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Abstract

The Random Matrix Theory (RMT) has been of great interest to physicists,
with its applications in understanding the statistical structure of empirical
correlation matrices appearing in the study of various real systems. However,
many real systems consist of data that is not in direct numerical form. For
detailed statistical analysis using RMT, converting the non-numerical data,
also known as categorical data, into numerical, non-categorical data is ab-
solutely essential. We propose a novel way to calculate correlation among
objects that are not numbers. We then study various statistical properties
of such random correlation matrices, such as eigenvalue density, eigenvector
distribution and spacing distribution and compare and contrast them with
the known results from RMT. The usefulness of such correlation calcula-
tions is demonstrated in real life applications like election result analysis and
statistics of atmospheric pressure data.
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Chapter 1

Introduction

Many important properties of physical systems can be represented mathe-
matically as matrix problems. The study of statistical properties of matri-
ces with independent and identically distributed (iid) random elements, also
known as random matrices, can provide a wealth of information about the
physical system it represents. Random Matrix Theory (RMT) was developed
by Wigner, Dyson, Mehta and others in order to explain the energy levels
of complex nuclei in Nuclear Physics [I]. They postulated that the spacings
between the lines in the spectrum of a heavy atom should resemble the spac-
ings between the eigenvalues of a random matrix, and should depend only
on the symmetry class of the underlying Hamiltonian [2]. Since then, there
have been rapid developments in RMT. It has found numerous applications
in varied areas like Finance, Risk Management, Meteorological studies and
SO on.

The ensembles that are most widely studied in RMT, due to their appli-
cations in Physics and other fields, are the Gaussian ensembles. There are
three basic classes of Gaussian ensembles [3]:

The Gaussian unitary ensemble GUE(n) is described by the Gaussian
measure with probability density,

1
pGUE = ——€Tp (—ETrH2> (1.1)
ZGUE) 2
defined on the space of n x n Hermitian matrices H = (Hj)ij_,. Here

ZGUE@) = 2n/27m*/2 s a normalization constant, chosen so that the integral
of the density is equal to one. The term unitary refers to the fact that the
distribution is invariant under unitary transformation. The Gaussian unitary
ensemble is used to model Hamiltonians lacking time-reversal symmetry.
The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian
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measure with probability density

1
——exp (—gTH—I?) (1.2)

PGOE =
ZGOE(n)

defined on the space of n x n real symmetric matrices H = (Hy)i_,. Its
distribution is invariant under orthogonal transformation, and it is used to
model Hamiltonians with time-reversal symmetry.

The Gaussian symplectic ensemble GSE(n) is described by the Gaussian
measure with probability density

PGSE = exp (—n TrH2) (1.3)

ZGSE(n)
defined on the space of n x n quaternionic Hermitian matrices H = (Hy)?j_;.
Its distribution is invariant under transformation by the symplectic group,
and it is used to model Hamiltonians with time-reversal symmetry, but no
rotational symmetry.

One more important class of random matrices, often encountered in many
real systems, are the Wishart matrices. These are n x n random matrices of

the form
C=XX* (1.4)

where X is an n xn random matrix with independent random entries, and X*
is its conjugate matrix. In the important special case which was considered
by Wishart, the entries of X are identically distributed Gaussian random
variables, which are either real or complex. We will later use this class of
matrices in a real system.

Empirical Correlation Matrices are important for the statistical analysis
of real-world data. The empirical correlation matrices come from observa-
tions and measurements of real systems. They form a bridge between the real
world and the mathematical formalism of RMT. Hence, study of statistical
properties of such matrices is vital for the understanding of the underlying
physical system. However, most real observations are contaminated by some
kind of noise, which forms a significant component of the empirical correla-
tion matrices. In order to understand the underlying physical system better,
it is thus important to differentiate noise from actual useful information. It
is a highly non-trivial problem to separate the useful components of the data
from the noise. We will study more about this in Chapter 2.

A well-known technique used to differentiate the noise in the signal is to
compare the statistical properties of the empirical correlation matrix with
those of a correlation matrix obtained from uniformly distributed and in-
dependent random numbers. Many studies [2][4] have shown that most of



the eigenvalues of the empirical correlation matrices match with those of the
random correlation matrices in RMT. This suggests that there is a consid-
erable degree of randomness in the measured correlations. However, the few
eigenvalues that deviate from the RMT values are the ones that contain some
useful information about the system. The study of these deviating eigenval-
ues and their corresponding eigenvectors can provide valuable information
about the system.

However, such an analysis is only possible when the data is non-categorical,
i.e. in direct numerical form. For example, the values of heights of all stu-
dents in a class, or the average annual rainfall measured at a particular loca-
tion all constitute non-categorical data. In statistics, a categorical variable is
a variable that takes a limited, and usually fixed, number of possible values.
For example, the blood type of a person, the state or a geographical region
in which a person resides, the political party he/she might vote for are all
examples of categorical variables. For convenience in statistical processing,
categorical variables can be assigned numeric indices, e.g. 1 through n for
a n-way categorical variable (i.e. a variable that can be used to express ex-
actly n possible values). In general, however, the numbers are arbitrary, and
simply provide a convenient label for a particular value and have no signifi-
cance. In other words, the values of a categorical variable exist on a nominal
scale. They each represent a logically separate concept, cannot necessarily
be meaningfully ordered, and cannot be otherwise manipulated as normal
numbers could be.

As a result, it is not possible to analyse categorical data using standard
methods in RMT. In order to do so, either the data has to be converted
into non-categorical one, or some other method must be employed. Many a
times, in real systems, we encounter categorical data. The main aim of the
project is to devise a method that can tackle categorical data, to design a
framework, analogous to RMT, that can be used as a background for analysis
of real data.

In the next chapter, we discuss known basic results of RMT, including the
method to calculate correlation matrices from data matrices. We present the
theoretical expression for calculating the eigenvalue density of the correlation
matrix in RMT. We also present the known theoretical expressions for the
eigenvector distribution, information entropy and the nearest-level spacing
distribution in RMT. These results form the backbone of statistical analysis
using RMT.

In the third chapter, we discuss the problems encountered when dealing
with categorical data. We then suggest two methods to compute random
correlation matrices using categorical data. We study the statistical proper-
ties like eigenvalue density, spacing distribution and information entropy of



these random correlation matrices and contrast these results with the RMT
predictions. These results now form the backbone for statistical analysis of
categorical data.

In the fourth chapter, we demonstrate the usefulness of our method by
applying it to two real-world systems:
1. Analysis of Indian General Elections results, where we analyse the data of
previous Indian general elections and study the voting patterns for each of
the 543 constituencies. We calculate correlations among various constituen-
cies and study their statistical properties, in order to get some deeper insights
into voting patterns across various constituencies.
2. Statistics of Atmospheric Pressure data, in which we analyse data con-
taining atmospheric pressure values at different locations at different points
of time. We find correlations among different locations and study the sta-
tistical properties of these correlation matrices. Since the data here is non-
categorical, the analysis can also be done using RMT techniques. However,
we apply our method here to show it can also be applied to non-categorical
data.
Study of statistical properties of the correlation matrices like eigenvalue den-
sity, eigenvector distribution, information entropy and nearest level spacing
distribution in each case gives valuable insight into the problems.



Chapter 2

Random Matrix Theory

2.1 Computing Correlations in RMT

In statistics, correlation constitutes of a broad class of statistical relationships
involving dependence. Correlations are useful because they can possibly indi-
cate a predictive relationship that can be exploited in practice. For example,
study of correlations between prices of different stocks can be used to predict
the stock prices at a certain time [2]. In multivariate statistics, correlations
are usually depicted by correlation matrices, which for n random variables
X1, X, ..., X,,, is a n x n matrix whose ij*® entry is the correlation between
X; and X;.

Correlation matrices are usually computed from data obtained from ac-
tual observations and measurements of various parameters. However, it is
not always trivial to convert raw data, which is usually in the form of a time
series, into a correlation matrix. In case the data consists of just one vari-
able, such a calculation is trivial, as a univariate data only has one variance.
However, in general, time series data is not always univariate. For instance,
the measurement of atmospheric pressure at n different locations, with each
of them varying with time, constitutes a multi-variate data.

The aim is to extract useful information from the multivariate data. A
multivariate data with n variables will have n(n + 1)/2 covariances. Thus,
there is a lot more information and a lot more inter-dependencies among the
n variables. However, this also means that there exist a possibility of a lot
of redundancy in the data. Therefore, we need a transformation such that
the transformed data has the desired properties.

Given a multivariate data x, we are looking for a transformation of the
form [5],

y=Wzx (2.1)



where W is the transformation matrix with desired properties. We could
require any of the two, depending on what we are looking for,(i) the transfor-
mation matrix will produce a resultant data y that captures the information
in x or (ii) the transformed data y will capture the meaningful features in
the data x. For the sake of our analysis, we will focus only on the first case,
in which the transformation matrix has only the variance and the covariance
information from .

To fix ideas first, we will consider a case with bivariate data. We have

time series of two variables, u; and v;-, 1=1,2,....,p. We assume that p >> 2
and both the data sets are centred as follows,
n=n —(n) (2.2)

where (1) is the sample mean of the data. Now, all possible covariances
among (u,v) can be put in a matrix of the form,

C{ — CUU CU’U (2'3)
Cvu C’U’U
Here, c,, is the covariance between the centered variables v and v and is
given by,

p
Coup = Zuivi (2.4)
i=1

Note some of the important features of this matrix C'. The diagonal elements
are the variance of v and v. The off-diagonal elements are the covariances.
We can similarly use correlation instead of covariances. In that case, we
have the following property: Correlation of any variable with itself should be
unity. Hence, the diagonal elements would be unity, while the off-diagonal
elements will be —1 < ¢ < 1. Of course, ¢,, = ¢,, and thus C'is a symmetric
matrix.

The correlation matrix can be defined in terms of the data sets. Let Z
be a matrix that is formed by assembling each time series as a column. For
instance, in a bivariate case, we will have,

up g
z=1" " (2.5)
Up  Up
It is straightforward to see that,
C= ;;ZZT (2.6)

This correlation matrix can be generalised to any number of variables.



2.2 Statistical properties of Correlation matri-
ces

The correlation matrices calculated in the previous section, can in general
be very complex. Extracting useful data from these matrices is highly non-
trivial. Analysis of statistical properties of such matrices sheds light into
useful information contained in these matrices.

2.2.1 Eigenvalue density
The density of eigenvalues in RMT is defined as [4]

1 dn(\)
where n(\) is the number of eigenvalues of C less than A\. If M isa T x N

random matrix, po(A) is self-averaging and is exactly known in the limit
N —ooand T — oo and Q@ = & > 1 fixed and reads [0]

o) = ~@ VO = VA = i)

2702 A ’

Aoin = 0*(1+1/Q £21/1/Q) (2.9)

with A € [Amin; Amax), and where o2 is equal to the variance of the elements
of M, equal to 1 in our normalization. In the limit () = 1, the normalized
eigenvalue density of the matrix M leads to the famous Wigner semi-circle
law, and the corresponding distribution of the square of these eigenvalues,
i.e., the eigenvalues of C' is then given by Eq. (2.8) for @ = 1. The most
important features predicted by Eq. (2.8) are as follows (see also Fig. 2.1):

(i) The lower edge of the spectrum is strictly positive (except for @ = 1);
there are hence, no eigenvalues between 0 and A.;,. Near this edge, the
density of eigenvalues exhibits a sharp maximum, except in the limit ) =
1(Amin = 0), where it diverges as 1/v/\.

(ii) The density of eigenvalues also goes to zero above a certain upper
edge A\pax-

It should be noted that the above results are valid only in the limit N —
oco. For finite IV, the singularities present at both edges get smoothed, the
edges become slightly blurred, with a small probability of finding eigenvalues
above A\nax and below Ay, which goes to zero when N becomes large. The
precise way in which these edges become sharp in the large N limit is actually
known [7].

(2.7)

(2.8)
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The eigenvalue density plot for @ = 10, A\pin = 0.47 and A\ = 1.73 is
shown in the figure 2.1.

1.4 : :
—.Q=10,%__=1.73, % =0.47
max min

Probability Density, p(3.)

1 | |
00 05 1 1.5 2

Eigenvalue, A

Figure 2.1: The eigenvalue density plot predicted by RMT for Q=10.

We can easily verify from the figure that there are no eigenvalues below
Amin and no eigenvalues above \... Depending on the system, we will have
different eigenvalue density plots for various different values of Q, which in
turn will depend on the size of the correlation matrix and the length of the
time series.

2.2.2 Spacing distribution

One of the very famous results of the random matrix theory is the nearest-
neighbour eigenvalue spacing distribution; i.e. the distribution of s; = E; 1 —
E;. Tt is the probability for finding the neighbouring levels with a given
spacing s. The spacing distributions for the Gaussian Orthogonal Ensemble
(GOE) and the Gaussian Unitary Ensemble (GUE) are given by [3],

Pgor(s) = Zs exp (—552> (2.10)
2 4
32 4,
Pgug(s) = —35 exXp (—%s ) (2.11)

The distributions are plotted in Figure 2.2. For our analysis, we will use the
GOE ensemble, unless specified otherwise.
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Figure 2.2: Nearest neighbour spacing distribution for the GOE and
GUE ensembles.

The analytical forms above indicate level-repulsion, a tendency against
clustering, as evident from low probability for small spacings. The level
repulsion is linear for GOE and quadratic for GUE.

2.2.3 Eigenvector distribution

With the eigenvalue statistics alone, it is not straightforward to obtain de-
tailed system specific information, unless there are significant deviations from
random matrix predictions. The distribution of eigenvector components, on
the other hand, reveals detailed and fine-grained information, at the level of
every eigenvector.
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Let af' be the jth component of the mth eigenvector. Assuming that
these components are Gaussian random variables with the norm being their
only characteristic, it can be shown that the distribution of r = |a;71]2, in the
limit when the matrix dimension is large, is given by the special case of the
x? distribution [§]

b v \Y/? pr/2-1 oy )19
0=(s5) tome(55) 212
The case v = 1 can be identified with GOE and gives the well-known Porter-
Thomas (PT) distribution.

Plu) = \/127 exp (_“;) (2.13)

The distribution is plotted in Figure 2.3.

0.4

03

P(u)

0.1+ 8

95 0 5

u
Figure 2.3: The distribution of eigenvector components in GOE, also

known as the Porter-Thomas distribution.

The distribution of complex eigenvectors correspond to GUE class with
v = 2. The general understanding is that if the eigenvectors are random,
then its components are y? distributed and deviations occur only if they
show some symptoms of regularity.

2.2.4 Information Entropy

In information theory, entropy is a measure of the uncertainty in a random
variable [9]. In this context, the term usually refers to the Shannon entropy,
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which is is the average unpredictability in a random variable, which is equiv-
alent to its information content. It also quantifies the expected value of the
information contained in a message. For a discrete random variable X with
possible values z1, ..., z, and a probability mass function P(X) taken from a
finite sample, the entropy can be explicitly written as

H(X)=— Z P(z;)log P(z;) (2.14)

In our analysis, P(z;) will be the square of the eigenvector components. For
the Porter-Thomas distribution derived in the previous section, the Informa-
tion Entropy can be expressed as [10]

H(1,1)=— /OOO ylogyP,(y)dy = log(dv/2) — U (v/2+ 1) (2.15)

To summarize, we have studied some basic results in Random Matrix
Theory that are of great interest in understanding the statistical structure
of the empirical correlation matrices. In the subsequent chapter, we demon-
strate the problems encountered by RMT methods when the data is in non-
numerical form, i.e. categorical data.
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Chapter 3

Correlations of Categorical data

It often happens that the data obtained from a real system is not in direct
numerical form, in a sense that we do not have numerical values as data
points. Such a data is called categorical data. For example, consider a sample
population of n individuals from p different geographical regions. You have
to find correlations between different regions based on the blood groups of
people from those regions. The empirical data that you have is the list of
people, their region, and their corresponding blood groups, A, B, AB or O.
There is no numerical value involved. Thus, it is not possible to use the RMT
based method in this case for the statistical analysis.

The simplest method to convert this data into numerical values is to assign
an index to each of the blood groups. For example, let A=1, B=2, AB=3 and
O=4. Now, we have the data in numeric form, with a number corresponding
to each individual. But, these numbers have no statistical significance as
they are just indices and not actual values. The value of a number does
not signify the weight of the quantity it denotes. For example, in normal
numerical analysis, and the statistical analysis using RMT, the number 4 will
have a higher statistical weight than the number 3. However, in our example,
there is no reason why the blood group O should be favoured over the blood
group AB. Thus, the RMT method for analysing categorical data might lead
to a bias towards some quantity, which is not desirable. As we cannot use the
RMT results for analysing correlations of categorical data, we have to devise
a new method for it. The new method must be able to provide a theoretical
framework to compute the correlations and analyse its statistical properties,
analogous to the one provided by RMT. The statistical properties of the
empirical correlation matrices computed for categorical data should then be
compared with those of the theoretical one, just as we compare properties of
non-categorical empirical correlation matrices with their corresponding RMT
predictions.

15



3.1 Our approach

We present here two ways to compute correlations of categorical data. Both
ways yield correlation matrices with identical statistical properties and hence,
any one of them can be used for statistical analysis, depending on the system.
Using these methods, we calculate random correlation matrices. We then
study the statistical properties of these matrices like the eigenvalue density,
eigenvector distribution and the spacing distribution. These results will then
be used as a background for analysis of categorical data.

3.1.1 Uniformly distributed random numbers

p objects (denoted by numbers 1 — p) are uniformly distributed in a matrix
A of size (n,t), where t = 1,2,3,......,T and n = 1,2,3,....., N. Here, ¢ is
analogous to a time series in real data, while n is analogous to the number
of nodes in a network which represents the data. In real data, n can be
anything, like spatial locations, financial stocks of various companies, etc.
The algorithm for calculating correlations is as follows:

Every row of the matrix A is compared with every other row, term by term
and the results are stored in an intermediate matrix B of size (n?t). The
entries of B can be obtained as follows:

Write
i=nqg+r (0<r<n) (3.1)
Now, if r = 0, define
= if qu = Anj
If r # 0, define

Every row of B is then averaged and after reshaping, we get a correlation
matrix C of size (n,n). This correlation matrix is, by construction, symmetric
and all its diagonal entries are 1.

3.1.2 Dividing numbers into intervals

We generate a list of n uniformly distributed random numbers in the interval
(0,1). We then form ¢ bins of equal size and allot each of the numbers in the
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above list to a bin. Thus, we now have a series of numbers (1 to p) distributed
in a n x t matrix A. The correlation matrix C' is then computed using the
technique used in the previous section, viz. row by row comparison. This
correlation matrix too is, by construction, symmetric and all its diagonal
entries are 1.

Mathematically, if z(i) and y(i) are two row vectors (in this case, two
time series), each containing n elements, then the correlation Cy, between

them is given by:
> o
_ =1

Cry = =1

n

(3.4)

In some cases, we also take weighted average to compute the correlation
matrix, with a weight w; associated with the ith element of x and y. In that

case, (' is given by:
n
E wi5$i:yi
_ =l

OXY - n
>_w
=1

To see how these correlation matrices are computed, consider the follow-
ing simple example: Let
10010
A= (O 0 01 1)

Here, there are just p = 2 objects (1 and 0), the length of the time series
is T = 5 and the number of nodes is N = 2. Now let us compute the
correlation by row by row comparison and construct the intermediate matrix
B. To compute the first row of B, let us compare the first row of A with
itself. Here, i = 1, n = 2. Thus, ¢ = 0 and » = 1. Hence, from Eq. 3.3, we
can see that, V7,

(3.5)

Blj — 0 lf Alj 7é Alj

Obviously, A;; = A;; V7, and hence the first row of B will be (1 1 11 1).
The same is true when we compare the second row of A with itself. Thereby,
the fourth row of B is also (1 1 11 1).

To get the second (and hence, third) row of B, we compare the first row
of A with the second. Here, i = 2 and n = 2. Thus, ¢ = 1 and » = 0. Hence,

17



from Eq. 3.2, we can see that, Vj

Varying j from 1 to 5, we observe that the second, third and fourth entries
match, while the first and fifth don’t. Hence, Byy = 0, Bys = 1, Bog = 1,
By = 1 and Bys = 0. Thus, the second and third rows of B are equal to
(0 1 11 O). We thus have,

v
Il
— o o =

1 11
1 11
1 11
1 11

_ o O

Averaging every row of B, we get a 4 X 1 matrix,

1
0.6
b= 0.6

1

The entries of D can be interpreted as correlations between the different rows
of A. On reshaping D, we get a symmetric 2 x 2 correlation matrix C'.

1 06
C<0.6’ 1)

The entries in C, i.e., the correlations, take values in the interval (0, 1). Here,
a correlation of 1 indicates that the two quantities are completely correlated,
while a correlation of 0 indicates that the they are completely anti-correlated.
Unlike the Pearson Correlation Coefficient, which takes values from -1 to
1, there are no negative correlations here. The diagonal elements are the
correlations of each quantity with itself, which obviously should be equal to
1, as is the case.

The random correlation matrices computed by both the methods are sta-
tistically identical, as we will see in the next section, when we study various
statistical properties of C'. For our analysis, we will construct a random ma-
trix with n = 543 and t = 32. The reason for choosing these particular values
comes from a real application, analysis of Indian Elections data, which we
will study in detail in Chapter 4. Depending on the data matrix of a par-
ticular system, a similar analysis can be done for that corresponding size of
the matrix. For now, we will just list the statistical result for the correlation
matrix of size (543, 543).

18



3.2 Statistical Properties of

3.2.1 Number of non-zero eigenvalues

The number of non-zero eigenvalues is equal to the rank of the correlation
matrix. The rank of a matrix is equal to the number of linearly independent
rows (or columns) of the matrix, which will depend on various factors such
as the number of nodes and number of independent objects (entries). For
the case of the correlation matrix computed using any of the two methods
above, the following are observed:

1. More the number of possible entries, more is the number of linearly inde-
pendent rows and columns, and hence, more is the rank. Thus, the number
of non-zero eigenvalues increases with the number of possible entries, i.e.
number of objects p, while keeping the number of nodes and the length of
the time series fixed.

2. The number of non-zero eigenvalues decreases with the increase in the
number of nodes n, which is equal to the number of rows of the matrix, while
keeping the number of objects constant and the length of the time series con-
stant. This is expected as increasing the number of rows makes it less likely
to increase the number of linearly independent rows, thereby decreasing its
rank.

3. The number of non-zero eigenvalues increases with the increase in the
length of the time series t, while keeping the number of objects and the
number of nodes fixed.

3.2.2 Variation of )\,

The maximum eigenvalue A,y of the random correlation matrix is statisti-
cally significant as it might be the one that contains the most useful informa-
tion. Hence, the study of A\, and its statistical properties is very important
for our analysis. We study the variation of A, with respect to the number
of objects, the number of nodes and the length of the time series.

Amax VS No. of objects

The maximum eigenvalue A\, of the random correlation matrix exponen-
tially decreases with increase in the number of objects, while keeping the
number of nodes and the length of the time series constant. The plot of A\pax
vs no. of objects is shown in Figure 3.1.
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Figure 3.1: Variation of )\, with no. of objects. We can see that Ay
decays exponentially with increase in the number of objects.

Amax VS Length of the time series

The maximum eigenvalue \,x remains constant with the length of the time
series, while keeping the number of nodes and the number of objects constant.
The plot of A\pax vs t is shown in Figure 3.2.
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Figure 3.2: Variation of A\, with the length of the time series

As we can see from Figure 3.2, there is a variation of less than 0.25 in the
value of \,.y, even as t varies from 0 to 40.
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Amax VS number of nodes

The maximum eigenvalue A,y increases linearly with the number of nodes n,
while keeping the number of objects and the length of the time series fixed.
The plot of A\pax vs n is shown in Figure 3.3.
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Figure 3.3: Variation of \,., with the number of nodes. A linear plot
is observed.

As it is evident from Figure 3.3, the plot is almost a straight line passing
through the origin, with increments of 5 units in the value of A\, with every
100 units increment in the value of n.

3.2.3 Eigenvalue density

The distribution of eigenvalues of the correlation matrix can provide valuable
information about the system. Comparing the eigenvalue density plot of the
empirical correlation matrix with that of the random correlation matrix can
help distinguish between actual data and noise in the system. The eigen-
value density plot for the correlation matrix computed by our approach, for
both the methods, viz. uniformly distributed random numbers and random
numbers divided into intervals, is shown in figure 3.4. As can be seen, both
the methods yield identical plots for the eigenvalue density of C'. Henceforth,
depending on the system, we will use any one of them, whichever is suitable,
for our analysis.
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Figure 3.4: Eigenvalue density plots of C' for a)Uniformly distributed
random numbers b)Dividing random numbers into intervals..

Note that these plots are only for a particular size of the correlation
matrix C, (543 x 543). The plot will change as we vary the size, depending
on the data. In spite of that, the eigenvalue density plot for our approach
differs quite a bit from the one predicted by RMT. This is not unexpected,
as our method handles categorical data, while the RMT one deals only with
non-categorical one. However, there is no known analytical expression for the
eigenvalue density, analogous to Eq. 2.8 in RMT. The analysis for finding
such an expression is in progress.
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3.2.4 Spacing Distribution

We next consider the eigenvalue spacing distribution, which reflects two point
as well as eigenvalue correlation functions of all orders. We compare the
eigenvalue spacing distribution of the random matrix C' with that of GOE
random matrices, given by Eq. 2.10, which is also referred to as the Wigner
Sunrise [3]. The nearest neighbour spacing distribution for both of our meth-
ods is shown in the figure 3.5:

1.4 T T T

[ ]data
—theory|

-
N
T

-
T

1

1

]

1

1
l

o
Q0
T
1
]

1
|

o
[9))
T
if
1

o
'S
T
|

Probability Density, P(s)

o
N
T
I

(an]

1 15 2 25
Nearest neighbour spacing, s

=)
c
o

3

—
»

[ |data
—theory}

—
N
T

—_—
1
1
1

c o o
~ O @
N D
1
1
]
]
T
1
]
]
[ I

Probability density, P(s)

o
N
I
|

0 T | | |
0 0.5 1 1.5 2 2.5 3
Nearest Neighbour spacing, s

Figure 3.5: Nearest neighbour spacing for a)Uniformly distributed
random numbers b)Dividing random numbers into intervals. The
solid curve shows the GOE prediction.

Again, we see that both the approaches yield identical spacing distribu-
tion plots. Additionally, we also see a nice agreement between our approach
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and the GOE predictions in RMT.

3.2.5 Eigenvector Distribution

The eigenvector distribution for the correlation matrix is shown in the figure
3.6.
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Figure 3.6: Eigenvector distribution for C'. The solid curve shows
the GOE prediction.

As we can see, the histogram of the eigenvector components of the corre-
lation matrix C' is a Gaussian and fits reasonably well with the GOE predic-
tion. This shows that our approach can be used for the study of the statistical
properties of empirical correlation matrices constructed from categorical data
matrices.

3.2.6 Information Entropy

The information entropy H of the system is computed using the formula [9]:
Hi = — Z Qg5 IOg Qi (36)
J

where a;; are actually the square of the eigenvector components. The plot is
shown in the Figure 3.7.
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Figure 3.7: Information Entropy of the square of eigenvector com-
ponents in our approach.

We can see that the information entropy is more or less constant for all
the components, except the last one. This shows that the data predominantly
consists of random correlations.

In this chapter, we have developed a new approach to compute corre-
lations and analysed and compared its statistical properties with those in
RMT. This results can now be used as a background for analysing real-world
data, which will be done in the next chapter.
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Chapter 4

Applications to real systems

The motivation for the correlation calculation for categorical data comes
from the analysis of real data, as observations of many real systems does not
always yield non-categorical data. Empirical correlation matrices are of great
importance in data analysis in order to extract the underlying information
contained in experimental signals and time series. Real-life data is often
contaminated with noise. It is thereby vital to be able to separate the noise
from the signal in order to extract some useful information from the data. It is
thus imperative to devise methods which helps one to distinguish signal from
noise. In other words, there should be a method to distinguish eigenvectors
and eigenvalues of the correlation matrix containing real information from
those which are devoid of any useful information. From this point of view, it
is interesting to compare the statistical properties of an empirical correlation
matrix C' to a purely random matrix, sort of a null hypothesis, obtained
from a finite time series of independent and identically distributed random
numbers. Deviations from the random matrix case might then give clues
about the presence of significant information.

In this section, we use the random correlation matrices computed by
our method in the previous chapter as a null hypothesis and compare their
statistical properties to those of empirical correlation matrices obtained from
the following two real systems:

1. Indian Elections Data

2. Atmospheric Pressure data

We try to see if any useful information can be extracted from this analysis,
which will give better insights into these systems.
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4.1 Indian Elections Data

With its multi-party democracy, the Indian political system is amazingly
complex. The presence of many regional parties, in addition to various di-
verse factors such as caste, religion, region and language makes the analysis
of poll outcomes increasingly difficult. With the biggest ever and one of the
most anticipated general elections scheduled in April-May 2014, it is indeed
exciting to analyse how different constituencies are correlated to each other,
in a sense that whether results or trends in one constituency affect those
in the other constituencies. Few studies have already tried to analyse the
outcome of elections in various countries [IT][12]. Our original intention was
to come up with a prediction of the outcome of the general elections, based
purely on previous results, unlike most poll predictors that involve opinion
polls. However, due to the incredible complexity involved due to a large
number number of factors affecting the poll outcome, it is nearly impossible
to predict the results with certainty. Nonetheless, it is still possible to ex-
tract some useful information, in terms of finding the correlations between
the voting patterns of different constituencies in the country. In this section,
we show that our approach to compute correlations for categorical data can
be used for the analysis of the Indian elections.

For our analysis, we choose the data of the previous seven Indian General
Election results (from 1984 to 2004), which was obtained from the Election
Commission of India website (http://eci.nic.in/). The reason to start from
1984 elections and not from the first general election in 1952 is that prior
to 1984, the Indian political space was mostly dominated by the Congress.
There was no significant opposition and the number of regional parties was
also less. This leads to bias towards the Congress party in the analysis, which
is not desirable in today’s political scenario, where the regional parties enjoy
a significant clout in their respective states.

After the data collection, we identify 18 major parties and assign a num-
ber to each party. All the other minor parties are clubbed as one unit, and
given a number 19. For example, Congress is assigned the number 1, while
BJP is assigned 2. Small parties like PDMK, RLD, etc. are all clubbed
together in 19. We then obtain a time series (of T' = 7 steps, signifying the 7
elections) for each of the 543 constituencies, giving us a 543 X 7 data matrix
A. Every time series, i.e. row of A, is then compared with every other time
series. If in any particular year, two constituencies i and j have elected the
same party, we assign A(ij) = 1. If they have elected different parties, we
assign A(ij) = 0. This gives us an intermediate matrix B as per Eq. 3.2
and Eq. 3.3, consisting of 1s and 0s. Every row of B is then averaged us-
ing weighted average as per Eq. 3.5, with more weight to the more recent
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election, to calculate the correlation between each constituency.

The reason for using weighted average instead of normal average is that
the more recent elections will have more influence and relevance to present
voting patterns than the older elections. This gives us a correlation matrix
C' of size (543,543). This was precisely the reason why the size of the ran-
dom correlation matrix in Chapter 3 was n = 543. The correlation matrix
sheds light on various hidden correlations between various constituencies in
different regions. More useful information can be extracted by computing
the eigenvalues and eigenvectors of the correlation matrix. The normalised
eigenvalue density plot is shown in Figure 4.1.
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Figure 4.1: Eigenvalue Density plot for Indian elections data. The
solid curve is the density for the corresponding random matrix.

It can be observed that while many of the eigenvalues nearly coincide with
those of the corresponding random matrix, few of them deviate. Those which
coincide can be accounted for by the noise in the data, while those eigen-
values, and their corresponding eigenvectors that deviate are the ones that
actually contain useful information about the system. Thus, it is imperative
to focus attention on those eigenvectors and perform advanced statistical
analysis in order to extract the information. However, such an analysis is
by no means trivial, requiring some advanced statistical tools and hence, we
will not cover that here.

The nearest neighbour spacing distribution is shown in the Figure 4.2.
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Figure 4.2: Nearest neighbour spacing distribution for the Indian
general elections data. The solid curve shows the GOE prediction.

We see a good fit with the GOE curve, with a few deviations, thereby con-
firming the fact that most of the data is dominated by random correlations.
The deviations suggest the presence of significant information.

The distribution of eigenvector components is shown in the Figure 4.3.

o
-“I

[ data
—theory

o
[9))
T
|

©c o o o
N w B 18]
T I \ T

1
I}

1

: :

/

I
|
I I I I

Probability Density, P(u)
N

=
—_—
T

0 ! ! } . TF{]H\GLIL
-3 -2 -1 0 1 2 3
Eigenvector components, u

Figure 4.3: Distribution of eigenvector components for data from
Indian Elections. The solid curve is the GOE prediction.

As can be observed from the figure, the distribution of eigenvector com-
ponents agrees quite well with the GOE curve predicted by RMT.
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4.2 Atmospheric Pressure Data

The state of the Earth’s atmosphere is governed by the classical laws of fluid
motion. There exist a great deal of correlations in various spatial and tem-
poral scales in the atmosphere. These correlations are critical to understand
the short and long term trends in climate. Generally, it is possible to recog-
nise atmospheric correlations from the study of empirical correlation matrices
constructed from the atmospheric data of parameters such as temperature,
pressure, etc. Most significant correlations are documented as teleconnection
patterns, which are the simultaneous correlations in the fluctuations of large
scale atmospheric parameters, measured at widely separated points on the
earth.

Empirical correlation matrices are widely used in atmospheric sciences,
for example, to analyse the large scale patterns of atmospheric variability.
Various computational methods, based on the Monte-Carlo simulations [13]
have been used for the purpose of separating noise from the data and extract
actual physical information from it. Beyond a point, these methods become
computationally expensive and are replaced by asymptotic formulations [13].
Atmospheric correlations arise naturally from known physical interactions
and hence are interesting to study from a RMT perspective because they
offer instances to verify two (orthogonal and unitary) of the three Gaussian
ensembles of RMT discussed in Chapter 2. The random matrix analysis
can be successfully applied to empirical correlation matrices obtained from
the analysis of the basic atmospheric parameters that characterise the state
of the atmosphere. These methods turn out to be very useful as a tool to
separate the signal from the noise, with lesser computational expense than
with methods based on Monte-Carlo techniques.

Santhanam and Patra [I4] have shown that significant information can
be obtained from the study of empirical correlation matrices. In general,
any atmospheric parameter z(z,t), (like wind velocity, geopotential height,
temperature etc.),varies with space(x) and time(t) and is assumed to follow
an average trend on which the variations are superimposed, i.e.,

2(x,t) = Zavg(2) + 2'(2, 1) (4.1)

If the observations were taken ¢ times at each of the n spatial locations and
the information is contained in the data matrix Z of order n by ¢, then the
correlation matrix is given by

1
C=-27". (4.2)
n
Analysis of statistical properties of C, like the nearest neighbour spacing
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distribution and eigenvector components, and comparing them with RMT
predictions, gives significant physical insight into the problem.

Although the above analysis is done using RMT technique, we demon-
strate that the same analysis can be done using our method as well, thereby
showing that our method is applicable for non-categorical data as well. The
data used is the same as the one used in [14]. We have a data matrix with
n = 434 and t = 624. The raw data is first normalised by subtracting the
mean and dividing by the standard deviation. The normalised data is then
divided into 20 intervals of equal sizes. This gives us a new matrix B, which
consists of numbers from 1-20, for each spatial location. The correlation ma-
trix C' is then computed using the familiar row-by-row comparison technique
developed in Chapter 3.

As done for the elections data, we now study some statistical properties
of the empirical correlation matrix computed above. The eigenvalue density
plot is shown in Figure 4.4.
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Figure 4.4: The eigenvalue density plot for the atmospheric pres-
sure data. The solid curve shows the density of the corresponding
random correlation matrix.

It can be seen that the bulk of the eigenvalues fall within the predicted
values of the corresponding random matrix, indicating the domination of
random correlations in the data. Study of the ones that deviate, along with
their corresponding eigenvectors, might indicate the presence of significant
information about the system.

The nearest neighbour spacing distribution is shown in Figure 4.5.
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Figure 4.5: Nearest neighbour spacing distribution for the atmo-
spheric pressure data. The solid curve shows the GOE prediction.

As we can see from the figure, the curve obtained using our method fits
perfectly with the GOE curve, except for a few deviations, which indicate
the presence of true information.

The eigenvector distribution is depicted in Figure 4.6.
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Figure 4.6: Distribution of eigenvector components. The solid curve
is the GOE prediction.

Again, we see a reasonable agreement with the GOE predictions.

To summarize, in this chapter, we applied our method to compute corre-
lation to two different systems and studied the statistical properties of the
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empirical correlation matrices of these systems. In both the cases, we found
that the statistical properties of eigenvalue density, eigenvector distribution
and the nearest neighbour spacing distribution match quite well with the
theoretical values, thus signifying that the method is indeed useful in the
analysis of categorical data.
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Chapter 5

Conclusion and Further Scope

This work shows that our approach to compute correlation matrices for cate-
gorical data can be used for statistical analysis of empirical correlation matri-
ces arising in many real-world systems, which is not possible using the known
methods in Random Matrix Theory. This work lays down a background the-
oretical framework against which the statistical properties of empirical corre-
lation matrices can be compared. It happens that most statistical properties
of the empirical correlation matrices, like the eigenvectors and eigenvalue,
match with those of the corresponding random ones, except a few deviating
ones, thereby denoting the presence of noise in the data. It is the study of
these eigenvectors that can provide valuable information about the system.

Further scope for this work is to employ advanced statistical methods
for the analysis of such deviating eigenvectors, as has been studied in the
context of financial data in [4]. One more challenging problem is to find an
analytical form for the eigenvalue density for our approach, analogous to the
one in RMT. We are looking to carry this work forward and hope to address
these problems soon.
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