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Abstract

Representations of the symmetric group Sn may be regarded as homomorphisms φ to the
orthogonal group O(d,R), where d is the degree of φ. We give a criterion for whether φ
lifts to Spin(d,R) or Pin(d,R), in terms of the character of φ. We give similar criteria
for orthogonal representations of the alternating group An, and of products of symmetric
groups. Using these criteria we count the number of irreducible spinorial representations
of the Symmetric groups for some particular cases. Finally we prove that asymptotically
most of the irreducible representations of Sn and An are spinorial.

xi



1
Introduction

A finite dimensional real representation V of a group G is called orthogonal if for an
inner product B on V we have

B(v, w) = B(g · v, g · w) for v, w ∈ V.

In other words, if φ : G → GL(V ) is the representation associated with V then φ(G) ⊂
O(V,B). Generally, we drop the notation B and simply write O(V ) or O(d) to denote the
group of orthogonal d×d matrices, where d denotes the dimension of the vector space V .
We know that any representation of Sn is real and orthogonal. Therefore we can consider
representations (φ, V ) of Sn, where V is a finite-dimensional real vector space and φ is
a homomorphism from Sn to O(V ). If the determinant of φ is trivial then we say it is
achiral. In this case the image of φ lies in SO(V ). It is called chiral otherwise. There is a
non-trivial two-fold cover Pin(V ) of O(V ) with covering map ρ : Pin(V )→ O(V ). We say
a representation (φ, V ) of Sn is spinorial if there exists a homomorphism φ̂ : Sn → Pin(V )
such that ρ ◦ φ̂ = φ. Otherwise we say φ is aspinorial. In particular we call an achiral
representation spinorial if it lifts to Spin(V ), which is a two-fold cover of SO(V ).

The problem of lifting orthogonal representations has been highlighted by Serre [24],
Delinge [7] and Prasad-Ramakrishnan [22] (who specifically ask about symmetric groups).
The paper [12] gives lifting criteria for representations of reductive connected algebraic
groups of characteristic 0 in terms of highest weights. In our thesis we give lifting cri-
teria for representations of symmetric groups, alternating groups and a product of two
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symmetric groups. Using the criteria we also give the number of irreducible spinorial
representations of Sn for some particular cases and show that asymptotically most irre-
ducible representations of Sn and An are spinorial.

We in particular prove that one can determine the spinorial representations of Sn
from the character values.

Theorem 1.0.1.A representation (φ, V ) of Sn, n ≥ 4 is spinorial if and only if one of
the following conditions holds:

1. χV (s1s3) ≡ χV (1) (mod 8), χV (s1) ≡ χV (1) + 2 (mod 8). In this case φ is chiral.

2. χV (1) ≡ χV (s1) ≡ χV (s1s3) (mod 8). In this case φ is achiral.

Similarly for Alternating groups we obtain

Theorem 1.0.2.An orthogonal representation (φ, V ) of An, n ≥ 4, is spinorial if and
only if

χV (1) ≡ χV (s1s3) (mod 8)

Let (πi, Vi) denote a representation of Si, for i ∈ {1, 2}. Let gi denote the multiplicity
of −1 as an eigenvalue of πi(s1), and fi the dimension of Vi. We give lifting criteria for
the representation (π, V1 � V2) of Sn1 × Sn2 .

Theorem 1.0.3.Let Vi be a representation of Sni for i ∈ {1, 2}. The representation
(π, V1 � V2) of Sn1 × Sn2 is spinorial if and only if π|(Sn1×1) and π|(1×Sn2 ) are spinorial
and the following condition holds:

g1g2(1 + f1f2) ≡ 0 (mod 2).

Let BSn denote a classifying space of Sn and ESn denote the principal Sn bundle
over BSn. The spinoriality of an achiral representation V of Sn can be detected by the
second Stiefel-Whitney class of the associated vector bundle ESn ×Sn V over BSn. We
work with orthogonal real representations of any finite group G. We take the Stiefel-
Whitney classes of a finite- dimensional real representation (φ, V ) of a group G to be
wi(φ) = wi(EG ×G V ) ∈ H i(BG; Z/2Z) as in [19, page 37]. From [9] it follows that for
a representation (φ, V ) of G, we have w1(φ) = det(φ). The following result gives a lifting
criterion for an orthogonal representation (φ, V ) of a finite group G, with det(φ) = 1.
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The result can be found in [14] in a more general context. We prove it here to make the
thesis more self-contained.

Theorem 1.0.4.Let (φ, V ) be an orthogonal representation of a finite group G and
w1(φ) = 0. Then φ is spinorial if and only if w2(φ) = 0.

In the paper [15] the author gives explicit formulas for the character values of irre-
ducible representations of Sn in terms of Young diagrams of the associated partitions.
Combining this with the theory of 2-core towers (discussed in Section 2.4) we obtain
a characterization of the irreducible spinorial representations of Sn for some particular
cases. If we write a number n in the form

n = ε+ 2k1 + · · ·+ 2kr , 0 < k1 < ... < kr, ε ∈ {0, 1}, (1.1)

then from [17, Corollary 1.3] the number of odd partitions of n is

A(n) = 2k1+···+kr .

The result can also be found in [18].Determining the higher Stiefel-Whitney classes for
Sn We write s1(n) to denote the number of odd, achiral, spinorial partitions of n.

Theorem 1.0.5.For n ≥ 4, we have

s1(n) =


1
8A(n), for k2 = k1 + 1,
1
4A(n), for k2 ≥ k1 + 2, or r = 1.

Finally we show that asymptotically most irreducible representations of Sn are spino-
rial. We use the notation p(n) to denote the number of partitions of n.

Theorem 1.0.6.We have

lim
n→∞

#{λ ` n | λ is spinorial}
p(n) = 1.
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Chapter 2 sets the stage by recalling all basic definitions and notations needed for the
rest of the chapters. The first section introduces the Pin group. The rest of the chapter
is devoted to the theory of cores and quotients of partitions and related topics. We end
this chapter by recalling some relevant results from the paper [3].

Chapter 3 is concerned with the determination of spinorial representations (φ, V ) of
the symmetric groups. We know that Sn is generated by the transpositions si = (i, i+ 1)
for 1 ≤ i ≤ n − 1. Write gV for the multiplicity of −1 as an eigenvalue of φ(s1). For
n ≥ 4, consider the subgroup C2×C2 of Sn generated by s1 and s3. Write ω : K4 → {±1}
for the multiplicative character of C2×C2 taking both s1 and s3 to −1. Write hV for the
multiplicity of ω in the restriction of V to C2 × C2.

Theorem 1.0.7.A representation V of Sn, n ≥ 4, is spinorial if and only if both the
following conditions hold:

1. gV≡ 0 or 3 (mod 4),

2. hV≡ gV (mod 2).

We in particular consider the Specht modules Vλ (discussed in Section 2.3). These
are irreducible representations of Sn parametrized by partitions λ of n. We give lifting
criteria of these representations in terms of the numbers fλ/µ of certain standard skew
Young tableaux. In fact we express the gVλ and hVλ in terms of numbers of standard
skew Young tableaux as follows:

gVλ = fλ/(1,1), and hVλ = fλ/(2,1,1) + fλ/(2,2) + fλ/(14).

Chapter 4 investigates the spinorial representations of alternating groups. The alter-
nating group is generated by ui = s1si+1, 1 ≤ i ≤ n− 2. Write kV for the multiplicity of
−1 as an eigenvalue of s1s3. We prove that:

Theorem 1.0.8.An orthogonal representation (φ, V ) of An for n ≥ 4, is spinorial if and
only if kV ≡ 0 (mod 4).

If λ is not a self-conjugate partition then Vλ |An is an irreducible representation of An.
For a self-conjugate partition λ the representation Vλ decomposes into two irreducible
representations V ±λ .



Chapter 1. Introduction 5

Theorem 1.0.9.Suppose V ±λ is orthogonal. Then the following statements are equivalent:

1. V +
λ is spinorial.

2. V −λ is spinorial.

3. χλ(1) ≡ χλ(s1s3) (mod 16).

Building on the previous chapters, Chapter 5 explores some corollaries and low dimen-
sional examples. Here we discuss the spinoriality of direct sums, internal tensor products
of representations of Sn. For each partition λ = (λ1, . . . , λl) of n, take Xλ to be the set
of all ordered partitions of {1, 2, . . . , n} of shape λ,

Xλ = {(X1, . . . , Xl) | X1 t · · · tXl = {1, 2, . . . , n}, |Xi| = λi}.

The action of Sn on {1, . . . , n} gives rise to an action of it on Xλ. Take the vector space
R[Xλ] and consider the permutation representation it affords. We obtain lifting criteria
in terms of congruence relations of multinomial coefficients. In particular, for λ = (1n),
the representation R[X(1n)] gives the regular representation of Sn. Our criteria gives the
following result.

Theorem 1.0.10.The regular representation of Sn, n ≥ 4, is achiral and spinorial.

Next we explore the spinoriality of the representations of the product of two symmetric
groups. Finally, we present in tabular form behaviors of representations of Symmetric
and Alternating groups of small sizes.

Chapter 6 adopts a cohomological approach to determine spinoriality of representa-
tions of Symmetric groups. Let ε denote the sign representation of Sn and φn denote
the standard permutation representation of Sn on Rn, via permutation matrices. Write
ecup = w1(ε)∪w1(ε). From [24, Section 1.5] we obtain that ecup and w2(φn) generate the
group H2(Sn,Z/2Z). Using these facts we prove that:

Theorem 1.0.11.Let (φ, V ) be any representation of Sn. Then

w2(φ) =
[
gV
2

]
ecup + kV

2 w2(φn).

Here [.] denotes the greatest integer function.
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Chapter 7 is devoted to characterizing the irreducible, spinorial representations of
Sn for some particular cases. We write H(a, b) for the hook of the form (a + 1, 1b) and
H+(a, b), a, b > 0 for the partition (a+1, 2, 1(b−1)). The first section of the chapter recalls
the explicit character formulas in terms of contents. Here we also mention the general
character formulae in terms of contents given by Michel Lassalle in [15, Theorem 6]. In
the next section we focus on the achiral, odd partitions. Here we use the theory of 2-core
towers extensively. The results in [15] help us to characterize the odd, achiral, spinorial
partitions and count them. Theorem 6.3.2 ensures that for an achiral, spinorial irreducible
representation Vλ of Sn, we have w1(Vλ) = w2(Vλ) = 0. In fact from [19, Exercise 8.B,
page 94] we conclude that w3(Vλ) = 0 as well.

In the next two sections we explore the odd, chiral, spinorial partitions of 2k + ε. The
two theorems stated below summarizes the results.

Theorem 1.0.12.Let n ≥ 8 be a power of 2. Then a partition of n is odd, chiral and
spinorial if and only if it is a hook of the form H(a, b) with a > b and b ≡ 3 (mod 4). In
particular the number of odd, chiral, spinorial partitions of n is n/8.

Theorem 1.0.13.Let n be of the form 2k + 1, k ≥ 3. Then a partition of n is odd, chiral
and spinorial if and only if it is of the form H+(a, b) with b > a, b ≡ 0 (mod 4) and
v2(b) ≤ k − 2. In particular there are 2k−3 − 1 odd, chiral, spinorial partitions of n.

The remainder of the chapter investigates the self-conjugate spinorial partitions. We
write v = v2(fλ).

Theorem 1.0.14.Let λ be a self-conjugate partition of n. If v ≥ 3 then λ is spinorial. If
v = 2 then λ is aspinorial. If v = 1, then λ is spinorial if and only if λ = H(2k−1, 2k−1),
for some k ≥ 2.

Chapter 8 ventures into asymptotic behaviors of the irreducible representations of the
symmetric and alternating groups. We prove that

Theorem 1.0.15.For any fixed non-negative integer m,

lim
n→∞

|{λ ` n | v ≤ kr +m}|
p(n) = 0.
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where v = v2(fλ), n has the form as in Equation (1.1).

With similar arguments, we conclude that most irreducible representations of Sn and
An are spinorial (see 8.0.2 and 8.0.4 ). For a partition µ such that |µ| ≤ n we obtain a
partition (µ, 1n−|µ|) of n. For example if µ = (2, 1, 1) and n = 6, we have the partition
(2, 1, 1, 1, 1) of 6. We also prove that:

Theorem 1.0.16.For a fixed partition µ and a positive integer b we have

lim
n→∞

#{λ ` n | χλ(µ, 1(n−|µ|)) ≡ 0 (mod 2b)}
p(n) = 1.
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2
Preliminaries

This chapter is devoted to the exposition of basic preliminary material which we use
extensively throughout the thesis. We begin with a quick review of the Pin group and
some of its properties that we use later. Next we define Young tableau associated with
a partition λ of n and discuss related concepts. This allows us to discuss Young’s natu-
ral representation of the Specht modules, which gives irreducible representations of Sn.
Finally, we recall some results from the paper [3] which we use later.

2.1 Pin Group

For a real vector space V the tensor algebra T (V ) is defined as

T (V ) =
∞⊕
i=0

V (i), where V (i) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
i times

and V (0) = R.

For the multiplicative structure on T (V ) see [8, Section 11.5]. Let Q : V → R denote a
quadratic form. Then we define the Clifford Algebra as

C(V,Q) = T (V )
a

,

where a ⊂ T (V ) denotes the ideal generated by the elements {v ⊗ v − Q(v) · 1; v ∈ V }.
The algebra C(V,Q) has a canonical anti-automorphism t : C(V,Q) → C(V,Q) defined

9



10 2.1. Pin Group

as
t(v1 · · · vr) = vr · · · v1,

for vi ∈ V . Also there is a canonical automorphism α : C(V,Q)→ C(V,Q) given by

α(v1 · · · vr) = (−1)rv1 · · · vr.

Using these two maps we define an anti-involution on C(V,Q) as “ ∗ ” = αt = tα :
C(V,Q)→ C(V,Q) as

(v1 · · · vr)∗ = (−1)rvr · · · v1.

Let O(V,Q) denote the orthogonal group and SO(V,Q) denote the special orthogonal
group with respect to the quadratic form Q. We define the Pin group as

Pin(V,Q) = {x ∈ C(V,Q) | x · x∗ = 1 and x · V · x∗ ⊂ V },

and the homomorphism

ρ : Pin(V,Q)→ O(V,Q), ρ(x)(v) = α(x) · v · x∗.

An important subgroup of Pin(V,Q) is Spin(V,Q) defined as

Spin(V,Q) = ρ−1(SO(V,Q)).

From now on we take V = Rn with the quadratic form Q : Rn → R, x 7→ −|x|2, i.e.
the standard negative definite quadratic form. We write Cn = C(R, Q). We will use both
the notations Pin(V ) and Pin(n) to denote the group Pin(V,Q). Similarly, we take the
liberty of using the notations O(V ) and O(n) (resp. SO(V ) and SO(n)) to denote the
group O(V,Q) (resp. SO(V,Q)).

If we consider the standard basis {e1, e2, ..., en} of V , then ei ∈ Pin(V ) with

ρ(ei) = diag(1, 1, · · · ,−1, 1, · · · , 1),

where −1 is at the i-th position. In fact ρ(u) is a reflection when u is a unit vector. We
also obtain the relations
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1. e2
i = −1 ∈ Pin(V ),

2. eiej = −ejei for i 6= j.

As a quick example for n = 1 we have C1 = C and Pin(1) = Z/4Z. More details on
the spinor groups can be found in [4, Chapter 1.6].

Definition 2.1.1. A finite dimensional real representation (φ, V ) of a group G is called
orthogonal if φ(G) ⊂ O(V ).

Definition 2.1.2. An orthogonal representation (φ, V ) of a group G is called spinorial
if there exists a homomorphism φ̂ : G→ Pin(V ) such that ρ ◦ φ̂ = φ. So if φ is spinorial
we obtain the following commutative diagram:

G O(V )

Pin(V )

φ

ρ
φ̂

2.2 Young Tableaux

For a partition λ = (λ1, λ2, · · · , λl), we define the associated Young diagram, denoted by
Y(λ), as a finite collection of cells arranged in an array of left justified rows such that the
i-th row contains λi number of cells. Pictorially Y(6, 4, 3) looks like

The partition λ is called the shape of Y(λ). A Young diagram with its boxes filled in
by integers is called a Young tableau. We denote a Young tableau by t = (t(i, j)),
where t(i, j) denotes the integer in the (i, j)-th cell of the tableau. We are in particular
interested in the class of standard Young tableaux.
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Definition 2.2.1. A standard Young tableau (SYT) of shape λ is a Young diagram of
shape λ in which the cells are filled in with the positive integers {1, 2, . . . , n}, where
|λ| = n, in such a way that

• the entries increase strictly down each column;

• the entries increase strictly (from left to right) along each row.

For example,

1 2 4 5 6 8
3 7 9 11
10 12 13

is a SYT of shape (6, 4, 3). The number of SYT of shape λ is denoted by fλ.

Definition 2.2.2. The conjugate partition of a partition λ = (λ1, λ2, · · · , λl) is defined
as the partition λ′ = (λ′1, λ′2, · · · , λ′s), where λ′j is the number of parts of λ which are
greater than or equal to j:

λ′j = |{1 ≤ i ≤ l | λi ≥ j}|.

The concept of conjugate partitions can be visualized in terms of Young diagrams.
The Young diagram of shape λ′ is obtained from the Young diagram of shape λ by
reflecting it about the principal diagonal. For example, flipping the Young diagram of
shape (6, 4, 3) gives

which is the Young diagram of shape (3, 3, 3, 2, 1, 1), the partition conjugate to (6, 4, 3).

Definition 2.2.3. For µ ⊆ λ, the skew Young diagram of shape λ/µ is the set of cells

λ/µ = {c : c ∈ λ and c /∈ µ}.
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As for example if λ = (3, 2, 2, 1) and µ = (1, 1) then

λ/µ =

In a similar fashion as before one can define a standard skew Young tableau.

Definition 2.2.4. A standard skew Young tableau is a skew Young diagram in which
the boxes are filled in with positive integers in such a way that the entries increase strictly
down each column and along each row from left to right.

The number of standard skew Young tableaux of shape λ/µ is denoted by fλ/µ.

Definition 2.2.5. The content of a cell (i, j) ∈ Y(λ) is defined to be c(i, j) = j − i. The
total content of Y(λ) is defined as

C(λ) =
∑

(i,j)∈Y(λ)
(j − i).

Here is an example of a Young diagram of λ = (6, 4, 3) with each of its cells filled by
its content.

0 1 2 3 4 5
−1 0 1 2
−2 −1 0

2.3 Young’s Natural Representation

For a Young tableau t of shape λ we define two subgroups of the symmetric group S|λ| as

Rtabloids = {g ∈ S|λ| | g preserves each row of t},

and
Ctabloids = {g ∈ S|λ| | g preserves each column of t}.
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The subgroups Rtabloids and Ctabloids are called the row stabilizer and column stabilizer
of t respectively. Two tableaux t1 and t2 of shape λ are called row equivalent, denoted
by t1 ∼ t2, if corresponding rows of the two tableaux contain same elements. The
equivalence class of a tableau t is given by {t} = Rtabloidst. Similarly one can define a
column equivalence relation on the set of tableaux of shape λ such that the equivalence
class of a tableau t becomes [t] = Ctabloidst. One can define a column dominance order
denoted by ‘ B’ on the column equivalence classes of the tableaux. For details see [23, page
72]. An element σ ∈ Sn acts on a tableau t = (ti,j) of shape λ as σt = (σ(ti,j)). This
induces an action on the set of equivalence classes {t} by letting σ{t} = {σt}.

Definition 2.3.1. For a Young tableau t, the associated polytabloid is

et =
∑

σ∈Ctabloids

sgn(σ)σ{t}.

Note that et ∈ R{{t1}, . . . , {tk}}. Here R{{t1}, . . . , {tk}} denotes the vector space
over R generated by the set {{t1}, . . . , {tk}}, where {t1}, . . . , {tk} gives a complete list of
row equivalent tableaux of shape λ. Next we define the Specht module denoted by Vλ.

Definition 2.3.2. The Specht module Vλ is the subspace of R{{t1}, . . . , {tk}} generated
by the polytabloids et, where t varies over all the tableaux of shape λ.

Theorem 2.3.3.The set of polytabloids

{et | t is a standard Young tableau of shape λ},

is linearly independent.

As a result, the set

βλ = {et | t is a standard Young tableau of shape λ},

is a basis for Vλ. For details about Specht modules we refer the reader to [23, Theorem
2.6.5]. We write dim Vλ = fλ.

The representation of (φλ, Vλ), with respect to the basis βλ is known as Young’s nat-
ural representation. Here we indicate how to compute the matrices of the representation.
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Since Sn is generated by the transpositions si = (i, i+ 1), for 1 ≤ i ≤ n− 1, it is enough
to compute the matrices for these group elements. We have three cases.

1. If i and i+ 1 are in the same column of t, then

φλ(si)(et) = −et.

2. If i and i+ 1 are in the same row of t, then

φλ(si)(et) = et ± other polytabloids et′ such that [t′] B [t].

3. If i and i + 1 are not in the same row or column of t, then the tableau t′ = sit is
standard and

φλ(si)(et) = et′ .

The details are provided in the book [23, Section 2.7]. The following example shows the
matrices for the representation V(2,1) of S3. This example is also taken from [23, page
75]. Applying the methods mentioned above yields

φλ(s1) =
−1 −1

0 1

 , and φλ(s2) =
0 1

1 0

 .

2.4 Core and Quotient of a Partition and 2-core Tow-
ers

For x ∈ Y(λ), let Hx denote the union of the cells in Y(λ) to the right of x with the cells
below x, including x itself. If (i, j) denotes the location of x in Y(λ) then the set Hx is
called the (i, j)-hook in λ. Write hx = |Hx| for the “hooklength” of Hx. In the following
Young diagram for λ = (6, 4, 3) we have labeled each cell c by its hooklength h(c).

8 7 6 4 2 1
5 4 3 1
3 2 1
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If x = (i, j) ∈ Y(λ), then

hx = λi + λ′j − i− j + 1.

The hooklengths of a partition are quite useful. As for example one can quickly com-
pute the dimension fλ of the representation Vλ with the hooklengths using the following
formula, mentioned in [21, Theorem 5.8.3].

fλ = n!∏
x∈Y(λ) hx

. (2.1)

The node (i, j) is called the corner of H(i,j). The furthest node to the right of (i, j) in
Y(λ), (i, λi), is called the hand node of H(i,j). Similarly the furthest node below (i, j),
(j, λ′j) is called the foot node of H(i,j). If hx is divisible by q, we call it a q-hook.

The set
RY = {(i′, j′) ∈ Y(λ) | (i′ + 1, j′ + 1) /∈ Y(λ)},

is called the rim of Y(λ). Note that one can remove RY from Y(λ) to obtain a new
partition. For x = (i, j) ∈ Y(λ), we put

rimx = {(i′, j′) ∈ RY | i′ ≥ i, j′ ≥ j}.

This is called the x-rim hook of Y(λ). For an example we have shaded the c-rim hook of
the Young diagram for λ = (6, 4, 3), where c = (1, 3).

c

Note that h(x) = |rimx|.
For a given partition λ of n and q ∈ N we obtain the q-core of λ denoted as coreq(λ)

by successively removing all rim-q hooks from Y(λ) until there is no q-hook. This does
not depend on the choice of q-hooks at each stage. For details we refer the reader to [20].

The q-quotient of λ is a certain q-tuple of partitions

quoq(λ) = (λ(0)
q , λ(1)

q , . . . , λ(q−1)
q ),
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such that

|λ| = | coreq(λ)|+ q(|λ(0)
q |+ |λ(1)

q |+ · · ·+ |λ(q−1)
q |).

In fact | quoq(λ)| is the total number of q-hooks to be removed from Y(λ) to obtain
coreq(λ). A partition λ can be uniquely recovered from the given pair (coreq(λ), quoq(λ)).

We are in particular interested in the case when q = 2. Note that the empty set ∅
is a 2-core. We call the set of partitions of the form {k − 1, k − 2, k − 3, . . . , 1}, k ∈ N,
as “staircase” partitions. Note that the staircase partitions are partitions of triangular
numbers, i.e. they are partitions of the numbers k(k − 1)/2, for k ∈ N.

Proposition 2.4.1.Any partition λ is a 2-core if and only if it is a staircase partition.

Proof. If λ is a staircase partition of the form {k− 1, k− 2, k− 3, . . . , 1} for some k ∈ N,
then λ is a 2-core. For the converse let λ = {λ1, λ2, . . . , λl} be a 2-core. Then we have
|λl| = 1. Otherwise one can remove a partition of shape (2) from the last row of Y(λ).
We claim that |λi− λi+1| = 1, for 1 ≤ i ≤ l− 1. If |λi− λi+1| > 1, then we can remove a
domino of shape (2) from the i-th row of Y(λ). If λi = λi+1, let M denote the maximum
integer such that λi = λM . Then we can remove a vertical domino of shape (1, 1) from
the λi-th column of Y(λ). Therefore the λ is of the form {k − 1, . . . , 2, 1}.

The 2-core tower of a partition λ, which we denote by ‘T2(λ)’ is obtained as follows.

• It has rows numbered 0, 1, 2, ... and the ith row has 2i many nodes. Each node is
labeled with a 2-core partition. The 0th row has the partition αφ = core2 λ.

• The first row consists of the partitions

α0, α1

where , if quo2 λ = (λ0, λ1),then αi = core2 λi.

• The 2nd row of the tower is
α00, α01, α10, α11

where, if quo2 λi = (λi0, λi1),then αij = core2 λij.
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• Recursively, having defined partitions λx for a binary sequence x, define the parti-
tions λx0 and λx1 by

quo2(λx) = (λx0, λx1), (2.2)

and let αxε = core2 λxε for ε = 0, 1. The i-th row of the tower consists of the
partitions αx, where x runs over the set of all 2i binary sequences of length i, listed
from left to right in lexicographic order.

A partition is uniquely determined by its 2-core tower, which has non-empty partitions
in only finitely many places. For example, T2(3, 3, 1) looks like:

(1)

(1) ∅

∅ ∅ ∅ (1)

All other nodes in the tower are labeled by the empty partition.
Let wi denote the total number of cells in all the nodes in the i-th row of T2(λ). It

follows that ∑
i

wi2i = n.

Let v = v2(fλ) and let ν(n) denote the number of 1’s in the binary expansion of n,
then

v =
∑
i

wi − ν(n).

For details on the theory of 2-core towers we refer the reader to [20, Section 6, page 41].

2.5 Macdonald’s Theory

We call a partition λ “odd” if fλ is odd. Otherwise we call it even. From [17] we obtain
a nice classification of odd partitions. The following result gives the description of the
2-core towers for odd partitions.

Theorem 2.5.1 (Macdonald).A partition λ is odd if and only if T2(λ) has at most one
nonempty partition in each row, and this partition can only be (1).
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As a result we can count the number of odd partitions for a fixed n. The following
result can be found in [17, Corollary 1.3].

Corollary 2.5.2.The number of odd partitions of n, for n as in 1.1, is given by

A(n) = 2k1+k2+···+kr .

Let n, n1, n2 be positive integers such that n1 + n2 = n. The sum is called neat if
there is no carry in adding n1 and n2 in binary. Otherwise it is called messy. Note that
if n1 + n2 = n is neat then A(n) = A(n1) · A(n2).

Proposition 2.5.3.Let λ be a partition such that 2k ≤ |λ| < 2k+1, where k ≥ 1. Then λ
is odd if and only if the partition core2k(λ) is odd and λ has a unique hook of length 2k.

For a proof of the proposition we refer the reader to [2, Lemma 1].

2.6 Review of Ayyer-Prasad-Spallone

Here we mention some results from the paper [3] which we use in the thesis.
We know that any representation of Sn is orthogonal. A representation (φ, V ) of Sn

is called achiral if det ◦φ is the trivial character of Sn. Otherwise we call φ chiral.
The paper [3] gives a characterization of the chiral partitions of Sn in terms of 2-core

towers and counts them.

Lemma 2.6.1. [3, Lemma 9] Let λ be any partition. For each binary sequence x, let λx
denote the partition obtained recursively from λ by Equation (2.2). Fix δ ∈ {0, 1}. The
nodes of Y(λx) as x runs over the binary sequences of length i starting with δ, correspond
to the nodes of Y(λ) whose hooklengths are multiples of 2i and hand nodes have content
congruent to δ modulo 2.

Given the 2-core tower of a partition λ we can easily get the corresponding tower for
core2i(λ) for i ≥ 0 as follows.

Lemma 2.6.2. [3, Lemma 10] Let λ be any partition. The 2-core tower of core2i(λ) is
obtained by replacing all partitions in rows numbered i and larger by empty partitions in
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the 2-core tower of λ.

Lemma 2.6.3. [3, Lemma 12] Let λ be a partition of n and α = core2k1+1(λ). Then λ

is chiral if and only if both the following conditions hold:

1. α is a chiral partition of 2k1 + ε.

2. If µ is the partition whose 2-core tower is obtained from the 2-core tower of λ by
replacing the partitions appearing in rows numbered 0, . . . , k1 by the empty partition,
then v2(fµ) = 0.

Note that the second condition of the lemma automatically holds if λ is odd. As a
consequence we obtain the following result.

Corollary 2.6.4.Let λ be an odd partition of n and α = core2k1+1(λ). Then λ is chiral
if and only if α is a chiral partition of 2k1 + ε.

The next result gives a characterization the chiral self-conjugate partitions.

Theorem 2.6.5. [3, Corollary 7] A positive integer n admits a self-conjugate chiral
partition if and only if n = 3, or n = 2k + ε, for some k ≥ 2 and ε ∈ {0, 1}. Moreover, λ
is a self-conjugate chiral partition of 2k+ε if and only if λ is self-conjugate and v2(fλ) = 1.
The number of self-conjugate chiral partitions of 2k + ε is 2k−2 for k ≥ 2.
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Spinorial Representations of Symmetric Groups

In this chapter, we determine the spinorial representations of the symmetric groups. In
the first section we derive a criterion for spinoriality of any representation of Sn. In the
remaining portion of the chapter we discuss the spinoriality of irreducible representations
of Sn, known as Specht modules.

3.1 General Case

We know that Sn is generated by the transpositions si = (i, i + 1), for 1 ≤ i ≤ n − 1,
which satisfy the following relations:

1. si2 = 1, 1 ≤ i ≤ n− 1,

2. (sisi+1)3 = 1, 1 ≤ i ≤ n− 2,

3. [si, sk] = 1, |i− k| > 1.

For a lift φ̂ : Sn → Pin(V ) of φ we need to choose elements hi = φ̂(si) ∈ Pin(V ),
which satisfy the same relations. Namely

1. hi2 = 1, 1 ≤ i ≤ n− 1,

2. (hihi+1)3 = 1, 1 ≤ i ≤ n− 2,

21
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3. [hi, hk] = 1, |i− k| > 1.

We call these the first, second and third lifting conditions.
For the first condition it is enough to verify whether h2

1 = 1, as all the transpositions
are conjugate in Sn. Since φ(s2

1) = 1, the identity matrix, the eigenvalues of the matrix
φ(s1) are ±1. Let gV denote the multiplicity of −1 as an eigenvalue of φ(s1). We use
the notation m = gV for convenience. Let {e1, e2, . . . , em} denote the orthonormal basis
for the −1 eigenspace of φ(s1). We can extend this basis to obtain an orthonormal
basis for the vector space V with respect to which φ(s1) takes the diagonal form A =
diag(−1,−1, . . . ,−1︸ ︷︷ ︸

m times

, 1, . . . , 1). Note that

diag(−1,−1, . . . ,−1, 1, . . . , 1) = diag(−1, 1, . . . , 1, 1, . . . , 1)

· · · diag(1, 1, . . . ,−1, 1, . . . , 1)

= ρ(e1) · · · ρ(em).

Therefore we may choose e1 · e2 · · · em as a lift of A in Pin(n). To satisfy the first lifting
condition we must have (e1 · e2 · · · em)2 = 1.

For each φ(si) ∈ O(V ), we may choose ±hi ∈ Pin(V ) with ρ(±hi) = φ(si), and the
question is whether we may choose signs so that the φ̂(si) = ±hi satisfy these lifting
conditions.

Theorem 3.1.1.The first and second lifting conditions of an orthogonal representation
V are satisfied if and only if

gV ≡ 0 or 3 (mod 4).

Proof. We claim that
(e1e2 · · · em)2 = (−1)m(m+1)/2.

To see the result we expand (e1e2 · · · em)2 using the following steps:

1. Consider the rightmost ei and move it (m− i) places towards left using the relation
eiej = −ejei for i 6= j,

2. Apply the relation e2
i = −1.
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Repeat the process for each ei, 1 ≤ i ≤ m. Now (e1e2...em)2 = 1 if and only if m(m+1)/2
is even. Again the latter condition holds if and only if m ≡ 0 or 3 (mod 4).

For the second lifting condition note that

ρ((hihi+1)3) = φ((sisi+1)3) = 1.

As ker(ρ) = ±1, we obtain (hihi+1)3 = 1 or − 1. If (hihi+1)3 = −1 then keeping hi fixed
we replace hi+1 by −hi+1, so that (−hihi+1)3 = 1. This change in sign does not affect the
first condition as (−hi+1)2 = 1.

Consider the subgroup H1 = 〈s1〉 of Sn, and the character ω1 : H1 → {±1}, given by
ω1(s1) = −1. For a representation (φ, V ) of Sn let χV denote the character of it. Then
we calculate

(χV |H1 , ω1) = 1
2(χV (1)ω1(1) + χV (s1)ω1(s1))

= (χV (1)− χV (s1))/2.

This gives the dimension of the isotypic component V (−1), i.e. the dimension of the −1
eigenspace of φ(s1). In other words, we obtain

gV = 1
2(χV (1)− χV (s1)). (3.1)

Now we proceed to deal with the third lifting condition.

Definition 3.1.2. For any element x ∈ O(V ) the sharp centralizer of x, denoted by
ZO(V )(x)], is ρ(ZPin(V )(y)), where y ∈ Pin(V ) such that ρ(y) = x.

Since the ambient group is always the orthogonal group O(V ), we denote ZO(V )(A) by
Z(A) and ZO(V )(x)] by Z(x)]. We choose e1 ·e2 · · · em as a lift of A. Let Z(A)0 denote the
connected component of Z(A) containing the identity. Here we consider connectedness
with respect to the Euclidean topology.

Lemma 3.1.3.The sharp centralizer Z(A)] is a closed, normal subgroup of Z(A) with
index 2. Moreover we have Z(A)0 ⊆ Z(A)].
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Proof. Consider the map ψ : Z(A) → {1,−1} given by ψ(g) = [g̃, e1e2 · · · em], where g̃
denotes a lift of g in Pin(V ). It is easy to check that ψ is a homomorphism. Observe
that kerψ = Z(A)]. Simple calculation shows

e1 · e1 · e2 · · · em(−e1) = (−1)m+1e1 · e2 · · · em.

Therefore ρ(e1) /∈ Z(A)] for m even. Consequently ψ(ρ(e1)) = −1 when m is even. On
the other hand, we have

em+1 · e1 · e2 · · · em(−em+1) = (−1)me1 · e2 · · · em.

This tells that ifm is odd then ρ(em+1) /∈ Z(A)] and ψ(ρ(em+1)) = −1. Thus we conclude
that the map ψ is surjective and Z(A)] is an index 2 subgroup of Z(A). So Z(A)] is a
normal subgroup of Z(A).

To prove the other part note that Z(A)] is an index 2 subgroup of Z(A). Therefore
we write

Z(A) = Z(A)] t gZ(A)],

where g ∈ Z(A) \ Z(A)]. Intersecting both sides with Z(A)0 we obtain

Z(A)0 = (Z(A)] ∩ Z(A)0) t (gZ(A)] ∩ Z(A)0).

Note that the first disjoint summand is nonempty as it contains the identity element.
Since Z(A)0 is connected it follows that Z(A)0 ⊆ Z(A)].

Lemma 3.1.4.Two elements g1, g2 ∈ Pin(V ) commute if and only if ρ(g2) ∈ Z(ρ(g1))].

Proof. If g2 ∈ ZPin(V )(g1), then ρ(g2) ∈ ρ(ZPin(V )(g1)) = Z(ρ(g1))]. For the other way
consider ρ(g2) ∈ Z(ρ(g1))]. Since ker ρ = {±1}, we have ±g2 ∈ ZPin(V )(g1) proving the
claim.

Recall the third lifting condition which requires hj ∈ ZPin(V )(hi), for |i−j| > 1. Using
the previous lemma we obtain an equivalent criterion which requires ρ(hj) ∈ Z(ρ(hi))],
i.e. φ(sj) ∈ Z(φ(si))], for |i−j| > 1. The next lemma determines the sharp centralizer of
φ(s1) in O(V ). For convenience we write N = dimV . We also write O(n) (resp. SO(n))
to denote the real n × n orthogonal matrix (resp. the real n × n special orthogonal
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matrix).

Lemma 3.1.5.We have

Z(A)] =



 O(m) 0

0 SO(N −m)

 , for m = gV odd,

 SO(m) 0

0 O(N −m)

 , for m = gV even.

Proof. Note that

Z(A) =
 O(m) 0

0 O(N −m)

 .
The connected component of this group containing identity is

Z(A)0 =
 SO(m) 0

0 SO(N −m)

 .
The sharp centralizer subgroup Z(A)] is an index 2 subgroup of Z(A) containing Z(A)0.
The possible candidates are

1.
 SO(m) 0

0 O(N −m)

 .

2.
 O(m) 0

0 SO(N −m)

 .

3. C =
 C1 0

0 C2

 , such that detC1 = detC2.

Observe that ρ(e1) = diag(−1, 1, . . . , 1) ∈ Z(A)], when m is odd. Again ρ(em+1) =
diag(1, . . . ,−1, . . . , 1) ∈ Z(A)]. Therefore we have the result.

The eigenspace decomposition of V for the operator φ(s1) is given by

V = V (−1)⊕ V (1),
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where V (±1) denotes the ±1 eigenspace of φ(s1). So we have

V (±1) = {v ∈ V | φ(s1)v = ±v}. (3.2)

Since s1 and s3 commute φ(s3) keeps V (1) and V (−1) invariant. Let the eigenspace
decomposition of V (−1) for the operator φ(s3) be given by

V (−1) = V (−1,−1)⊕ V (−1, 1),

where V (−1,±1) denotes the ±1 eigenspace of φ(s3) restricted to V (−1). So we have

V (−1,±1) = {v ∈ V | φ(s1)v = −v, φ(s3)v = ±v}. (3.3)

We write hV = dimV (−1,−1).

Theorem 3.1.6.The third lifting condition of a representation V of Sn holds if and only
if

hV ≡ gV (mod 2).

Proof. Since all the transpositions in Sn are conjugate, we work with s1, s3 only. Con-
sider the basis β1 = {v1, v2, . . . , vm} for V (−1) which can be extended to a basis
β = {v1, . . . , vm, vm+1, vm+2, . . . , vN} for V . The matrix form of φ(s1) with respect to
β looks like  −Im 0

0 I(N−m)

 .
The matrix form of φ(s3) with respect to the same basis β looks like

 B1 0
0 B2

 ∈
 O(m) 0

0 O(N −m)

 ,
where B1 denotes the matrix for φ(s3) with respect to the basis β1. Whereas B2 denotes
the matrix for φ(s3) with respect to the basis {vm+1, vm+2, . . . , vN}. The lemma 3.1.4
ensures that the third lifting condition holds if and only if φ(s3) ∈ Z(φ(s1))]. Note that

det(φ(s3)) = detB1 · detB2 = (−1)gV .
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If gV is odd from Theorem 3.1.5 we require detB2 = 1. Also we have detB1 ·detB2 = −1.
So the condition becomes detB1 = −1. As hV denotes the multiplicity of −1 as an
eigenvalue of φ(s3) applied on V (−1), we obtain det(B1) = (−1)hv . Therefore the third
lifting condition holds if and only if hV is odd. Similarly, if gV is even, we require
detB1 = 1. It holds if and only if hV is even. Hence the result follows.

Combining the theorems 3.1.1 and 3.1.6 we obtain the following result.

Theorem 3.1.7.A representation (φ, V ) of Sn, n ≥ 4, is spinorial if and only if both the
following conditions hold:

1. gV≡ 0 or 3 (mod 4),

2. hV≡ gV (mod 2).

Remark 3.1.8.For a representation (φ, V ) of Sn, where n = 2, 3 we do not define hV .
In these cases, φ is spinorial if and only if gV ≡ 0 or 3 (mod 4).

Consider the subgroup H2 = 〈s1, s3〉 of Sn, and the character ω2 : H2 → {±1}, given
by ω2(s1) = −1 and ω2(s3) = −1. For a representation (φ, V ) of Sn let χV denote the
character of it. As before we calculate

(χV |H2 , ω2) = 1
4(χV (1)ω2(1) + χV (s1)ω2(s1) + +χV (s3)ω2(s3) + χV (s1s3)ω2(s1s3))

= 1
4(χV (1)− 2χV (s1) + χV (s1s3)).

This gives the dimension of the isotypic component V (−1,−1). Thus we have

hV = 1
4(χV (1)− 2χV (s1) + χV (s1s3)). (3.4)

In terms of character values we conclude

Corollary 3.1.9.A representation (φ, V ) of Sn, n ≥ 4, is spinorial if and only if one of
the following conditions holds:

1. χV (s1s3) ≡ χV (1) (mod 8), χV (s1) ≡ χV (1) + 2 (mod 8). In this case φ is chiral.

2. χV (1) ≡ χV (s1) ≡ χV (s1s3) (mod 8). In this case φ is achiral.
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Proof. First consider the case when V is achiral and spinorial. Then from Theorem 3.1.7
we obtain gV ≡ 0 (mod 4) and hV ≡ 0 (mod 2). Using the expression for gV in terms of
character values as in Equation (3.1) we have

χV (1)− χV (s1) ≡ 0 (mod 8). (3.5)

Again using Equation (3.4) we obtain

χV (1)− 2χV (s1) + χV (s1s3) ≡ 0 (mod 8). (3.6)

We rewrite Equation (3.6) as

χV (1)− 2χV (s1) + χV (s1s3) = χV (1)− χV (s1)− (χV (s1)− χV (s1s3)) ≡ 0 (mod 8).

Using Equation (3.5) we conclude χV (s1)−χV (s1s3) ≡ 0 (mod 8). Altogether we obtain
χV (1) ≡ χV (s1) ≡ χV (s1s3) (mod 8).

If we start with the identity χV (1) ≡ χV (s1) ≡ χV (s1s3) (mod 8), from the first
equation we obtain the condition gV ≡ 0 (mod 4). It also follows that

χV (1)− χV (s1)− (χV (s1)− χV (s1s3)) ≡ 0 (mod 8)

χV (1)− 2χV (s1) + χV (s1s3) ≡ 0 (mod 8).

So we have hV ≡ 0 (mod 2). Therefore V is spinorial.

Now consider V is chiral as well as spinorial. Then from Theorem 3.1.7 we have
gV ≡ 3 (mod 4) and hV ≡ 1 (mod 2). From Equation (3.1) we have χV (1)−χV (s1) ≡ 6
(mod 8). This in turn gives χV (s1) ≡ χV (1) + 2 (mod 8). From Equation (3.4) we also
have χV (1) − 2χV (s1) + χV (s1s3) ≡ 4 (mod 8). Write χV (1) − 2χV (s1) + χV (s1s3) =
χV (1)− χV (s1)− (χV (s1)− χV (s1s3)), and see that

χV (1)− χV (s1)− (χV (s1)− χV (s1s3)) ≡ 4 (mod 8)

6− (χV (s1)− χV (s1s3)) ≡ 4 (mod 8)

6− (χV (1) + 2− χV (s1s3)) ≡ 4 (mod 8)

χV (1)− χV (s1s3) ≡ 0 (mod 8).
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If the identity χV (s1s3) ≡ χV (1) (mod 8), χV (s1) ≡ χV (1) + 2 (mod 8) holds then a
similar calculation shows that V is chiral and spinorial.

The following result shows that the spinoriality of any representation of Sn is detected
by its restriction to the subgroup H2 = 〈s1, s3〉.

Corollary 3.1.10.Let (φ, V ) be a representation of Sn, n ≥ 4. Then φ is spinorial if
and only if φ |H2 is spinorial.

Proof. If φ is spinorial then φ |H2 is spinorial. Conversely suppose φ |H is spinorial. Then
certainly the conditions in 3.1.9 are satisfied.

Corollary 3.1.11.Any spinorial representation of Sn, n > 1, has two lifts.

Proof. Note that there are two choices for h1, namely ±e1 · · · egV . Once we choose h1 the
other hi’s, 2 ≤ i ≤ n − 1, are fixed by the relation (hihi+1)3 = 1. Therefore the result
follows.

3.1.1 Alternative Approach for the Third Lifting Condition

The generators si of the symmetric group Sn, n ≥ 4, in particular satisfy the relations
[si, sj] = 1, for |i− j| > 1. If a representation (φ, V ) of Sn has a lift φ̃, then it preserves
the relations. We can rewrite the relation [si, sj] = 1 as

(sisj)2 = 1. (3.7)

Let h′V denote the multiplicity of −1 as an eigenvalue of φ(s1s3). Following similar
arguments as in Lemma 3.1.1, we conclude that the map φ preserves the relation 3.7 if
and only if h′V ≡ 0 or 3 (mod 4).

Now consider the subgroup H ′ = 〈s1s3〉 and the character ω′ : H ′ → {±1} given by
ω′(s1s3) = −1. Using similar arguments as before we conclude

h′V = χV (1)− χV (s1s3)
2 . (3.8)
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Lemma 3.1.12.The quantity h′V is always even.

Proof. Note that ζ2
4 is conjugate to s1s3 in Sn, where ζ4 is the cycle (1, 2, 3, 4). For any

representation (φ, V ) of Sn the eigenvalues of φ(ζ4) are among ±1,±i. Let hi (resp. h−i)
denote the multiplicity of i (resp. −i) as an eigenvalue of φ(ζ4). Since the characters of
φ(ζ4) are real we have hi = h−i. The fact (±i)2 = −1 implies that h′V = hi + h−i = 2hi.
Hence the result follows.

Since h′V is always even the alternative third lifting condition becomes h′V ≡ 0
(mod 4). This allows us to formulate an alternative condition for spinorial represen-
tations of symmetric groups.

Theorem 3.1.13.Any representation V of Sn, n ≥ 4, is spinorial if and only if both the
following conditions hold:

1. gV ≡ 0 or 3 (mod 4),

2. h′V ≡ 0 (mod 4).

Proof. We show that these conditions are equivalent to those mentioned in Theorem
3.1.7. Following Equation (3.8) the condition h′V ≡ 0 (mod 4) can be rewritten as
χV (1) ≡ χV (s1s3) (mod 8). If φ is chiral and spinorial, we have gV ≡ 3 (mod 4). In
terms of characters χV (s1) ≡ χV (1) + 2 (mod 8). Similarly for φ achiral, spinorial we
obtain χV (1) ≡ χV (s1) (mod 8). These are exactly the conditions mentioned in Corollary
3.1.9.
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3.2 Specht Modules

For the representation V = Vλ, we denote gV by gλ and hV by hλ. Recall that for µ ⊂ λ,
the number of all possible standard skew Young tableaux of shape λ/µ is denoted by
fλ/µ.

Lemma 3.2.1.For any irreducible representation Vλ, we have

gλ = fλ/(1,1).

Proof. Since any transposition sk is conjugate with s1 in Sn, we work specifically with
s1. Recall that gλ is the multiplicity of −1 as an eigenvalue of φλ(s1). Here we consider
the action of φλ(s1) on the basis βλ (see Section 2.3) to determine gλ.

1. We obtain the eigenvalue −1 only when 1 and 2 are in the first column of the
tableau. As we have φλ(s1)et = −et. The only possible SYT with 1 and 2 in the
same column are like:

1
2

Observe that 1 always occurs in the (1, 1)-th cell of a standard young tableau and
2 can occur in two places, either below it or to the right of it.

2. If 1 and 2 are in the first row then

(1, 2)et = et ± other polytabloids t′ such that [t′] B [t].

Therefore for these basis elements we obtain 1 in the diagonal positions and some
non-zero entries in the up diagonal positions of the matrix, φλ(s1).

3. There will be no case where 1 and 2 occur in a different row and a different column.
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So the image matrix of φλ(s1) is upper triangular where the diagonal entries as ±1. The
multiplicity of the eigenvalue −1 is equal to the number of SYT with 1 and 2 in the same
column. We claim that the number is equal to fλ/(1,1). The justification for this is as
follows:

−→ 1 2
3

4 5
6

−→ 3 4
5

6 7
8

−→ 1 3 4
2 5
6 7
8

We can fill up the standard skew tableau of shape λ/(1, 1) with the numbers
{1, 2, ..., n − 2}. Then we can insert the two cells in the top left corner filled up with
the numbers 1 and 2 and then add 2 to all the remaining cells. As a result we obtain a
standard Young tableaux filled up with the numbers {1, 2, ..., n} such that 1 and 2 are
in the same column. Therefore gλ = fλ/(1,1).

Lemma 3.2.2.For n ≥ 4,

hλ = fλ/(1,1,1,1) + fλ/(2,2) + fλ/(2,1,1).

Proof. Recall that hλ = dim Vλ(−1,−1). We again use Young’s natural representation
(see Section 2.3) to determine hλ in terms of the number of standard skew Young tableaux.
Here we first take a basis β of Vλ(−1). The set β consists of the polytabloids et such
that 1 and 2 lie in the first column of t as in the proof of 3.2.1. We consider the action
of φλ(s3) on β.

1. Let 3 and 4 lie in the same column of t. Then we obtain φλ(s3)et = −et. The
possible tableaux t such that et ∈ β with 3 and 4 lying in same column are as
below.
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1
2
3
4

, 1 3
2 4

Following similar arguments as in the previous lemma we conclude that the total
number of such SYT will be fλ/(1,1,1,1) + fλ/(2,2).

2. Consider the subset β1 of β such that β1 contains the elements et where t has 3
and 4 in a different row and a different column. The possible tableaux t such that
et ∈ β1 are as follows.

1 4
2
3

, 1 3
2
4

The total number of SYT of this kind is 2fλ/(2,1,1). So we have |β1| = 2fλ/(2,1,1).
For these tableaux we have φλ(s3)et = e′t, where t′ is obtained from t by switching
the positions of 3 and 4. Without loss of generality, we assume that β1 looks like
{t1, s3t1, t2, s3t2, . . . , t|β1|/2, s3t|β1|/2}. The matrix of φλ(s3) with respect to the basis

β1 contains fλ/(2,1,1) many blocks of the form
0 1

1 0

. Therefore the multiplicity of

−1 as an eigenvalue of the matrix of φλ(s3) with respect to the basis β1 is fλ/(2,1,1).

The set of polytabloids et where t varies over the set of SYT mentioned in cases 1 and 2
form a basis for Vλ(−1,−1). As a result we obtain

hλ = fλ/(1,1,1,1) + fλ/(2,2) + fλ/(2,1,1).

Next we deduce an expression for hλ in terms of character values. The expression
χλ(µ) denotes the character value of the representation Vλ at the conjugacy class with
cycle type µ.
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Theorem 3.2.3.Given a representation (φλ, Vλ) of Sn for n ≥ 4, we have

hλ ≡
fλ − χλ(ζ4)

2 (mod 2),

where ζ4 = (1, 2, 3, 4).

Proof. We start with the character table of S4.

Table 3.1: Character Table of S4.

x 1 s1 s1s2 s1s3 ζ4
|Cx| 1 6 8 3 6
χ(4) 1 1 1 1 1
χ(14) 1 −1 1 1 −1
χ(2,2) 2 0 −1 2 0
χ(3,1) 3 1 0 −1 −1
χ(2,12) 3 −1 0 −1 1

From [25, Exercise 7.62, page 469], we have if λ ` n and µ ` k ≤ n, then

χλ(µ1(n−k)) =
∑
ν`k

fλ/νχν(µ).

Taking k = 4 and µ = (2, 2), we have

χλ(s1s3) = fλ/(4)χ(4)(s1s3) + fλ/(3,1)χ(3,1)(s1s3) + fλ/(2,2)χ(2,2)(s1s3)

+ fλ/(2,12)χ(2,12)(s1s3) + fλ/(14)χ(14)(s1s3)

= fλ/(4) − fλ/(3,1) + 2fλ/(2,2) − fλ/(2,12) + fλ/(14).

Again taking k = 4 and µ = (4), we obtain

χλ(ζ4) = fλ/(4)χ(4)(ζ4) + fλ/(3,1)χ(3,1)(ζ4) + fλ/(2,2)χ(2,2)(ζ4)

+ fλ/(2,12)χ(2,12)(ζ4) + fλ/(14)χ(14)(ζ4)

= fλ/(4) − fλ/(3,1) + 0.fλ/(2,2) + fλ/(2,12) − fλ/(14).
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Putting these values we calculate

χλ(s1s3)− χλ(ζ4) = 2fλ/(14) + 2fλ/(2,2) − 2fλ/(2,12).

Therefore
χλ(s1s3)− χλ(ζ4)

2 ≡ fλ/(14) + fλ/(2,2) + fλ/(2,12) (mod 2).

So we obtain
hλ ≡

χλ(s1s3)− χλ(ζ4)
2 (mod 2), (3.9)

Following Section 3.1.1 we write h′Vλ to denote the multiplicity of −1 as an eigen-
value of φλ(s1s3). As (s1s3)2 = 1, the matrix φλ(s1s3) is similar to the matrix
diag(−1,−1, . . . ,−1︸ ︷︷ ︸

h′Vλ
times

, 1, . . . , 1). So one calculates

χλ(s1s3) = fλ − h′Vλ − h
′
Vλ

= fλ − 2h′Vλ .

From Theorem 3.1.12 we obtain h′Vλ is even. Therefore χλ(s1s3) ≡ fλ (mod 4). Using
this relation and Equation 3.9 we conclude

hλ ≡
fλ − χλ(ζ4)

2 (mod 2).
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4

Alternating Groups

In this chapter we determine the spinorial representations of the alternating groups. In
the first section we derive a criterion for spinoriality of any orthogonal representation of
An. In the remaining portion of the chapter, we discuss the spinoriality of irreducible
representations of An.

4.1 Spinorial Representations of Alternating Groups

From [6, page 66] we obtain that An is generated by the elements

ui = s1si+1, (i = 1, 2, . . . , n− 2),

which satisfy the relations:

u3
1 = u2

j = (uj−1uj)3 = 1, (2 ≤ j ≤ n− 2),

(uiuj)2 = 1, (1 ≤ i < j − 1, j ≤ n− 2).

For an orthogonal representation (φ, V ) of An let kV denote the multiplicity of −1 as an
eigenvalue of φ(s1s3).

37
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Proposition 4.1.1.For an orthogonal representation (φ, V ) of An, n ≥ 4, the quantity
kV is even.

Proof. For a suitable choice of basis of V we have φ(u2) = (−1,−1, . . . ,−1︸ ︷︷ ︸
kV times

, 1, . . . , 1).

Therefore det(φ(u2)) = (−1)kV . Consider the map det ◦φ(u2) : An → {±1}. Since the
group {±1} is commutative, there exists a unique map f : An/[An, An] → {±1} such
that det ◦φ(u2) = f ◦ q, where q : An → An/[An, An] denotes the quotient map. In other
words we obtain the following commutative diagram.

An {±1}

An/[An, An]

det ◦φ(u2)

q f

We know that

[An, An] =

An, for n ≥ 5

V4, for n = 4,

where V4 denotes the Klein’s four group. If n 6= 4, clearly det(φ(u2)) = 1. Therefore
kV is even. For n = 4, we have An/[An, An] ∼= C3, where C3 denotes the cyclic group of
order 3. Therefore in this case f denotes the unique map which takes all the elements to
the identity. As a result we obtain det(φ(u2)) = 1, proving the claim that kV is even.

Theorem 4.1.2.An orthogonal representation (φ, V ) of An, n ≥ 4, is spinorial if and
only if kV ≡ 0 (mod 4).

Proof. Suppose the representation φ is spinorial. Write li for a lift of ui. Then the
elements li must satisfy similar relations as ui, namely:

l2j = 1, 1 ≤ j ≤ n− 2, (lilj)2 = 1, 1 ≤ i < j − 1, j ≤ n− 2, (4.1)

l31 = (lj−1lj)3 = 1, 1 ≤ j ≤ n− 2. (4.2)

Note that u2 = s1s3. Since u2
2 = 1, for a suitable choice of basis of V we have φ(u2) =



Chapter 4. Alternating Groups 39

(−1,−1, . . . ,−1︸ ︷︷ ︸
kV times

, 1, . . . , 1). So we may take l2 = e1 · e2 · · · ekV , where ei ∈ Pin(V ) (see

Section 2.1). The relation l22 = 1 holds if kV ≡ 0 or 3 (mod 4). Since kV is even (see
Proposition 4.1.1), we must have kV ≡ 0 (mod 4).

For the converse take kV ≡ 0 (mod 4). Note that the odd permutation s1 ∈ Sn

commutes with u2. Therefore from [21, Exercise 4.6.10] we conclude that all the elements
of cycle type (2, 2) in An lie in the same conjugacy class. Note that all the elements
uj, (2 ≤ j ≤ n− 2) and uiuj, (1 ≤ i < j − 1, j ≤ n− 2) have cycle type (2, 2). Therefore
they are all conjugate to u2 in An.

Therefore to check the relations 4.1 it is enough to check whether l22 = 1. We can
take l2 = e1 · e2 · · · ekV , where ei ∈ Pin(V ). Then following a similar argument as in
Proposition 3.1.1 we conclude that l22 = 1 as we have kV ≡ 0 (mod 4). To check the
relations 4.2 note that if (lili+1)3 = −1, then keeping li fixed we replace li+1 with −li+1.
Similar adjustment fixes the relation l31 = 1, for a suitable choice of l1. So φ is spinorial.

As an immediate consequence we obtain the lifting criterion in terms of the character
values.

Corollary 4.1.3.An orthogonal representation (φ, V ) of An, n ≥ 4 is spinorial if and
only if

χV (1) ≡ χV (s1s3) (mod 8).

Proof. Consider the subgroup H3 = 〈s1s3〉 of An. Take the character ω3 : H3 → C2 given
by ω3(s1s3) = −1. For an orthogonal representation (φ, V ) of An, we calculate

(χ |H3 , ω3) = 1
2 · (χV (1) · ω3(1)− χV (s1s3) · ω3(s1s3))

kV = 1
2 · (χV (1)− χV (s1s3)) .

From the previous theorem we obtain φ is spinorial if and only if kV ≡ 0 (mod 4). So φ
is spinorial if and only if χV (1)− χV (s1s3) ≡ 0 (mod 8).

Corollary 4.1.4.An orthogonal representation (φ, V ) of Sn, n ≥ 4, is spinorial if and
only if φ |H3 is spinorial, where H3 = 〈s1s3〉.
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The corollary follows easily from the previous result.

Corollary 4.1.5.Let (φ, V ) be a spinorial representation of An, n > 2. Then φ has a
unique lift.

Proof. Recall from [6, page 66] that An is generated by the elements ui. Since φ is
spinorial, let li ∈ Pin(V ) denote the lift of ui. The relation l31 = 1 leaves one possible
choice for l1. The other li’s are fixed by the relations (lili+1)3 = 1. So there exists a
unique lift for φ.

4.2 Specht Modules

From [21, section 4.6.2] we obtain for each partition λ, the restriction of the irreducible
representation Vλ of Sn to An is

1. an irreducible representation of An if λ 6= λ′.

2. a sum of two non-isomorphic irreducible representations V +
λ and V −λ of An if λ = λ′.

The representation V −λ is a twist of V +
λ by conjugation by an odd permutation in

Sn. In other words if φ±λ denotes the representations V ±λ then we have φ−λ (g) =
φ−λ (x−1gx), where x denotes an odd element in Sn.

We study these two cases separately.

4.2.1 Case of Non Self-Conjugate Partitions

First we consider the cases when λ 6= λ′. Here the restriction of Vλ to An gives an irre-
ducible representation. For simplicity we denote kVλ by kλ. Here we obtain an expression
for kλ in terms of the number of standard skew Young tableaux.

Theorem 4.2.1.For the irreducible representation Vλ |An, n ≥ 4,

kλ = 2(fλ/(2,1,1) + fλ/(3,1)).

Proof. We denote the representation Vλ |An by φλ. Following Section 2.3 we record
the action of φλ(s1s3) on the elements of the basis βλ of Vλ. The elements of βλ can
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be categorized into 6 different types depending on the position of 1, 2, 3 and 4 in the
corresponding SYT. Note that φλ(s1s3) = φλ(s1)φλ(s3).

1. If 1, 2 are in the same column and 3, 4 are in the same column of t, then

φλ(s1)φλ(s3)et = φλ(s1)et = et.

2. If 1, 2 are in the same column and 3, 4 are in the same row of t, then

φλ(s3)et = et ± other polytabloids et′ ,

where [t′] D [t]. Applying φλ(s1) to it we obtain

φλ(s1)(et ± other polytabloids et′) = −et ± other polytabloids et′′ ,

where [t′′] D [t]. In this case 3 and 4 are not in the same column as that of 1, 2. So
we obtain an upper triangular matrix.

3. If 1, 2 are in the same column and 3, 4 are in a different row and different column
of t, then

φλ(s1)φλ(s3)et = φλ(s1)et′ = −et′ ,

where t′ is the tableau with the positions of 3 and 4 interchanged.

4. If 1, 2 are in the same row and 3, 4 are in the same column of t, then

φλ(s1)φλ(s3)et = φλ(s1)(−et) = −et ± other polytabloids et′ ,

where [t′] D [t].

5. If 1, 2 are in the same row and 3, 4 are in the same row of t, then

φλ(s3)et = et ± other polytabloids et′ ,

where [t′] D [t]. Again we have

φλ(s1)(et ± other polytabloids et′) = (et ± other polytabloids et′′),
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where [t′′] D [t].

6. If 1, 2 are in the same column and 3, 4 are in a different row and different column
of t, then

φλ(s1)φλ(s3)et = φλ(s1)et′ = et′ ± other polytabloids et′′ ,

where [t′′] D [t′] and t′ = s3 · et.

Using these observations we determine kλ in terms of standard skew Young tableaux. Let
ki denote the multiplicity of −1 as an eigenvalue of φλ(s1s3) acting on the basis elements
of type i, 1 ≤ i ≤ 6. So we have kλ = ∑6

i=1 ki.

• From cases 2 and 4 we obtain −1 in the diagonal positions of φλ(s1s3). We have
k2 = fλ/(3,1) and k4 = fλ/(2,1,1).

• The number of polytabloids of type 3 is 2fλ/(2,1,1). The polytabloids of type 3 can
be paired up so that the matrix of φλ(s1s3) on these basis elements consists fλ/(2,1,1)

many blocks of the form
 0 −1
−1 0

 . Therefore k3 = fλ/(2,1,1).

• The number of polytabloids of type 6 is 2fλ/(3,1). The polytabloids of type 6 can
be paired up so that the matrix of φλ(s1s3) on these basis elements consists fλ/(3,1)

many blocks of the form
0 1

1 0

. Therefore we have k6 = fλ/(3,1).

• For the basis elements of type 1 and 5 we obtain 1 in the matrix of φλ(s1s3) and
some non-zero up-diagonal entries. So we have k1 = k2 = 0.

Therefore we obtain kλ = ∑6
i=1 ki = 2(fλ/(2,1,1) + fλ/(3,1)).

Theorem 4.2.2.For any partition λ ` n, we have

fλ/(2,1,1) + fλ/(3,1) ≡
χλ(s1)− χλ(ζ4)

2 (mod 2).
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Proof. Using [25, Exercise 7.62, page 469] we deduce

χλ(s1) = fλ/(4)χ(4)(s1) + fλ/(3,1)χ(3,1)(s1) + fλ/(2,2)χ(2,2)(s1)

+ fλ/(2,1,1)χ(2,1,1)(s1) + fλ/(14)χ(14)(s1)

= fλ/(4) + fλ/(3,1) − fλ/(2,1,1) − fλ/(14)

A similar calculation gives

χλ(ζ4) = fλ/(4) − fλ/(3,1) + fλ/(2,1,1) − fλ/(14).

Thus one gets

fλ/(2,1,1) + fλ/(3,1) ≡
χλ(s1)− χλ(ζ4)

2 (mod 2).

Corollary 4.2.3.Consider a non self-conjugate partition λ such that n = |λ| ≥ 4. Then
Vλ |An is spinorial if and only if

χλ(s1) ≡ χλ(ζ4) (mod 4). (4.3)

Proof. From Theorem 4.1.2 we have Vλ |An is spinorial if and only if kλ ≡ 0 (mod 4).
Combining the results from Theorems 4.2.1 and 4.2.2 we obtain kλ ≡ χλ(s1) − χλ(ζ4)
(mod 4). Therefore for kλ ≡ 0 (mod 4) we require χλ(s1) ≡ χλ(ζ4) (mod 4).

4.2.2 Case of Self-Conjugate Partitions

Theorem 4.2.4.For self-conjugate partitions λ, the representation Vλ |An is spinorial.

Proof. From [21, Theorem 4.4.2] we obtain Vλ′ ∼= Vλ ⊗ ε, where ε denotes the sign repre-
sentation of Sn. Consequently we have

χλ′(µ) = ε(µ)χλ(µ), (4.4)
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where µ denote the cycle type of a conjugacy class in Sn. Since ε(s1) = ε(ζ4) = −1, from
Equation (4.4) we conclude χλ(s1) = χλ(ζ4) = 0. Therefore the condition in Corollary
4.2.3 holds proving our claim.

Let SP(n) denote the set of self-conjugate partitions of n and DOP(n) denote the set
of partitions of n with distinct odd parts. We obtain a bijection (see [21, Lemma 4.6.16])
between these two sets

θ : DOP(n)→ SP(n).

For µ ∈ DOP(n) such that µ = (2m1 + 1, 2m2 + 1, . . . , 2mr + 1), define εµ = (−1)
∑

mi .
Let wµ denote an element with cycle type µ and Cwµ denote the conjugacy class in Sn
containing all permutations with cycle type µ. From [21, Section 5.12] we obtain that
Cwµ splits into two conjugacy classes in An of equal cardinality. If w+

µ lies in one of these
classes, then w−µ = νw+

µ ν
−1 lies in the other for any odd permutation ν. We denote

the corresponding conjugacy classes by Cw+
µ
and Cw−µ . In particular let Cλ

wµ denote the
conjugacy class in An such that θ(µ) = λ. As mentioned in the beginning of Section 4.2,
for λ = λ′ we have

Vλ |An= V +
λ ⊕ V −λ .

We denote the character of V ±λ by χ±λ . From [21, Section 5.12], we obtain if w /∈ Cλ
wµ ,

then
χ+
λ (w) = χ−λ (w) = χλ(w)/2, (4.5)

where χλ denotes the character of the representation Vλ of Sn. For w±µ ∈ Cλ
wµ we have

χ±λ (w+
µ ) = 1

2

εµ ±
√√√√εµn!

cµ

 and χ±λ (w−µ ) = χ∓λ (w+
µ ). (4.6)

From [21, Exercise 5.12.1] we obtain

χλ(wµ) = χ+
λ (wµ) + χ−λ (wµ) = εµ, (4.7)

where χλ denote the character of the representation Vλ of Sn.

Lemma 4.2.5.For g ∈ An, let β and β′ denote the cycle types of g and g2 respectively.
Then β ∈ DOP(n) if and only if β′ ∈ DOP(n). In this case in fact we have β = β′.
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Proof. Let β = (β1, β2, . . . , βr) denote the cycle type of g. Let βi, 1 ≤ i ≤ r are all
odd and distinct. Suppose σi = (a1, a2, . . . , aβi) denotes the cycle of length βi. Then
σ2 = (a1, a3, a5, . . . , aβi , a2, a4, . . . , aβi−1) is also a cycle of length βi. As a result g2 will
have cycle type β.

For the converse let β′ contains distinct odd parts. If one of the βi is even then taking
the cycle of length βi, we calculate

(x1, x2, . . . , xβi)2 = (x1, x3, . . . , xβi−1)(x2, x4, . . . , xβi),

where both the cycles are of length βi/2. This violates the assumption that β′ contains
distinct parts. Also if βi = βj, where both are odd, then previous calculations confirm
that β′ also contain two odd parts of equal length. Therefore β must contain all distinct
odd parts. From the previous part we conclude that β′ = β.

From Lemma 4.2.5 it follows that if g ∈ Cλ
wµ then g2 ∈ Cλ

wµ . Since Cλ
wµ splits in two

equal parts of the same cardinality we obtain

∑
g∈Cλwµ

χλ(g2)
2 =

|Cλ
wµ|
2

(
χ+
λ (w+

µ ) + χ+
λ (w−µ )

)
. (4.8)

This rest of this section discusses spinoriality of the representations V ±λ . For that
we first need to ensure whether they are orthogonal. Following [4, Proposition 6.8] we
obtain that Vλ is orthogonal if and only if 1

|An|
∑
g∈An χ

+
λ (g2) = 1. For a finite dimen-

sional representation V of a finite group G the quantity 1
|G|
∑
g∈G χV (g2) is known as its

Frobenius-Schur indicator, where χV denotes the character of V . As representations of
Sn are orthogonal it follows that

1
|Sn|

∑
g∈Sn

χλ(g2) = 1. (4.9)

The following theorem determines when V ±λ are orthogonal. This result can be found
in [5]. Here we prove it in our own way.

Theorem 4.2.6.The representations V ±λ are orthogonal if and only if εµ = 1.

Proof. We write Vλ|An for Vλ without any ambiguity to avoid complex notations. Taking
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dual on both sides of the equation

Vλ = V +
λ ⊕ V −λ ,

we obtain
V ∨λ = V +

λ
∨ ⊕ V +

λ
∨
.

So either the representations V ±λ are self-dual or they are dual of each other. A self-dual
representation always has real character values. If εµ = −1, then we deduce

χ±λ (w+
µ ) = χ∓λ (w+

µ ) 6= χ±λ (w+
µ ),

where a denotes the complex conjugation of a. Clearly the representations are not self-
dual. Since an orthogonal representation is always self-dual in this case V ±λ are not
orthogonal. For εµ = 1, then using Equations 4.5 and 4.6 we deduce χ±λ (w+

µ ) = χ±λ (w+
µ ),

and χ±λ (w−µ ) = χ∓λ (w−µ ). Therefore the representations are self-dual. Now it remains to
determine whether the representations are orthogonal. We work with V +

λ as similar calcu-
lations work for V −λ . Expanding out the Frobenius-Schur indicator for the representation
V +
λ we obtain

1
|An|

∑
g∈An

χ+
λ (g2) = 2

n!
∑

g/∈Cλwµ

χ+
λ (g2) + 2

n!
∑

g∈Cλwµ

χ+
λ (g2)

= 2
n!

∑
g/∈Cλwµ

χλ(g2)
2 + 2

n!
|Cλ

wµ|
2

(
χ+
λ (w+

µ ) + χ+
λ (w−µ )

)
(use Equations 4.5 and 4.8)

= 1
n!

∑
g/∈Cλwµ

χλ(g2)

+
|Cλ

wµ |
n!

1
2

εµ +

√√√√εµn!
cµ

+ 1
2

εµ −
√√√√εµn!

cµ

 (use Equation (4.6))

= 1
n!

∑
g/∈Cλwµ

χλ(g2) +
|Cλ

wµ |
n!

= 1
|Sn|

∑
g∈Sn

χλ(g2) (use Equation (4.7))

= 1 (use Equation (4.9)).
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So we conclude that the representation V +
λ is orthogonal. Similar calculations prove that

the representation V −λ is orthogonal.
If V ± is orthogonal, then it is self-dual. Therefore we must have εµ = 1.

Remark 4.2.7.Note that the quantity ∑mi is equal to the number of up diagonal cells
in the Young tableau of shape θ(µ) = λ. As an example, for λ = (4, 3, 2, 1), we have
shaded the up diagonal cells and put stars in the diagonal ones. In this case µ = (7, 3),
so that we have m1 = 3 and m2 = 1. As a result we obtain εµ = (−1)(3+1) = 1.

∗
∗

Theorem 4.2.8.Suppose V ±λ is orthogonal. Then the following statements are equivalent:

1. V +
λ is spinorial.

2. V −λ is spinorial.

3. χλ(1) ≡ χλ(s1s3) (mod 16).

Proof. We write π (resp. π±) to denote the representation Vλ (resp. V ±λ ).

(1) ⇐⇒ (2) : We know that for any g ∈ An, π−(g) = π+(x−1gx), where x is an odd permutation
in Sn. Now suppose π+ is spinorial. So there exists a homomorphism π̂+ such that
π̂+ ◦ ρ = π+. Then we define a lift π̂− for π− as π̂−(g) = π̂+(x−1gx). To verify this
we see that

ρ ◦ π̂−(g) = ρ ◦ π̂+(x−1gx)

= π+(x−1gx)

= π−(g)

Similar argument shows that π+ is spinorial if π− is spinorial.

(1) ⇐⇒ (3) : Let χ±λ (µ) denote the character values of V ±λ on the conjugacy class with cycle
type µ in An. Then the fact

Vλ |An= V +
λ ⊕ V −λ ,
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gives
χλ(µ) = χ+

λ (µ) + χ−λ (µ). (4.10)

Since dim V +
λ = dimV −λ we have χ+

λ (1) = χλ(1)/2. Note that the cycle type of s1s3

is (2, 2), which does not contain distinct odd parts. Therefore from [21, Theorem
4.6.13] it follows that for an odd permutation x ∈ Sn, x−1s1s3x ∈ CAn(s1s3), where
CAn(s1s3) denotes the conjugacy class as s1s3 in An. It follows that χ+

λ (s1s3) =
χ−λ (s1s3). Using Equation (4.10) we conclude that χ+

λ (s1s3) = χλ(s1s3)/2. If V +
λ

is spinorial then according to Corollary 4.1.3 we have χ+
λ (1) ≡ χ+

λ (s1s3) (mod 8).
Therefore from the above discussion it follows that χλ(1) ≡ χλ(s1s3) (mod 16).
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Some Corollaries and Examples

In this chapter we discuss spinoriality of direct sum and internal tensor product of rep-
resentations of Sn. We also discuss the spinoriality of permutation representations of Sn.
Next we give lifting criteria for representations of Sn1 × Sn2 . We conclude the chapter
with some examples.

5.1 Direct Sum

Lemma 5.1.1.Consider representations of Vi of Sn. If V = ⊕
i Vi, then gV = ∑

i gVi and
hV = ∑

i hVi.

Proof. We know that for V = ⊕
i
Vi,

χV (µ) =
∑
i

χVi(µ), (5.1)

where χV (µ) (resp. χVi(µ)) denotes the character value of the representation V (resp.

49
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Vi) at the conjugacy class µ. Using Equation (3.1) we calculate

gV = 1
2 · (χV (1)− χV (s1))

= 1
2 · (

∑
i

χVi(1)−
∑
i

χVi(s1))

=
∑
i

(1
2 · (χVi(1)− χVi(s1))

)
=
∑
i

gVi .

We obtain an expression for hV in terms of character values as mentioned in Equation
(3.4),

hV = 1
4 · (χV (1)− 2χV (s1) + χV (s1s3)).

Here applying Equation (5.1) we easily obtain the required result.

Corollary 5.1.2.Let (φ, V ) be a representation of Sn. Then the following statements
are true.

1. If V is chiral then the representation V ⊕4 is spinorial.

2. If V is achiral then the representation V ⊕ V is spinorial.

The corollary follows easily from Lemma 5.1.1 and Theorem 3.1.7.

Let ε denote the sign representation of Sn.

Theorem 5.1.3.Let V be a chiral representation of Sn. Then V is spinorial if and only
if V ⊕ ε is spinorial.

Proof. We write V ′ = V ⊕ ε. Note that V ′ is achiral. From Theorem 5.1.1 we obtain
gV ′ = gV + 1 and hV ′ = hV + 1. Now if V ′ is spinorial we have gV ′ ≡ 0 (mod 4) and hV ′
is even. This gives gV ≡ 3 (mod 4) and hV is odd. Therefore V is spinorial.

On the other hand if V is spinorial then gV ≡ 3 (mod 4) and hV is odd. Then we
obtain that gV ′ ≡ 0 (mod 4) and hV ′ is even. Therefore V ′ is spinorial.
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5.2 Internal Tensor Product

For any two representations V and W of a group G, we can consider the representation
V ⊗W of G. The action of G on V ⊗W is given by

g · (v ⊗ w) = g · v ⊗ g · w, g ∈ G, v ⊗ w ∈ V ⊗W.

If χV⊗W (µ) denotes the character of V ⊗W at the conjugacy class with cycle type µ then
we have

χV⊗W (µ) = χV (µ) · χW (µ), (5.2)

where χV (µ) (resp. χW (µ)) denotes the character value of V (resp. W ) at the conjugacy
class with cycle type µ.

Theorem 5.2.1.Let (φ, V ) be any representation of Sn. Take the representation V1 =
V ⊗ V . Then we have the following results.

• If φ is achiral then V1 is always spinorial.

• If φ is chiral then V1 is spinorial if and only if dim V is odd.

Proof. Let fV denote the dimension of V . From Equation (3.1) we have gV = 1
2 ·(χV (1)−

χV (s1)). This gives
χV (s1) = χV (1)− 2gV . (5.3)

Then we calculate

gV1 = 1
2 · (χV1(1)− χV1(s1))

= 1
2 · ((χV (1))2 − (χV (s1))2)

= 1
2 · (χV (1)− χV (s1)) · (χV (1) + χV (s1))

= gV · (χV (1) + χV (s1))

= 2gV · (fV − gV ) (Use Euation 5.3 and put χV (1) = fV ).

So gV1 is always even. This implies V1 is always achiral. From Equation (3.4) we have
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hV = 1
4 · (χV (1)− 2χV (s1) + χV (s1s3)). This gives

χV (s1s3) = 4hV − χV (1)− 2χV (s1). (5.4)

As before we calculate

hV1 = 1
4 · ((χV (1))2 − 2(χV (s1))2 + (χV (s1s3))2)

= 1
4 · ((χV (1))2 − (χV (s1))2 + (χV (s1s3))2 − (χV (s1))2)

= 1
4 · (χV (1)− χV (s1))(χV (1) + χV (s1))

+ 1
4 · (χV (s1s3)− χV (s1))(χV (s1s3) + χV (s1))

= gV (fV − gV ) + (2hV − gV )(2hV − 3gV + fV ) (Use Equations 5.4, 3.1 and put χV (1) = fV )

= 4h2
V − 8hV gV + 2g2

V + 2hV fV
= 2hV (fV − 2gV + hV ) + 2(gV − hV )2.

This shows that hV1 is always even. Therefore V1 is spinorial if and only if

gV1 = 2gV · (fV − gV ) ≡ 0 (mod 4). (5.5)

If V is achiral the condition 5.5 holds. Therefore for V achiral V1 is always spinorial. If
V is chiral, i.e. gV is odd, then V1 is spinorial if and only if fV ≡ gV (mod 2).

5.3 Permutation Representations

For each partition λ = (λ1, . . . , λl) of n let

Xλ = {(X1, . . . , Xl) | X1 t · · · tXl = {1, . . . , n}, |Xi| = λi},

denote the set of all ordered partitions of {1, . . . , n} of shape λ. The action of Sn on
{1, . . . , n} gives rise to an action of it on Xλ. Let R[Xλ] denote the vector space of all
R-valued functions on Xλ. We define the permutation representation (βXλ ,R[Xλ]) of Sn
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as
βXλ(g)f(x) = f(g−1 · x) for all g ∈ Sn, f ∈ R[Xλ].

For V = R[Xλ] we have

gV = χV (1)− χV (s1)
2 .

It is well known that the character of a permutation representation is equal to the number
of fixed points. The dimension of the vector space V = R[Xλ] is

χV (1) =
(

n

λ1, . . . , λl

)
.

We have
χV (s1) = |{x ∈ Xλ | s1 · x = x}|.

Now an element x ∈ Xλ is fixed by s1 if and only if 1 and 2 lie in the same part Xi, for
some i ∈ {1, 2, . . . , l}. Therefore we have

χV (s1) =
∑
|λi|≥2

(
n− 2

λ1, . . . , λi − 2, . . . , λl

)
.

Putting all these values we conclude,

gV = 1
2

( n

λ1, . . . , λl

)
−

∑
|λi|≥2

(
n− 2

λ1, . . . , λi − 2, . . . , λl

) . (5.6)

The quantity gV can also be obtained as follows: The orbits of s1 in Xλ are of cardinality
1 or 2. We call an orbit of size 2 as a doubleton orbit. A doubleton orbit yields −1 as
an eigenvalue for βXλ(s1). Therefore gV equals the number of doubleton orbits. From [3,
Lemma 17] we conclude that

gV =
∑

1≤i<j≤l

(
n− 2

λ1, . . . , λi − 1, . . . , λj − 1, . . . , λl

)
.

Similarly we obtain a formulation for hV in terms of multinomial coefficients. From
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Equation (3.4) we obtain

hV = 1
4(χV (1)− 2χV (s1) + χV (s1s3)).

Note that
χV (s1s3) = |{x ∈ Xλ | s1s3 · x = x}|.

Now an element x ∈ Xλ is fixed by s1s3 if and only if either the elements {1, 2, 3, 4} lie
in the same part Xi or {1, 2} lie in Xi and {3, 4} lie some other part Xj. Therefore we
obtain

χV (s1s3) =
∑

1≤i<j≤l
|λi|≥2,|λj |≥2

(
n− 4

λ1, . . . , λi − 2, . . . , λj − 2, . . . , λl

)
+
∑
|λk|≥4

(
n− 4

λ1, . . . , λi − 4, . . . , λl

)
.

Putting this value we obtain:

hV = 1
4

( n

λ1, . . . , λl

)
− 2

∑
|λk|≥2

(
n− 2

λ1, . . . , λk − 2, . . . , λl

)

+
∑

1≤i<j≤l
|λi|≥2,|λj |≥2

(
n− 4

λ1, . . . , λi − 2, . . . , λj − 2, . . . , λl

)
+

∑
|λk|≥4

(
n− 4

λ1, . . . , λi − 4, . . . , λl

).

We know that for λ = (1n), the representation C[X(1n)] is isomorphic to the regular
representation of Sn.

Theorem 5.3.1.The regular representation of Sn, n ≥ 4, is achiral and spinorial.

Proof. Note that dim(R[X(1n)]) = n!. From Equation (5.6) we have g(R[X(1n)]) = n!
2 . For

n ≥ 4, we obtain g(R[X(1n)]) ≡ 0 (mod 4). Again from the expression above for hV in
terms of multinomial coefficients we obtain h(R[X(1n)]) = n!

4 ≡ 0 (mod 2), for n ≥ 4.
Therefore from 3.1.7 we conclude that the regular representation of Sn, n ≥ 4, is achiral
and spinorial.
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5.4 Product of Symmetric Groups

Consider the representations (πi, Vi) of Sni for i ∈ {1, 2}. In this section, we discuss the
spinoriality of the representation (π, V1 � V2) of Sn1 × Sn2 . The action of Sn1 × Sn2 on
V1 � V2 is given by

(x1, x2) · (v1 ⊗ v2) = (x1 · v1)⊗ (x2 · v2), for xi ∈ Sni , vi ∈ Vi.

Let fi, gi, hi denote the dimensions of Vi, Vi(−1), Vi(−1,−1) respectively. Let O(n) (resp.
SO(n)) denote the group of n× n real orthogonal (resp. special orthogonal) matrices.

Theorem 5.4.1.Let Vi be a representation of Sni for i ∈ {1, 2}. The representation
(π, V1 � V2) of Sn1 × Sn2 is spinorial if and only if the representations π|(Sn1×1) and
π|(1×Sn2 ) are spinorial and the following condition holds:

g1g2(1 + f1f2) ≡ 0 (mod 2).

Proof. If the representation π is spinorial, then both the representations π|Sn1×1 and
π|1×Sn2

are spinorial. One computes π|Sn1×1 ∼= π⊕f2
1 and π|1×Sn2

∼= π⊕f1
2 . So following

Lemma 5.1.1 we write down the necessary and sufficient conditions.

1. The representation π⊕f2
1 is spinorial if and only if g1f2 ≡ 0 or 3 (mod 4), and

h1f2 ≡ g1f2 (mod 2).

2. The representation π⊕f1
2 is spinorial if and only if g2f1 ≡ 0 or 3 (mod 4), and

h2f1 ≡ g2f1 (mod 2).

Now the elements (si, 1) ∈ Sn1 × 1 and (1, sj) ∈ 1 × Sn2 commute. Since all trans-
positions are conjugate in Sn we work with the elements (s1, 1) and (1, s2) for conve-
nience. From Lemma 3.1.4 we conclude that the lifts of these two elements commute if
and only if π(1, s2) ∈ Z(π(s1, 1))]. Consider a basis βg1 = {v1, v2, . . . , vg1} for V1(−1)
which can be extended to obtain a basis β1 = {v1, v2, . . . , vf1} for V1. Also consider
a basis βg2 = {w1, w2, . . . , wg2} for V2(−1) which can be extended to obtain a basis
β2 = {w1, w2, . . . , wf2} for V2 . Then a basis of V1(−1) � V2 is βg12 = {v1 ⊗ w1, v1 ⊗
w2, . . . , vg1 ⊗ wf2}. With respect to the basis β = {v1 ⊗ w1, v1 ⊗ w2, . . . , vf1 ⊗ wf2} for
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V1 � V2 the matrices for π(s1, 1) and π(1, sj) look like
−Ig1f2

I(f1f2−g1f2)

 and
B1

B2

 respectively,

where B1 ∈ O(g1f2) and B2 ∈ O(f1f2 − g1f1). Notice that B1 denotes the matrix of
π(1, s2) with respect to the basis βg12. Following same argument as in Lemma 3.1.5 we
obtain

Z(π(g1, 1))] =



 O(g1f2) 0

0 SO(f1f2 − g1f2)

 , for g1f2 odd,

 SO(g1f2) 0

0 O(f1f2 − g1f2)

 , for g1f2 even.

Therefore we require

• detB1 = 1, for g1f2 even.

• detB2 = 1, for g1f2 odd.

Consider the subspace

V1 � V2(−1,−1) = {v ∈ V1 � V2 | π(s1, 1)v = −v, π(1, s2)v = −v},

of V1�V2. A basis for V1�V2(−1,−1) is βg1g2 = {v1⊗wj1 , v1⊗w1 . . . , v1⊗wg2 , . . . , vg1⊗
wg2}. So dim(V1 � V2(−1,−1)) = g1g2. We have det(B1) = (−1)g1g2 . For g1f2 is even,
det(B1) = 1 if and only if g1g2 ≡ 0 (mod 2).

For g1f2 odd, it remains to check whether detB2 = 1. Consider the subspace

V1 � V2(1,−1) = {v ∈ V1 � V2 | π(s1, 1)v = v, π(1, s2)v = −v},

of V1 � V2. The set β3 = {vi ⊗ wj | g1 + 1 ≤ i ≤ f1, 1 ≤ j ≤ f2} is a basis for
V1 � V2. Now B2 denotes the matrix of π(1, s2) with respect to the basis β3. We have
dim(V1 � V2(1,−1)) = (f1 − g1)g2, so that det(B2) = (−1)(f1−g1)g2 . Hence for g1f2 odd,
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det(B2) = 1 if and only if (f1 − g1)f2g2 ≡ 0 (mod 2). As a summary we write down the
required conditions.

1. (f1 − g1)g2 ≡ 0 (mod 2), if g1f2 is odd.

2. g1g2 ≡ 0 (mod 2), if g1f2 is even.

This two conditions can be combined in the following way.

g1g2(1 + g1f2) + (f1 − g1)g2g1f2 ≡ 0 (mod 2)

g1g2 + g2
1g2f2 + g1g2f1f2 − g2

1g2f2 ≡ 0 (mod 2)

g1g2(1 + f1f2) ≡ 0 (mod 2).
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5.5 Examples

For n = 2, there are only two representations of S2 = C2, namely the trivial and the
sign representation. The trivial representation of Sn given by the partition (n), is always
spinorial. On the other hand the partition (1n) gives the sign representation of Sn,
denoted by ε.

Proposition 5.5.1.The sign representation of Sn is aspinorial.

Proof. Consider the sign representation ε : Sn → {±1}. Note that O(1) = {±1}. Taking
the negative definite quadratic form we obtain Pin(1) = C4, the cyclic group of order
4. If we take g as the generator of C4, the elements of the group are 1, g, g2, g3. Since
ker(ρ) = {±1} we must have ρ(g) = −1. Suppose there exists a lift ε̂ : Sn → C4 such
that the following diagram is commutative.

Sn O(1)

C4

ε

ρε̂

Consider the element s1 ∈ Sn. Note that ε(s1) = −1. The diagram commutes iff
ρ ◦ ε̂(s1) = −1. So ε̂(s1) is either g or g3, both are of order 4. For any homomorphism
ε̂ : Sn → C4 this is not possible.

Remark 5.5.2.For an alternative approach note that gε = −1. So from Theorem 3.1.9
we conclude that ε is aspinorial.

Let φn denote the standard permutation representation of Sn via permutation matri-
ces.

Proposition 5.5.3.The representation φn of Sn is aspinorial.
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Proof. We calculate

φn(s1) =
Rπ/2 0

0 In−2

 ,
where Rπ/2 denotes the reflection matrix

0 1
1 0

. Therefore we have gφn = 1, which

denotes the multiplicity of −1 as an eigenvalue of φn(s1). Thus from Theorem 3.1.7 we
conclude that φn is aspinorial.

Consider the irreducible representation V(2,1) of S3. From Section 2.3 we obtain the
image of s1 under the representation V(2,1). Note that we can conjugate it to the diagonal
form

φ(s1) =
−1 0

0 1

 .
So gV(2,1) = 1. Therefore from Theorem 3.1.7 we have V(2,1) is aspinorial.

Here we present tables exhibiting the nature of the representations of Sn, for 1 ≤ n ≤
6. Here we use all the methods developed in the previous chapters.

Table 5.1: Table exhibiting the nature of the representations of Sn, n = 2, 3.

λ Chirality
of Vλ

Spinoriality
of Vλ

Spinoriality
of Vλ|An

Orthogonality
of V ±λ

Spinoriality
of V ±λ

For n = 2
(2) achiral spinorial spinorial - -
(12) chiral aspinorial spinorial - -

For n = 3
(3) achiral spinorial spinorial - -
(2, 1) chiral aspinorial spinorial not orthog-

onal
-

(13) chiral aspinorial spinorial - -
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Table 5.2: Table exhibiting the nature of the representations of Sn, 4 ≤ n ≤ 6.

λ Chirality
of Vλ

Spinoriality
of Vλ

Spinoriality
of Vλ|An

Orthogonality
of V ±λ

Spinoriality
of V ±λ

For n = 4
(4) achiral spinorial spinorial - -
(3, 1) chiral aspinorial aspinorial - -
(2, 2) chiral aspinorial spinorial not orthog-

onal
-

(2, 12) achiral aspinorial aspinorial - -
(14) chiral aspinorial spinorial - -

For n = 5
(5) achiral spinorial spinorial - -
(4, 1) chiral aspinorial aspinorial - -
(3, 2) achiral aspinorial aspinorial - -
(3, 12) chiral spinorial spinorial orthogonal aspinorial
(22, 1) chiral aspinorial aspinorial - -
(2, 13) chiral aspinorial aspinorial - -
(15) chiral aspinorial spinorial - -

For n = 6
(6) achiral spinorial spinorial - -
(5, 1) chiral aspinorial aspinorial - -
(4, 2) chiral aspinorial spinorial - -
(4, 12) achiral aspinorial aspinorial - -
(32) achiral aspinorial aspinorial - -
(3, 2, 1) achiral spinorial spinorial orthogonal spinorial
(3, 13) achiral aspinorial aspinorial - -
(23) chiral aspinorial aspinorial - -
(22, 12) achiral aspinorial spinorial - -
(2, 14) achiral aspinorial aspinorial - -
(16) chiral aspinorial spinorial - -
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Table 5.3: Table exhibiting the nature of the representations of Sn, Sn, 3 ≤ n ≤ 10
corresponding to the self-conjugate partitions.

λ fλ Chirality
of Vλ

Spinoriality
of Vλ

Orthogonality
of V ±λ

Spinoriality
of V ±λ

(2, 1) 2 chiral aspinorial not orthog-
onal

-

(2, 2) 2 chiral aspinorial not orthog-
onal

-

(3, 1, 1) 6 chiral spinorial orthogonal aspinorial
(3, 2, 1) 16 chiral aspinorial orthogonal spinorial
(4, 13) 20 achiral aspinorial not orthog-

onal
-

(4, 2, 12) 90 chiral aspinorial not orthog-
onal

-

(3, 3, 2) 42 chiral aspinorial not orthog-
onal

-

(5, 14) 70 chiral spinorial orthogonal spinorial
(33) 42 chiral aspinorial not orthog-

onal
-

(5, 2, 13) 448 achiral spinorial orthogonal spinorial
(4, 3, 2, 1) 768 achiral spinorial orthogonal spinorial
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Table 5.4: Table exhibiting the nature of the permutation representations of Sn, 2 ≤ n ≤
5.

λ Dimension
of
R[Xλ]

g(R[Xλ]) h(R[Xλ]) Chirality
of R[Xλ]

Spinoriality
of R[Xλ]

For n = 2
(2) 1 0 - achiral spinorial
(12) 2 1 - chiral aspinorial

For n = 3
(3) 1 0 - achiral spinorial
(2, 1) 3 1 - chiral aspinorial
(13) 6 3 - chiral spinorial

For n = 4
(4) 1 0 0 achiral spinorial
(3, 1) 4 1 0 chiral aspinorial
(2, 2) 6 2 1 achiral aspinorial
(2, 12) 12 5 2 chiral aspinorial
(14) 24 12 6 achiral spinorial

For n = 5
(5) 1 0 0 achiral spinorial
(4, 1) 5 1 0 chiral aspinorial
(3, 2) 10 3 1 chiral spinorial
(3, 12) 20 7 2 chiral aspinorial
(22, 1) 30 12 5 achiral aspinorial
(2, 13) 60 27 12 chiral aspinorial
(15) 120 60 30 achiral spinorial

Using Young’s rule as mentioned in [21, Theorem 3.3.1] we obtain the complete de-
composition of the permutation representations R[Xλ] in irreducible representations , as
λ varies over partitions of 3.

R[X(3)] = V(3)

R[X(2,1)] = V(3) ⊕ V(2,1)

R[X(1,1,1)] = V(3) ⊕ V ⊕2
(2,1) ⊕ V(1,1,1).
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Similarly for partitions of 4, we obtain:

R[X(4)] = V(4)

R[X(3,1)] = V(4) ⊕ V(3,1)

R[X(2,2)] = V(4) ⊕ V(3,1) ⊕ V(2,2)

R[X(2,1,1)] = V(4) ⊕ V ⊕2
(3,1) ⊕ V(2,2) ⊕ V(2,1,1)

R[X(1,1,1,1)] = V(4) ⊕ V ⊕3
(3,1) ⊕ V

⊕2
(2,2) ⊕ V

⊕3
(2,1,1) ⊕ V(1,1,1,1).

Here we record the complete decomposition of the permutation representations C[Xλ],
as λ varies over all the partitions of 5.

R[X(5)] = V(5)

R[X(4,1)] = V(5) ⊕ V(4,1)

R[X(3,2)] = V(5) ⊕ V(4,1) ⊕ V(3,2)

R[X(3,1,1)] = V(5) ⊕ V ⊕2
(4,1) ⊕ V(3,2) ⊕ V(3,1,1)

R[X(2,2,1)] = V(5) ⊕ V ⊕2
(4,1) ⊕ V

⊕2
(3,2) ⊕ V(3,1,1) ⊕ V(2,2,1)

R[X(2,1,1,1)] = V(5) ⊕ V ⊕3
(4,1) ⊕ V

⊕3
(3,2) ⊕ V

⊕3
(3,1,1) ⊕ V

⊕2
(2,2,1) ⊕ V(2,1,1,1)

R[X(15)] = V(5) ⊕ V ⊕4
(4,1) ⊕ V

⊕5
(3,2) ⊕ V

⊕6
(3,1,1) ⊕ V

⊕5
(2,2,1) ⊕ V

⊕4
(2,1,1,1) ⊕ V(15).

Therefore one can verify the results in 5.4 by using Lemma 5.1.1.
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6

Relation with Stiefel-Whitney Classes

This chapter reviews the connection between the spinoriality of representations of finite
groups and the Stiefel-Whitney classes. The results 6.2.4 and 6.3.2 are already available
in the literature for a more general context. See for example [9], [14]. We prove these
results for finite groups to make the thesis more self-contained. We give lifting criteria for
the representations of Sn in terms of first and second Stiefel-Whitney classes. Let ε denote
the sign representation of Sn and φn denote the standard permutation representation of
Sn on Rn, via permutation matrices. Write ecup = w1(ε)∪w1(ε). From [24, Section 1.5] we
obtain that ecup and w2(φn) generate the group H2(Sn,Z/2Z). We showed that for any
representation (φ, V ) of Sn, w2(φ) = [ gV2 ]ecup + kV

2 w2(φn), where [.] denotes the greatest
integer function.

6.1 Definition and Notation

Definition 6.1.1. A real vector bundle ξ = (E, π,B) consists of topological spaces E and
B, called the total space and base space respectively, with a projection map π : E → B

so that the following properties hold:

1. For each b ∈ B, the set π−1(b) has a real vector space structure.

65
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2. For each b ∈ B, there exists a neighborhood U ∈ B and a homeomorphism

h : U × Rn → π−1(U),

so that, for each b ∈ U , the correspondence x → h(b, x) defines an isomorphism
between the vector spaces Rn and π−1(b). In this way we obtain an open cover {Ui}
of B and the pair (Ui, hi) is called a bundle chart.

If Ui ∩ Uj 6= ∅, then we obtain transition maps tij : Ui ∩ Uj → GL(n,R) given by
hj ◦ h−1

i (b, v) = (b, tij(v)), for b ∈ Ui ∩ Uj and v ∈ R.

Definition 6.1.2. Let E be a vector bundle as above and let B1 be an arbitrary topo-
logical space. Given a map f : B1 → B we have a bundle f ∗E, called the pullback bundle
of E by the map f defined as

f ∗(E) = {(b, e) ∈ B1 × E | f(b) = π(e)}.

The projection map π1 : f ∗E → B1 is defined as π1(b, e) = b. Therefore we have the
following commutative diagram.

B1 B

f ∗E E

f

f̂

π1 π

For any finite group G there exists a contractible free right G space EG and the
quotient space EG /G is called a classifying space of G, denoted by BG. This classifying
space BG is well defined up to homotopy equivalence. In fact, we have

Hm
Gr(G,Z/2Z) ∼= Hm

Top(BG,Z/2Z) for m ≥ 0. (6.1)

Here Hm
Gr(.) denotes the m-th cohomology group and Hm

Top(.) denotes the m-th singular
cohomology group with coefficients in Z/2Z. The elements of H2

Gr(G,Z/2Z) correspond
to the group extensions of G by Z/2Z. For a Lie group G we in particular consider
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the subgroup H2
cont.(G,Z/2Z) of H2

Gr(G,Z/2Z). The elements of this cohomology group
correspond to the group extensions of G by Z/2Z in the category of Lie groups. For a
Lie group G in fact we have

H2
cont.(G,Z/2Z) ∼= H2

Top(BG,Z/2Z).

See [1] for reference.
We know that the space EG over BG also gives the universal principal G bundle with

the continuous map π : EG → BG. For details about principal bundles, we refer the
reader to [11, Sections 10, 11].

Let {Ui, hi} denote the local trivializations for this bundle, i.e. {(Ui)} forms an open
cover for BG and hi : π−1(Ui) → Ui × G are homeomorphisms. If p1 : Ui × G → Ui and
p2 : Ui ×G→ G denote the projections to the first and second components respectively.
Then we have hi(u′ ·g) = (p1(u′), p2(u′) ·g) for u′ ∈ π−1(Ui). In fact we have the following
commutative diagram.

π−1(Ui) Ui ×G

Ui

hi

π π1

For Ui ∩ Uj 6= ∅ we obtain the transition map

ψij = hj ◦ h−1
i : Ui ∩ Uj ×G→ Ui ∩ Uj ×G,

such that ψij(p, g) = (p, fij(p)g), where p ∈ Ui ∩Uj and fij : Ui ∩Uj → G is a continuous
map.

For a finite dimensional representation (φ, V ) of G, consider the right G action on the
set EG×V as

(ξ, v) · g = (ξ · g, φ(g−1) · v), ξ ∈ EG, v ∈ V.

The orbit space of this action consists of the equivalence classes [ξ, v] such that [ξ.g, v] =
[ξ, φ(g)v]. This orbit space is denoted by EG×GV and is called the associated vector
bundle over BG of rank n and fiber V . The transition maps are given by ψ̃ij : (Ui∩Uj)×
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V → (Ui ∩ Uj)× V , such that

ψ̃ij(p, v) = (p, φ(fij(p))v), p ∈ Ui ∩ Uj.

In general for a left G-space F , the relations (e, y) ·g = (e ·g, g−1y), for e ∈ EG, y ∈ F
and g ∈ G defines a right G structure on the set EG×F . The orbit space of this action
consists of the equivalence classes [e, y] such that [e · g, y] = [e, g−1 · y]. This orbit space
is denoted by EG×GF and is called the associated fiber bundle over BG with fiber F .

Definition 6.1.3. [13, page 38] Let G be a subgroup of GL(V ). Then the structure
group of a vector bundle with fiber V is G, if there exists an atlas of bundle charts
(see [13, page 2]) such that all the transition maps have their values in G.

In a similar fashion, we define the structure group of a principal G bundle.

Definition 6.1.4. [13, page 61] A subgroup H of G is called the structure group of a
principal G bundle if there exists an atlas of bundle charts such that all the transition
maps have their values in H.

For a real vector bundle ξ there corresponds a sequence of cohomology classes wi(ξ) ∈
H i(B(ξ),Z/2Z), for i ≥ 0, called Stiefel-Whitney classes. For an axiomatic definition
see [19, page 37].

Definition 6.1.5. The Stiefel-Whitney classes of a finite dimensional real representation
(φ, V ) of a group G are defined as wi(φ) = wi(EG×GV ) ∈ H i(BG; Z/2Z).

Definition 6.1.6. [19, page 96] An orientation for a vector bundle ξ is a function which
assigns an orientation to each fiber F of ξ, subject to the following local compatibility
condition. For every point b in the base space, there should exist a local trivialisation
(U, h), with b ∈ U and h : U × Rn → π−1(U), so that for each fiber F = π−1(b) over U
the homomorphism x→ h(b, x) from Rn to F is orientation preserving.

In particular a vector bundle with fiber V is orientable if for the associated transition
function tij : V → V , we have det(tij) > 0.
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6.2 Determinant of Representations and w1

From [9] we obtain that for a representation (φ, V ) of G, we have

w1(φ) = det(φ).

Definition 6.2.1. A real orthogonal representation (φ, V ) is called achiral if det(φ(g)) =
1, for all g ∈ G.

So φ is achiral if and only if w1(φ) = 0.

Definition 6.2.2. [11, Definition 2.1, page 74] For a closed subgroup H of G, let
ξ = (X, p,B) be a principal G-bundle and η = (Y, q, B) a principal H-bundle. Let
f : Y → f(Y ) ⊂ X be a homeomorphism onto a closed subset f(Y ) such that f(y · h) =
f(y) · h, for y ∈ Y and h ∈ H. Then η is called a restriction of ξ.

Theorem 6.2.3.The tructure group of the universal principal G-bundle EG over BG
cannot be reduced to a proper subgroup H of G.

Proof. Take a proper subgroup H of G. Consider the universal principal H-bundle EH
over BH. Note that H has a left action on G. Then we can think of the associate G
bundle EH×HG over BH. Then there will be a classifying map fH : BH→ BG such that
EH×HG is the pullback of EG by fH .

Consider the universal principal G-bundle (EG,BG). Suppose there is a H-bundle η
such that η is a restriction of EG. From [11, Theorem 4.1, page 76] it follows that this
implies that the structure group of the principal G-bundle EG over BG can be reduced
to H. Now we apply the theorem [11, Theorem 5.1, page 77] for X = EG and B = BG.
Then we obtain a classifying map g : BG→ BH such that η is isomorphic to g∗(EH) and
fH ◦ g is homotopic to the identity map on BG. We write in notation

fH ◦ g ∼ 1. (6.2)
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BG BG

BH

1

g fH

Here 1 denotes the classifying map for (EG,BG) itself as the universal principalG-bundle.
We know that for any group G, π1(BG) = G, where π1(BG) denotes the fundamental
group of the space BG. We have the maps f ∗H : H → G, g∗ : G → H and 1∗ : G → G

at the fundamental group level. Note that 1∗ denotes the identity map from G to itself.
From Equation (6.2) we obtain f ∗H ◦ g∗ = 1. Therefore we have g∗ : G → H is injective
and f ∗H : H → G is surjective. Since G is a finite group and H is a proper subgroup of
G, it follows that G = H.

Theorem 6.2.4.Let (φ, V ) be a real orthogonal representation of a finite group G. Then
det(φ)(g) > 0, for all g ∈ G, if and only if the associated vector bundle EG×GV is
orientable.

Proof. Consider a real, orthogonal representation (φ, V ) of G we have det(φ(g)) > 0 ,
for all g ∈ G. In particular we obtain det(φ(fi,j(p))) > 0, for p ∈ Ui ∩ Uj. So the vector
bundle EG×GV is orientable.

For the converse let the vector bundle EG×GV be orientable. Then we have
det(φ(fij(p))) > 0 for all i, j and p ∈ Ui ∩ Uj. Consider the group G+ = {g ∈ G |
det(φ(g)) > 0}. Note that for any two elements g, h ∈ G+ we have det(φ(gh−1)) =
det(φ(g)) · det(φ(h−1)) > 0. So G+ is a subgroup of G. If G+ is a proper subgroup of G,
then by Definition 6.1.4 the structure group of the universal principal G bundle EG over
BG becomes G+. But we proved in Theorem 6.2.3 that this cannot hold. So the only
possibility is G = G+. As a result we have φ(g) > 0 for all g ∈ G proving φ is achiral.

6.3 Spinoriality of Representations and w2

By the standard representation of SO(n) we mean the natural inclusion of SO(n) in
GLn(R). From [16, Appendix B, page 381] we obtain BSO(n) is the Grassmannian of
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oriented n planes in R∞. The vector bundle ESO(n) ×SO(n) V , where V denotes the
standard representation of SO(n), is the universal oriented n-plane bundle over BSO(n).
Note that the oriented frame bundle of ESO(n)×SO(n)V is ESO(n). Write E1 = EG×GV
and E2 = ESO(n)×SO(n) V .

Lemma 6.3.1.Let (φ, V ) denote an achiral representation of Sn. Then there exists a
map φB : BG→ BSO(n) such that E1 is the pullback of the bundle E2 by φB.

Proof. From Milnor’s construction (see [11, Section 4.11]) we obtain that any element of
EG looks like

〈x, t〉 = (t0x0, t1x1, . . . , tkxk, . . .),

where xi ∈ G, ti ∈ [0, 1], such that only a finite number of ti 6= 0 and ∑i ti = 1. The right
G action on EG is given by 〈x, t〉 · y = 〈xy, t〉, for y ∈ G. Similarly we obtain ESO(n).
Now we define a map mφ : EG→ ESO(n) as

mφ〈x, t〉 = (t0φ(x0), t1φ(x1), . . . , tkφ(xk), . . .).

The map is well-defined as we have mφ(〈x, t〉 · y) = mφ(〈x, t〉) · φ(y). Since BG = EG /G

and BSO(n) = ESO(n)/ SO(n), mφ induces a map φB : BG → BSO(n), such that
φB(eG) = mφ(e) SO(n), where e ∈ EG and mφ(e) ∈ ESO(n). The map φB is well-
defined. If e1G = e2G, then e1 = e2g, for some g ∈ G. Applying mφ to both sides of the
equation we obtain

mφ(e1) = mφ(e2g) = mφ(e2)φ(g).

Therefore it follows that φB(e1g) = φB(e2g). Now we define a map mV : E1 → E2, such
that mV (e, v) = (mφ(e), v), where e ∈ EG and v ∈ V . The map mV is well-defined as

mV (e · g, g−1 · v) = (mφ(e) · φ(g), φ(g)−1 · v).

Let π1 : E1 → BG and π2 : E2 → BSO(n) denote the vector bundle maps to the
corresponding base spaces. We have π1(e, v) = eG, for e ∈ EG and v ∈ V . Similarly
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π2(e′, v) = e′ SO(n), for e′ ∈ ESO(n) and v ∈ V . Note that

φB(π1(e, v)) = φB(eG)

= mφ(e) SO(n)

= π2(mφ(e), v).

This shows that the following diagram is commutative.

BG BSO(n)

EG×GV ESO(n)×SO(n) V

φB

mv

From the definition it follows that mV induces a surjective map m̂V : V → V , at the
fiber level. So m̂V is also injective. Therefore mv : E1 → E2 gives a bundle map.
From [19, Lemma 3.1] we conclude that E1 is isomorphic to the pullback of E2 by φB,
denoted as φ∗B(E2).

The following result can be found in [14] in a more general context.

Theorem 6.3.2.Let (φ, V ) be an orthogonal representation of a finite group G and
w1(φ) = 0. Then φ is spinorial if and only if w2(φ) = 0.

Proof. The fact w1(φ) = 0 indicates that φ(g) ∈ SO(n) for all g ∈ G. In other words, φ
is achiral. From Lemma 6.3.1 we conclude that there exists a map φB : BG → BSO(n)
such that i.e E1 is isomorphic the pullback of E2 by the map φB. We denote the pullback
as E1 = φ∗B(E2). From [16, page 81] we obtain

H2
cont.(SO(n),Z/2Z) ∼= H2(BSO(n),Z/2Z) ∼= Z/2Z, (6.3)

and w2(E2) ∈ H2(BSO(n),Z/2Z) is the non zero element. This element represents the
class of the non-trivial extension Spin(n) of SO(n) in H2

cont.(SO(n),Z/2Z). Let G′ denote
the pullback Spin(n)×SO(n)G = {(e, g) ∈ Spin(n)×G | ρ(e) = φ(g)}. From [27, Exercise
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6.6.4] we conclude that φ∗B(w2(E2)) is the class of the extension G′. From Axiom 2
mentioned in [19, page 37] we have

φ∗B(w2(E2)) = w2(E1) = w2(φ). (6.4)

From Equation (6.1) we have H2
Top(BG,Z/2Z) ∼= H2

cont.(G,Z/2Z). Therefore we have the
map

φ∗B : H2
cont.(SO(n),Z/2Z)→ H2(G,Z/2Z).

If w2(φ) = 0, then G′ is the trivial double cover of G. In other words for the short
exact sequence

1→ Z/2Z→ G′ → G→ 1,

there exists a section s : G→ G′. Let PrSpin be the projection map from G′ to Spin(n).
Then we can define the lift map φ̂ : G→ Spin(n) as φ̂ = PrSpin ◦ s.

For the converse take φ to be spinorial. Then there exists a lift φ̂ such that ρ ◦ φ̂ = φ.
This gives φ̂∗ ◦ ρ∗ = φ∗B, i.e. the following diagram commutes.

H2(G,Z/2Z) H2
cont.(SO(n),Z/2Z)

H2
cont.(Spin(n),Z/2Z)

φ̂∗

φ∗B

ρ∗

Since Spin(n) is simply-connected we have H2
cont.(Spin(n),Z/2Z) = 0. From Equation

(6.4) we have w2(φ) = φ∗B(w2(E2)). Following the commutativity of the diagram we
deduce

w2(φ) = φ∗B(w2(E2)) = φ̂∗ ◦ ρ∗(w2(E2)) = φ̂∗(0) = 0.

Hence the condition is necessary and sufficient.

Corollary 6.3.3.Any orthogonal representation of a finite group of odd order is achiral
and spinorial.

Proof. From [8, page 807, Corollary 29] it follows that if |G| is odd thenHm(G,Z/2Z) = 0
for all m ≥ 1. The fact H1(G,Z/2Z) = 0 tells that w1(φ) = 0, i.e. φ is achiral. Since
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H2(G,Z/2Z) = 0, we have w2(φ) = 0. So the result follows from Theorem 6.3.2.

Corollary 6.3.4.Let (φ, V ) be a representation of Sn, n ≥ 4. Then φ is spinorial if and
only if w2(φ) + w1(φ) ∪ w1(φ) = 0.

Proof. If V is achiral then we have w1(φ) = 0. Therefore the condition follows from
Theorem 6.3.2. If V is chiral then consider the representation (φ′, V ′), where V ′ = V ⊕ ε
and ε denotes the sign representation of Sn. From Theorem 5.1.3 we obtain that V is
spinorial if and only if V ′ is spinorial. Since φ′ is achiral, from Theorem 6.3.2 we conclude
that φ′ is spinorial if and only if w2(φ′) = 0. We calculate

w2(V ′) = w2(V ⊕ ε)

= w2(V ) + w2(ε) + w1(V ) ∪ w1(ε)

= w2(V ) + w1(V ) ∪ w1(V ).

For the last equality we used the facts that w2(ε) = 0, since the sign representation has
dimension 1 and w1(ε) = w1(V ) ∈ H1(Sn,Z/2Z) is the only non zero element. Therefore
φ is spinorial if and only if w2(φ) + w1(φ) ∪ w1(φ) = 0.

6.4 Expression of w2 in Terms of Character Values

Let ε denote the sign representation of Sn and φn denote the standard permutation
representation of Sn on Rn, via permutation matrices. We have H1(Sn,Z/2Z) = Z/2Z,
for n ≥ 2, and H2(Sn,Z/2Z) = Z/2Z ⊕ Z/2Z, for n ≥ 4. For reference see [24, Section
1.5]. The only non-zero element in H1(Sn,Z/2Z) is w1(ε). Since w2(ε) = 0, we obtain

w2(ε⊕ ε) = w1(ε) ∪ w1(ε) ∈ H2(Sn,Z/2Z).

Write ecup = w1(ε) ∪ w1(ε). From [24, Section 1.5] we also obtain the following facts.

• The elements ecup and w2(φn) generate H2(Sn,Z/2Z).

• The only non-zero element in H2(An) = Z/2Z is w2(φn).

Note that for a group G, the m-th cohomology group Hm(G,Z/2Z) is a vector space
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over the finite field Z/2Z (see [8, Proposition 20, page 801]). Consider the subgroups
C2 = 〈s1〉 and An of Sn. We obtain the maps i∗1 : H2(Sn,Z/2Z) → H2(C2,Z/2Z), and
i∗2 : H2(Sn,Z/2Z)→ H2(An,Z/2Z).

Proposition 6.4.1.The map

i∗ : H2(Sn,Z/2Z)→ H2(C2,Z/2Z)⊕H2(An,Z/2Z),

given by i∗(α) = i∗1(α)⊕ i∗2(α), for α ∈ H2(Sn,Z/2Z), is bijective for n ≥ 4.

Proof. Note that H2(An,Z/2Z) = H2(C2,Z/2Z) = Z/2Z. Therefore for n ≥ 4, we have
the map i∗ : Z/2Z⊕Z/2Z→ Z/2Z⊕Z/2Z. So i∗ is a linear operator on the vector space
Z/2Z⊕ Z/2Z. Consider the following cases.

• The restriction of π1 = ε⊕ ε to C2 is aspinorial but its restriction to An is spinorial.
Therefore i∗1(w2(ε⊕ ε)) 6= 0, whereas i∗2(ε⊕ ε) = 0.

• The restrictions of π2 = φn ⊕ ε to both C2 and An are aspinorial. Therefore
i∗1(w2(φn ⊕ ε)) 6= 0, whereas i∗2(φn ⊕ ε) 6= 0.

• The restriction of π3 = π1⊕π2 to C2 is spinorial but its restriction to An is aspinorial.
Therefore i∗1(w2(π1 ⊕ π2)) = 0, whereas i∗2(π1 ⊕ π2) 6= 0.

This shows that the map i∗ is surjective. Since i∗ is a map between vector spaces of the
same dimension it follows that i∗ is bijective.

Theorem 6.4.2.Let (φ, V ) be an achiral representation of Sn. Then

w2(φ) = gV
2 ecup + kV

2 w2(φn).

Equivalently the representation φ is spinorial if and only if its restrictions to both C2 =
〈s1〉 and An are spinorial.

Proof. From [24, Section 1.5] it follows that

w2(φ) = c1ecup + c2w2(φn),

where ci ∈ Z/2Z are scalars. Theorem 3.1.1 says that φ is spinorial if and only if gV ≡ 0
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(mod 4). Since for an achiral representation V , gV is even we choose c1 = gV /2. Note
that if φ is spinorial gV /2 ≡ 0 (mod 2). From Theorem 4.1.2 we obtain V |An is spinorial
if and only if kV ≡ 0 (mod 4). Since kV is always even we take c2 = kV /2. Again if φ is
spinorial kV /2 ≡ 0 (mod 2). So we have

w2(φ) = gV
2 ecup + kV

2 w2(φn).

Note that since i∗ is bijective, i∗(w2(φ)) = 0 if and only if i∗1(w2(φ)) = 0 and i∗2(w2(φ)) = 0.
This ensures that φ is spinorial if and only if φ |An and φC2 are spinorial.

Theorem 6.4.3.Let (φ, V ) be a chiral representation of Sn. Then

w2(φ) = gV − 1
2 ecup + kV

2 w2(φn).

Equivalently φ is spinorial if and only if w2(π) = ecup.

Proof. Take V ′ = V ⊕ ε. Since V ′ is achiral, from the previous theorem we obtain

w2(φ′) = w2(φ) + w1(φ) ∪ w1(ε)

w2(φ) = w2(φ′)− ecup.

Since kV denotes the multiplicity of −1 as an eigenvalue of s1s3 we have kV ′ = kV . From
the previous calculation we obtain

w2(φ) = gV ′

2 ecup + kV
2 w2(φn)− ecup

= gV + 1
2 ecup + kV

2 w2(φn)− ecup

= gV − 1
2 ecup + kV

2 w2(φn).

Let for a chiral representation (φ, V ) of Sn, w2(φ) = ecup. Then we have kV /2 ≡ 0
(mod 4), i.e. kV ≡ 0 (mod 4). Note that kV = h′V . Also gV −1

2 ≡ 0 (mod 2), i.e. gV ≡ 3
(mod 4). Then from Theorem 3.1.13 it follows that φ is spinorial.

On the other hand, if φ is spinorial then φ |An is spinorial. As a result, we have
kV /2 ≡ 0 (mod 2). Also gV ≡ 3 (mod 4). Therefore we calculate w2(φ) = ecup.
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Combining the last two results we obtain

Theorem 6.4.4.Let (φ, V ) be any representation of Sn. Then

w2(φ) =
[
gV
2

]
ecup + kV

2 w2(φn).
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7

Characterizing Spinorial Partitions

In general it is difficult to enumerate the irreducible spinorial representations of Sn. In
this chapter we characterize the spinorial partitions for some particular cases. The first
section of this chapter sets the stage by recalling some works of Michel Lassalle. In the
paper [15] he gives explicit formula for the characters of irreducible representations of
symmetric groups in terms of power sum symmetric polynomials with variables as the
contents of the associated partitions. Throughout the chapter we use the notation “v”
for v2(fλ).

7.1 Lassalle’s Character Formulas

Recall that the content of the (i, j)th cell in a Young diagram is given by (j − i). In
general for any positive integer m, we define

Cm(λ) =
∑

(i,j)∈Y(λ)
(j − i)m. (7.1)

Note that C1(λ) = C(λ), as defined in 2.2.5.
From [15] we obtain the expressions for character values in terms of contents. Take

the functions cλr (x) as defined in [15, Section 4.4, page 393]. Let s(p, i) denote the Stirling

79
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number of the first kind which counts the number of ways to permute a list of p numbers
in i cycles. Let for any positive integer m, (n)m denote the lowering factorial

(n)m = n(n− 1) · · · (n−m+ 1).

Theorem 7.1.1. [15, Theorem 4] For µ = (p, 1n−p) we have

(n)pχλ(µ) = fλ
∑
i≥2

s(p+ 1, i)cλi (p).

In particular for p = 2 (see [15, page 395]), we obtain

χλ(s1) = fλ(
n
2

)C(λ). (7.2)

Similarly putting p = q = 2,in Theorem [15, Theorem 5, page 396] we obtain

χλ(s1s3) = fλ

6
(
n
4

) · (C(λ)2 − 3C2(λ)− n+ n2). (7.3)

1 Using Equation (7.2) in the expression of gV in Equation (3.1) we deduce

gλ =
fλ ·

((
n
2

)
− C(λ)

)
2
(
n
2

) . (7.4)

From [15, Section 5, page 395], we also obtain

χλ(ζ4) = fλ

6
(
n
4

) · (C3(λ)− (2n− 3)C(λ)), (7.5)

where ζ4 denotes the cycle type (1, 2, 3, 4).
Using the value of χλ(ζ4) (as in Equation (7.5)) in Theorem 3.2.3 we obtain

hλ ≡
fλ ·

(
6
(
n
4

)
− (C3(λ)− (2n− 3)C(λ))

)
12
(
n
4

) (mod 2). (7.6)

1A list of these formulas is available at the site http://igm.univ-mlv.fr/~lassalle/resucarac.

http://igm.univ-mlv.fr/~lassalle/resucarac
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We use Equation (7.6) to count the number of irreducible spinorial partitions of Sn for
some particular cases. In general we have the character value for the representation Vλ
of Sn at a conjugacy class of a given cycle type.

Let ρ = (ρ1, . . . , ρr) be a partition with weight |ρ| ≤ n. Let M (r) denote the set of
upper triangular r × r matrices with non-negative integers, and 0 on the diagonal. For
any 1 ≤ i < j ≤ r, let εij ∈ {0, 2}, and define θij = 1 if εij = 0 and θij = ρiρj otherwise.

Theorem 7.1.2. [15, Theorem 6] For µ = (ρ1, ρ2, . . . , ρr, 1(n−|ρ|)) we have

(n)|ρ|χλ(µ) = fλ
∑

ε∈{0,2}r(r−1)/2

∑
(i1,i2,...,ir)∈Nr

Aεi1,i2,...,ir(ρ1, ρ2, . . . , ρr)
r∏

k=1
cλik(ρk), (7.7)

where

Aεi1,i2,...,ir(ρ1, ρ2, . . . , ρr) =
∑

a,b∈M(r)

 ∏
1≤i,j≤r

θij

(
aij + 1
bij + 1

)
ρi(−ρi)bij + ρ

bij+1
j

ρi + ρj


×

r∏
k=1

s

ρk + 1, ik +
∑
l<k

(alk + εlk)−
∑
l>k

(alk − blk)
 ,

and the convention that the sum on aij, bij is restricted to aij = bij = 0 when εij = 0.

In short for µ = (ρ1, ρ2, . . . , ρr, 1(n−|ρ|)), where |ρ| = ∑r
i=1 |ρi|, we have

(n)|ρ|χλ(µ) = fλ · Â(µ), (7.8)

where Â(µ) ∈ Z. For details we refer the reader to [15, Theorem 6].

7.2 Case of Achiral, Odd Partitions

Throughout this section we consider

n = ε+ 2k1 + · · ·+ 2kr , 0 < k1 < · · · < kr, ε ∈ {0, 1}. (7.9)

Theorem 6.3.2 ensures that for an achiral, spinorial irreducible representation Vλ of Sn,
we have w1(Vλ) = w2(Vλ) = 0. In fact from [19, Exercise 8.B, page 94] we conclude
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that wi(Vλ) = 0, for 1 ≤ i ≤ 3. Let µi = core2ki (λ). Since λ is odd the partition
µi = core2ki (λ) is also odd. As 2ki ≤ |µi| < 2ki+1, from 2.5.3 we obtain that there is a
unique hook Hki of size 2ki in µi for 1 ≤ i ≤ r. Let ci denote the foot node content (recall
Definition 2.2.5) of the hook of Hki .

Theorem 7.2.1.Let λ be an odd, achiral partition of n.

1. Suppose k1 ≥ 2 and k2 = k1 + 1. Then λ is spinorial if and only if c1 ≡ ε (mod 4)
and c2 ≡ ε (mod 2).

2. Suppose k1 ≥ 2 and k2 > k1 + 1. Then λ is spinorial if and only if c1 ≡ ε (mod 4).

3. Suppose k1 = 1 and k2 = 2. Then λ is spinorial if and only if c1 = ε and c2 ≡ 2 + ε

(mod 4).

4. Suppose k1 = 1 and k2 ≥ 3. Then λ is spinorial if and only if c1 = ε and either
c2 ≡ 2 + ε (mod 4) or c2 ≡ 1− ε (mod 4).

Proof. As λ is achiral, the first lifting condition requires gλ ≡ 0 (mod 4). Note that
v2
(
n
2

)
= k1 − 1. Since λ is odd, from Equation (7.4) we obtain an equivalent first lifting

condition as
v2

((
n

2

)
− C(λ)

)
≥ k1 + 2. (7.10)

We have 2kr ≤ n < 2kr+1. So from Proposition 2.5.3 it follows that there exist a
unique hook Hkr of length 2kr . Removing the rim-hook Rkr from Y(λ) we obtain the
partition µ2kr = core2kr (λ) such that |µ2kr | = ε + 2k1 + 2k2 + · · · + 2kr−1 . Following
Proposition 2.5.3 we conclude that µ2kr contains a unique hook of size 2kr−1 . In this way
we obtain that µ2ki contains a unique hook Hki of size 2ki , for 1 ≤ i ≤ r. Let Rki denote
the corresponding rim-hook. If ci denotes the content of the foot node of Rki then the
contents of the other nodes of the rim are ci + 1, ci + 2, . . . , ci + 2ki − 1. As a result we
obtain

C(Ri) = 2kici +
(

2ki
2

)
= 2kici + 2ki−1(2ki − 1).
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The union of all these rim-hooks Rki misses at most one cell with content 0. Therefore
we have C(λ) = ∑

i C(Ri). Note that C(Ri) ≡ 0 (mod 2ki−1). Therefore C(λ) ≡
C(core2k1+3)(λ) (mod 2k1+2).

We calculate

C(λ) ≡ 2k1c1 + 2k2c2 + 22k1−1 + 22k2−1 − (2k1−1 + 2k2−1 + 2k3−1) (mod 2k1+1). (7.11)

We have(
n

2

)
= (2k1−1 + 2k2−1 + · · ·+ 2kr−1)(2k1 + 2k2 + · · ·+ 2kr − 1 + 2ε)

≡ 22k1−1 + 22k2−1 − (2k1−1 + 2k2−1 + 2k3−1) + ε(2k1 + 2k2) (mod 2k1+1).

Altogether we have
(
n

2

)
− C(λ) ≡ 2k1(ε+ ε2k2−k1 − c1 − 2k2−k1c2) (mod 2k1+2).

Therefore the condition 7.10 requires

(ε+ ε2k2−k1 − c1 − 2k2−k1c2) ≡ 0 (mod 4). (7.12)

For ε = 0, the condition 7.12 holds for the following cases:

1. if k2 = k1 + 1 then one of the following should hold.

• c1 ≡ 0 (mod 4) and c2 is even,

• c1 ≡ 2 (mod 4) and c2 is odd.

2. if k2 ≥ k1 + 2, then we only require c1 ≡ 0 (mod 4).

For ε = 1, the condition 7.12 holds for the following cases:

1. if k2 = k1 + 1 then one of the following should hold.

• c1 ≡ 3 (mod 4) and c2 is even,

• c1 ≡ 1 (mod 4) and c2 is odd.
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2. if k2 ≥ k1 + 2, then we only require c1 ≡ 1 (mod 4).

Since λ is achiral the third lifting condition requires hλ ≡ 0 (mod 2). Recall that we
have the congruence equality

hλ ≡
fλ(6

(
n
4

)
− (C3(λ)− (2n− 3)C(λ)))

12
(
n
4

) (mod 2). (7.13)

Note that

v2

(
12
(
n

4

))
=

k1, for k1 > 1,

k2, for k1 = 1.

Therefore we require

v2

(
6
(
n

4

)
− C3(λ) + (2n− 3)C(λ)

)
≥

k1 + 1, for k1 > 1,

k2 + 1, for k1 = 1.

We first consider the case when k1 > 1. For a rim-hook Ri of length 2i we get

C3(Ri) =
2i−1∑
k=0

(ci − k)3

= 2ic3
i +

∑
k

3c2
i k +

∑
k

3cik2 +
∑
k

k3

= 2ic3
i + 22i−2(2i − 1)2 + ci2i−1(2i − 1)(2i+1 − 1) + 3c2

i 2i−1(2i − 1)

= 2ic3
i + 22i−2(2i − 1)2 + 2i−1(2i − 1)ci(2i+1 − 1 + 3ci).

Note that the term 2i−1(2i−1)ci(2i+1−1+3ci) is always even. Also v2(22i−2(2i−1)2) ≥ i,
for i > 1. Therefore we have C3(Ri) ≡ 0 (mod 2i). The union of the rim-hooks Rki misses
at most one cell with content 0. Therefore we obtain C3(λ) = ∑

i
C3(Ri). Observe that

C3(λ) ≡ C3(core2k1+1(λ)) (mod 2k1+1).

So we obtain

C3(λ) ≡ C3(Rk1) ≡ 2k1−1(2c3
1 + 2k1−1 + c1 − 3c2

1) (mod 2k1+1). (7.14)
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Also we have C(λ) ≡ 2k1−1(2c1 − 1 − 2k2−k1) (mod 2k1+1) and 2n ≡ 2ε (mod 2k1+1).
Therefore we obtain

(2n− 3)C(λ) ≡ 2k1−1(−2ε− 6c1 − 32k1 + 3 + 32k2−k1) (mod 2k1+1). (7.15)

We calculate

6
(
n

4

)
= n(n− 1)(n− 2)(n− 3)

4
= (2k1−1 + · · ·+ 2kr−1)(2k1 + · · ·+ 2kr − 1 + 2ε)

(2k1−1 + · · ·+ 2kr−1 − 1)(2k1 + · · ·+ 2kr − 3 + 2ε).

Therefore we obtain

6
(
n

4

)
≡ 2k1−1(3 · 2k1−1 − 3− 3 · 2k2−k1) (mod 2k1+1). (7.16)

Using the congruence relations in Equations (7.14), (7.15), 7.16 we deduce

6
(
n

4

)
− C3(λ) + (2n− 3)C(λ) ≡ 2k1−1(3 · 2k1−1 − 3− 3k2−k1 − 2c3

1 − 2k1−1 − c1 + 3c2
1)

+ 2k1−1(−2ε− 6c1 − 3 · 2k1 + 3 + 3 · 2k2−k1) (mod 2k1+1)

≡ 2k1−1(c1(3c1 − 7− 2c2
1)− 2ε) (mod 2k1+1).

So for hλ ≡ 0 (mod 2), we need

v2(c1(3c1 − 7− 2c2
1)− 2ε) ≥ 2. (7.17)

Here we write down all the possible cases where the conditions 7.12 and 7.17 hold.

1. Let ε = 0. Then for k2 = k1 + 1, we require c1 ≡ 0 (mod 4) and c2 is even. For
k2 > k1 + 1 the condition on c1 is sufficient.

2. Let ε = 0. Then for k2 = k1 + 1, we require c1 ≡ 1 (mod 4) and c2 is odd. For
k2 > k1 + 1 the condition on c1 is sufficient.

First consider the cases where k2 = k1 + 1. For ε = 0, the condition 7.17 holds if and
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only if c1 ≡ 0 (mod 4) and c2 is even. For ε = 1, the condition holds if and only if c1 ≡ 1
(mod 4) and c2 is odd. If k2 > k1 + 1, the conditions on c1 will suffice for both the cases.

Now we consider the case for k1 = 1. Recall that for this case we require

v2

(
6
(
n

4

)
− C3(λ) + (2n− 3)C(λ)

)
≥ k2 + 1. (7.18)

From similar calculation as above for k1 = 1, we obtain

6
(
n

4

)
− C3(λ) + (2n− 3)C(λ) ≡ 2k2−1(−2− 2ε+ c2 − 2c3

2 + 3c2
2)

+ 4c1ε+ 2ε− c1 − 2c3
1 − 3c2

1 (mod 2k2+1).

For ε = 0 from the first condition we get either c1 ≡ 0 (mod 4) or c1 ≡ 2 (mod 4). As
k1 = 1, the foot node content of a hook of size 2 is either 0 or 1. Therefore c1 = 0.
Putting ε = c1 = 0 the condition becomes v2(−2 + c2 − 2c3

2 + 3c2
2) ≥ 2. This holds if

and only if c2 ≡ 2 (mod 4) or c2 ≡ 1 (mod 4). Here we write down characterizations of
spinorial partitions for different cases.

1. If k2 = 2, then we require c1 = 0 and c2 ≡ 2 (mod 4).

2. If k3 ≥ 3, then we require c1 = 0 and c2 ≡ 2 (mod 4) or c2 ≡ 1 (mod 4).

Similarly for ε = 1, we obtain c1 = 1 and c2 ≡ 0 (mod 4) or c2 ≡ 3 (mod 4). Again we
list down all possible cases.

1. If k2 = 2, then we require c1 = 1 and c2 ≡ 3 (mod 4).

2. If k2 ≥ 3, then we require c1 = 1 and c2 ≡ 3 (mod 4) or c2 ≡ 0 (mod 4).

Corollary 7.2.2.Let λ is an odd, achiral partition of n. Then λ is spinorial if and only
if core2k2+1(λ) is spinorial.

The corollary follows directly from the previous theorem.
From Section 2.5 we obtain a nice description of odd partitions in terms of 2-core

towers. It will be nice if we can provide a description of odd, achiral, spinorial partitions
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in terms of 2-core towers. Here we state a conjecture based on some observations. For
an odd partition λ let xki denote the binary sequence of length ki denoting the position
of the unique non-zero cell in the ki-th row. We write ε = 1− ε.

Conjecture 7.2.3.Let λ be an odd, achiral partition of n such that core4(λ) = ∅.

1. Suppose k1 ≥ 2, and k2 = k1 + 1. Then λ is spinorial if and only if xk1 begins with
ε ε and xk2 begins with ε.

2. Suppose k1 ≥ 2, and k2 > k1 + 1. Then λ is spinorial if and only if xk1 begins with
ε ε.

We present some of the cases pictorially for better understanding. Consider an odd,
achiral, spinorial partition of n with core4(λ) = ∅. From 3rd row on wards the tower can
be divided into four sub towers with upper vertex αεδ, where ε, δ ∈ {0, 1}. If k1 ≥ 2 and
ε = 0, then the unique non-zero element in the k1-st row will lie in the sub tower with
upper vertex α11. This particular sub tower is labeled as green in the following figure.

α∅

α0 α1

α00 α01 α10 α11

... ... ... ...

. .

With the same restriction we obtain that the unique non-zero element in the k2-nd row
will lie in the sub tower with upper vertex α1, labeled as blue.

α∅

α0 α1

... ...

. .
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The number of odd partitions of n is given by A(n) = 2k1+···+kr . (see Section 2.5 for
reference.) Let s1(n) denote the number of irreducible, spinorial representations of Sn
with odd dimension and trivial determinant. Using the previous theorem we determine
s1(n) in the following result.

Theorem 7.2.4.For n ≥ 4, we have

s1(n) =


1
8A(n), for k2 = k1 + 1,
1
4A(n), for k2 ≥ k1 + 2, or r = 1.

Proof. Let λ be an odd, achiral and spinorial partition of n. Write µi = core2ki+1(λ).
Note that µi is an odd partition of ε + 2k1 + · · · + 2ki . We write n1 = ε + 2k1 + 2k2 and
n2 = n − n1 = 2k3 + · · · + 2kr . Since core2k1+1(µ2) = µ1, from Corollary 2.6.4 it follows
that µ2 is an achiral partition of n1. We first prove the result for µ2.

The Young diagram Y(µ2) contains two hooks H(ai, bi) of size 2ki , for i ∈ {1, 2}. Let
d2 denote the corner cell of the hooks H(a2, b2). Also let ci denote the foot node content
of H(ai, bi).

Take k1 ≥ 2. Note that µ1 is a partition of 2k1 + ε. The first lifting condition requires

c1 ≡ ε (mod 4). (7.19)

If ε = 0 we have µ1 = H(a1, b1) such that a + b + 1 = 2k1 and c1 = −b1. There are 2k1

possible odd hooks H(a1, b1), for 0 ≤ b1 ≤ 2k1 − 1. So there will be 2k1−2 possible hooks
satisfying c1 = −b1 ≡ 0 (mod 4).

If ε = 1, then we obtain µ1 is a partition of 2k1 + 1 of the form H+(a1, b1) = (a1 +
1, 2, 1(b1−1)). As 1 ≤ a1 ≤ 2k1 − 2, the set of foot-node contents of the hook H(a1, b1) of
length 2k1 is

S = {1,−1,−2, . . . ,−2k2 + 2,−2k1}.

So we have #{c1 | c1 ≡ x (mod 4)} = 2k1−2, where x = {0, 1, 2, 3}. Therefore there are
2k1−2 cases such that c1 ≡ 1 (mod 4).

The third lifting condition requires c2 ≡ ε (mod 2), if k2 = k1 + 1. The hand node
content of the hook H(a2, b2) is c2 + 2k2 − 1. From Lemma 2.6.1 it follows that for the
spinorial partitions the non zero cell in the k2-nd row of T2(λ) occupies the positions
whose binary representations start with 1− ε. So there are 2k2−1 possibilities. Altogether
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we obtain

s1(n1) =


1
8A(n1), for k2 = k1 + 1,
1
4A(n1), for k2 ≥ k1 + 2, or r = 1.

For k1 = 1, we have µ2 = core2k2+1(λ) is an odd partition of ε+ 2 + 2k2 . Then Y(µ2)
contains two hooks H(ai, bi) of size 2ki , for i ∈ {1, 2}.

If ε = 0, the first lifting condition requires c1 = 0. Therefore we have ν = core4(λ) =
(2). This gives

quo2(ν) = (∅, (1)). (7.20)

For the hook H(a2, b2) of size 2k2 we have

a2 + b2 + 1 = 2k2 . (7.21)

We record all the partitions µ2 which satisfy the conditions 7.20 and 7.21 for 0 ≤ a2 ≤
2k2 − 1. Since µ2 contains a unique hook of size 2k2 , we mention the corner cell and foot
node content of it.

1. If a2 = 0, then we obtain µ2 = (2, 1(2k2 )), so that d2 = (2, 1). Therefore we calculate
c2 = (1− (2k2 + 1)) = −2k2 .

2. If a2 = 1, then we obtain µ2 = (2, 2, 1(2k2−2)), so that d2 = (2, 1). Therefore we
calculate c2 = 1− 2k2 .

3. For 2 ≤ a2 ≤ 2k2 − 2, we obtain µ2 = (a2 + 1, 3, 1(b2−1)), so that d2 = (1, 1). As a
result we have c2 = (1− (b2 + 1)) = −b2.

4. For a2 = 2k2 − 1, we obtain µ2 = (2 + 2k2), so that d2 = (1, 3). As a result we have
c2 = 3− 1 = 2.

From Equation (7.21) we obtain b2 = 2k2−a2−1. Therefore we have the set of foot node
contents as

S = {−2k2 ,−2k2 + 1,−2k2 + 3,−2k2 + 4, . . . , 1, 2}.

Note that S does not contain the numbers 0 and −2k2 + 2. Since k2 ≥ 2 we conclude

#{c2 | c2 ≡ x (mod 4)} = 2k2−2,
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for x ∈ {0, 1, 2, 3}. Now the second lifting condition requires c2 ≡ 2 (mod 4), if k2 = 2.
So there are 2k2−2 possibilities. If k2 ≥ 3, we require c2 ≡ 2 (mod 4) or c2 ≡ 1 (mod 4).
Therefore there are 2k2−1 options.

For ε = 1, the first condition requires c1 = 1. Since core2(λ) = 1 we have

ν ′ = core4(λ) = (3). (7.22)

This gives quo2(ν ′) = ((1), ∅).
Again we record all the partitions which satisfy the conditions 7.21 and 7.22 for

0 ≤ a2 ≤ 2k2 − 1. Since µ2 contains a unique hook of size 2k2 , we mention its corner cell
and foot node content of it.

1. If a2 = 0, then we obtain µ2 = (3, 1(2k2 )), so that d2 = (1, 2). Therefore we obtain
c2 = (1− (2k2 + 1)) = −2k2 .

2. If a2 = 1, 2, then we obtain µ2 = (3, a2+1, 1(2k2−a2−1)), so that d2 = (1, 2). Therefore
we calculate c2 = 1− 2k2 , c2 = (1− (2k2 − 1)) = 2− 2k2 for a2 = 1, 2 respectively.

3. For 3 ≤ a2 ≤ 2k2 − 2, we obtain µ2 = (a2 + 1, 4, 1(b2−1)), so that d2 = (1, 1). As a
result we have c2 = (1− (b2 + 1)) = −b2.

4. For a2 = 2k2 − 1, we obtain µ2 = (3 + 2k2), so that d2 = (1, 4). As a result we have
c2 = 4− 1 = 3.

From Equation (7.21) we obtain b2 = 2k2−a2−1. Therefore the set of foot node contents
is

S1 = {−2k2 ,−2k2 + 1,−2k2 + 2,−2k2 + 4, . . . , 2, 1, 3}.

Note that S does not contain the numbers 0 and −2k2 + 3. Since k2 ≥ 2 we conclude

#{c2 | c2 ≡ x (mod 4)} = 2k2−2,

for x ∈ {0, 1, 2, 3}. Now the second lifting condition requires c2 ≡ 3 (mod 4), if k2 = 2.
So there are 2k2−2 possibilities. If k2 ≥ 3, we require c2 ≡ 3 (mod 4) or c2 ≡ 0 (mod 4).
Therefore there are 2k2−1 possibilities.

Therefore we obtain the number of odd, achiral, spinorial partitions of n1 as:
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s1(n1) =


1
8A(n1), for k2 = k1 + 1,
1
4A(n1), for k2 ≥ k1 + 2, or r = 1.

From Corollary 7.2.2 it follows that λ is spinorial if and only if µ2 is spinorial. Note that
the unique non-zero entry in the ki-th row of T2(λ),for i ≥ k3 can occur at any one of
the 2ki possible places. Therefore we have

s1(n) =


1
8A(n), for k2 = k1 + 1,
1
4A(n), for k2 ≥ k1 + 2, or r = 1.

Corollary 7.2.5.Let n ≥ 2 be a power of 2. Then an odd, achiral partition of n is
spinorial if and only if it is a hook of the form H(a, b) such that b ≡ 0 (mod 4).

The corollary follows directly from Theorem 7.2.1.

7.3 Case of Odd Partitions of 2k

The problem of enumerating the chiral odd spinorial partitions seems dif and only ificult
in general. In this and the following section we solve this problem in the special case
when n is of the form 2k + ε. When ε = 0, a partition of n is odd precisely when it is a
hook. For any integer n, we write Od(n) = n

2v2(n) .

Theorem 7.3.1. let n ≥ 8 be a power of 2. Then a partition of n is odd, chiral and
spinorial if and only if it is a hook of the form H(a, b) with a > b and b ≡ 3 (mod 4). In
particular the number of odd, chiral, spinorial partitions of n is n/8.

Proof. For a chiral partition λ the first lifting condition is gλ ≡ 3 (mod 4). An equivalent
condition is gλ + 1 ≡ 0 (mod 4). We calculate

gλ + 1 =
fλ
((

n
2

)
− C(λ)

)
+ 2

(
n
2

)
2
(
n
2

) .
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In terms of 2-adic valuation the first lifting condition requires

v2

(
fλ

((
n

2

)
− C(λ)

)
+ 2

(
n

2

))
≥ k + 2. (7.23)

The fact v = v2(fλ) = 0 ensures that λ is a hook of length 2k. Let us denote the hook
by H(a, b) = (a + 1, 1b), such that a + b + 1 = 2k.The foot node content of the hook is
−b. Then the contents of the others cells in the hook are −b+ 1,−b+ 2, . . . ,−b+ 2k− 1.
Adding all this up we obtain C(λ) = −2k · b+

(
n
2

)
. Also fλ =

(
a+b
b

)
. Using these values

we derive

fλ

((
n

2

)
− C(λ)

)
+ 2

(
n

2

)
=
(
a+ b

b

)
· 2k · b+ 2

(
n

2

)

=
(
a+ b

b

)
· 2k · b+ 2k(2k − 1)

= 2k
(

2k − 1 +
(
a+ b

b

)
· b
)
.

So we need to check whether v2(1 − b ·
(
a+b
b

)
) ≥ 2. This holds if and only if b

(
a+b
b

)
≡ 1

(mod 4). Note that the condition implies that b is odd. Since λ = H(a, b) we have
a + b = 2k − 1. So it follows that a is even. From Lemma 7.3.3 below we obtain
b
(
a+b
b

)
≡ b(−1)min(a,b) (mod 4). Therefore the first lifting condition requires

b(−1)min(a,b) ≡ 1 (mod 4). (7.24)

1. If a > b, the condition 7.24 becomes b(−1)b ≡ 1 (mod 4). Therefore we require

b ≡ 3 (mod 4) if a > b. (7.25)

In this case we have 1 ≤ b ≤ 2k−1 − 1. So there are 2k−3 possibilities for b.

2. If a < b, the condition 7.24 becomes b(−1)a ≡ 1 (mod 4). Therefore we require

b ≡ 1 (mod 4) if a < b. (7.26)

In this case we have 2k−1 + 1 ≤ b < 2k. So there are 2k−3 possibilities for b.
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The third lifting condition for an achiral partition λ is hλ ≡ 1 (mod 2). Here we use the
congruence equality of hλ.

hλ ≡
fλ(6

(
n
4

)
− (C3(λ)− (2n− 3)C(λ)))

12
(
n
4

) (mod 2).

For n = 2k, we have

12
(
n

4

)
= 2k(2k − 1)(2k−1 − 1)(2k − 3).

So for k ≥ 3, we have v2
(
12
(
n
4

))
= k. Since fλ is odd, for hλ odd we require

v2

(
6
(
n

4

)
− (C3(λ)− (2n− 3)C(λ))

)
= 1. (7.27)

For λ = H(a, b), we compute

C3(λ) = (−b)3 + (−b+ 1)3 + (−b+ 2)3 + · · ·+ (−b+ n− 1)3

= −b3 + (13 + 23 + · · ·+ (n− 1)3)− 3b(12 + 22 + · · ·+ (n− 1)2)

+ 3b2(1 + 2 + · · ·+ n− 1)

= −nb3 +
(
n(n− 1)

2

)2

− 3b
(
n(n− 1)(2n− 1)

6

)
+ 3b2n(n− 1)

2

= −nb3 + n4 + n2 − 2n3

4 − b

2 · (2n
3 − 3n2 + n) + 3

2 · b
2(n2 − n).

Since n = 2k, k ≥ 3 then we have

C3(λ) ≡ −nb3 − 1
2bn−

3
2b

2n (mod 2k+1). (7.28)

We compute

6
(
n

4

)
= 6 · n(n− 1)(n− 2)(n− 3)

24

= n(n− 1)(n− 2)(n− 3)
4

= n4 − 6n3 + 11n2 − 6n
4 .
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Since n = 2k, we conclude that

6
(
n

4

)
≡ −3

2n (mod 2k+1). (7.29)

Again we have

(2n− 3)C(λ) = (2n− 3) · (−nb+ 1
2 · (n

2 − n))

= −2n2b+ (n3 − n2) + 3nb− 3
2 · (n

2 − n),

which gives
(2n− 3)C(λ) ≡ 3nb+ 3

2n (mod 2k+1). (7.30)

Using Equations (7.28), (7.29), 7.30 we obtain

6
(
n

4

)
− (C3(λ)− (2n− 3)C(λ)) = −3

2n+ nb3 + 1
2bn+ 3

2b
2n+ 3nb+ 3

2n

= 7
2bn+ 3

2b
2n+ nb3

≡ n

2 · b(7 + 3b+ 2b2) (mod 2k+1).

Therefore the condition 7.27 holds if and only if

b(7 + 3b+ 2b2) ≡ 2 (mod 4). (7.31)

1. If a > b, the condition 7.25 holds if and only if b ≡ 3 (mod 4). For such b we obtain
b(7+3b+2b2) ≡ 2 (mod 4). So the condition 7.31 holds. As a result the partitions
λ = H(a, b), for a > b and b ≡ 3 (mod 4) are spinorial. In this case the foot node
content of H(a, b) is −b ≡ 1 (mod 4).

2. If a < b, the condition 7.25 holds if b ≡ 1 (mod 4). But then the condition 7.31
does not hold. So the partitions λ = H(a, b), for a < b and b ≡ 1 (mod 4) are
aspinorial. In this case the foot node content of H(a, b) is −b ≡ 3 (mod 4).

Therefore we arrive at the conclusion that an odd, chiral partition λ = H(a, b) is spinorial
if and only if

a > b and b ≡ 3 (mod 4).
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Note that the conditions a > b and a+ b+ 1 = 2k implies 1 ≤ b ≤ 2k−1 − 1. This gives

#{b | 1 ≤ b ≤ 2k−1 − 1, b ≡ 3 (mod 4)} = 2k−3.

So the number of odd, chiral, spinorial partitions of 2k, for k ≥ 3, is 2k−3.

Lemma 7.3.2.For n = 2k, where k ≥ 2, we have

Od(n!) ≡ 3 (mod 4).

Proof. Any odd number is congruent to 1 or −1 mod 4. Here we count the number of
odd numbers in n! which are −1 mod 4.

The odd numbers occurring in n! are

1, 3, 5, 7, . . . , 2k − 1.

So there are even number of terms which are −1 mod 4. (in fact there are 2k−2 of them).
Now consider the numbers with 2-valuation 1. The odd parts of them will be the numbers

1, 3, 5, . . . , 2k−1 − 1.

There are 2k−2 such numbers and 2k−3 of them are −1 mod 4.

Similarly in the cases with 2-valuation less than or equal to 2k−3, the product of
the odd parts are 1 mod 4. There are only two numbers with 2-valuation 2k−2, namely
2k−2, 3 · 2k−2. Then the product of there odd parts will be −1 mod 4. Finally, there is
one number with 2-valuation 2k−1 and one number with 2-valuation 2k. Hence the result
follows.

Lemma 7.3.3.If a+ b+ 1 = 2k, k ≥ 1, then
(
a+ b

b

)
≡ (−1)min(a,b) (mod 4). (7.32)
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Proof. For any number n of the form

n = 2k0 + 2k1 + · · ·+ 2kr , 0 ≤ k0 < k1 < · · · < kr,

we define bin(n) = {k0, k1, . . . , kr}. If a + b + 1 = 2k, then bin(a) ⊆ bin(2k − 1). So the
binomial coefficient

(
a+b
a

)
is odd. Without loss of generality we consider a > b. Therefore

we have 1 ≤ b ≤ 2k−1 − 1. Now we calculate(
a+ b

b

)
= (2k − 1)(2k − 2) · · · (2k − b)

1 · 2 · · · b

= 2k − 1
1 · 2

k − 2
2 · · · 2

k − b
b

.

We prove the claim for k ≥ 2 first. For any odd number d ≤ b,

2k − d
d
≡ −1 (mod 4).

For any even number e ≤ b write e = 2i ·e1, where e1 = Od(e) and i < k−1. If k− i = 1,
then e = 2k−1 · e1 ≥ 2k−1 which violates our assumption. So

2k − e
e

= 2k−i − e1

e1
≡ −1 (mod 4).

Since there are altogether b terms and a < b, we have
(
a+ b

b

)
≡ (−1)b (mod 4).

For k = 1, we have a = 1, b = 0. So the result follows.

Here is an interesting consequence of Lemma 7.3.3, although we don’t use it anywhere
else. For any n ≥ 1 we denote by A1(n) (resp. A3(n)) the number of partitions of n such
that fλ ≡ 1 (mod 4) (resp. fλ ≡ 3 (mod 4)).

Theorem 7.3.4.If n ≥ 2 is a power of 2, we have A1(n) = A3(n) = n/2.

Proof. The odd partitions of n, where n is a power of 2, are of the form H(a, b) =
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(a+ 1, 1b). So that a+ b+ 1 = 2k, for some k ≥ 1. From Lemma 7.3.3 we have

fH(a,b) =
(
a+ b

b

)
≡ (−1)min(a,b) (mod 4). (7.33)

When b < a, we obtain 0 ≤ b ≤ 2k−1 − 1. Now using 7.33 we deduce

fH(a,b) ≡

1, for b even,

−1, for b odd.

So for half of the cases fH(a,b) ≡ 1 (mod 4). On the other hand when a < b, we have
0 ≤ a ≤ 2k−1− 1. Similar argument shows that again for the half of the cases fH(a,b) ≡ 1
(mod 4). So the result follows.

7.4 Case of Odd Partitions of 2k + 1

Write H+(a, b), a, b > 0, to denote the partition (a + 1, 2, 1(b−1)) of 2k + 1, so that
a + b + 1 = 2k. Note that the relation shows that a and b are of dif and only iferent
parity.

Theorem 7.4.1.Let n be of the form 2k + 1, k ≥ 3. Then a partition of n is odd, chiral
and spinorial if and only if it is of the form H+(a, b) with b > a, b ≡ 0 (mod 4) and
v2(b) ≤ k − 2. In particular there are 2k−3 − 1 odd, chiral, spinorial partitions of n.

Proof. Let λ be an odd partition of 2k + 1. If λ is also chiral the first lifting condition
requires gλ ≡ 3 (mod 4). An equivalent condition is gλ + 1 ≡ 0 (mod 4). Therefore as
in Equation (7.23) we obtain the condition

v2

(
fλ

((
n

2

)
− C(λ)

)
+ 2

(
n

2

))
≥ k + 2. (7.34)

From Lemma 2.5.3 it follows that λ contains a unique hook of size 2k. Then the possible
forms of λ are

H+(a, b), for a, b > 0, (2k + 1), (1(2k+1)).
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Let λ be of the form H+(a, b), a, b > 0. For convenience in calculation we take the foot
node content of the unique hook of size 2k as c + 1, for c ∈ Z. Note that c + 1 = −b.
Then the contents of the other nodes in the corresponding rim-hook are c+ 2, . . . , c+ 2k.
Observe that the rim-hook only misses the cell (2, 2), which has content 0. Therefore we
calculate

C(λ) = 2kc+
(
n

2

)
. (7.35)

Then one calculates

fλ

((
n

2

)
− C(λ)

)
+ 2

(
n

2

)
= −fH+(a,b)2k · c+ 2k(2k + 1)

= 2k(2k + 1− fH+(a,b) · c).

Therefore the condition in Equation (7.34) boils down to v2(1 − fH+(a,b) · c) ≥ 2. This
holds if and only if c ·fH+(a,b) ≡ 1 (mod 4). Putting c = −(b+1) we obtain the condition
as

(b+ 1) · fH+(a,b) ≡ 3 (mod 4). (7.36)

The condition requires b to be even. We now consider dif and only iferent possibilities.
Note that a+ b+ 1 = 2k.

1. If b ≡ 2 (mod 4), then a ≡ 1 (mod 4). From Lemma 7.4.2 below we conclude

(b+ 1) · fH+(a,b) ≡

(−1)min(a,b)+1 (mod 4), for k ≥ 3,

(−1)min(a,b) (mod 4). for k = 2,

Here we have i = v2(b) = 1. Following the assumption in the theorem we ignore
the case for k = 2. Now for the condition 7.36 we require b < a.

2. If b ≡ 0 (mod 4), then a ≡ 3 (mod 4). Then from Lemma 7.4.2 below we obtain

(b+ 1) · fH+(a,b) ≡

(−1)min(a,b) (mod 4), for k ≥ i+ 2,

(−1)min(a,b)+1 (mod 4), for k = i+ 1,
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where i = v2(b) ≥ 2. For the condition 7.36 we need

a < b, for k ≥ i+ 2, (7.37)

b < a, for k = i+ 1. (7.38)

We have

hλ ≡
fλ(6

(
n
4

)
− (C3(λ)− (2n− 3)C(λ)))

12
(
n
4

) (mod 2).

For n = 2k, k ≥ 3, we obtain v2
(
12
(
n
4

))
= k. Since fλ is odd, for hλ to be odd we require

v2

(
6
(
n

4

)
− (C3(λ)− (2n− 3)C(λ))

)
= k. (7.39)

We calculate

C3(λ) =
2k∑
i=1

(c+ i)3

= 2kc3 + 22k−2(2k + 1)2 + 3c2 · 2k−1(2k + 1) + c2k−1(2k + 1)(2k+1 + 1)

= 2kc3 + 22k−2(2k + 1)2 + 2k−1(2k + 1)c(3c+ 1 + 2k+1).

As a result we obtain

C3(λ) ≡ 2k · c3 + 3c2 · 2k−1 + c · 2k−1 (mod 2k+1). (7.40)

Similarly we calculate C(λ) = 2kc+ 2k−1(2k + 1) ≡ 2kc+ 2k−1 (mod 2k+1). Therefore
we obtain

(2n− 3)C(λ) ≡ −2kc− 2k−1 (mod 2k+1). (7.41)

Also for k ≥ 3, we have

6
(

2k + 1
4

)
≡ 2k−1 (mod 2k+1). (7.42)
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Putting all the congruence relations in Equations (7.40), (7.41), (7.42) we derive

6
(
n

4

)
− (C3(λ)− (2n− 3)C(λ)) ≡ 2k−1 − 2k · c3 − 3c2 · 2k−1 − c · 2k−1 − 2k · c− 2k−1 (mod 2k+1)

≡ 2k−1
(
−2c3 − 3c2 − 3c

)
(mod 2k+1).

Therefore the condition 7.39 holds if (−2c3 − 3c2 − 3c) ≡ 2 (mod 4). Putting c = −(b+1)
we derive

−2c3 − 3c2 − 3c = 3(b+ 1) + 2(b+ 1)2 − 3(b+ 1)2

= 2 + 3b+ 3b2 + 2b3

= 2 + b(3 + 3b+ 2b2).

So for the condition 7.39 we require

b(3 + 3b+ 2b2) ≡ 0 (mod 4). (7.43)

From the first lifting condition we have b is even. Elementary calculation shows that the
condition 7.43 holds if and only if b ≡ 0 (mod 4). From 7.37 we obtain that if i = k− 1,
then we need b < a. Since 1 ≤ b ≤ 2k − 2, the only possibility for b is 2k−1. But then
a = 2k−2k−1−1 = 2k−1−1 < b. So for b = 2k−1, H+(a, b) is not spinorial. For i ≤ k−2,
we require a < b. So an odd, chiral partition λ of 2k + 1, k ≥ 3, of the form H+(a, b) is
spinorial if and only if

b ≡ 0 (mod 4) and a < b, i ≤ k − 2.

Since a+ b+ 1 = 2k, the conditions a < b and i ≤ k − 2 gives 2k−1 + 1 ≤ b ≤ 2k − 2. So
we have

#{b | 2k−1 + 1 ≤ b ≤ 2k − 2, b ≡ 0 (mod 4)} = 2k−3 − 1.

So there are 2k−3 − 1 odd, chiral, spinorial partitions of the form H+(a, b).
The other two possibilities for λ are (2k + 1) and (1(2k+1)). The partition

(2k + 1) corresponds to the trivial representation which is achiral. The partition (1(2k+1))
corresponds to the sign representation of Sn which is aspinorial (see Proposition 5.5.1).
Hence the result follows.
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Lemma 7.4.2.For k ≥ 2, a, b > 0, we have

fH+(a,b) ≡

(−1)min(a,b) (mod 4), for i ≤ k − 2,

(−1)min(a,b)+1 (mod 4), for i = k − 1,

where i = v2(a) if a is even, or i = v2(b) if b is even.

We illustrate the result with a couple of examples. Consider the partition H+(6, 1) =
(7, 2). Here a = 6 and b = 1. Since a is even, we have i = v2(6) = 1. Since a + b + 2 =
9 = 23 + 1, we have k = 3. So we have i = k − 2. Therefore from Theorem 7.4.2 we
obtain

fH+(6,1) ≡ (−1)min(6,1) ≡ −1 (mod 4).

Here we draw the Young diagram Y(7, 2) with each of its nodes filled by its hooklength.
8 7 5 4 3 2 1
2 1

Using hooklength formula (see Equation (2.1) for reference) we obtain f(7,2) = 27 ≡ 3
(mod 4). So it matches with the result in the theorem.

Next take the partition H+(3, 4) = (4, 2, 13). The Young diagram Y(4, 2, 13) looks
like as below.

8 4 2 1
5 1
3
2
1

Here the cells of the Young diagram are filled with their hooklengths. Here we have
i = v2(4) = 2. Since H+(3, 4) is a partition of 9, we have k = 3, so that i = k − 1.
Therefore from Theorem 7.4.2 we calculate

fH+(3,4) ≡ (−1)min(3,4)+1 ≡ 1 (mod 4).

From the hooklength formula we derive the same conclusion, i.e. f(4,2,13) = 189 ≡ 1
(mod 4).
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Now we prove the theorem.

Proof. If λ is an odd partition of 2k + 1 then from Lemma 2.5.3 it contains a unique
hook of length 2k. Therefore λ must be of the form H+(a, b) = (a + 1, 2, 1(b−1)), where
a+ b+ 1 = 2k. From the hooklength formula we calculate

fH+(a,b) = (a+ b+ 2)!
(a− 1)!(b− 1)!(a+ b+ 1)(a+ 1)(b+ 1)

= ab(a+ b+ 2)(a+ b)!
(a+ 1)(b+ 1)a!b!

= ab(2k + 1)
(a+ 1)(b+ 1)

(
a+ b

b

)
.

Here we consider dif and only iferent possible cases. We use the relation a+ b+ 1 = 2k,
repeatedly to draw conclusions.

1. If a ≡ 0 (mod 4), then b ≡ 3 (mod 4). Write a = 2i Od(a), where i ≥ 2. Putting
b+ 1 = 2k − a we calculate

fH+(a,b) = 2i ·Od(a)(2k − a− 1)(2k + 1)
(a+ 1) ·Od(2k − a)

(
a+ b

b

)

≡ Od(a)(−1)
(2k−i −Od(a))(−1)min(a,b) (mod 4).

Here we used the facts that a+ 1 ≡ 1 (mod 4). If k− i ≥ 2, then Od(a)
(2k−i−Od(a)) ≡ −1

(mod 4). If k − i = 1, then Od(a)
(2k−i−Od(a)) ≡ 1 (mod 4). This gives

fH+(a,b) ≡

(−1)min(a,b) (mod 4), for k − i ≥ 2,

(−1)min(a,b)+1 (mod 4), for k − i = 1.

2. If a ≡ 2 (mod 4), then b ≡ 1 (mod 4). Write a = 2 ·Od(a).

fH+(a,b) ≡
Od(a)

(−1)(2k−1 −Od(a))(−1)min(a,b) (mod 4).

Here we used the fact that a + 1 ≡ −1 (mod 4). If k − 1 ≥ 2, i.e k ≥ 3, then
Od(a)

(2k−1−Od(a)) ≡ −1 (mod 4). If k − 1 = 1, i.e. k = 2, then Od(a)
(2k−1−Od(a)) ≡ 1 (mod 4).

This gives
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fH+(a,b) ≡

(−1)min(a,b) (mod 4), for k ≥ 3,

(−1)min(a,b)+1 (mod 4), for k = 2.

3. If a ≡ 3 (mod 4), then b ≡ 0 (mod 4). Write b = 2i · Od(b), where i ≥ 2. Putting
a+ 1 = 2k − b we calculate

fH+(a,b) ≡
Od(b)(−1)

(2k−i −Od(b))(−1)min(a,b) (mod 4).

Here we used the facts that b+ 1 ≡ 1 (mod 4). If k− i ≥ 2, then Od(b)
(2k−i−Od(b)) ≡ −1

(mod 4). If k − i = 1, then Od(b)
(2k−i−Od(b)) ≡ 1 (mod 4). This gives

fH+(a,b) ≡

(−1)min(a,b) (mod 4), for k − i ≥ 2,

(−1)min(a,b)+1 (mod 4), for k − i = 1.

4. If a ≡ 1 (mod 4), then b ≡ 2 (mod 4). Taking b = 2 · Od(b) and a + 1 = 2k − b,
and following a similar argument as before we obtain

fH+(a,b) ≡

(−1)min(a,b) (mod 4), for k ≥ 3,

(−1)min(a,b)+1 (mod 4), for k = 2.
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As a summary of the counting results we present a Venn diagram showing the number
of odd, spinorial, chiral partitions of n = 2k + ε.

• The number of odd partitions of n is A(n) = 2k as obtained from [17].

• The total number of chiral partitions of n, b(n) can be obtained from the paper [3].

• From the same paper it follows that the number of odd, chiral partitions is A(n)/2 =
2k−1. As a result the number of odd, achiral partitions of n is A(n)/2 = 2k−1.

• The portion labeled as s1(n) denotes the set of odd, achiral, spinorial representa-
tions of n. From Section 7.2 we have s1(n) = 2k−2.

• The portion labeled as s2(n) denotes the set of odd, chiral, spinorial representations
of n. From Sections 7.3 and 7.4 we obtain s2(n) = 2k−3, if n = 2k and s2(n) =
2k−3 − 1, if n = 2k + 1.

• The portion labeled as s3(n) denotes the set of even, chiral, spinorial partitions of
n. The counting for this portion is not known.

• The portion labeled as s4(n) denotes the set of even, achiral, spinorial partitions of
n.The counting for this portion is not known.
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A(n)
2 −s2(n)

s3(n)

s1(n)

s2(n)

A(n)
2 −s1(n)

b(n)−A(n)
2 −s3(n)

s4(n)

Figure 7.1: Venn diagram showing the number of odd, chiral and spinorial partitions of
n = 2k + ε. The circle labeled in blue denotes the odd partitions of n. The circle labeled
in red denotes the chiral partitions of n, whereas the circle labeled in green denotes the
spinorial partitions of n.
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7.5 Case of Self-Conjugate Partitions

For a self-conjugate partition λ, fλ is even unless λ = (1). We write v = v2(fλ). Let
λ′ denote the conjugate of a partition λ. Then from [21, Theorem 4.4.2] we obtain
Vλ′ ∼= Vλ ⊗ ε. Consequently we have

χλ′(µ) = ε(µ)χλ(µ). (7.44)

Theorem 7.5.1.Let λ be a self-conjugate partition of n. If v ≥ 3 then λ is spinorial. If
v = 2 then λ is aspinorial.

Proof. Note that if µ denotes an odd cycle type then from Equation (7.44) we have
χλ(µ) = 0. This yields

χλ(s1) = χλ(ζ4) = 0. (7.45)

From lemma 3.1.12 we obtain χλ(s1s3) ≡ fλ (mod 4). Putting these values in Theorem
3.2.3 and Equation (3.1), we deduce

gλ = fλ/2 and hλ ≡ fλ/2 (mod 2). (7.46)

For a partition λ if v ≥ 3 then from 3.1.7 we conclude that λ is always achiral and
spinorial. But if v = 2, then λ is achiral and aspinorial as gλ ≡ 2 (mod 4).

Recall from Section 2.4 that the hook with the corner cell (i, j) in Y(λ) is denoted by
H(i,j). We write |H(i,j)| = h(i,j).

Lemma 7.5.2.Let λ be a self-conjugate partition of 2k + ε. Suppose Y(λ) contains two
hooks of size 2k−1, Ha and Hb, where a, b denotes the corner cells of the hooks. Then a

and b occupy the positions (1, 2) and (2, 1).

Proof. Let (i, j) and (i′, j′) denote two nodes in Y(λ), such that (i, j) < (i′, j′) with
respect to lexicographic order, i.e, either i < i′, or if i = i′, then j < j′. Then it is easy
to check that h(i,j) > h(i′,j′). Neither a nor b occupy the (1, 1)th position. This is because
if a occurs in the (1, 1)-th cell then a < b with respect to the lexicographic order. So
we obtain ha > hb, which is a contradiction. Suppose a does not occupy either of the
positions (1, 2) or (2, 1). Then we have h1,2 ≥ ha + 1. Since λ is self-conjugate we have
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h2,1 ≥ ha+1. Note that H1,2 and H2,1 intersect in exactly one cell (2, 2). Also H1,2∪H2,1

does not contain the (1, 1)th cell. Then we have

|λ| ≥ h1,2 + h2,1 − 1 + 1 ≥ 2ha + 2 = 2k + 2,

which can’t be true. As a result a occupies one of the positions (1, 2) or (2, 1). The fact
h(1,2) = h(2,1) ensures that b occupies the other position.

Theorem 7.5.3.Let λ be a self-conjugate partition with v = 1. Then λ is spinorial if
and only if λ = H(2k−1, 2k−1), for some k ≥ 2.

Proof. If λ = H(2k−1, 2k−1) then from the hook-length formula we calculate

fλ = (2k + 1)!
(2k + 1) · (2k−1)! · (2k−1)! = 2k!

(2k−1!)2 .

The fact v = 1 ensures that gλ = fλ/2 is odd. Note that Od((2k−1!)2) ≡ 1 (mod 4).
From Theorem 7.3.2 we conclude that gλ ≡ 3 (mod 4) for k ≥ 2. Hence λ is spinorial.

For the converse take λ to be spinorial. If v = 1 then from 7.46 we have both hλ and
gλ are odd. From 3.1.7 it follows that λ is spinorial if and only if gλ ≡ 3 (mod 4). Since
λ is chiral, from Theorem 2.6.5 we conclude that n = 3, or n = 2k + ε for some k ≥ 2
and ε ∈ {0, 1}. Following [3, Theorem 5], we obtain the 2-core tower of λ as

wi(λ) =


2 if i = k − 1,

1 if i = 0 and ε = 1,

0 otherwise.

Thus λ contains two hooks Ha and Hb of length 2k−1, where a and b denote the corner
cells of the hooks. Lemma 7.5.2 ensures that a and b occupy the positions (1, 2) and
(2, 1). Also Ha and Hb intersect at most at one cell (2, 2). Since (1, 1) /∈ Ha ∪ Hb, we
conclude that

|{(Ha ∪Hb) ∪ (1, 1)}| ≥ 2k − 1 + 1 = 2k.

If n = 2k + 1, then at most one cell, namely (3, 3), remains out of this set. Consequently
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there can be at most three diagonal cells in Y(λ). Following the discussions in the section
4.2.2 we obtain a partition µ ∈ DOP such that θ(µ) = λ. Since λ ` 2k is obtained from
µ by folding (see [21, lemma 4.6.16]) we conclude that the parts of µ denote the hook
lengths of the diagonal cells of Y(λ). Therefore µ have at most three parts. Here we list
down dif and only iferent possibilities.

1. If the two hooks Ha and Hb intersect in the cell (2, 2), then we have either µ =
(2x+ 1, 2y + 1, 1) or µ = (2x+ 1).

2. If the two hooks Ha and Hb do not intersect, then we obtain µ = (2k+1). In this
case we have λ = (2k−1 + 1, 1(2k−1)).

Let hi,j denote the hook-length of the (i, j)-th node in Y(λ). Since λ is self-conjugate we
have hi,j = hj,i, for i 6= j. Therefore we obtain Od(hi,j · hj,i) = Od((hi,j)2) ≡ 1 (mod 4).
If Hλ denote product of all hook lengths of Y(λ), then we have

Od(Hλ) ≡
∏

x∈D(Y(λ))
hx (mod 4), (7.47)

where D(Y(λ)) denotes the diagonal cells in Y(λ). As v = 1, from Equation (7.46) we
obtain

gλ = Od(n!)
Od(Hλ)

. (7.48)

Using Lemma 7.3.2 and 7.46 we deduce that the condition gλ ≡ 3 (mod ) holds if and
only if

Od(Hλ) ≡ 1 (mod 4) (7.49)

Now we study dif and only iferent cases one by one.

• Let the two hooks Ha and Hb intersect in the cell (2, 2) and µ = (2x+ 1, 2y+ 1, 1).
Since |µ| is odd, it must be a partition of 2k + 1. The Young diagram Y(λ) for
the corresponding partition λ will contain three diagonal nodes, namely (i, i) for
1 ≤ i ≤ 3. Since 2x+ 1 and 2y+ 1 denote the hook-lengths of the (1, 1)-th and the
(2, 2)-th nodes in Y(λ) respectively. We have

|H(1,1) ∪H(2,2)| = 2x+ 1 + 2y + 1 = 2k.
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Note that the set H(1,1) ∪H(2,2) misses only one node in Y(λ), namely (3, 3). Since
k ≥ 2 the condition on x, y becomes 2x+ 2y + 2 ≡ 0 (mod 4). In other words

x+ y + 1 ≡ 0 (mod 2). (7.50)

Note that the condition 7.50 holds if and only if x and y are of dif and only iferent
parity. Without loss of generality we assume that x is even and y is odd. Take
x = 2p and y = 2q + 1. Then the possible hook-lengths of the diagonal nodes are
4p+ 1, 4q + 3, and 1. From Equation (7.47) we deduce that

Od(Hλ) ≡ (4p+ 1) · (4q + 3) · 1 ≡ 3 (mod 4).

Therefore in this case the condition 7.49 does not hold.

• Let the two hooks Ha and Hb intersect in the cell (2, 2) and µ = (2x+ 1, 1). Note
that in this case µ is a partition of 2k. So we have 2x + 1 + 1 = 2k. Since k ≥ 2,
we conclude 2x + 1 ≡ 3 (mod 4). The Young diagram Y(λ) for the corresponding
partition λ will contain two diagonal nodes, namely (i, i) for 1 ≤ i ≤ 2. Note that
the hook-lengths of the two diagonal nodes are 2x+1 and 1. From Equation (7.47)
we deduce that

Od(Hλ) ≡ (2x+ 1) · 1 ≡ 3 (mod 4).

So in this case the condition 7.49 does not hold.

Therefore we conclude that the two hooks Ha and Hb do not intersect and µ = (2k + 1).
So the corresponding partition λ is a hook of the form (2k−1 + 1, 1(2k−1)).
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Asymptotic Results

This chapter investigates the asymptotic nature of the number of irreducible spinorial
partitions of n. It turns out that the growth of the number of irreducible aspinorial
partitions of n is much slower than that of the partition function. We prove similar
result for irreducible spinorial representations of An. Finally we show that the character
values of the irreducible representations of the symmetric groups are mostly divisible by
high powers of 2. Throughout this chapter we assume

n = ε+ 2k1 + · · ·+ 2kr , 0 < k1 < ... < kr, ε ∈ {0, 1}.

We also write v = v2(fλ).

Theorem 8.0.1.For any fixed non-negative integer m,

lim
n→∞

#{λ ` n | v ≤ kr +m}
p(n) = 0.

Proof. Note that
r ≤ kr ≤ log2 n < kr + 1. (8.1)

Recall from Section 2.4 that the total number of cells of partitions in T2(λ) is w =
v + ν(n). For v ≤ m+ kr we obtain

w ≤ m+ kr + r + ε ≤ m+ 2 log2 n+ ε.
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Since n < 2kr+1, the nodes of T2(λ) after the kr-th row will remain unoccupied. If N
denotes the total number of nodes up to the kr-th row, then

N = 1 + 2 + 22 + · · ·+ 2kr = 2kr+1 − 1.

Then using Inequality 8.1 we obtain

N = 2kr+1 − 1 ≤ 2log2 n+1 = 2n.

There are
(
w+N−1
N−1

)
many ways to distribute w cells in N nodes. Note that for a fixed

number of cells assigned to a node there can be at most one 2-core with that many
cells. This follows from the fact that any 2-core partition is a staircase partition. (See
Proposition 2.4.1). The total number of partitions with v ≤ m+ kr is bounded above by
the quantity

m+kr∑
v=0

(
v + r + ε+N − 1

N − 1

)
. (8.2)

For v ≤ m+ kr, we deduce
(
v + r + ε+N − 1

N − 1

)
≤
(
m+ kr + r + ε+N − 1

N − 1

)
=
(
m+ kr + r + ε+N − 1

m+ kr + r + ε

)
.

Also note that (
m+ kr + r + ε+N − 1

m+ kr + r + ε

)
≤
(
m+ kr + r +N

m+ kr + r + 1

)
.

Putting these bounds in the expression in Equation (8.2), we obtain

(m+ log2 n+ 1)
(
m+ kr + r +N

m+ kr + r + 1

)
. (8.3)

Now,
(
m+ r + kr +N

m+ kr + r + 1

)
= (m+ r + kr +N) · (m+ r + kr +N − 1) · · ·N

(m+ kr + r + 1)!
≤ (kr + r +m+N) · · ·N

≤ (kr + r +m+N)kr+r+m+1

≤ (2 log2 n+m+ 2n)2 log2 n+m+1 (Use Inequality 8.1).
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This gives an upper bound for the expression in Equation (8.2) as:

(m+ log2 n+ 1)
(
m+ kr + r +N

m+ kr + r + 1

)
≤ (m+ log2 n+ 1)(2 log2 n+m+ 2n)2 log2 n+m+1

≤ (2 log2 n+m+ 2n)2 log2 n+m+2.

The last inequality follows from the fact that (m+ log2 n+ 1) ≤ (2 log2 n+m+ 2n). We
write

(2 log2 n+m+ 2n)2 log2 n+m+2 = exp ((2 log2 n+m+ 2) log(2 log2 n+m+ 2n)) . (8.4)

So we have

#{λ ` n | v ≤ kr +m} ≤ exp ((2 log2 n+m+ 2) log(2 log2 n+m+ 2n)) .

According to Hardy-Ramanujan [10], as n→∞,

p(n) ∼ 1
4n
√

3
exp

π
√

2n
3

 .
Certainly the theorem follows from this.

Recall that a partition λ is spinorial when the associated irreducible representation
Vλ is spinorial.

Theorem 8.0.2.We have

lim
n→∞

#{λ ` n | λ is spinorial}
p(n) = 1.

Proof. Following Equation (7.2) we compute

v2(χλ(s1)) = v + v2(C(λ))− (k1 − 1). (8.5)

As a result if v ≥ k1 + 2 then we obtain χλ(s1) ≡ 0 (mod 8). Similarly Equation (7.3)
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gives

v2(χλ(s1s3)) = v + v2(C(λ)2 − 3C2(λ)− n+ n2)− v2

(
6
(
n

4

))
. (8.6)

Recall that

v2

(
6
(
n

4

))
=

k1 − 1, for k1 > 1,

k2 − 1, for k1 = 1.

From Equation (8.6) it follows that if v ≥ k2 + 2, then

χλ(s1) ≡ χλ(s1s3) ≡ 0 (mod 8).

Since k2 ≤ kr, putting m = 2 in Theorem 8.0.1 we conclude

lim
n→∞

#{λ ` n | v ≤ k2 + 2}
p(n) = 0.

This shows that for most of the partitions

χλ(s1) ≡ χλ(s1s3) ≡ 0 (mod 8).

Therefore using Corollary 3.1.9 we obtain the required result.

Remark 8.0.3.Theorem 8.0.1 suggests that most of the irreducible partitions Vλ are even
dimensional. The fact that for most of the partitions χλ(s1) ≡ 0 (mod 8) implies that
most of the irreducible representations of Sn are achiral. These two observations can be
also found in [3, Section 5]. Altogether with Theorem 8.0.2 we obtain that most of the
irreducible representations of Sn are even dimensional, achiral and spinorial.
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Figure 8.1: A log 2 scale plot showing the number of aspinirial partitions c(n) vs. the
number of odd partitions a(n) for 4 ≤ n ≤ 50.

Here is a log2 scale plot showing the number of aspinorial partitions c(n), drawn in
blue and the number of odd partitions a(n), drawn in orange. The figure shows that
c(n) follows a similar pattern as a(n) which illustrates our conclusion that aspinorial
partitions are rare.

Theorem 8.0.4.We have

lim
n→∞

#{Irreducible spinorial representations ofAn}
#{Irreducible representations ofAn}

= 1.

Proof. We know that if λ is not self-conjugate then Vλ |An is an irreducible representation
of An. On the other hand if λ is self-conjugate then Vλ |An decomposes as a sum of two
irreducible representations V ±λ . Let s(n) denote the number of self-conjugate partitions
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of n. Then we obtain

#{Irreducible spinorial representations ofAn} = #{λ ∈ p(n) \ s(n) : Vλ |An is spinorial}

+ 2#{λ ∈ s(n) : V ±λ is spinorial}.

Let us denote a(n) = #{Irreducible representations ofAn}. Using [21, Theorem 4.6.7]
one calculates a(n) = 2s(n) + (p(n) − s(n))/2. Simplifying the expression we obtain
a(n) = (3s(n) + p(n))/2. From [28, section 5.1] we obtain

s(n)
p(n) ∼ (6n)1/4e−

c
√
n

2 as n→∞,

where c = 2
√
π2/6. Therefore we conclude

lim
n→∞

#{λ ∈ s(n) | V ±λ is spinorial}
a(n) = 0.

Note that if Vλ is a spinorial representation of Sn then Vn |An is a spinorial representation
of An. So from Theorem 8.0.2 it follows that

lim
n→∞

#{λ ∈ p(n) \ s(n) : Vλ |An is spinorial}
a(n) = 1.

Using the same line of argument we prove that the character values of the irreducible
representations of the symmetric groups are mostly divisible by high powers of 2. For
a partition µ such that |µ| ≤ n we obtain a partition (µ, 1n−|µ|) of n. For example if
µ = (3, 2) and n = 7, we have the partition (3, 2, 1, 1) of 7.

Theorem 8.0.5.For a fixed partition µ and a positive integer b we have

lim
n→∞

#{λ ` n | χλ(µ, 1(n−|µ|)) ≡ 0 (mod 2b)}
p(n) = 1.

Proof. From Equation (7.8) we obtain

v2(χλ(µ)) = v2(fλ) + v2(Â(µ))− v2((n)|ρ|), (8.7)
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where (n)|ρ| = n(n− 1) · · · (n− |ρ| + 1). Note that (n)|ρ| = |ρ|!
(
n
|ρ|

)
. Recall that for any

integers n, a, where a ≤ n, we have

• v2(n!) = n− ν(n).

• v2
(
n
a

)
= ν(a) + ν(n− a)− ν(n).

Here ν(n) denotes the number of 1’s appearing in the binary expansion of n. Then we
calculate

v2((n)|ρ|) = v2

(
|ρ|!

(
n

|ρ|

))

= v2(|ρ|!) + v2

((
n

|ρ|

))
= |ρ| − ν(|ρ|) + ν(|ρ|) + ν(n− |ρ|)− ν(n)

= |ρ|+ ν(n− |ρ|)− ν(n)

≤ |ρ|+ kr.

Using this inequality in Equation (8.7) we obtain

v2(χλ(µ, 1(n−|µ|))) ≥ v2(fλ) + v2(Â(µ))− (|ρ|+ kr).

So if v = v2(fλ) ≥ |ρ| + kr + b, then v2(χλ(µ, 1(n−|µ|))) ≥ b. Now taking m ≥ |ρ| + b in
Theorem 8.0.1 to obtain

lim
n→∞

#{λ ` n | v ≤ kr + |ρ|+ b}
p(n) = 0.

Hence the result follows.
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