

3.3.1 Vacancy formation energy

Supercells (pristine) of CsPbX

3

systems were created to get 160 atoms per cell. After their

optimization using PBE functional, two separate structures (defective) with nearest neigh-

bour halide vacancies were generated. For all the structures, we have calculated the energy

required to form a vacancy (vacancy formation energy, Ev) by optimising both the pristine

and defective supercells and comparing their ground state energies (E
0

).

Material Phase
E

0

(eV)
E

v

(eV)
Pristine Defective

CsPbCl

3

cubic -564.145 -560.441 3.704

orthorhombic -565.338 -560.365 5.193

CsPbBr

3

cubic -510.105 -505.791 4.314

tetragonal -511.019 -507.001 4.018

orthorhombic -512.493 -507.965 4.528

CsPbI

3

cubic -451.103 -447.495 3.609

tetragonal -452.444 -448.858 3.586

orthorhombic -454.522 -450.748 3.774

Table 3.3: Vacancy formation energies for CsPbX3 in di↵erent phases.

The vacancy formation energy for cubic phase is lower than that of orthorhombic phase

for all the halides. Additionally, the formation energy of tetragonal phases of CsPbBr

3

and
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CsPbI

3

is the lowest of the three phases. This needs to be verified by experimental studies.

Since we have used the PBE functional and not included spin-orbit e↵ects while optimising

these supercells, our results need some improvement. But doing these calculations for a

supercell of 160 atoms is quite a heavy job. Therefore, better and faster computational

methods need to be incorporated to analyse these systems with better accuracy.

3.3.2 Activation Energy and Di↵usivity

The structures of tetragonal phase with the vacancy defect did not completely optimise and

hence, the NEB data could not be obtained.

Cubic phase

The results for the cubic phase have been analysed in detail in this subsection.

(a) (b) (c)

Figure 3.2: Energy barriers for (a) Cl-, (b) Br- and (c) I- ions in cubic phase are calculated as 0.59 eV, 0.25
eV and 0.20 eV respectively.

(a) The value of activation barrier for Cl ion is much higher than the expected experimen-

tal value (0.29 eV). It also shows a peculiar bump in the NEB graph and is highly

asymmetric in nature. Our guess is that there is some problem with the .cif file. This

calculation needs to be redone from scratch using a di↵erent initial structure.

(b) The value of activation barrier for Br is in agreement with the experimental value.

However, the di↵erence in energies of the initial and final structures needs to be looked

at. In fact, this is the case with most of my vacancy supercells. This is being addressed

by reversing the initial and final structure order and redoing the NEB calculation.
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(c) The NEB graph for I ion is quite symmetric. However, the first and fifth images have

lower energies than the zeroth (initial) and sixth (final) images. This is because these

structures did not converge completely (forces were of the order of 0.045 eV). The

barriers is being recalculated by giving the first and fifth images as the initial and final

images in the NEB calculation.

Orthorhombic phase

Here, we present the activation energy barrier for orthorhombic phases of CsPbX

3

(X = Cl,

Br, I). It is observed that the activation energy for Cl� is the highest, followed by I� and

then Br�. Since Cl� has a smaller size, and is more tightly packed, it would form stronger

Figure 3.3: Energy barriers for (a) Cl-, (b) Br- and (c) I- ions in orthorhombic phase are calculated as 0.36
eV, 0.30 eV and 0.35 eV respectively.

bonds with the neighbouring atoms. Hence, it is expected to have the highest energy barrier

for transporting. By this logic, Br� should be in the middle and I� should have the lowest

barrier. However, our results di↵er from this hypothesis. If we assume that our theoretical

methods are accurate and do not require further improvement, then one physical reason for

this trend could be that apart from tight bonding, size also plays a role in moving through a
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medium. It would be more di�cult for a larger atom to transport because of its heavy mass.

Hence, these two terms, extent of bonding and mass, compete with each other to give Ea of

an ion.

Using equation 2.10, which gives the relation between di↵usivity, activation energy, mi-

gration path length and temperature, we have calculated the di↵usivity of halide ions in

orthorhombic phase at di↵erent temperatures, plotted in fig 3.4.

Figure 3.4: Di↵usivity of halide ions in orthorhombic phase of CsPbX3 is plotted with temperature. The
values of path length, �, for Cl, Br and I are 4.07 Å, 4.25 Å, 4.55 Årespectively and the attempt frequency,
⌫0 is taken as 1013s�1.

The di↵usivity of Cl is found to be lowest and that of Br, the highest. The reasoning

given for activation energies can be extended to di↵usivity as well.

Formation and activation energy - is there any trend?

Although there is no analytical proof for this fact but it has been empirically established

that the activation energy is directly proportional to the formation energy of a reaction.

This was first proposed by Bronsted-Evans-Polanyi [3]. Kabir et. al. [23] have analysed the

trend between activation energy and formation energy of various di↵usion reactions and have
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shown a linear relation between the formation and activation energies. We have plotted our

values of Ea and Ev which is shown in Fig. 3.5. Except for cubic CsPbCl

3

and orthogonal

Figure 3.5: Activation energy and formation energies of each structure has been plotted to check if there is
any trend followed.

CsPbI

3

, the structures follow more or less a Bronsted-Evans-Polanyi correlation.

3.3.3 Comparison with experimental results

There are a few experimental papers which have discussed ion transport in Cs based halide

perovskites. It has been experimentally found that Ea of halide ions in cubic phases of

CsPbCl

3

and CsPbBr

3

is 0.29eV and 0.25eV respectively[31]. The experimental values were

obtained using Tubandt, EMF and ion-blocking methods at temperature ranges from 150

°C to the melting point of the structures. Our calculated value for CsPbBr

3

is in agreement

with the experimental value. However, the value for CsPbCl

3

is way o↵, most probably

because of theoretical errors, that are being resolved at the moment.

There was another experimental study in which the value of activation energy for (Br/Cl)

ion di↵usion was found out to be 0.44± 0.02 eV for a structure of single crystals of CsPbBr

3
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nanowires (NWs) and cubic CsPbCl

3

. This was obtained by physically stacking single

crystal CsPbCl

3

microplates on single-crystal CsPbBr

3

NWs [37]. It is debatable whether

this experimental value can be compared with the theoretical activation value for cubic

CsPbX

3

(X = Cl, Br) since the stacking would result in some grain boundaries and the

di↵usion would not be just because of vacancy defects.

There have been no experimental studies of ion di↵usion in orthorhombic or tetragonal

structures. Our theoretical results will motivate such studies in future if we get interesting

results.
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Chapter 4

Conclusion and Outlook

In this work, we have studied ion transport of halide ions in CsPbX

3

(X = Cl, Br, I) in

di↵erent crystal phases. Having better insights on the mechanism of ion transport would

significantly improve our chances of developing more stable perovskites, which can be used

in solar cells. Our key results include the following:

1. The formation energies of halide vacancies, Ev, in CsPbX

3

are in the range of 3.7 - 5.2

eV. The formation energy for cubic phase is lower than that of orthorhombic phase

for all the halides. However, the formation energy of tetragonal phases of CsPbBr

3

and CsPbI

3

is the lowest of all the three phases. More calculations need to be done to

conclude anything about them.

2. Comparison of activation energies between phases reveals that Ea is higher for ions in

cubic than in orthorhombic phase. The results for tetragonal phase are still ongoing.

3. We have found the di↵usivity of halide ions with respect to the temperature by con-

sidering the ion jump frequency as 10

13

. It is found that the di↵usivity of Br ions is

the highest, followed by I and the lowest is for Cl ions. This trend has been discussed

in detail in section 3.3.2.

4. The relationship between formation energy and activation energy of vacancy defects

has been looked at. Most of the structures follow a linear graph but more number of

data points are required to make a conclusion.

33



5. Finally, we have compared our results with experimental ones and found that the

experimental barriers are lower than the theoretical ones. The possible reasons for

that could be:

• There is di↵usion of ions due to defects other than vacancy defects, as shown in

Fig. 1.4. It is extremely di�cult to experimentally di↵erentiate the activation

energies due to di↵erent defects within the crystal.

• We have used the GGA approach calculate the activation barriers. It is possible

that more accurate numerical methods are required for these systems.

• It is di�cult to conclude whether the experimental phenomena is being correctly

simulated in the theoretical model.

Hence, understanding ion transport in perovskites is crucial in advancement of perovskite

photovoltaics. Using computational tools, one can predict favourable perovskite structures

which have higher ion activation energies, and hence less ion transport, thereby reducing the

chances of distortion in the crystal structure.

4.1 Future work

There are so many questions yet to be answered in this work and with each answer, a new

question arises. We need to carry out several calculations before we can arrive at a concrete

conclusion. Currently, some of them are being done (as mentioned above).

In this work, we have fixed the vacancy concentration for comparing ion transport mech-

anisms, but it would be worthwhile to analyse the activation energies at a fixed temperature

for all the structures. For each temperature value, we would have a corresponding vacancy

concentration in the crystal. This would allow us to determine if there is any changes in the

activation energies due to vacancy defect concentration. Additionally, it would be useful to

analyse how the activation barrier changes with the direction of transport. So far, we have

considered isotropic conditions and similar environments around the ions. But this is not

necessarily the case, especially for orthorhombic and tetragonal phases.
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