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Abstract

General game theory assumes that a rational player would play an optimal strat-
egy if one exists. When you consider instead programs as players (not only in the
context of gaming, but also stock market, e-trade, web services etc), this is not
tenable, since computing an optimal strategy may not be feasible.

Moreover, the notion of player type in game theory assumes complete knowledge
of mutual beliefs of all players, which is a problem for resource limited players.
there have been attempts from automata theory and complexity theory to address
the question, where the player is assumed to be a finite state automaton or a prob-
abilistic polynomial time turing machine (with bounded error, a BPP machine in
short). However, many foundational questions need to be reworked.

The project involves modelling such games and looking at some interesting ques-
tions within that model.
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Chapter 1

Introduction

Babichenko introduces a model and suggests Dynamics within that model, in his
paper [3]. However, the model assumes that the players can only view their ac-
tions and their individual payoffs. A few negative results(that strategy entropy
leading play to nash equilibrium doesn’t exist) have been presented in his paper
[3]. However, in a game with complete information, algorithms to compute nash
equilibria are known. We explore a model in which players possess partial infor-
mation. We try to optimize the Dynamics suggested by Babichenko, in this new
model.

Players are limited by resources- space and computational resources. These lim-
itations are captured by modelling the strategies with automata [2]. In a large
game, number of players is sufficiently large to assume that the players cannot
observe the number of players and their outcomes. We explore a model which can
capture these limitations, which one usually encounters in a large game.

I had studied Neyman and Okada’s papers on Strategic entropy[1] and two person
repeated games with finite automata [2] to understand the concept of Strategic en-
tropy and to be able to appreciate modelling of repeated games using Automata.
Babichenko’s paper on Completely Uncoupled Dynamics and Nash Equilibrium
describes a model for large games and a few results exploring existence of strat-
egy mapping under certain conditions [3]

We have suggested a model which allows players to see a probability distri-
bution over the collection of action sets. This allows the players to have partial
information about the state of the game. We have explored the dynamics in this
model and presented a proof of correctness of the suggested dynamics.
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The second chapter introduces relevant definitions and notation. Known results
are listed and proved in the third chapter. Our model is introduced in the fourth
chapter. Strategy mapping and a proof of convergence to a nash equilibrium(if
one exists), is presented in the fifth chapter. In the sixth chapter, a few interesting
questions and further directions for research are presented.
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Chapter 2

Preliminaries

2.1 Notation

∆(A) is the set of probability distributions on A.

We will use σ to represent a mixed strategy and s to represent a pure strategy.
If a = (a1, a2 . . . an) is an n-tuple, then a−i = (a1, a2 . . . ai−1, ai+1 . . . an)

For subset β ⊂ α and for a function f over α, let f |β be the function restricted
to β.

2.2 Definitions

2.2.1 Game

A basic static(one-shot) finite game G is given in strategic form as follows: There
are n ≥ 2 players, denoted by i = 1, 2, . . . , n. N = {1, 2, . . . , n} is the set of all the
players.

For simplicity, we will assume that a countable set AC induces induces all po-
tential actions of the players. Thus an action set of players i is a finite subset
Ai ⊂ C, where |Ai| ≥ 2. Denote by B all the action sets for a single player,
A = A1 × A2 × . . . × An is the set of action profiles.

The payoff function(or utility function) of player i is a real valued function ui :
A → R. We assume(for simplicity) that all the payoffs are bounded by a finite
value K (i.e, |ui(a)| ≤ K for every i ∈ N and every a ∈ A). u = (u1, u2, . . . , un) is
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the payoff function profile, we will call it a payoff function from now on. We will
identify a game Γ through its payoff function u, for convenience.

We will denote set of all possible mixed actions of a player i by ∆(Ai), it is simply
the probability simplex over Ai.

We can extend the payoff functions ui multilinearly from A to ∆(A):

ui : ∆(A1) × ∆(A2) × . . . × ∆(An)→ R

A−i = (a1, . . . , ai−1, ai+1, . . . , an) is the set of actions of all players except i. Sim-
milarly, A−i = A1x . . . × Ai−1 × Ai+1 × . . . × An consists of actions of all the players
but the player i.

We will call an action ai ∈ Ai as the best response to a−i if ui(ai, a−i) ≥ ui(āi, a−i)
for every āi ∈ Ai. An action profile a = (a1, a2, . . . an) ∈ A, s.t. ai is a best re-
sponse to a−i∀i, is a pure Nash equilibrium. Simmilarly, when we have a mixed
action profile x = (x1, x2, . . . xn), xi ∈ ∆(Ai), xi is said to be an ε-best reply to x−i

if ui|(xi, x−i)| ≥ |ui(yi, x−i)| − ε for all yi ∈ ∆(Ai). x = (x1, x2, . . . , xn) is a Nash
ε-equilibrium, if for all i ∈ N, xi is an ε-best reply to x−i.

Dynamic setup
Repeated play, at discrete times t = 1, 2, . . . of the static game Γ is a dynamic
play. xi(t) ∈ ∆(Ai) denotes the mixed action played by player i at the time t, and
ai(t) ∈ Ai is the action realized by the strategy. x(t) = (xi(t)n

i=1) ∈ ∆(Ai) and
a(t) = (ai(t))n

i=1 ∈ A denote the profiles.

As per the ’completely uncoupled’ restriction, we will assume that each player
i, at the end of time t, observes the action that he played ai(t) and his own pay-
off ui(a(t)). At time t, player i will know his previous actions and incentives
oi(t) = ((ai(t′))t

t′=1), (ui(a(t′))t
t′=1), which we will call the observations sequence

of that player. Consider the set O∗Ai of all potential observations sequences of a
participant with action set Ai.

For a game with action set A, history of play is h(t) = (a(1), a(2), . . . , a(t)), where
a(t′) ∈ A for every t′ < t. Let Ht,A denote the set of all possible histories of the
play till time t, and H∗A = ∪∞t=0Ht,A.
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2.2.2 Strategies

A Borel measurable mapping fB : O∗B → |∆(B)| which assigns a mixed action to
every potential observations sequence of player, is a completely uncoupled strat-
egy of a player with action set B. For a player with action set B, we will denote
by FB the set of all completely uncoupled strategies. The set of all completely
uncoupled strategies is denoted by F = ∪BFB[1].

The knowledge of each player is his action set, before the game starts. We will
define a completely uncoupled strategy mapping φ : B → F to be a mapping
which assigns a completely uncoupled strategy φ(Ai) = fAi ∈ FAi for every ac-
tions set Ai ∈ B. For a strategy mapping φ, and a game having action profile
A = A1 × A2 × . . . An, players’ strategies will be ( fA1 , fA2 , . . . , fAn).

Denote f = ( fA1 , fA2 . . . , fAn) to be the strategy profile. Probabilistic play of the
game is defined by the stategy mapping. We will call a history of play h(t) as
realizable by a strategy profile f, if after time t, when strategy profile f is followed,
the probability of history being equal to h(t) is greater than 0.

2.2.3 Types of Convergence

A probabilistic play of the game is included in every strategy profile f. Consider
some equilibrium concept E, say a pure Nash equilibrium or a mixed Nash equi-
lirbium or a Nash ε-equilibrium. f leads to almost sure convergence of play to E
if there exists T such that x(t) ∈ E for every t > T , almost surely.

Given ε ≥ 0, f leads to play of E with frequency 1 − ε if almost surely (i.e.
with probability 1)
limt→∞inf |{t|x(t)∈E}|

t ≥ 1 − ε

Note: Almost sure convergence of play is a strictly stronger than convergence
with frequency 1. This is because an action not in E can be played infinitely many
times, but with a frequency tending to zero.

A strategy mapping φ leads to a.s. convergence of the play to E if f = (φ(Ai))n
i=1

leads to a.s. convergence of the play to E in every finite game.

Similarly, a strategy mapping φ leads to play of E with frequency 1 − ε if f =

(φ(Ai))n
i=1 leads to play of E with frequency 1 − ε in every finite game.
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2.2.4 Genericity
For every game u with n-players and a set of actions B, we can consider ui as an
element of [−K,K]|B|, and u as an element of [−K,K]n|B|. Therefore, we can define
Lebesgue measure µ(α) of game set α as a measure in (R)n|B|. In the same way, we
define the measure of a set α ⊂ U i or α ⊂ U−i.

A certain property is said to be valid in every generic game with action profile
set B, if the property holds in all the games with action profile set B, but for a
subset of games having measure zero. A certain property is said to be valid in
every generic game if ∀B ∈ B the property is valid in almost every game with
action profile set B.

By generic game, we mean a collection of all games but a set of games which
has a measure zero.

2.2.5 Root node
Let P = {x|(a, x) ∈ O for some a ∈ An}

Let β = {A0 ∈ A| ∃p ∈ P s.t. pi(a) , p ∀a ∈ A0 × An−1}

If |β| = |A|n−1 − 1 then the play observed by player i, is in its root node.

2.2.6 Automata
Definition 1. A deterministic finite state automaton is a 5-tuple (Q,Σ, δ, q0, F) [2]

Q,Σ are finite sets, q0 ∈ Q,F ⊆ Q and δ is a function from Q × Σ to Q.
Q is the set of states,Σ is the Alphabet, q0 is the initial state, F is the set of accept
states and δ is the transition function.

Consider a game G=(A,B,r), and an automaton M = (Q, q1, f , g). f is an action
map from Q to A. g is a map from Q × B to Q.

The automaton plays a repeated game as follows. The aumaton chooses a strategy
in A, given by the function f. State changes based on the values of the functions f
and g.
an = f (qn), qn+1 = g(qn, bn),where bn is the action of the other players in the nth

round.
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Every Automaton induces a pure strategy s ∈ S .
Conversely every strategy s can be simulated by an automata(possibly of infinite
size).

If a pure strategy s is equivalent to that induced by an automaton, it is said to be
implementable by that automaton.

2.2.7 Completely Uncoupled Dynamics
An interated play of a game is said to be Completely uncoupled dynamics if at ev-
ery time, every player knows just his action set and history of own past actions and
the payoffs; He doesn’t pocess information about the actions and payoffs of others.

Babichenko’s paper’s proves the following:
(i) There exists no completely uncoupled dynamics which leads play to almost
sure convergence, to pure Nash equilibria, in almost all games possessing pure
Nash equilibria.
(ii)Result (i) doesn’t hold for Nash ε-equilibrium. We will show that completely
uncoupled dynamics which lead to almost sure convergence of play to Nash ε-
equilibrium

However, there is no strategy mapping, in games of incomplete information.
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Chapter 3

Known Results

3.1 Results

The following results have been proved in Babichenko’s paper Completely uncou-
pled dynamics and Nash equilibria.
Theorem 2, Theorem 6, Theorem 13 are negative results, they specify conditions
under which we don’t have a strategy mapping which can lead play to conver-
gence to a nash equilibrium.

Theorem 5, Theorem 7, Theorem 9, Theorem 10 specify the conditions under
which we have such a strategy mapping.

Theorem 2. Let A = A1 ×A2 ×A3 . . . An be an action profile set such that A1 = A2

. Then there is no completely uncoupled strategy mappin g that leads to a.s.
convergence of Let A = A1 × A2 × A3 × ...An be an action profile set such that
A1 = A2. Then there is no completely uncoupled strategy mapping play to pure
Nash equilibria in every generic n-person game with action profile set A that
possesses a pure Nash equilibrium, and also in every generic (n− 1) person game
with action profile set A2 × A3 × ...An that possesses a pure Nash equilibrium.[3]

Corollary 3. There is no completely uncoupled strategy mapping that leads to
a.s. convergence of play to pure Nash equilibria in every finite generic game.[3]

Since no strategy mapping exists when we have two action sets being equal,
we don’t have such a strategy mapping in a general case.

Corollary 4. There is no completely uncoupled strategy that leads to a.s. conver-
gence of play to mixed Nash equilibrium in every finite generic game.[3]
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In the proof of Theorem2, we show a set of games, in which such a strategy
mapping doesn’t exist. From that set, we derive another set in which we have
no strategy mapping which can guaranteed convergence to a pure or mixed Nash
equilibrium. This is used to prove the corollary.

Theorem 5. There exists a completely uncoupled strategy mapping that leads a.s.
convergence of play to a pure Nash equilibrium in every finite game with distinct
action sets that has a pure Nash equilibrium.[3]

Theorem 6. For every ε < 1/2 there is no completely uncoupled strategy mapping
that leads to play of pure Nash equilibria with frequency 1− ε, in every game with
more than two players, where such an equilibrium exists. [3]

Theorem 7. If either,
(1) The additional information of every player i ∈ N is his own index; i.e., αi = i
or
(2) The additional information of every player i ∈ N is the total number of play-
ers, i.e. αi = n
then there exists a completely uncoupled strategy mapping with additional infor-
mation α that leads to a.s. convergence of play to pure Nash equilibrium in every
finite generic game where such an equilibrium exists.[3]

By considering proof of theorem7, we conclude that additional information doesn’t
effect the proof. Hence we conclude that no strategy mapping exists, even with
additional information. This argument is used to prove the corolllary.

Corollary 8. For every ε < 1/2 there is no completely uncoupled strategy map-
ping with uncoupled additional information which leads to pay of pure Nash equi-
libria with frequency 1− ε, in every finite game with more than two players, where
such an equilibrium exists.[3]

Theorem 9. For, every ε > 0, there exists a completely uncoupled strategy map-
ping that leads to a.s. convergence of play to Nash ε-equilibrium in every finite
generic game.[3]

Theorem 10. For every ε > 0, there exists a completely uncoupled strategy map-
ping that leads to play of Nash ε-equilibrium with frequency 1 − ε in every finite
game.[3]

Proof of Theorem13 is quite complex and is included in Babichenko’s discus-
sion paper. I will not be stating the proof of Theorem13, However, the following
remarks which follow from Theorem 13 are quite interesting and important.
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Remark 11. Corollaries 8 and 9, the negative results, hold in the finite memory
dynamics case even if convergence to pure/mixed Nash equilibria is required with
frequency 1 (rather than demanding a stricter almost sure convergence)

Remark 12. All the positive results hold also for the case of finite memory, if we
assume that unique encoding in finite memory is possible for every payoff in the
game. This is particularly important as it helps us in handling the finite memory
case by assuming that unique finite encoding of payoffs is possible

Theorem 13. For ε ≤ 1/8, there is no completely uncoupled strategy mapping into
finite-memory strategies that leads to play of Nash ε-equilibria with frequency 1
in every game. [3]
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3.2 Proofs

Theorem 2:Let A = A1 × A2 × A3 . . . An be an action profile set such that A1 = A2

. Then there is no completely uncoupled strategy mapping that leads to a.s. con-
vergence of Let A = A1×A2×A3× ...An be an action profile set such that A1 = A2.
Then there is no completely uncoupled strategy mappinplay to pure Nash equi-
libria in every generic n-person game with action profile set A that possesses a
pure Nash equilibrium, and also in every generic (n − 1) person game with action
profile set A2 × A3 × ...An that possesses a pure Nash equilibrium. [3]

Proof: Proof by Contradiction. Let the action profile set be A = A1×A2×A3...An.
We are interested in the case when not all the action sets are distinct, so atleast
two sets must be equal. Without loss of generality let us assume that A1 = A2. The
other action sets A3, A4, A5, . . . An may or may not be distinct.

Now we need to prove that there is no completely uncoupled strategy mapping
which almost surely converges the game to pure Nash equilibria, in every generic
n-person game with action profile set A which possesses a pure Nash equilibrium,
and also in every generic (n − 1) person game with action profile set A2xA3...An

which possesses a pure Nash equilibrium.

Let us suppose such a strategy mapping φ does exist. The strategy mapping φ
should lead play to convergence to a pure Nash equilibria in generic games on
both the action profile sets- A, A−1 and A−2. Since the strategy mapping φ leads
play to pure Nash equilibria in generic games with action profile sets A−1 and A−2.
We will try to produce a set of payoff functions Q with a positive measure such
that every game in it has a unique pure nash equilibrium and that the strategy map-
ping doesn’t converge the game to the unique pure Nash equilibrium. Now, we
need to prove the existence of a Q, the set of such payoff functions.

We will construct Q with the help of sets S PNA−1 and Zh. Let S PNA−1 be the
set of games over action set A−1 such that
(i) all the payoffs are bound by a fixed L > 0
(ii) Each game has a unique pure Nash equilibrium.

Claim: λ(S PNA−1) > 0.
Proof: We can construct such a positive measure set by providing every player
with a strictly dominant action, and then taking a permutation of the payoffs in
order to get a positive measure set. For every v ∈ S PNA−1 , let b(v) be the corre-
sponding unique pure Nash equilibrium. The strategies ( fmi)n

i=2 of players 2, 3 . . . n
lead to b(v) for almost every game v. Let S ⊂ S PNA−1 be the set of games such
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that the strategy profiles leads the game to a unique pure nash equilibrium in it.
Let b(v) be the corresponding unique pure Nash equilibrium. Since the strategies
( fAi)n

i=2 leads to b(v), we have λ(S ) = λ(S PNA−1) > 0.

We will now construct a set Zh from a history h(length t). Zh is the subset of
all games such that there is a chance of history h being realized and that the h is
an absorbing state-once players play h, they will continue to play a fixed action
continuously, with probability 1. Formally, for every h ∈ Ht,A−1 , let Zh be the
subset of all games v over action set A−1 such that:

1. h is realizable by ( f i
m)n

i=2

2. If h is played, then from the time t+1, and on, the players play some action
b ∈ A−1 with probability 1.

Then

∪h∈H∗
A−1

Zh ⊃ S

This is true because the game converges to b(v) in every member of S, after a
finite amount of time. Thus every member of S is a member of Zh1 for some his-
tory h1.

fAi is Borel measurable ∀i ∈ N. So, Zh is a measurable set. There is a count-
able number of histories h ∈ H∗A−1 and S has a positive measure; So, we have a
history h̄(t̄) ∈ HA−1(a history of length t̄) such that Zh̄ has a positive measure. We
will denote R = Zh̄.

We have A1 = A2, and so their strategies will identical as the strategy mapping
is a function of action set alone, i.e. fA1 = fA2; So, the history h̄(t̄) ∈ Ht̄,A−2 and the
subset of games R = Zh̄ satisfy the following conditions:

1. h̄ is realizable by ( fmi)n
i=1,i,2

2. if h̄ is played, then from time t̄+1 on the players play the action (ā1, ā3, ā4 . . . , ān) ∈
A−2 with probability 1.

We will now define Q. We will define it such that it’s games have payoff functions
agreeing with the previous game along the diagonal. We will construct the payoff

matrix in such a way that equilibrium lies outside the diagonal.

Q is the set of all the games with payoff functions u = (u1, u2, . . . un) such that
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on the diagonal a1 = a2 the payoffs u−1|a∈A|a1=a2 and u−2|a∈A|a1=a2 are payoffs that
belong to the subset of P. More importantly, we would like a1

2 to be player-ONE’s
dominant action, and ai

1 to be player-i , 1’s dominant action.

We will construct an n-1 player game ũ−1 from n-player game u by making Player
TWO choose the actions for both Player ONE and TWO.
(i.e. for every i , 1, ũ−1(a2, a3, . . . an) = ui(a2, a3, a3 . . . an)).

Consider Q the set of all the payoff functions u = (u1, u2, . . . un) s.t.:

1. ũ−1(a2, a3, . . . an), ũ−2(a1, a3, a4 . . . an) ∈ P for every action a = (a1, a2, . . . an) ∈
A such that a1 = a2.

2. M + 1 < ui(a) ≤ M + 2 for all actions a s.t. a1 , a2, i , 1, and ai , ai
1.

3. M + 1 < ui(a) ≤ M + 2 for all actions a s.t. a1 , a2, i = 1, and ai , ai
2.

4. M + 3 < ui(a) ≤ M + 4 for all actions a s.t. a1 , a2, i , 1, and ai = ai
1.

5. M + 3 < ui(a) ≤ M + 4 for all actions a s.t. a1 , a2, i = 1, and ai = ai
2.

A small example will help in understanding the construction:

Let M = 12 and A1 = A2 = {e1, e2}, A3 = {e3
1, e

3
2}.

Consider the following set of games P

Table 3.1: P
e3

1 e3
2

e1 [2, 3], [2, 3] [1, 2], [3, 4]
e2 [2, 3], [1, 2] [6, 7], [5, 6]

We will now construct Q from P. When players ONE and TWO play the same
action we have payoffs agreeing with P. When they don’t play the same action, we
get the interval of the payoffs by substituting M = 12 in rules (2)-(5).
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Table 3.2: Q
e2

1 e2
2

e1
1 [2, 3], [2, 3], [2, 3], [13, 14], [13, 14], [15, 16]∗

e1
2 [15, 16], [15, 16], [15, 16]∗, [2, 3], [2, 3], [1, 2]

e2
1 e2

2

e1
1 [1, 2], [1, 2], [3, 4], [13, 14], [13, 14], [13, 14]∗

e1
2 [15, 16], [15, 16], [13, 14]∗, [6, 7], [6, 7], [5, 6]

We will now show that

(1) Q has positive measure,
(2) every game in Q has a unique pure Nash equilibrium
(3) In every game of Q, there is a positive probability that the strategy mapping
doesn’t lead the play to the unique pure Nash equilibrium(as assumed in (2).

Once we prove these three statements, we would have a subset of games Q with
unique pure Nash equilibrium, with positive measure, s.t. with positive probabil-
ity, the strategy mapping doesn’t lead the game to the unique pure Nash equilib-
rium. This will prove that the strategy mapping doesn’t lead to almost sure con-
vergence to unique pure Nash equilibrium in every generic game having a unique
pure Nash Equilibrium. This will complete the proof.

Part (1):
For every payoff function u that satisfies(1)-(5), conditions (2)-(5) restrict the
payoffs out of the diagonal to be in some interval with length 1. Consider the
Lebesgue measure µ′ on the space Rn|A−1 |. So,

µ(Q) = µ′(Q|{a ∈ A|a1 = a2}).1n(|A|−|A−1 |) = µ′(Q|{{a ∈ A|a1 = a2}}) (1∗)

Let D = {d = (u1, u2, u−{1,2})|(u1, u−{1,2}) ∈ P and (u2, u−{1,2}) ∈ P}.
Since elements of P have u1 = u2, we have D = {a ∈ A|a1 = a2}.

Lemma 14. For every i, j ∈ N and for every set V ⊂ Ri+ j with a positive measure
λ(V) > 0, the set C = {c = (p, q, r) ∈ Ri×Ri×R j|(p, r) ∈ V and (q, r) ∈ V ⊂ R2i+ j}

has a positive measure.[3]

In the above Lemma, we substitute i = |A−1|, j = (n − 2)|A−1|, V = P and
we get µ(Q|{a ∈ A|a1 = a2}) > 0.
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And by (1∗), µ(Q) > 0.

Part (2):

Consider the action a = (a1
2, a

2
1, a

3
1, . . . a

n
1). The payoff received by all the play-

ers are in the interval [M + 3,M + 4]. If any player switches his strategy, then his
payoff reduces to less than M + 2, by construction. Hence a = (a1

2, a
2
1, a

3
1, . . . a

n
1) is

the unique pure Nash equilibrium in every game of Q.

Part (3):

h̄ ∈ Ht̄,A−1 , the history of player ONE is the same as the history of player TWO
h̄ ∈ Ht̄,A−2 . Let us denote the by by (c(t′), c(t′), a3(t′), . . . an(t′))t

t′=1 where c(t′) is
the action of player1/player2,if h̄ is an element of Ht̄,A−2//Ht̄,A−1 respectively.

Define h̃ ∈ Ht̄,A by h̃ = (c(t), c(t), a3(t), a4(t), . . . an(t))t̄
t=1.

There is a positive probability that at first period
(c(1), c(1), a3(1), a4(1), . . . , an(1)) will be played. This is because in the the first
period in h̄ will occur with a positive probability.

If at time (t − 1) = 1, 2, . . . , t̄ − 1 be the history of play is the first (t − 1) pe-
riods in (̃h), then all the played actions are on the diagonal (ā1, ā2) where their
payoffs are from the set of games P.

Therefore the observations sequence of every player at period t − 1 is exactly
the same as if h̄ occured.

Therefore (c(t), c(t), a3(t), a4(t), . . . an(t)) will be played with a positive probability
till time t. And by by induction h̃ is realizable by the strategies ( fAi)n

i=1. Thus the
players continue playing actions within the diagonal and the equilibrium is clearly
outside the diagonal.

So, we have proved that the history h̃ will occur with a positive probability. We can
observe that this ensures that the played is confined within the diagonal a1 = a2.
This is because the action (ā1, ā2, ā3, . . . , ān) will be played with probability 1, af-
ter time t̄. But (ā1, ā2, ā3, . . . , ān) is not a Nash equilibrium in the game u since
player 1 can increases his payoff above M + 1 by switching. Hence the strategy
mapping doesn’t lead the game to the unqiue pure Nash equilibrium which it has.
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Theorem 5: There exists a completely uncoupled strategy mapping that leads
a.s. convergence of play to a pure Nash equilibrium in every finite game with
distinct action sets that has a pure Nash equilibrium [3]

Proof: We will prove the existence of a ’completely uncoupled strategy mapping’
which leads play to convergence to equilibrium in every game with different pay-
offs. This will prove that it converges play to equilibrium in almost every game,
as the set of all games with atleast payoffs being equal is a zero measure set

We assumed that the collection of all actions of players is countable. So, the set
B of all finite subsets of the collection is also countable. So, we have an injective
function γ : B→ N. So for every unique game Γ (unique action set) has a unique
index through this map, i.e. the numbers γ(A1), γ(A2), . . . , γ(An) are distinct.

To construct the strategy mapping, let φ be the function which assigns a strat-
egy f (γ(Ai)) to every action set Ai ∈ B.

The strategy fAi(l) will consist of five main steps. In every step we specify the
action of a player and the resultant behaviour of all players combined. In each
step, the behaviour of a player only dependent on his payoff, as required in a com-
pletely uncoupled game.

The dynamic tries to facilitate communication between the players. At time t = 1,
every player plays his first action ai

1 and records the payoff ui(a1
1, a

2
1, . . . , a

n
1), we

will call it ui(1). The players use the action as a binary signal, they judge the
signal from other players, based on whether the payoff was ui(1) or different from
ui(1).

Step1 is called the identification of index:
The players aim at generating a unique index from 1, 2, . . . , n.
They review natural numbers k = 1, 2, . . . . While reviewing his number γ(Ai) = k,
each player signals to the others as follows: The player i having γ(Ai) = k plays
ai

2 , while the others play a j
1 . This lets them know if a player with γ(A) = k exists;

We have an another problem. The players don’t when to stop reviewing as the
total number of players is unknown. We solve this problem by adding another
step between reviewing of k and k + 1. The use the signalling mechanism to find-
out if there is a player with payoff greater than k. If there is no such player, they
can stop reviewing. Each player signals by playing ai

2 if his number γ(Ai) is above
k, otherwise he plays ai

1.
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Once each player finds all the γ(A j), each player evaluates his own index by
|{ j|γ(A j) ≤ γ(Ai)}|.

Step2 is called the identification of the action profile set:

In this step each player tries to identify the number of actions with the other play-
ers. Firstly, the index1 player plays his actions in the following order: ai

2, a
i
3, . . . , a

i
mi , ai

1,
and the other players constantly play ai

1 . The other players know that player1
has finished, when the players receive the payoff ui(1) and they record the num-
ber of actions of player1. The procedure then continues for players with indexes
2, 3, . . . , n.

If the players find a player with one action, they will assume that such a player
doesn’t exist. Such a player doesnt affect the outcome of the game in anyway.

Step3 is called the identification of the own payoff function:

From Step2, all players know the structure of the action set A.
The players go through all the actions a ∈ A in lexicographic order, and record it.

Step4 is called finding a pure Nash equilibrium:

From Step 3, players know their own payoff function.
A player reviews all the actions a = (ai, ai) in lexicographic order, and then plays
ai

1 if ai is a best reply to ai ; If not, he plays ai
2 . If his payoff is u j(1), then he

knows that the other players are best replying and so everyone is currently playing
a pure Nash equilibrium. If not, they will continue reviewing.

Step5 is called playing the pure Nash equilibrium. In this step, the players will
repeatedly play the pure Nash equilibrium.

Each of the steps(1-4) take finite amount of time and from then on, a pure Nash
equilibrium will be played. 2 �

Theorem 6: For every ε < 1/2 there is no completely uncoupled strategy map-
ping that leads to play of pure Nash equilibria with frequency 1− ε, in every game
with more than two players, where such an equilibrium exists.[3]

Proof. The requirement of convergence in ’every’ game is very strong. We will
produce an example of two games such that the probability of player3 playing the
equilibrium action is not more than half. That will complete the proof.
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Table 3.3: Γ1
a1

1 a2
2

a1
1 7, 7, 7∗ 7, 7, 7∗

a1
2 7, 7, 7∗ 7, 7, 7∗

a1
1 a2

2

a1
1 7, 2, 7 2, 7, 7

a1
2 2, 7, 7 7, 2, 7

Table 3.4: Γ2
a1

1 a2
2

a1
1 7, 2, 7 2, 7, 7

a1
2 2, 7, 7 7, 2, 7

a1
1 a2

2

a1
1 7, 7, 7∗ 7, 7, 7∗

a1
2 7, 7, 7∗ 7, 7, 7∗

In these games player THREE has payoff ’7’ irrespective of the actions of the
players and the game being played, but his choice determines the actions of other
players so as to produce an equilibrium.
Game Γ1’s pure Nash equilibria are {(i, j, 1)}2i, j=1. Game Γ2’s pure Nash equilibria
are {(i, j, 2)}2i, j=1.

Player THREE employs the same strategy in both the games and his history doesnt
depend on actions of other players. Player THREE doesn’t play one of the actions
a3

1 or a3
2 with limit frequency greater than 0.5 with probability 1. We will call this

action a3
i (i = 1, 2). So, in game Γi the strategies can’t lead play to a pure Nash

equilibria.

Such an example can be constructed for a different number of players and dif-
ferent number of actions. We need to construct the payoff and ensure that a player
has play two different actions with limit frequency greater than 0.5, so as to lead
play to converge to Nash equilibrium. �

Theorem 7: If either,
(1) The additional information of every player i ∈ N is his own index; i.e., αi = i
or
(2) The additional information of every player i ∈ N is the total number of players,
i.e. αi = n

Then, there exists a completely uncoupled strategy mapping with additional in-
formation α that leads to a.s. convergence of play to pure Nash equilibrium in
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every finite generic game where such an equilibrium exists. [3]

Proof. We will prove that one of the following conditions is sufficient for the
existence of a strategy mapping.

Condition 1: If the players have a unique index from 1, 2, . . . , n, then we can
use the Theorem5, since the items of the collection Ai × j, where j is the index,
can be used in place of action sets. Action sets will now be unique and so we will
have a strategy mapping which leads play to convergence to a pure Nash equilib-
rium, if it exists.

Condition 2: If the players know the total number of players, then we can use
n in the description of the strategy mapping. We will define the strategy-mapping,
by defining the strategy of a player i as follows:

Firstly, all the players play a step called random identification of action profile
set of n players:

In this step, each player uniformly randomizes a natural number 1 ≤ ci ≤ n.

He will then use this random number as his index and play the step identifica-
tion of action profile set. He will record the action set and finish this step, if he
finds that there are n-players. If not, all the players will randomize again.

After this step, the player continues the step chains as prescribed in Theorem5
- identification of payoff function→finding of pure Nash equilibrium→playing the
Nash equilibrium.

If (c1, c2 . . . , cn) is a permutation of (1, 2, . . . , n), then players will use it as a unique
index and can proceed as suggested in the proof of Condition(i) If more than one
player has guessed the same number, let us call the smallest number which is not
in {c1, c2, . . . , cn} as j. That will help all the players in concluding that there are
j − 1 players and so they try to pick a permutation once again.

Players guess a permutation with a probability n!/nn in every randomization. So,
they will eventually pick a permutation in some iteration and then the dynamics
will reach a pure Nash equilibrium. �

Theorem 9: For, every ε > 0, there exists a completely uncoupled strategy map-
ping that leads to a.s. convergence of play to Nash ε-equilibrium in every finite
generic game.[3]
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Proof: We would like to discretize ∆(Ai) for all i, by having only the actions
which are integeral multiples of ν. Consider a constant ν = ν(ε) , a number small
enough, s.t. every game has a Nash ε-equilibrium, with integer multiplications
of ν as the actions. ν = ε/4K , where K is the bound on all the payoffs, is one
such number small enough, to be assigned as ν. Such a ν exists, because every
game has a Nash equilibrium, and we can approximate it by integer multiplica-
tions of ν We will denote this discretization by ∆̃(Ai). Note that it is a finite set.
So ∆̃(A) = ∆̃(A1) × ∆̃(A2) × × ∆̃(An) is also a finite set, and we can define a lexi-
cographic order over ∆̃(A).

The new step will called “searching Nash ε/2-equilibrium”.
The players will search all the mixed actions in ∆̃(A) in a lexicographic order. For
every action x = (xi, x−i) ∈ ∆̃(A), player i will play ai

1 if xi is an ε/2-best response
to xi ; if not, he will plays ai

2. If his payoff was ui(1), then he records xi as the
Nash ε/2-equilibrium mixed action. If not, he moves on to the action following it,
in the lexicographic order.

We will define the state of the strategy, of a player:
State k.1: The player has the information that the number of players is at least k
and that within k players, he couldn’t find an ε/2-Nash equilibrium.
State k.2: The player has the information that the number of players is at least k
players, and that within k players, he has found an ε/2-Nash equilibrium. If in
this state,the player will record his k-players payoff function ũi

k and the equilib-
rium action xi. The initial state for a player is state 1.1.
At state k.1, Each player i will follow these steps: random identification of action
profile set of k players→identification of payoff function→ finding an ε/2-Nash
equilibrium.

The Nash ε/2-equilibrium action xi, and payoff function ũi
k, containing equilib-

rium, are recorded by the player. After this step, player i will move to state k.2.

Consider a number ξ small enough s.t. for every Nash ε/2-equilibrium x = (xi)n
i=1,

the mixed actions profile y = (yi)n
i=1 defined by

yi = (1 − ξ)xi + ξ( 1
|Ai |
, 1
|Ai |
, . . . , 1

|Ai |
)

is a Nash ε-equilibrium with full support over A.

At state k.2, player will choose the mixed action yi. If the player i gets a pay-
off not in ũi

k, he will then change to state k + 1.1. If not, he will continue in state
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k.2.

Let the number of players be n. There is a positive probability of randomize a
k-permutation if all the players are at state k.1 for every k ≤ n and then all players
move simultaneously to state k.2. Consider any for every k < n, the played action
y has full support if every player is in state k.2.

Therefore, there is a positive probability of playing an action that is not in ũk;
in this case the received payoff of every player i does not exist in ũi

k , so all the
players move simultaneously to state k + 1.1

Finally, the players will get to state n.2. Note that state n.2 is an absorbing state.
In state n.2, the players play (yi)i∈N, which is a Nash ε-equilibrium. The player
always records an actual payoff value and so he will never get a payoff which
doesnt exist in his function. So he will stay in state n.2 all the time. �

Theorem 13: For ε ≤ 1/8, there is no completely uncoupled strategy mapping
into finite-memory strategies that leads to play of Nash ε-equilibria with frequency
1 in every game. [3]

Proof:. Proof by contradiction. Suppose such a strategy mapping does exist.
We will examine the matching pennies game, in which a player having actions set
{a1, a2} plays against another player who has an action set {a3

1, a
3
2} :

Table 3.5: Γ
a3

1 a3
2

a1 11, 7 7, 11
a2 7, 11 11, 7

There exists a history, realizable by the strategy, h = (a(t′), a3(t′))t
t′=1 s.t. if h

occurs, then the played actions ε close to (1/2, 1/2) provided that their payoffs
remain 7 or 11.

Now let us consider a three-player game where players ONE and TWO have the
actions set {a1, a2}, same as in previous game and player3 has actions set {a3

1, a
3
2} :
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Table 3.6: Γ′

a2
1 a2

2

a1
1 11, 11, 7 11, 7, 11∗

a1
2 7, 11, 11∗ 7, 7, 11

a2
1 a2

2

a1
1 7, 7, 11 2, 11, 7, 11∗

a1
2 7, 11, 11∗ 11, 11, 7

Players ONE and TWO will be playing the matching pennies game against THREE,
on the diagonal a1 = a2. Players ONE/TWO get 11 if ai

1 is played by him ,and 7 if
ai

2 is played by him, Out of the diagonal a1 = a2. THREE gets 7, in any case, out
of the diagonal a1 = a2. ((1/2, 1/2), (1/2, 1/2), (1/2, 1/2)) or any ε -perturbation
of it is not a Nash ε -equilibrium for ε ≤ 1/8 (because player can increase his
payoff to a value larger than 1/8, by deviating).

h̃ := (a(t′), a(t′), a3(t′)) is a realizable history in Γ′, as we have a positive prob-
ability of all the players playing the history h. If h occurs then players will remain
on the diagnol and will continue to play (1/2, 1/2), because all the payoffs in the
game Gamma are either 7 or 11. So, if h does occur, then the players will continue
playing actions ε close to (1/2, 1/2).
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Chapter 4

Model

4.1 Motivation
The assumption that a player can see his actions, overall outcome and payoff

alone, is a very strong condition. This is equivalent to the game being a black-box.

The assumption that players cant see the number of players is legit in a large
game(large number of players).

We can develop a model in which players can see a probability distribution over
the action set. They may not know the action sets of other players, but they know
the probability distribution with which nature allots them an action set.

4.2 Model
We have an n-player game with each player receiving an action-set from a finite
collection A. The players payoffs are given by functions pi : An −→ R
After the start of the game, each player knows

1. His index i

2. His action set Ai

3. His payoff function pi

Assumptions

1. Generic game

2. Each player receives a distinct action set
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Problem: Existence of a strategy mapping which guarantees almost sure conver-
gence of the game to a Nash equilibrium.

We will see a mechanism to ensure faster convergence to pure Nash equilibrium(if
one exists) in the next chapter-Dynamics.

4.3 Negative Results
The negative results proved by Babichenko, which proves that no-strategy map-
ping exists which can lead play to Nash-equilibrium(if it exists) come up when
one of these conditions are not satisfied-‘distinct action sets’ and ’generic game’.

If the ’distinct action set’ condition is not satisfied, the strategy mapping has no
mechanism to differentiate between two players pocessing the same action set.
They will thus play the strategy. So, there is a positive probability of both the
players staying on the diagnol(both playing same action). Thus, we wont have
a stratey mapping in the games having equilibrium outside the diagnol. This is
important since we insist on almost sure convergence, so even if there is a small
positive probability of the game not converging to equilibrium(as a result of get-
ting absorbed within the diagnol), then we have a negative result.
This negative result continues to hold in our model.

If the ’generic game’ condition is not satisfied, then we can come with up games
where a player has to play two actions with limit frequency, greater than 0.5, as
seen in Theorem 6.

Secondly, the Dynamics also fail when there are multiple equilibria. We thus
operate under the assumption that there is a unique pure Nash equilibrium.

Although these results couldn’t be fixed, there are limitations in the Dynamics
suggested by Babichenko. The Dynamics suggested in Theorem 5 require the
players to go through all the actions and then explore an equilibrium. However,
players may be able to see patterns and discover the equilibrium without actu-
ally going through the entire matrix. This motivates the development of a model
where the information possessed by the players is intermediate between that in
a coupled game(where entire payoff matrix is available and players can compute
nash equilibrium using the matrix, if it is unique) and a completely uncoupled
game.
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Chapter 5

Dynamics

Each set A0 ∈ A is mapped to fA0 by strategy mapping φ.
The strategy fA0 is composed of two main steps

1. Search

2. Explore

Step1: Li, fA0i
= {a ∈ {A0 × An−1} r β | pi(a) ≥ pi(b, a−i)∀b ∈ A}

Players go through actions of Li, fA0i
in lexicographic order and record it. Review-

ing all the actions a j = (a j
i , a

j
−i) in lexicographic order, the player plays a1

i if a j
i is

the best response to a j
−i

Otherwise, he plays a2
i

If his payoff is pi(a1) then all players are best replying.
Hence a Nash equilibrium is found.

Players will continue to play a j
i .

Step2:

1. Li is an order of actions of A(with |A|(n−1) elements) such that Xn
i=1 Li is

bijective with Xn
i=1Ai.

Player i plays first action from Li.

2. If ∃A1 ∈ A s.t. pi(a)! = pi(b)∀b ∈ A s.t. b j = a j then send positive signal
If β, updated after recording the payoff, it has cardinality |A|n−1−1 then send
positive signal.
Player sends positive signal and an element of Li untill all players send
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positive signal.
Once a positive signal is received from all players, they play Search step.

5.1 Example

Suppose there are two players.
µ = (a, b, c, d, e, f )
λ = ((a, b), (c, d), (e, f ))
Suppose the payoffs are identical for both the players Suppose Player1 receives

Table 5.1: Payoffs
X a b c d e f
a 6 0 51 50 51 70
b 2 9 2 29 35 36
c 1 2 3 4 1 6
d 7 8 23 1 41 21
e 3 5 4 1 31 19
f 5 14 23 15 17 18

(a,b) and Player2 receives (c,d)

Step1:
Player1’s list-{(a, a), (b, b), (a, c), (a, d), (a, e), (a, f )}
Player2’s list-{(a, d), (b, d), (c, d), (d, c), (e, d), ( f , d)}

Player1’s order is a,b
Player2’s order is c,d

They play a,c
Player1 signals negatively against a,c

They play a,d
Both players signal positively

An equilibrium is found and the protocol terminates.

Note: An equilibrium was found within the amount of information known to the
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players and hence the protocol terminated without proceeding to step2.

If there was no equilibrium within the known information, we would witness an
iteration of both the steps.
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5.2 Proof of Correctness
Proposition 15. If ∩n

i=1Li,φ(A0i ) , φ then φ converges play to equilibrium.

Proof: If a ∈ ∩n
i=1Li,φ(A0i ) then

1. a is a nash equilibrium

2. φ converges to a nash equilibrium

Proof of (i): If a ∈ ∩n
i=1Li,φ(A0i ), the ai is a best response to a−i.

Each player is best replying, in a.
Hence a is a Nash Equilibrium.

Proof of (ii) Proof by Contradiction, Suppose the strategy mapping doesn’t con-
verge play to ’a’. a ∈ ∩n

i=1Li,φ(A0i ) ⇒ a occurs in the lexicographic ordering of all
actions tried by players, unless the game converged to a nash equilibrium.

Suppose the game didn’t converge already, then each player send positive signal
after ’a’ is played in the order. The play then converges to ’a’. Hence proved �

Proposition 16. Either the strategy mapping leads to Nash Equilibrium or to a
root node.

Proof: Since n, A are finite, total number of combinations of |A|n−1 is finite.

Each step in Explore reduces potential number of combinations by atleast 1.
Thus, each player reaches root node by |A|n−1 steps.

Proposition 17. The strategy mapping checks for existence of a Nash Equilibrium.

Proof: By proposition2, either φ converges play to Nash Equilibrium or to root
node. By Proposition1 play converges to nash equilibria in root node, if it exists.

Hence the strategy mapping leads play to nash equilibrium,if one exists. �
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Chapter 6

Conclusion

6.1 Further Questions
There is a tradeoff between exploring more information about the game and find-
ing an equilibrium within the known information?

Can further optimization of time be possible within the model?
Can we have a model in which a strategy mapping can lead play to a nash equi-
librium even when action sets needn’t be distinct?

Can we have a model in which a strategy mapping can lead play to a nash equi-
librium in every game(not just generic games)?

Can we optimize the dynamics using the probability distribution(belief structure
over the collection of action sets)?

What is the nature of the Dynamics if we consider an equilibrium concept other
than pure Nash, mixed Nash and ε-Nash?

6.2 Conclusion
Dynamics in Games of Complete Information is well understood.

Yakov Babichenko, in his paper Games of incomplete information and nash equi-
libria presents some impossibility theorems in the incomplete setting.

We are exploring models in between Complete and Incomplete information. It
turns out that it is not possible to fix those impossibilities, without proceeding to
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an equivalent of games with complete information.

However, Yakov Babichenko concludes in his paper, that the dynamics presented
in the paper are ugly in the sense that they assume complete coordination. We are
exploring better dynamics, in a model which fits into most situations.

This model comes in, in a situation where the players have access to their com-
plete payoff matrix and the Universal Action Set structure, but do not know the ac-
tual Action set with the players. There is a tradeoff between locating equilibrium
within the knowledge system; and exploring more information about the game.
Players make Bayesian updates about the game, through the recorded payoffs.
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