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Abstract 

Of key importance among natural behaviours are territorial chases in which insects 

guard and defend home territories by chasing away aerial interlopers. Such territorial 

behaviours allow insects to secure mates and are hence important for both the 

survival and evolution of insects. To carry out these complex aerobatic manoeuvres 

requires the nervous system of the chasing fly to rapidly sense and respond to an 

interloper. Assays for territorial chases in a laboratory environment hence offer an 

exciting means to experimentally study various questions about sensorimotor 

integration in flying insects. In this project, we have designed assays for territorial 

chases between house flies (Musca domestica), and filmed them using high-speed 

cameras. With this assay, we tried to understand the role of mechanosensory input 

from the halteres. Using multiple, synchronized cameras, we obtain 3D coordinates 

of the head and abdomen of the territorial defender and the interloper.  We 

compared ethograms to gain qualitative insight in the flight defects of flies with their 

halteres intact and either haltere ablated. Though, we have their flight trajectories, 

but we are yet to quantify the defects in flight trajectories when they move in three 

dimensions.  
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1. Introduction: 

Insects have inhabited earth for about 400 million years, and since its primitive form 

has continuously adapted to win the battle of survival. They were the first organisms 

to evolve flight, and have dominated the aerial territory with marvellous flight 

manoeuvres (Dudley, 2002). When flying, they exhibit diverse flight behaviours such 

as hovering, rapid saccades and object tracking which requires them to flap their 

wings at high frequencies, acquire and process sensory inputs and respond to 

environmental changes at a high rate (Land 1993; Dudley, 2002). 

Insects need to defend their territory, alone or in groups (as a colony), for them to 

secure mates and forage. Many flying insects chase and catch aerial interlopers to 

defend territory and secure mates. Such chases also help them determine the 

gender of the interloper (Baker, 1983). Territorial chases have caught the fancy of 

biologists and physicists as the flies perform fantastic aerial manoeuvres, track their 

target and control speed and direction in accordance to the target (Land and 

Collett,1974; Wehrhahn, 1979; Wagner, 1980). Chases are primarily guided by 

visual inputs (Land and Collett, 1975), and processed by their nervous system which 

generates complex motor responses to allow the flies to catch mates and ward off 

interlopers. In many Dipteran flies, males are usually more territorial than females, 

and tend to find favourable posts/locations from where they ward off other males and 

pursue females. 

An insect‟s body is primarily divided in three segments: head, thorax and abdomen. 

The wings and legs originate from the thorax. In case of Dipteran flies, the hindwings 

have been modified into dumbbell shaped appendages called halteres. The halteres 

are believed to function as vibrational gyroscopes (Pflugstaedt, 1912; Fraenkel, 

1938; Pringle, 1948). Arranged around halteres base is fields of mechanosensory 

organs called campaniform sensillae.  

Haltere function: 

Haltere moves anti phase to the wings, and tends to preserve its angular 

momentum. While turning, the haltere experiences a Coriolis force perpendicular to 

the plane of vibration of the halteres. This force acts mainly on the knob, which 

makes up for the major mass of the haltere. The force‟s amplitude is proportional to 



8 
 

the vector product of the haltere‟s 

linear velocity and the fly‟s angular 

velocity. Thus haltere can sense 

angular velocity. The oblique 

positioning of the haltere helps it 

encode the forces in all three axis of 

rotation. 

The force experienced by the knob of 

the haltere, which can be assumed 

that they have the center of mass, 

passes the strain along the stock 

which is later experienced by the strain 

sensors at the base of haltere called 

companiform sensillae. The neural 

pathway of how the signal from the 

mechanosensors is encoded is poorly 

understood. 

 

In this project, we have tried to understand the role and functioning of the haltere in 

free flight though a fly‟s chasing behaviour. Ethograms were generated to note the 

differences between normal flies and flies with ablated halters in performance of the 

aerial manoeuvres (Hengstenberg, R., 1999; Nalbach, G., 1993; Nalbach, G., 1994). 

This study is divided in two major parts: 

1. First, we standardise the technique for recording the chases between two or 

more Musca domestica in a lab environment, and their 3D reconstruction. 

This work draws on results and techniques of studies involving the 2D 

reconstruction of chases (Land and Collett,1974) and 3D free flight tracking 

(Hedrick, 2008). 

2. Second, we use the above setup to study the role of haltere in free flight, in 

this case, territorial chase. For this we ablated the bulbous end of either left of 

right haltere, and studied its effect on flight. 

 

Fig 1) Dipteran Caliphora (Blow fly), and below it is the left 

haltere. Marked are the sensory fields. 
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The Dipteran house fly (Musca domestica) occurs in many parts of the world, and 

typically prefers hot and humid conditions (Hewitt, 1914).  It is easily available and 

displays robust territorial behaviour. These territorial behaviours are confined to 

small volumes and hence can be reconstructed in the laboratory. This makes it a 

good model system to study chases, and further, the role of halteres in free flight. 
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2. Material and Methods 

2.1 Preparation and treatment: 

Several variables like the temperature, time of day, luminosity, chase arena, 

presence of females, food, anesthetisation process etc were explored for their effect 

on chases in a controlled environment. We standardized a set of these variables (as 

discussed later in the experimental protocol standardisation in Appendix 1). 

Final protocol: 

The study was performed on a batch of 40 male Musca domestica which were 

introduced in a 45 cm X 45 cm X 48 cm box (Wehrhahn, 1982), placed in a green 

house. The flies were caught from the wild, and cold anesthetised (6°C for 4 

minutes). They were then placed on a cold metal slab (to maintain anaesthesia) 

under a microscope (10X zoom) for gender and species identification. Haltere 

ablation was also carried out during this time for the treatment group. The same 

batch of flies was filmed for chases 2 days after introduction in the box. The chases 

were filmed between 10 AM and 3 PM. 

The box was illuminated by the diffused natural light of the greenhouse (luminosity 

ranging from 10000 – 24000 Lux; depending on the weather) on NCBS campus. The 

ambient temperature ranged between 24 to 30 °C, and humidity about 70 percent. 

The box was supplied with 2 food plates (35 mm petridish with sugar) and water (60 

mm petridish with tissue paper soaked in water). 

The box was made of Plexiglas, with two opposite sides of the box covered with 

random chequer-board pattern to provide an optically rich environment. One of the 4 

sides and the roof of the box were left transparent to allow filming, and the sides 

opposite to the transparent ones were covered with white paper to ensure a good 

contrast in the recorded videos. Cylindrical posts of height 8 cm and varying 

diameter (1 cm to 5 cm) were placed inside to provide landmarks to defend. 

The chases were filmed using two Phantom V7.3 cameras (at 1000 frames per 

second and exposure varying from 100-200 µs depending on light conditions) fitted 

with 18-55mm Nikon lens. The cameras were controlled via a software “Phantom 

Camera controller” for camera control and capture. The cameras were placed 
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approximately orthogonal to each other, to give appropriate depth for 3D 

reconstruction of the chase. The camera setup and its respective views are shown in 

the Figure 2. 

 

 

 

 

 

2.2 Digitization: 

The videos were analysed by a specialised MATLAB code developed by Dr. Tyson 

Hedrick lab for 3D/2D points for each frames (Hedrick, 2008). This code does a 3D 

mapping using direct linear transformation. The code requires a calibration object 

(Figure 3), calibration specification file, calibration image file (for each video), and 

synchronized video from the two cameras. The calibration objecthad16 iron rods (8 

cm long and 4 mm diameter) embedded at a gap of 2 cm (center to center distance) 

in a plexiglas plate. These rods were covered with a sheet of paper marked with 

48 cm 

45 cm 

45 cm 

Camera 1 

Camera 2 

Fig 2.A) Cartoon showing the camera 
and the box and arena design, and 
setup. The two cameras are placed 
approximately orthogonal to each 
other. B) Shows the view from camera 
2. C) Shows the view from Camera 1 

A

. 

B

.. 

C. 
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black and white bands printed at a 2 cm distance for contrast for marking points. The 

calibration object chosen should be in accordance to size and detail of the space to 

be calibrated. 

For camera calibration, at the end of each experiment, the calibration object was 

placed in the field of view of the cameras and synchronised images of the calibration 

object were taken from each view. These images were fed into the code, and 

minimum of six corresponding non coplanar points were marked on the calibration 

object in each camera view which gave the DLTcal file. The DLTcal and videos were 

fed in the DLTdv code which gave the X, Y, Z coordinates of the point of interest, in 

this case head and tail of both leading and chasing fly. 

  

Fig 3.A) The image of the calibration object from the front camera view (camera 1 in Fig 
2.1.A), and the top view (B) (Camera 2 in Fig 2.1.A). The figure also shows the 
corresponding points for calibration.  

 

 

A

. 

B

. 
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Fig 4) A) View from the over head 
camera digitised, with head and tail 
points. B) View from the front camera 
digitised, head and tail points. Blue 
arrow is for the leading fly and red for 
the chasing fly C) DLTdv5, GUI of the 
MATLAB based software, used for 
digitising. 

B

. 

A

. 

C 
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2.3 Treatment: 

Dipteran hind wings are modified into a club 

shaped appendage called halteres, which are 

known to be gyroscopic mechanosensory 

organs that provide feedback for flight 

stability. In the experimental group of flies, 

either left or right haltere knob, for all flies, 

were cut using surgical scissors. (Figure 5) 

 

 

2.4 Analysis: 

We analysed the data using MATLAB (R2009a) codes. The head and tail points of 

the leading and chasing flies were tracked for the entire chase. In the typical case, 

the video included 30 frames before the chasing fly takes off and ended when the 

chase was completed. Though, the end of the chase is not clear. 

Parameters extracted from the head and tail points: 

1. Body vector: Vector pointing from tail towards the head of the fly, calculated 

from the head and tail points. 

2. Body axis angular velocity: The angle between consecutive body vectors 

divided by the time interval (in this case 1 ms). 

3. Trajectory vector: The midpoint of the fly is the midpoint of the head and tail 

points. If we join the midpoint of the fly for each frame, we get the trajectory of 

the fly. We use this trajectory to compare the body axis motion when in flight, 

and the forward velocity of the fly. The rate of change of angle between 

consecutive trajectory vectors (vector joining two consecutive midpoints) gives 

us the angular velocity of the trajectory of the fly. 

4. Target vector: This is the vector joining the midpoint of the leading and the 

chasing fly, with the vector pointing in the direction of the leading fly. The 

magnitude of the vector is the measure of the distance between the flies. 

5. Body axis angle, β: Angle between body axis of consecutive frames of F1/F2. 

 

Fig 5) Diagram showing the treatment 
procedure; cutting the bulbous end of 
the haltere. 
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6. Error angle, Ø: Angle between the body axis of F and the vector joining 

midpoint of F1 and F2 

7. Body axis angle, α: Angle between heading vector (body axis) and path vector 

(trajectory) of either fly 

8. Trajectory error angle, ʌ: The angle between the heading axis (the trajectory) 

and the line joining the midpoints 

  

 
 

Fig 6) F1 is the chasing fly, dotted red line is the trajectory of the chasing fly. F2 is 
the leading fly; the dotted blue line is the trajectory of the leading fly. All the angles 
calculated were in the 2D plane containing the vectors. A) Body axis angle, β, angle 
between body axes of consecutive frames of F1/F2. B) Error angle, Ø, between the 
body axis of F and the vector joining midpoint of F1 and F2. C) Body axis angle, α, 
between heading vector (body axis) and path vector (trajectory) of either fly.D) 
Trajectory error angle, ʌ, is the angle between the heading axis (the trajectory) and 
the line joining the midpoints. 

 

Distance plots: 

We measure the distance between the flies and plot them (Fig 6). From the plot we 

can see the distances between the flies decreases, and then the distance between 

them is almost constant as the leading fly tries to escape and the chasing fly is trying 

to close in on the leading fly, finally the leading fly is able to escape and that is 
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visible as the sudden increase in the slope of curve in the plot. From this, for each 

chase recorded, there are three major segments: the approach, follow and escape. 

We plotted the relative distance between the flies over time for the control and the 

haltere ablated group, and find how the minimum distance between the chasing and 

the leading flies varies in the two groups. 

 

 

 

 

 

 

 

 

 

Ethogram: 

Ethograms were generated for quantifying flight defects. We measured the 

frequency of a) tumbling b) crashing, and c) turns. Tumbling is defined as the vertical 

drops in straight flying paths‟; crashing is defined as the crash against any of the 

walls/objects. These parameters capture defects in flight. Number of turns is defined 

as the turns taken while chasing, which may be active or uncontrolled. . The 

parameter of number of turns in the Ethogram was chosen because the accuracy of 

a chase can be measured by how the chasing fly is responding to the manoeuvres of 

the leading fly. If for every turn of the leading fly, the chasing fly can change its 

direction then the chase is good. This also reflects on the motor control of flight and 

the motivation of chase. 

 

 

 

Fig 7) This figure maps the distance between the head of the flies over 
time for one of the chases.  
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Statistics: 

Unpaired t-tests were done to compare the treatment and the control group of flies 

on the minimum distance between the flies, the length of chase and the drops, turns 

and crashes from the ethogram. MATLAB (R2009a) was used for this analysis 
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3. Results: 

3.1 Trajectories: 

Using the head, tail and midpoint of the fly, the trajectory and body orientation of the 

fly was plotted. An example for control group trajectory is as figure 8 and for 

treatment group of flies is as figure 9. 

 

 

 

 

 

 

 

 

 

 

Fig 9) The trajectory of the chase in case of the experimental group, where 
the red circle is for the leading fly and the green circle for the chasing fly. The 
numbers, n, show the corresponding location of the fly at the nX100th ms. 

 

 

Fig 8) The trajectory of the chase in case of the control group, where the red 
circle is for the leading fly and the green circle for the chasing fly. The 
numbers, n, show the corresponding location of the fly at the nX100th ms. 
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3.2 Ethogram: 

In case of haltere-ablated flies, both chasing and leading flies had one of their 

halteres ablated (if right, the right for all the flies in the box). The ethograms shown 

here contain data for both chasing and the leading fly. 

 

SN 

 

Control 
(mean (SD)) 

Haltere-ablated  
(mean (SD)) P 

Significance 

Chasing 

1 Turns 4.1 (1.9) 1.2 (0.6) 2.46E-04 ** 

2 Drops 0.1 (0.31) 1.6 (1.07) 4.1E-04 ** 

3 Crashes 0 (0) 0.2 (0.42) 0.1510  

Leading 

4 Turns 5.4 (2.06) 1.2 (0.63) 8.33E-06 ** 

5 Drops 0(0) 1.6 (1.17) 4.21E-04 ** 

6 Crashes 0(0) 0.5 (0.70) .0382 * 

Table 1) This table shows the means, standard deviations and P value obtained from T test 
comparing the turns, drops and crashes in the control and treatment flies. (P<0.05) 
 

  

 
Fig 10) Bar graph showing the differences in control (blue) and haltere 

ablated (red) group. The numbers on X axis are the corresponding 

parameters to the numbers in SN (serial number) of Table 1. 
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3.3 The distance plots: 

Minimum distance between the flies: 

 

 

 

 

 

 

 

Fig11) Box plot comparing the relative distance between the control and 
the haltere ablated group of flies. The distance between leading and 
chasing flies is highly variable in the group of flies with the haltere ablated. 

 

 

  

Minimum distance between the flies 

C1 3.7917 L4 13.3305 

c11 11.4471 L5 60.6508 

c18 5.9263 L6 35.5162 

c23 9.0033 R4 64.3629 

c8 5.8455 R5 8.4504 

Mean (SD) 7.20 (3.01) 
 

36.46 (25.90) 

Table 2) Minimum distance between the flies 
(distance in mm). (P = .0364). 
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4. Discussion: 

4.1 General characteristics of the chase: 

Control 

A territorial chase involves a fly (typically on a post) taking off and chasing 

away an interloper from its territory. They engage in various manoeuvres at 

close range, and attempt to evade or catch the interloper.  

Treatment: 

In the experimental flies, the halteres (either left or right) are unilaterally 

ablated. Flies with both halteres ablated are unable to fly. The unilateral 

haltere-ablated flies, from observation we can say that both chasing and 

leading typically show lower activity in the box. The chases, and even cruising 

flights, are fewer than in the control case, and with lesser speed of flight. The 

chases are short, and the flies seldom take turns. The flight trajectories are 

often, but not always, erratic and appear uncontrolled. The body axis is 

changing rapidly with respect to trajectory. 

4.2 Trajectory and body axis plot: 

Land and Collett in their 1974 study showed that that the trajectory error angle and 

the angular velocity of the trajectory of the fly are continuously related. Their study 

was performed on 2D projections of the chase instead of 3D in which the chase 

happens. Also they recorded the chase at 50 fps where as we did at 1000 fps. We 

procured the various angles between the leading and the chasing flies, as discussed 

in section 2.4. We are still analysing the correlations between these angles. 

Though, we have a definite start of the chase (30 ms before the chasing flies take 

off), but the ending of the chase is not very clear. For this reason we cannot make a 

clear demarcation for the set of values to use as the values beyond the chase end 

may add to noise and outliers. 

The control flies exhibit sharper turns, and the body axis of the fly changes rapidly 

with respect to the main trajectory. The fly performs complex manoeuvres and with 

precision while chasing. In the case of treatment flies, as the fly loses stability in 
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flight, the body axis spins about the trajectory. We could identify the tumbling of flies, 

for they happen not only when fly is turning only but also when fly is flying in a 

straight path. Hence, if we do analysis of only how the trajectory and the body axis 

change, we do not infer anything about how the fly speed and direction is chasing. 

Therefore, we can‟t differentiate between aerial manoeuvrability and flight instability, 

which we are measuring as change in body axis with respect to its path. 

4.3 Ethograms: 

From the ethograms for the number of turns, drops and crashes, the P value shows 

significant difference in the flight stability between control and treatment flies. 

Previous studies have stated that the flies with their halteres ablated have unstable 

flight, especially along yaw axis. With the current 3D coordinates of flies and the 

body axis, quantifying the instability in flight and the angles can give us better insight 

into how haltere is a mechanosensory organ. 

4.4 Distances between flies: 

The distances between flies show significant difference between the control and 

treatment groups. Though in case of the treatment group, both the leading and 

chasing flies had their haltere ablated, hence both had impaired flight. Also, the 

minimum distance between the flies also depends on what was the initial distance 

between the chasing and the leading fly why the chase started. Thus, the minimum 

distance between the flies can be biased by sampling alone. Whereas, the number 

of turns made by the chasing fly in accordance to every turn made by the leading fly 

shows how close the chase is.   

5. Conclusion: 

Through the multiple trials for reproducing chases in lab environment, we have 

established a protocol for studying chase behaviour in lab environment. 

With the current analysis, we can say that flies with one ablated haltere are able to 

fly, but unable to maintain trajectories in tight behavioural chases. This loss of flight 

ability is not recovered with time. 
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6. Limitations: 

6.1 Variability in the system 

1. This is a behaviour experiment of flies, and the insect flight is highly 

dependent on weather conditions. Well lit environment and high humidity is 

favoured by them. So the activity of flies varies daily in accordance with 

weather conditions. Also, as the control and treatment group of flies are filmed 

on different days, the data might not be comparable. 

2. Digitisation is error prone – both due to human and image analysis errors. 

3. Because the flies are wild-caught, with different batches being trapped for 

each trial, we had very little control over the age and prior environmental 

exposure of the flies. This introduces uncertainty while comparing control and 

treatment flies. We tried breeding flies in the lab, but the survival rate was 

very low and the size of the flies was much smaller. Though, as we were 

interested in flight behaviour during chases, primarily with what happens in 

natural environment, the flies were caught from the wild. 

4. The current protocol for treatment group of flies has all flies with the halteres 

ablated, which gives no baseline correction/estimation for how the chase 

should be. Especially, when considering error angles, as both flies have their 

halteres ablated, the relative error angles and distances fluctuate. 

6.2 Sampling Bias: 

Not all chases performed between 10 AM to 3 PM are recorded (as some may 

go out of frame or miss our observation), and out of the ones recorded only 

the chases with larger number of turns is selected for. Through this 

experiment we want to compare flight manoeuvrability in flight and how 

halteres help in that. This can be corrected by digitising all types of chases we 

get instead of sampling some. As chase trajectories are not consistent across 

chases, increase in sample size and random sampling can rectify bias. 

6.3 Small Sample Size: 

Once the final protocol was set, only a single trial was conducted for control 

and treatment. Though, it is noteworthy that the flight behaviour seemed 
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approximately the same for all protocols. The solution to this is to increase 

sample size. 
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7. Future directions: 

1. The number of trials should be increased. 

2. For better quantification of instability in flight, we can calculate the angles 

between the chasing and the leading fly, the trajectory, and the forward and 

angular speeds. Also, to find the similarities and differences in 2D and 3D 

chase reconstructions, comparing the parameters tested by Land and Collett 

in 2D chase plots, we need these angles. These angles should be tested only 

the section where the chases happen. 

3. The next step in the experiment should be to use a dummy fly (a comparable 

sized metal pendulum) which we control and see how the control and 

experimental fly chases differ, as this way we can control the motion of the 

chasing fly.  
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APPENDIX 1: 

Standardisation of protocol: 

Initially the chases were observed for both males and females in the box, when we 

settled on the male:female ratio of 3:1. The animals were cold anesthetised for 

collection from the container in which they were caught from the wild, and then again 

cold anesthetised before the flies were introduced in the main box. 

We chose to put forty flies in the box as at this number the number of chases were 

adequate enough, and the clarity in the view though the camera was not lost. 

Though, the frequency of chases is remarkably higher when both male and female 

flies are there in the box, we could not identify the female flies in high speed videos 

even when the female flies were marked with white acrylic paint. Hence, only all-

male chases have been analysed. This was to avoid any behavioural differences in 

flight behaviour, which may arise due to male-female interactions and which might 

not be distinguishable in high speed videos. 

The chases were recorded 2 days after the treatment and introduction of flies in the 

box. For coming down to this conclusion, we observed the activity of flies in the box 

for days after the introduction in box. The day the flies were introduced, the activity 

was very low and they groomed for most of the time. The activity increased the next 

day and the day after that. Though no notable differences in flight behaviour was 

observed in the two days of observation. 

The time of recording of chase was chosen after we had observed the distribution of 

the number of chases over a day. The number of chases was recorded after every 

half an hour for five minutes. Also, the Musca domestica being a diurnal fly, the 

chases were recorded in the later morning and afternoon. 



29 
 

 

Fig 12) The number of chases per five minutes over the day. The peak of activity 

in the box is at 2 pm. 

 

After it was established that the chases were highest around 2 PM, we moved on to 

see how the chases were different for males and females. The females were first 

marked using nail polish, but the mark was not visible hence we shifted to acrylic 

white paint which too was not visible in zoomed out high speed videos. Hence we 

settled on using only all male chases. 

Though a major problem remained for the treatment group, in which the mortality 

rate was really high (50%). The flies were dying after being introduced in observation 

box and before that as well. To decrease the mortality rate we first increased the gap 

between the first and second cold anesthetisation, hence delaying the introduction in 

the observation box. This decreased mortality but not remarkably. Then we skipped 

the second anesthetisation by potting a side cloth door to introduce flies using 

smaller containers. This decreased mortality rate to about 10 percent. 


