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Abstract

We will consider a model for the temporal dynamics of population size of organisms

with multiple life stages (egg, larvae, pupa, and adult stages in insects) which are influenced

by the nonlinear, density-dependent feedback mechanisms operating at different stages and

the interactions of these mechanisms. The model involves several independent interacting

parameters. The main aim of the project will be to device Markov Chain Monte Carlo based

methods in order to estimate parameters of this model, based on the data available. We will

mainly focus on using synthetic data to study the performance of these MCMC methods.
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Chapter 1

Introduction

1.1 Overview

An important part of life of any scientist is comparing theoretical models to data. For that

we are trying to study a approach to estimate the most probable set of parameter estimation

method for nonlinear models. Hence in this thesis we explain a very efficient tool to estimate

the parameters for high-dimensional model. The method is known as Markov Chain Monte

Carlo (MCMC). MCMC was first introduced in the early 1950s by statistical physicists (N.

Metropolis,A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller) as a method for the

simulation of simple fluids. In this thesis we will focus on its use in evaluating the multi-

dimensional integrals required in a Bayesian analysis of the models with some or many

parameters.

1.2 Objective

The objective of this research is to study the concepts of Monte Carlo Markov Chain Method

for solving the parameter estimation problem of a population dynamics model. The main

aim of the project will be to device Markov Chain Monte Carlo based methods in order to

estimate parameters of the model for the temporal dynamics of population size of organisms

with multiple life stages,(egg, larvae, pupa, and adult stages in insects) which are influenced

by the nonlinear, density-dependent feedback mechanisms operating at different stages and

the interactions of these mechanisms. We will mainly focus on using synthetic data to study

the performance of these MCMC methods.

1.3 Thesis Organization

Chapter 2 describes a general discrete inverse problem. In that we will explain how to define

a solution of the inverse problem.

The Monte Carlo method is described in Chapter 3. Markov Chain theory is explained

which leads to the Monte Carlo Idea and in that section Metropolis algorithm is explained
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followed by some of the characteristics of MCMC. An analytic solution is also described

using the Kalman Filter Equations.

Chapter 4 explains the population dynamics model of Drosophila Melanogaster. In that

we will explain how the model was developed and the description of model parameters which

needs to be estimated. In the next section Bifurcation theory is explained to see how the

parameters behave with the population dynamics model followed by the MCMC algorithm.

Later, the conclusions made from the results and the application potential of MCMC method

are described.
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Chapter 2

The General Discrete Inverse

Problem

2.1 Overview

In general, we deal with two types of problems: Forward Problems and Inverse Problems.

An inverse problem is a general framework that is used to convert observed measurements

into information about a physical object or system that we are interested in. The most gen-

eral theory, that we learnt, is obtained when using a probabilistic point of view, where the

priori information on the model parameters is represented by a probability distribution over

the ’model space’. So, for that we have started by understanding the concepts of inverse

modeling including model space, data space, joint manifolds followed by conditional proba-

bility distributions and that leads to the better understanding of formulation of Monte Carlo

Markov Chain methods for sampling any given target density.

Given a complete description of a physical system, we can predict the outcome of some

measurements. This problem of predicting the result of measurements is called modelization

problem or forward problem .The inverse problem consists of using the actual result of some

measurements to infer the values of parameters that characterize the system. Unlike the

forward problem, inverse problem does not have a unique solution. As an example, consider

measurements of gravity field around a planet: given the distribution of mass inside the

planet, we can uniquely predict the values of the gravity field around the planet (forward

problem), but there can be many different distributions of mass that give exactly the same

gravity field around the planet. Therefore, the inverse problem-inferring the mass distribu-

tion from the observations of the gravity field-has multiple solutions. Because of this, in

inverse problem, one needs to make explicit any available a priori information on the model

parameters.One also needs to be careful with the data uncertainties. It follows that the

results of the measurements of the observable parameters (data), the a priori information

on model parameters, and the information on a physical correlations between observable pa-

rameters and model parameters can all be described using probability densities.The general
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inverse problem can then be set as a problem of ’combining’ all of this information. Hence,

Monte Carlo techniques are examined for the same. For the study of a physical system we

divided the scientific procedure into the following three steps:

• Parametrization of the system : Discovery of a minimal set of a model parameters

whose values completely characterize the system.

• Forward modeling: For given values of the model parameters, to make predictions

on the results of measurements on some observable parameters.

• Inverse modeling: Use of the actual results of some measurements of the observable

parameters to infer the actual values of the model parameters.

Here is the description of some of the terms that we have used in the text.

2.2 Model Space

Independently of any particular parametrization, it is possible to introduce an abstract space

of points, a manifold, each point of which represents a conceivable model of the system. This

manifold is named ’model space’ and is denoted M. Individual models are points of the

model space manifold and could be denoted M1,M2,M3, .... With each point M of the

model space M a set of numerical values m1,m2,m3, .... This corresponds to the definition

of a system of coordinates over the model manifold M. Each point M of M is named a

model. The number of model parameters needed to completely describe a system may be

be either finite or infinite.

2.3 Data Space

To obtain information on model parameters, we have to perform some observations during

a physical experiment, i.e., we have to perform a measurement of some observable param-

eters. Data space can be defined as the space of all conceivable instrumental responses.

This corresponds to the other manifold, the data manifold, which may be represented by

D. Any conceivable result of the measurements then corresponds to a particular point D on

the manifold D.
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2.4 Forward Problem

Experiments suggest physical theories, and physical theories predict the outcome of exper-

iments. The comparison of the predicted outcome and the observed outcome allows us to

ameliorate the theory. To solve a ’forward problem’ means to predict the error-free values

of the observable parameters d that would correspond to a given model m. This theoretical

prediction can be denoted m 7→ d = g(m) where d = g(m) is a short notation for the set

of equations di = gi(m1,m2,m3, ...)(i = 1, 2, ...).

Let M be the model space manifold, with some coordinates m = mα = m1,m2,m3, ...

and with the homogeneous probability density µM(m), and let D be the data space manifold,

with some coordinates d = di = d1, d2, d3, ... and with the homogeneous probability density

µD(d). Let X be the joint manifold built as in the cartesian product of the two manifolds,

D ∗ M, with coordinates x = d, m = d1, d2, ...,m1,m2, ... and with the homogeneous

probability density that, by definition, is µ(x) = µ(d,m) = µD(d)µM(m).

From now on we have used the notation Θ(d, m) for the joint probability density de-

scribing the correlations that correspond to our physical theory, together with the inherent

uncertainties of the theory (due to an imperfect parameterization or to some more funda-

mental lack of knowledge).

2.5 Measurements and A Priori Information

2.5.1 Results of the Measurements

All physical measurements are subjected to uncertainties. Therefore, the results of a mea-

surement act is not simply an ’observed value’ (or a set of observed values’) but a ’state of

information’ acquired on some observable parameter. If d represents the set of observable

parameters, the result of the measurement act can be represented by a probability density

ρD(d) defined over the data space D.

2.5.2 A Priori Information on Model Parameters

By a priori information (or prior information) we shall mean information that is obtained

independently of the results of measurements. The probability density representing this a

priori information will be denoted by ρM(m)
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2.6 Defining a solution of the Inverse Problem

Joint Prior Information

The a priori information on model parameters is independent of observations. The infor-

mation that we have in both model parameters and observable parameters can then be

described in the Manifold D ∗M by the joint probability density

ρ(d,m) = ρD(d) ∗ ρM(m)

2.6.1 Combination of Experimental, A Priori, and theoretical In-

formation

Previously, we have defined that the priori probability density ρ(d,m), defined in the space

D ∗ M, represents both information obtained on the observable parameters (data) d and

a priori information on the model parameters m. We have also seen that the theoretical

probability density Θ(d,m) represents the information on the physical correlations between

d, and m, as obtained from a physical law, for instance.

These two states of information combine to produce the a posterior state of information.

The method of the previous sections to introduce the a priori and the method of the previous

sections to introduce the a priori and the theoretical states of information is such that the a

posteriori state of information is given by the conjunction of these two states of information.

we can represent the a posteriori information is then

σ(d,m) = k ∗ ρ(d,m) ∗Θ(d,m)

µ(d,m)

where µ(d,m) represents the homogeneous state of information and where k is a normaliza-

tion constant.

2.7 Using the Solution of the Inverse Problem

2.7.1 Computing Probabilities

The solution of the inverse problem is the posterior probability distribution over the model

space manifold, represented by the probability density σM(m).

We solve the problem in Monte Carlo way, so the solution to the problem is large set of

possible solutions, samples of the posterior probability density in the model space, σM(m).

We plot histograms to represent the probability density of what the final density can be.

From now on we have used the notation Θ(d, m) for the joint probability density de-

scribing the correlations that correspond to our physical theory, together with the inherent

uncertainties of the theory (due to an imperfect parameterization or to some more funda-

mental lack of knowledge).
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In many situations, we have written a joint probability density as the product of a condi-

tional and a marginal. Taking for the marginal for the model parameters the homogeneous

probability density then gives

Θ(d,m) = θ(d|m) ∗ µM(m)

Examples: refer to page 253-266 of [1]

Define the model space, data space, prior, posterior in the following problems:

Estimation of the Epicentral Coordinates of a Seismic Event

A seismic source was activated at time T = 0 in an unknown location at the surface of

Earth. The seismic waves produces by the explosion have been recorded at a network of six

seismic stations whose coordinates in a rectangular system are

(x1, y1) = (3km, 15km), (x2, y2) = (3km, 16km),

(x3, y3) = (4km, 15km), (x4, y4) = (4km, 16km)

(x5, y5) = (5km, 15km), (x5, y5) = (5km, 16km)

The observed arrival times of the seismic waves at these stations are

t1obs = 3.12s± σ, t2obs = 3.26s± σ,

t3obs = 2.98s± σ, t4obs = 3.12s± σ,

t5obs = 2.84s± σ, t6obs = 2.98s± σ,

where σ = 0.10s, the symbol ±σ being a short notation indicating that experimental un-

certainties are independent and can be modeled using a Gaussian probability density with

a standard deviation equals to σ.

Solution:

The model parameters are the coordinates of the epicenter of the explosion,

m = (X, Y )

and the data parameters are the arrival times at the seismic network,

d = (t1, t2, t3, t4, t5, t6)

while the coordinates of the seismic stations and the velocity of the seismic waves are as-

sumed perfectly known (i.e., known with uncertainties that are negligible with respect to

the uncertainties in the observed arrival times).

For a given (X,Y), the arrival times of the seismic wave at the seismic stations can be

computed using the (exact) equation

ti = gi(X, Y ) =

√
(xi −X)2 + (yi − Y )2

v
where(i = 1, 2, 3, 4, 5, 6)
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which solves the forward problem d = g(m)

As we are not given any a priori information on the epicentral coordinates, we take a

uniform a priori probability density, i.e., because we are using Cartesian coordinates,

ρM(X, Y ) = const.,

assigning equal a priori probabilities to equal volumes.

As data uncertainties are Gaussian and independent, the probability density representing

the information we have on the true values of the arrival times is

ρD(t1, t2,, t3, t4, t5, t6) = const.exp(−1

2

6∑
i=1

(ti − tiobs)2

σ2
)

with the three pieces of information, we can directly pass to the resolution of the inverse

problem. The posterior probability density in the model space combining the three pieces

of information, is σM(m) = kρM(m)ρD(g(m)) i.e., particularization the notation to the

present problem.

σM(X, Y ) = kρM(X, Y ) ∗ ρD(g(X,Y)),

where k is a normalization constant, Explicitly,

σM(m) = k′exp(− 1

2σ2

6∑
i=1

(tical(X, Y )− tiobs)2

σ2
)

where k is a new normalization constant and

tical(X, Y ) =

√
(xi −X)2 + (yi − Y )2

v

The probability density σM(X, Y ) describes all the a posterior information we have on the

epicentral coordinates. As we only have two parameters, the simplest(and most general)

way of studying this information is to plot the values of σM(X, Y ) directly in the region of

the plane where it takes significant values.

Measuring the Acceleration of gravity An absolute gravimeter uses the free fall

of a mass in vacuo to measure the value of the acceleration g due to gravity. A mass is

sent upward with some initial velocity v0, and the positions z1, z2, ... of the mass are (very

precisely) measured at different instants t1, t2, ... In vacuo (orienting the z axis upward),

z(t) = v0t−
1

2
gt2

The measured values of the zi and the ti can be used to infer the values of v0 and g. The

measurements made during a free-fall experiment have provided the values

t1 = 0.20s± 0.01s, z1 = 0.62m± 0.02m,

t2 = 0.40s± 0.01s, z2 = 0.88m± 0.02m,

t3 = 0.60s± 0.01s, z3 = 0.70m± 0.02m,
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t4 = 0.80s± 0.01s, z4 = 0.15m± 0.02m,

where uncertainties in the times are of the boxcar type and the uncertainties in the positions

are of the double exponential type (the mean deviations having the value 0.02m). Assuming

that there is no particular a priori information on these two values.

Solution: Let us introduce the vector m with components

m = v0, g, t1, t2, t3, t4

and the vector d with components

d = z1, z2, z3, z4

we can write the theoretical relations

z1 = v0t1 −
1

2
gt21,

z2 = v0t2 −
1

2
gt22,

z3 = v0t3 −
1

2
gt23,

z4 = v0t4 −
1

2
gt24

that correspond to the usual relation d = g(m). Although we may call m the model

parameters and d the data parameters, we see that there are observed quantities both in d

and in m

The prior information we have on m is to be represented by a probability density

ρM(m) = ρM(v0,g)

As we do not wish to include any special a priori information on the parameters v0, g, we

shall take a probability density that is constant on these parameters. The prior information

we have on the other four parameters, t1, t2, t3, t4

Prior distribution on model space

ρM(v0, g) =
1√

2πσ2
vσ

2
g

exp(−(
(v0 −mv)

2

σ2
v

) + (
(g0 −mg)

2

σ2
g

))

Likelihood will be

ρ(zobs1 , ..., zobsn | v0, g) =
4∏
i=1

1√
2πγ2

exp(−1

2

(zi − zobsi )2

γ2
)

where

zobsi = v0ti −
1

2
gt2i + η

where η is the random variable for the noise in data. and

zi = v0ti −
1

2
gt2i
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Posterior is the conditional probability density of model space given data. It will be

defined as the product of prior and likelihood.

Posterior = σm(v0, g | z1, z2, z3, z4)

i.e.,

S(v0, g | z1, z2, z3, z4) =
4∑
i=1

| (v0ti − 1
2
gt2i )− zobsi |
σi

where S = −2ln(σm) and | (v0ti − 1
2
gt2i )− zobsi | stands for the norm of the function

Linear Regression with rounding errors A physical quantity d is related to the

physical quantity x through the equation

d = m1 +m2x,

where m1, m2 are unknown parameters. The above equation represents the equation of a line

in a plane (d,x). In order to estimate m1 and m2, the parameter d has been experimentally

measured for some selected values of x, and the following results have been obtained

x1 = 03.500, d1obs = 2.0± 0.5

x2 = 05.000, d2obs = 2.0± 0.5

x3 = 07.000, d3obs = 3.0± 0.5

x4 = 07.500, d4obs = 3.0± 0.5

x5 = 10.000, d5obs = 4.0± 0.5

where ±0.5 denotes rounding errors.

Solutions:

Lets an arbitrary set (d1, d2, d3, d4, d5) be called a data vector and be denoted by d and

let an arbitrary set (m1,m2) be called a parameter vector and be denoted by m. Let

d = g(m)

denote the relationship.

di = m1 +m2x1

i=(1,...,5) So now,

ρM(m) = ρM(m1,m2)

be the probability density representing the prior information on model parameters.

ρD(d) = ρD(d1, d2, d3, d4, d5)

be the probability density describing the experimental uncertainties. As rounding uncer-

tainties are mutually independent,

ρD(d) = ρD(d1, d2, d3, d4, d5) = ρ1D(d1)ρ2D(d2)ρ3D(d3)ρ4D(d4)ρ5D(d5)
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where ρiD(di) denotes the probability density describing the experimental uncertainty for

the observed data di. As the uncertainties are only rounding uncertainties, they can be

conveniently modeled using uniform probability density functions:

ρiD(di) = const.ifdiobs − 0.5 < di < diobs + 0.5

ρD(d) = 0otherwise

For prior

ρM(m) = ρM(m1,m2) = const.,

then we obtain the posterior probability density in the model space has been defined.

σM(m) = const.ρM(m)ρD(g(m))

σM(m) = const. ifdiobs − 0.5 < m1 +m2xi < diobs + 0.5

σM(m) = 0 otherwise
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Chapter 3

Monte Carlo Method

3.1 Overview

In the last chapter we have seen that the most general solution of an inverse problem provides

a probability distribution over the model space. it is only when the probability distribution

in the model space is very simple (for instance, when it has only one maximum).

For more general probability distributions, one needs to perform an extensive exploration

of the model space. This exploration can not be systematic (as the number of required points

grows too rapidly with the dimension of the space). Well designed random exploration can

solve many complex problems. these random methods were called Monte Carlo methods.

One domain where Monte Carlo computations are usual is for the numerical evaluation

of integrals in large-dimensional spaces. A Monte Carlo sampling of the function can provide

an estimation of the result, together with an estimation of the error. When the model space

has a large number of dimensions, representing a probability density is impossible, but we

can, at least in principle, do something which is largely equivalent. So we can generate (in-

dependent) points that are samples of the probability density, i.e., such that the probability

of any of the points being inside any domain equals the probability of the domain, which

we call Sampling method.

3.2 Markov Chain Theory

Consider a stochastic process Xn, n = 0, 1, 2, ... that takes on a finite or countable number

of possible values. Unless otherwise mentioned, this set of possible values of the process will

be denoted by the set of non-negative integers (0,1,2,...). If Xn = i, then the process is said

to be in state i at time n. We suppose that whenever the process is in state i, there is a

fixed probability Pij that it will next be in state j. That is, we suppose that

P (Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X1 = i1, X0 = i0) = Pij

21



for all the states i0, i1, ..., in−1, i, j and all n > 0, such a stochastic process is known as a

Markov chain. The above equation may be interpreted as stating that, for a Markov chain,

the conditional distribution of any future state Xn+1 given the past states X0, X1, ..., Xn−1

and the present state Xn, is independent of the past states and depends only on the present

state.

The value Pij represents the probability that the process will, when in state i, next make

a transition into state j. Since probabilities are non-negative and since the process must

make a transition into some state, we have that

Pij ≥ 0, i, j ≥ 0;
∞∑
j=0

= 1, i = 0, 1, ...

Example (A Random Walk Model): A Markov chain whose state space is given by the

integers i = 0,±1,±2,±3, ... is said to be a random walk if, for some number 0 < p < 1,

P i,i+1 = p = 1− P i,i−1, i = 0,±1, ...

The preceding Markov chain is called a random walk for we may think of it as being a model

for an individual walking on a straight line who at each point of time either takes one step

to the right with probability p or one step to the left with probability p-1.

3.3 Markov Chain Monte Carlo Idea

Markov chain Monte Carlo methods are often applied to solve integration and optimization

problems in large dimensional spaces. The idea of Monte Carlo is as follows: We want to

generate random draws from a target distribution. We then identify a way to construct a

’nice’ Markov chain such that its equilibrium probability distribution is our target distribu-

tion. If we can construct such a chain then we arbitrarily start from some point and iterate

the Markov chain many times. Eventually, the draws we generate would appear as if they

are coming from our target distribution. We then approximate the quantities of interest

by taking the sample average of the draws after discarding a few initial draws which is the

Monte Carlo component.

To construct ’nice’ Markov chains we have studied algorithms like Metropolis-Hastings

algorithm, Gibbs sampler.

3.4 Metropolis Hastings Algorithm

Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for obtaining a se-

quence of random samples from a probability distribution for which direct sampling is dif-
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ficult. This sequence can be used to approximate the distribution (i.e. to generate a his-

togram). It is Markov chain Monte Carlo (MCMC) method, i.e, it is random (Monte Carlo)

and has no memory, in the sense that each step depends only on the previous step (Markov

Chain).

The basic idea is to perform a random walk, a sort of Brownian motion, that, if unmod-

ified, would sample some initial probability distribution, then, using a probabilistic rule,

to modify the walk (some proposed moves are accepted. some are rejected) in such a way

that the modified random walk samples that target distribution. With such a condition, the

Metropolis rule is the most efficient to sample the target distribution.

Aim : Construct Markov chain for a given high dimensional complex distribution which is

termed as ’Target distribution’.

Algorithm

• Let f(x) be a function that is propotional to the desired probability distribution p(x)

f(x) ∝ p(x)

where f(x) be the non-normalized function of the desired probability function.

• Initialization

Choose any arbitrary point x0 (i.e. first sample)

Choose an arbitrary probability density Q(x | y) where Q stands for proposal density

or jumping distribution, and Q(x | y) is a conditional proposal density which suggests

a candidate for the next sample value x, given the previous sample value y.

• For each iteration ’t’

• – Generate a candidate x∗ for the next sample by picking from the distribution

Q(x∗ | xt)

– Calculate the acceptance ratio α where α = f(x∗)
f(xt)

which will be used to decide

whether to accept or reject the candidate. As f ∝ p, we have

α =
f(x∗)

f(xt)
=
p(x∗)

p(xt)

– If α ≥ 1, then the candidate is more likely than xt.

Automatically accept the candidate by setting xt+1 = x∗

Otherwise

accept the candidate with probability α

– If candidate is rejected,

put xt+1 = xt instead

This algorithm proceeds by randomly attempting to move about the sample space,

sometimes accepting the moves and sometimes remaining in place.
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• acceptance ratio ′α′ indicates that how probable the new proposed sample is w.r.t the

new current sample, according to the distribution p(x).

If we attempt to move to a point that is more probable than the existing point i.e.

α ≥ 1

However, if we attempt to move to a less probable point i.e. α < 1

Sometimes, we reject the move and the more the relative drop in probability the more

likely we are to reject the new point.

Thus, we will tend to stay in high-density regions of p(x)

Steps

• t = 1

• generate an initial value x0 and set xt = x0

• update t=t+1

generate a proposal x∗ from q(x∗ | xt)

• evaluate the acceptance probability

α = min(1,
p(x∗)q(xt | x∗)
p(xt)q(x∗ | xt)

)

• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set xt = x∗

– else set xt = xt−1

– until t=T

Many basic scientific problems are now routinely solved by simulation. Here we have

studied an example drawn from course work of Stanford students.

Example (Cryptography). Stanford’s statistics department has a drop-in consulting

service. One day, a psychologist from the state prison system showed up with a collection of

coded messages. The problem was to decode these messages. It was guessed that the code

was a simple substitution cipher, each symbol standing for a letter, number, punctuation

mark or space. thus, there is an unknown function f

f : codespace 7→ usualalphabet.
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One standard approach to decrypting is to use the statistics of written English to guess at

probable choices for f,

Pl(f) =
∏
i

M(f(si), f(si+1)),

where si runs over consecutive symbols in the coded message. Functions f which have high

values of Pl(f) are good candidates for decryption. Maximizing f ′s were searched for by

running the following Markov chain Monte Carlo algorithm:

1.Start with a preliminary guess, say f.

2.Compute Pl(f)

3.Change to f ∗ by making a random transposition of the values f assigns to two symbols.

4.Compute Pl(f ∗); if this is larger than Pl(f), accept f ∗.

5.If the coin toss comes up tails, stay at f.

The algorithm continues, trying to improve the current f by making random transposi-

tions. the coin tosses allow it to go to less plausible f ′s, and keep it from getting stuck in

local maxima. So when the Monte Carlo algorithm was run. After 100 steps, the message

was a mess. After 2000 steps, the decrypted message made sense. It stayed essentially

the same as further steps are tried. It is remarkable that a few thousand of this simple

optimization procedure work so well.

After that we have generated some Markov chains for different different distributions over

same proposal density i.e. Gaussian distribution. The algorithms of the examples followed

by the results (plotted histograms) are following:

Example 1:

Target density: pnormal = (x, variance) = ( x2

variance
)

Proposal density: q(x1, x2, variance) = ( (x1−x2)
2

variance
)

Algorithm:

• t = 1

• generate an initial value x0 and set xt = x0

• update t=t+1

generate a proposal x∗ from q(x∗ | xt)

• evaluate the acceptance probability

α = exp ∗(−1

2
) ∗ (pnormal(x∗) + q(xt | x∗)− pnormal(xt)− q(x∗ | xt))
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• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set xt = x∗

– else set xt = xt−1

– until t=T

Figure“3.1: histogram of mc1

Example 2:

Target density: pθ(θ) = 1
π(1+θ2)

Proposal density: q(x1, x2, variance) = ( (x1−x2)
2

variance
)

Algorithm:

• t = 1

• generate an initial value x0 and set xt = x0

• update t=t+1

generate a proposal x∗ from q(x∗ | xt)

• evaluate the acceptance probability

α = (exp ∗(−1

2
) ∗ (q(xt | x∗)− q(x∗ | xt))) ∗ (

pθ(x∗)
pθ(xt)

)

• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set xt = x∗

– else set xt = xt−1

– until t=T
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Figure“3.2: histogram of mcnew

Example 3:

Target density: posterior =
∑4

i=1(v0ti −
1
2
gt2 − zobs1 )2/0.0004 + ( (g−gmean)

2

gvariance
)

Proposal density: q(x1, x2, variance) = ( (x1−x2)
2

variance
)

Data given:

t1 = 0.20; t2 = 0.40; t3 = 0.60; t4 = 0.80

zobs1 = 0.62; zobs2 = 0.88; zobs3 = 0.70; zobs4 = 0.15

v0 = 4.12

variance = 0.01 gvariance = 0.01 gmean = 9.8

Algorithm:

• t = 1

• generate an initial value g0 and set gt = g0

• update t=t+1

generate a proposal g∗ from q(g∗ | gt)
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• evaluate the acceptance probability

α = exp ∗(−1

2
) ∗ (posterior(g∗) + q(gt | g∗)− posterior(gt)− q(g∗ | gt))

• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set gt = g∗

– else set gt = gt−1

– until t=T

Figure“3.3: histogram of gacceleration

The mean of the posterior is 9.8m/s2 as we can analyze from the histogram.

Example 4:

Target density:

posteriorbivar =
4∑
i=1

(v0ti −
1

2
gt2 − zobs1 )2/0.0004 + (

(g − gmean)2

gvariance
) + (

(v − vmean)2

vvariance
)

Proposal density:

proposalbivar = (x− µ)′ ∗ Σ−1 ∗ (x− µ)

where x and µ is a 2 ∗ 1 matrix and Σ−1 is inverse of covariance matrix

Data given:

t1 = 0.20; t2 = 0.40; t3 = 0.60; t4 = 0.80
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zobs1 = 0.62; zobs2 = 0.88; zobs3 = 0.70; zobs4 = 0.15

v0 = 4.12

variance = 0.01

gvariance = 0.01

gmean = 9.8

Algorithm:

• t = 1

• generate an initial value x0 and set xt = x0

• update t=t+1

generate a proposal x∗ from proposalbivar(x
∗ | xt)

• evaluate the acceptance probability

α = exp ∗(−1

2
)∗(posteriorbivar(x∗)+proposalbivar(xt | x∗)−posteriorbivar(xt)−proposalbivar(x∗ | xt))

• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set xt = x∗

– else set xt = xt−1

– until t=T
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Figure“3.4: histogram of codebivar

Hence the mean of the bivariate posterior for g is 9.8m/s2 and that is for the v is

approximately 4.12m/s

Now, to analyze the histograms that we have got from MCMC we need to confirm about

convergence of Markov Chain. Because we may know a lot about the particular Markov

Chain being used, but if whatever we know is of no help in determining any convergence

information about the Markov Chain, then whatever information we have about the Markov

Chain is not reliable, it’s useless.

3.5 The Practice of MCMC

The practice of MCMC is simple. Set up of a Markov chain having the required invariant

distribution, and run it on a computer. the folklore of simulation makes this seem more

complicated than it really is. None of this folklore is justified by theory and none of it

actually helps user do good simulations, but, like other kinds of folklore, it persists despite

its lack of validity.

3.5.1 Black Box MCMC

There is great deal of theory about convergence of Markov chians. Unfortunately, none of

it can be applied to get useful convergence information for most MCMC applications. Thus

most of the find we happen to be in the following situations called black box MCMC :

• We have a Markov chain having the required invariant distribution.
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• We know nothing other than that. the Markov chain is a “Black Box” that we cannot

see inside. When run, it produces output. That is all we know. We know nothing

about the transition probabilities of the Markov chain, nor anything else about its

dynamics.

• We know nothing about the invariant distribution except what we may learn from

running the Markov chain.

3.5.2 Pseudo Convergence

Sometimes a Markov Chain can appear to have converged to its equilibrium distribution

when it has not. This happens when parts of the state space are poorly connected by the

Markov Chain dynamics. It takes many iterations to get from one part to another. When the

time it takes to transition between these parts is much longer than the length of simulated

Markov Chain, then the Markov Chain can appear to have converged but the distribution

it appears to have converged to is the equilibrium distribution conditioned on the part in

which the chain was started. We call this phenomenon Pseudo Convergence.

Hence to confirm whether the convergence that we have got isn’t pseudo convergence we

checked whether the multiple runs appear to converge to the same distribution, and all of

the codes did converge to the same distribution and hence we confirmed that the Markov

Chain is converging. But still this method is not convincing enough to prove that it’s not

pseudo convergence because in some complicated MCMC codes this has been observed that

the samplers are appeared to be converged after weeks of running, they discovered a new

part of state space and the distribution changed radically. So, to check that we made an

overnight run. This may detect a pseudo-convergence.

3.5.3 Burn-In

To make it more precise we have put a burn in period as well in code. Burn-in is a colloquial

term that describes the practice of throwing away some iterations at the beginning of an

MCMC run. So if we start somewhere, say at x, then we run the Markov Chain for n steps

during which we throw away all the data.

3.5.4 Diagnostics

If we see look upto diagnostics, there have been many MCMC diagnostics that are there in

the literature. Some work with one run of a Markov chain, while others with multiple runs

of a Markov chain started at different points, what we call multistart heuristic.

There is only one perfect MCMC diagnostic: perfect sampling. This is basically a

method of Markov-chain-assisted i.i.d. sampling. Since it produces an i.i.d. sample from

the equilibrium distribution of the Markov chain, we will get a sufficiently large sample to

not miss any parts of the state space. Perfect sampling does not work on black box MCMC,

because it requires complicated theoretical conditions on the Markov chain dynamics. If we
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know nothing about the Markov chain dynamics or equilibrium distribution except what we

learn from output of the sampler, we can always be fooled by pseudo-convergence.

So, we have learnt that the diagnostics can find the known unknowns. They can not find

the unknown unknowns. They can not find out what a black box MCMC sampler will do

eventually. Only sufficiently long runs can do that.

Hence the histograms we have got are the histograms that we got after running the

MCMC code for a sufficiently long time i.e. in this case overnight.

3.6 Kalman-Filter Equations

Now, for the bivariate code i.e. finding acceleration of gravity and the initial velocity of of

a mass sent upward. We have tried finding it’s analytical solution as well so that we can

compare the difference between analytical solution and the solution that we have got from

MCMC method.

To find the analytical solution of the problem we have used Kalman-Filter equations.

Let

Prior : N(m0, C0)

Measurementmap : d = Gm+ η

where η is the noise in data space.

Likelihood : p(d | m) ∝ exp(−1

2
(d−Gm)′R−1(d−Gm))

As we know that the Posterior is the product of Prior and Likelihood and also normally

distributed. So, the expected posterior would be like

m“N(m1, C1)

So, by Kalman-Filter equations

m1 = m0 +K(dobs −Gm0)

C1 = (I −KG)C0

or

C−11 = C−10 + (G′RG)−1

where,

K = C0G
′(GC0G

′ +R)−1

Using the above Kalman-Filter equations we have calculated the mean of posterior and

those are the following:
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g − Posterior −Mean = 9.5788

v − Posterior −mean = 4.0749

when we used the data that was given in the problem and the variance of the prior i.e.

variance of g as well as variance of v is taken to be 0.00004 units.

And the mean we got from the MCMC code is

g − Posterior −Mean = 9.4824

v − Posterior −Mean = 4.0059
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Chapter 4

Parameter Estimation of a Population

Dynamics Model

4.1 Overview

Drosophila population in laboratory exhibits a variety of dynamics over changing the stage-

specific food regime, which underlie the intensity of different density dependent feedback.

We will consider a model for the temporal dynamics of population size of Drosophila

Melanogaster with multiple life stages (egg, larva, pupa, and adult stages in insects) which

are influenced by the nonlinear density- dependent feedback mechanisms operating at differ-

ent stages and the interactions of these mechanisms. The model involves seven independent

and interacting parameters. So, Here we will try to device Markov Chain Monte Carlo

based methods in order to estimate parameters of this model, based on the laboratory data

available.

4.2 Introduction

There are two active (feed and move) life stages - Larvae and Adult- of Drosophila life cycle

in the laboratory. The crowding at these two stages induces major effect on their survival

and hence the final adult population abundance, by regulating different life history factors

of organisms, like growth rate, body weight, fecundity or development time etc.

In insect species, the multiple life cycle stages experience different types of developmental

and environmental processes to regulate their life history traits (e.g. body size, fecundity

etc) and numbers. The regulation is highly nonlinear and interacts across different stages.

On the basis of a detailed literature survey on Drosophila life cycle traits and its population

dynamics, along with the analysis of data provided by laboratory experiments, it was under-

stood that there are three major density-dependent mechanisms that govern the population

dynamics of Drosophila. they are- (1) Larval crowding on pre-adult survivorship; (2) larval

crowding on female fecundity; and (3) Effect of adult-density on female fecundity. These

density-dependence mechanisms interact in a complex manner and at different combinations
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in different larval and adult food regimes.

Crowding is introduced an experimental populations in the laboratory by manipulating

the amount and quality of food given at these two life stages. There are four combinations

of food regimes LH, HL, HH, LL, which are maintained in laboratory, where L- stands for

low and H for high food level- with the first position for Larvae and the second position

for Adult. These four food regimes exhibit different dynamics of Drosophila population in

laboratory due to differential effect on the feedback processes.

So, LH- stands for Low food for Larvae and High food for Adult

HL- stands for High food for Larvae and Low food for Adult

LL- Low food for both Larvae and Adult

HH- High food for both Larvae and Adult

4.3 The Model Development

The model is described below along with the four functional forms used to frame the two

variable model with adult number and mean weight over generation as variables. the model

consists of several parameters that quantify the effects of the density-dependent feedback.

The functional forms of density dependence

Table1

1.Nt+1 = Cnt+1exp(−cnt+1)

2.ft = fmaxexp(−bnt)

3.nt+1 =
1

2
ft

1

(1 + dNt)
Nt

4.Wt = exp(A− ant)

4.3.1 The full two-variable model for Drosophila population dy-

namics

table2

Nt+1 =

(
CfmaxNt

2(1 + dNt)

)
∗ exp

[
−b(A− logWt)

a
−
(

cfmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

)]

Wt+1 = exp

(
A−

{
afmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

})
Where C, c, fmax,, b, d, A, a are different life-history parameters of the organism.
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4.4 Model Explaination

To arrive at a model, which may be adequate to describe these density-dependent processes

acting at different stages in Drosophiila, we elaborate the possible functional relationships

between the different life stages in Table (1). As is clear from the four relationships, the

adult number (Nt) and egg number (nt), fecundity(f), and weight (Wt) at time t interact

in a complex manner and at different combinations. We coupled these four equations and

arrived at a two variable model that involves both the adult size (Nt) and adult weight (Wt)

as given in table (2). This is the first time that two life history parameters have been coupled

to give both quantitative and qualitative assessments of their relationship in deciding the

population dynamics.

The model contains seven life-history parameters indicating the intensity of different

density dependent feedback. The problem is that a single parameter may embody the

effect of more than one density dependent feedback process at different food regime, and

their relative importance may be different food regime. The complexity increases with

natural intrinsic noise in the experiment. So any standard and straight forward estimation

of parameters is not adequate to sort out the problem. hence, The main objective of our

study would be to the dynamics observed in different food regimes. Since the data is noisy,

it naturally leads s to use of a Bayesian approach to this parameter estimation problem. In

the Bayesian formulation, the main object of interest is the conditional posterior distribution

function on the parameters, conditioned on a given data set.

In this project we will develop and use the Markov Chain Monte Carlo methods, for

sampling this posterior distribution function. In contrast with the deterministic parameter

estimation methods, the stochastic sampling methods give us quantitative measure for the

errors in the estimated parameters. In addition, different data sets would give us informa-

tion about the parameter regions for the model that would be consistent with the different

regimes described above. This will help us understand whether these regimes overlap in the

parameter space and will lead to an improved understanding of the experimental observa-

tions. thus the probability density on the parameters will provide us both statistical and

dynamical information.

4.5 Bifurcation Theory

The main problem is that we do not have parameter values or even estimates and we need to

estimate the parameters from the data. On top of that parameter values would also depend

on the food regimes-as different food regimes may affect the feedback processes in nonlinear

fashion. Hence, we can give biological arguments about how food may affect some of these

parameters. So, for that we have plotted bifurcation diagrams of all the parameter values, so

that we can have a rough idea about the chaotic behavior of the parameter values according
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to the dynamics. Accordingly, from those bifurcation diagrams we can have an estimate of

the mean and variance of the parameters, by analyzing the bifurcation diagrams. Below are

the bifurcation diagrams:

Nt+1 =

(
CfmaxNt

2(1 + dNt)

)
∗ exp

[
−b(A− logWt)

a
−
(

cfmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

)]

Wt+1 = exp

(
A−

{
afmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

})
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Figure“4.1: Bifurcation diagram of the model v/s the parameter (a)

In the above bifurcation diagram we have varied the parameter a in the window of 0.002

to 0.003 and we can see the one stable point upto 0.0021 and after that it is showing a

complete chaotic behavior.
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Figure“4.2: Bifurcation diagram of the model v/s parameter (b) bifurcationb

In the above bifurcation diagram we have varied the parameter b in the window of 0.0001

to 0.00045. It is showing rather a strange behavior which we can not explain.
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Figure“4.3: Bifurcation diagram of the model v/s the parameter (c)

In the above bifurcation diagram we have varied the parameter c in the window of 0 to 0.005.

In the bifurcation diagram we can see that everything is apparently getting converged to 0.
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Figure“4.4: Bifurcation diagram of the model w.r.t the parameter (d)

In bifurcation diagram we have varied the parameter d in the window of 0.002 to 0.02.

In the bifurcation diagram we can see that as we go on the left from 0.02 one fixed point is

splitting to give a 2-period cycle at point 0.015. Further moving to the left at point 0.007

is again splitting to 4-periodic cycle and then 8-period cycle for a very short set of points

which ultimately ended up showing a chaotic behavior.
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Figure“4.5: Bifurcation diagram of the model v/s the parameter (C)

In bifurcation diagram we can see that we have varied the parameter C in the window

of 0 to 0.4. There we can see that one fixed point is at 0.18 is splitting to give a 2-period

cycle. Which later on at 0.325 is giving 4-period cycle and after that it is showing a complete

chaotic behavior.
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Figure“4.6: Bifurcation diagram of the model v/s the parameter (f)

In bifurcation diagram we have varied the parameter f in the window of 5 to 50. Here

we can clearly see one fixed point is bifurcated to give first 2-period orbit between 15 to 20

leading to bifurcating between 30 to 35 to 4-period cycle. After that it leads to a chaotic

behavior.

4.6 MCMC Scheme

Now that we have the bifurcation diagrams of all the parameter values. We can have an

estimation of the mean value of parameter and the corresponding variance of parameter

which we will need to write the MCMC code later. So we have an estimate of the parameter

values so we can start of with writing the MCMC code. So, for that, we will define the

Model Space, Data Space and the Model equation.
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4.6.1 Model Space

Model space will consist of all the parameter values that are there in the model and the

initial values of the data values which will be given to us.

M = a, b, c, d, A, C, f

4.6.2 Data Space

Data space will consist of all the data that we have from the laboratory experiments.

D = N1, N2, N3, ..., Nk

4.6.3 Model Function

Model is a function that will take the model space to data space,

d = Gm

which we can be written as described below

Nt+1 =

(
CfmaxNt

2(1 + dNt)

)
∗ exp

[
−b(A− logWt)

a
−
(

cfmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

)]

Wt+1 = exp

(
A−

{
afmaxNt

2(1 + dNt)
∗ exp [−b(A− logWt)/a]

})
Now, that we have defined model space, data space, model equation, we can start of with

the algorithm for the MCMC code. First of all, we will have to define Prior, Likelihood, and

Posterior probability functions to start with and then we can propose a proposal density

accordingly.

4.6.4 Prior

Prior is the probability distribution function of model parameters. As from the experiments

that are done in the laboratory and biological explanation we know that it can only take

positive values all the time. So to keep it simple we need to find out such a probability

distribution function which rejects all the negative values that are being proposed or that

we are getting after the proposal as well. So, for that we have chosen the probability

distribution function for the Prior to be a Chi-Squared distribution function. Keeping that

in mind the Prior for the model parameters can written as

pprior(m) =
7∏
i=1

(
1

N
x
m2

σ2
i

−1

i exp
−ximi
σ2
i

)
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Where x is a 7*1 matrix consists of all the parameters

N is the normalization constant

sigma is the standards deviation of the parameters

m is the mean of the parameter values

4.6.5 Likelihood

Likelihood is a conditional probability distribution function of data space given model space.

We have chosen that to be the Gaussian conditional probability distribution function, which

can be written as follows:

plikelihood(d | m) =
n∏
i=1

1√
2πγ2

exp(−1

2

(N(i)−N obs(i)

γ2
)

Where γ is the noise in experimental data

N obs(i) stands for all the observational values of N

N(i) stands for all the expected values of data that we have calculated with the given

model equation.

4.6.6 Posterior

Posterior is a conditional probability distribution function of model space given data space.

That, according to Baye’s theorem, we can calculate by multiplying Prior and the Likelihood

functions as follows:

Pposterior(m | d) = pprior(m) ∗ plikelihood(d | m)

4.6.7 Proposal

Now, that we have probability distribution functions for prior, likelihood and posterior, we

can propose a proposal density that we are gonna use in our MCMC code. We can simply

take the proposal to be a multivariate Gaussian probability distribution function. That can

be written as follows:

proposalmultivariate = (x− µ)′ ∗ Σ−1 ∗ (x− µ)

where x and µ is a 7 ∗ 1 matrix and Σ−1 is inverse of covariance matrix

and Σ is a diagonal matrix of the covariances of the parameters

4.7 MCMC Algorithm

Now we may proceed to write an MCMC algorithm for the parameter estimation problem

of the given population dynamics model:
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Algorithm:

• t = 1

• generate an initial value x0 and set xt = x0

• update t=t+1

generate a proposal x∗ from proposalpop(x
∗ | xt)

• evaluate the acceptance probability

α =
(posteriorpop(x∗) ∗ proposalpop(xt | x∗))
posteriorpop(xt) ∗ proposalpop(x∗ | xt)

• generate r from a uniform (0,1) distribution

– if r ≤ α accept the proposal and set xt = x∗

– else set xt = xt−1

– until t=T

Now, using a certain set of all the seven parameters the data is generated which consists

of number of adults of the population of Drosophila for about 1000 generations.

So, the model parameters that we have used to generate the data is as follows:

[p1, p2, p3, p4, p5, p6, p7] = [0.003, 0.001, 0.0019, 0.003, 0.000305, 0.79829, 32.429]

Now, by trying out the different sets of the standard deviations for the prior probability

distribution, likelihood distribution and the proposal distribution we try to get a convergence

that will give the best suited distribution for the parameters. So, after trying a lot of different

sets of standard deviations below are the combination which gave the best suited distribution

for most of the parameters.

StandardDeviationofpriordensity

p1SD = 0.7

p2SD = 0.3

p3SD = 0.111

p4SD = 0.09

p5SD = 0.1

p6SD = 0.79829

p7SD = 8.0429
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StandarddeviationofProposalDensity

p1proposalSD = 0.12124

p2proposalSD = 0.16431

p3proposalSD = 0.10819

p4proposalSD = 0.08538

p5proposalSD = 0.1

p6proposalSD = 0.01383

p7proposalSD = 0.01393

V arianceofLikelihood = 7

InitialConditions

Ninitial = 200

Winitial = 0.459

The “Burn-in” steps that have been used in the MCMC code is 50,000.

The length of the Markov Chain is 8,000.

Hence, Using all the above sets and the initial conditions below are the distribution that

we got for each of the parameter:

Figure“4.7: histogram of parameter1(p1)
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Figure“4.8: histogram of parameter2(p2)

Figure“4.9: histogram of parameter3(p3)
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Figure“4.10: histogram of parameter4(p4)

Figure“4.11: histogram of parameter5(p5)
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Figure“4.12: histogram of parameter6(p6)

Figure“4.13: histogram of parameter7(p7)

4.8 Conclusion

From the theory of Markov Chains, we expect our chains to eventually converge to the

target distribution. We often can never surely claim that for how long we should iterate

the markov chain to ensure convergence. So we use heuristically decide the convergence i.e.,

start the sampler from different starting points and monitor whether the trace plots of the

draws eventually coincide. And in our problem this is not the case. Hence, we can not say

about the convergence of the MCMC.

Based on the distribution curves that we got from the MCMC run we can say that we

are getting the mean of the posterior distribution quite close to that of the mean of the prior
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distribution, or in the other words we can say that, the mean of the posterior distribution

is quite close to that of the “true-value” of the parameter values. For different random

seeds values we are getting the similar distribution. But the posterior distribution is not

independent of the prior distribution. It surely does depend on the value of the prior mean

and the standard deviation of prior, as we have tried for some different set of the prior mean

and prior standard deviation set of values, and accordingly we get the different posterior

for the same. Hence, We can not comment on the values of the parameters from the results

that we are getting.

4.9 Application potential

These types of modeling studies are useful to predict population density of many insect

pathogens that are harmful to economically important crops and live stock. Such mathe-

matical models can give indications at which life stage pathogen control measures can induce

maximal results.
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