
A STUDY OF THE HIGGS

MECHANISM IN

YANG-MILLS AND CHERN-SIMONS

FIELD THEORY

A thesis submitted towards partial ful�lment of

BS-MS Dual Degree Programme

by

K.SriHariTej

under the guidance of

Prof.Sunil Mukhi

Indian Institute of Science Education and Research Pune



Certi�cate

This is to certify that this thesis entitled `A Study of the Higgs Mechanism
in Yang-Mills and Chern-Simons Field Theory' submitted towards the par-
tial ful�lment of the BS-MS dual degree programme at the Indian Institute
of Science Education and Research Pune represents original research car-
ried out by K.SriHariTej at IISER Pune, under the supervision of Prof.Sunil
Mukhi during the academic year 2013-2014.

Student

K.SriHariTej
Supervisor

Prof.Sunil Mukhi



Acknowledgements

I wish to express my sincere gratitude to Prof. Sunil Mukhi, my thesis
supervisor. Without his expert guidance and constant encouragement, this
project wouldn't have been possible. Despite his busy schedule, he always
devoted his precious time to me and patiently cleared all my (sometimes
silly) doubts and nudged me to push to the best of my capacity.

I am also grateful to Dr. Sudarshan Ananth, my mentor for recommend-
ing me to Prof. Sunil Mukhi. It was his constant motivation and guidance
that encouraged me to pursue a career in Physics research. I would also like
to extend my gratitude to Dr. Mukul Kabir and Dr. Arjun Bagchi, for their
support and encouragement throughout my �fth year. I would also like to
thank all the Physics faculty for all courses and suggestions, which has laid a
strong background. I would also like to thank Mr. Prabhakar for providing
administrative help.

I would like to express my special gratitude to my friends Aashay, Arun,
Avani, Bhavesh, Priyatham, Punya, Satish, Siddhartha Das and Tarun. I
have learnt a lot from all of them. Without them, my IISER journey would
have been quite boring.

Finally, I deeply thank my parents and brother for their support and
encouragement throughout my studies.

The work done in this thesis was supported by the INSPIRE grant from
the Department of Science and Technology, Government of India.



Abstract

In this work, we focus on the Higgs mechanism.First, we study the symme-
try breaking patterns in the fundamental and adjoint Higgs �eld. Next,we
study the symmetry breaking patterns in the case of direct product symme-
try groups with bi-fundamental matter using Singular Value Decomposition.
We present here two important applications of Singular Value Decomposi-
tion to study the bi-fundamental Higgs mechanism:
1) We derive the symmetry breaking patterns for bi-fundamental SU(2)×SU(2)
and SU(3)×SU(3) theories,
2) We investigate the spectrum of the di�erence Chern-simons theory in
the presence of a generic bi-fundamental VEV, generalizing the novel Higgs
mechanism in the literature.
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Chapter 1

Introduction

1.1 Quantum �eld theory

Quantum �eld theory(QFT) is a mathematical tool that is essential for the
study of Elementary Particle Physics. In order to deal with particles moving
with a speed close to the speed of light, we require a relativistic framework.
On the other hand, in order to study phenomena at nanoscopic length scales,
one requires the framework of quantum mechanics. However, many problems
arise when we have to deal with phenomena at high speeds and small length
scales. QFT tries to address this problem by creating a uni�ed framework.
In QFT, we describe particles using �elds that can interfere constructively
or destructively resulting in the birth and death of particles. The classical
�elds are represented as operators acting in a Hilbert space.

Based on the general principles of QFT, many consistent theories have
been constructed. One of the most interesting among them is the Yang-Mills
theory. Lie groups, along with matter particles assigned to their respective
group representations, are used to characterize Yang-Mills theory. There are
large number of choices for Lie groups and additionally, for each group, there
are various possibilities of group representations. For example, in the case of
SU(2) Yang-Mills theory there are two group representations, viz., doublet
representation and adjoint representation. We discuss in detail about these
groups and their corresponding matter particles in the following chapters.

1.2 Yang-Mills theory

Yang-Mills theory is a gauge theory characterized by the Lie group. It is
named after Chen Ning Yang and Robert Mills. The famous Standard model
of particle physics is constructed in the framework of Yang-Mills theory.
Uni�cation of electromagnetic force and weak force, known as the Glashow-
Salam-Weinberg theory and the strong force are explained using Yang-Mills
theory. Further details of Yang-Mills theory are discussed in chapter 2.
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1.3 Chern-Simons theory

Chern-Simons theory is a quantum �eld theory in 2+1 dimensions. One
of the special features of Chern-Simons theory is that its kinetic term is
�rst order in the derivatives[1],[2],[3]. Since its action is proportional to the
Chern-Simons 3-form, it is named as Chern-Simons theory. Unlike the Yang-
Mills theory, the Chern-Simons action is gauge invariant only if boundary
terms are handled properly. It can be made gauge independent when the
gauge �eld strength vanishes at all the boundaries.As Yang-Mills theory,
Chern-Simons theory is also characterized by the Lie groups. This theory
has interesting practical applications in the planar Condensed Matter Physics
and (2+1)d gravity. In Condensed Matter Physics, it explains the topological
order in Quantum Hall e�ect.

1.4 Higgs Mechanism

The process by which elementary gauge particles acquire mass is known as
the Higgs mechanism. It was initially proposed by Philip Anderson but the
relativistic model was later developed by Peter Higgs and Richard Brout
with Francois Englert. It predicts the existence of a particle called Higgs
boson,which is generated along with the other massive gauge bosons. The
Higgs boson doesn't have spin, charge and color charge. The discovery of
Higgs boson by ATLAS and CMS groups at the Large Hadron Collider on 4
July 2012 con�rmed that the fundamental particles get their mass through
Higgs mechanism. With the discovery of the Higgs boson, we can say that
the Standard Model is in some sense complete. Francois Englert and Peter
Higgs have been awarded the 2013 Physics Nobel Prize for their contribu-
tion towards the understanding of the origin of subatomic particles. In the
following chapters, we will discuss the Higgs mechanism in detail.

1.5 Novel Higgs Mechanism(NHM)

Chern-Simons gauge theories in 2+1 dimensions with multiple gauge �elds
exhibit novel properties. One of the striking feature is the possibility of a
non-propagating Chern-Simons �eld acquiring a massless propagating mode
via the Higgs mechanism. NHM was originally discovered in the context of
M-theory and su�cient conditions are found for it to occur. NHM helps
in understanding the world-volume theory on multiple membranes in M-
theory.In the third chapter, we study NHM in the case of di�erence Chern-
Simons action without any reference to M-theory or Supersymmetry. We
�nd that only under certain conditions, non-propagating gauge �elds turn
into a massless propagating �eld (Yang-Mills �eld).
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Chapter 2

Higgs mechanism

2.1 Introduction

Higgs mechanism is the answer to the most important question in the parti-
cle physics:�how do elementary particles acquire mass?�. Initially it was pro-
posed by Anderson, but the relativistic model was developed by Higgs and
Englert and Brout that answers this question. According to Higgs mecha-
nism,particles acquire mass,when the local symmetry is broken. Spontaneous
breaking of di�erent symmetry groups results in giving mass to various ele-
mentary particles. In this chapter,we will explore Higgs mechanism in great
detail.

2.2 Spontaneous Breaking of Symmetry

Consider a complex scalar �eld φ(x).Lagrangian in terms of complex scalar
�eld is given as :

L =
1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ(x)2 − λ

4!
(φ∗(x)φ(x))

2
(2.1)

Take global phase transformation of the complex scalar �eld:

φ(x)→ φ(x)eiα (2.2)

Under the above transformation, the kinetic term in the Lagrangian changes
as follows:

∂µφ
∗(x)∂µφ(x)→ ∂µ(e−iαφ∗(x))∂µ(φ(x)eiα)) (2.3)

It is seen from above that the scalar �eld theory is invariant under global
phase transformation.Now, let us choose a potential such that φ gets a min-
imum at a �nite value.

L =
1

2
∂µφ

∗(x)∂µφ(x) +
1

2
m2φ(x)2 − λ

4!
(φ∗(x)φ(x))

2
(2.4)
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The potential term is now:

V (φ) = −1

2
m2φ(x)2 +

λ

4!
(φ∗(x)φ(x))

2
(2.5)

The above potential has a local maximum at |φ| = 0 and local minimum at

|φ| =
√

6m2

λ . We make a change of �eld variables and write complex scalar
�eld as:

φ(x) = R(x)eiθ(x) (2.6)

In the above variables the local minimum is :

R =

√
6m2

λ
(2.7)

Inserting the above form of φ(x) in the Lagrangian, we �nd that

L =
1

2
∂µR∂

µR− 1

2
m2R2 − λ

4!
R4 +

R2

2
∂µθ∂

µθ (2.8)

In these new variables of φ(x), the global phase transformation is just a
constant shift :

θ → θ + α (2.9)

After the transformation, the Lagrangian transforms as:

L =
1

2
∂µR∂

µR− 1

2
m2R2 − λ

4!
R4 +

1

2
R2∂µ(θ + α)∂µ(θ + α) (2.10)

Since α is a constant, the above Lagrangian is invariant under global trans-
formation.

In order to study the theory around minimum, we de�ne a new �eld as:

R̃ = R−
√

6m2

λ
(2.11)

Inserting R̃ in the above Lagrangian(eq.(2.8)), we �nd that:

L =
1

2
(∂µR̃∂

µR̃)−m2R̃2 − λ

4!
R̃4 − m

2

√
3λ

2
R̃3

+
3m2

λ
(∂µθ)

2 +

√
6m2

λ
R̃(∂µθ)

2 +
1

2
R̃(∂µθ)

2

(2.12)

In the above Lagrangian, R̃ has a sensible mass term
√

2m and θ is massless.
Therefore, a continuous symmetry is spontaneously broken, because the

potential was minimized by nonzero φ. We gave the �eld a de�nite nonzero

value in the vacuum (R =
√

6m2

λ ,θ = 0). In the radial variables, θ=constant
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is a vacuum con�guration for any constant. Therefore,the theory has one
real massive scalar and one axionic scalar(Goldstone boson) with vanish-
ing potential.Now we are in a position to understand the statement of the
Goldstone theorem, which states that for every spontaneously broken contin-
uous symmetry,the theory must contain a massless particle and the massless
�elds that arise through spontaneous symmetry breaking are called Gold-
stone bosons. In this case,the massless �eld is θ(x) and the scalar associated
with θ(x) is called Goldstone boson.

2.3 The Higgs mechanism:

In this section we begin by applying the Higgs mechanism to an Abelian
U(1) gauge theory to demonstrate how the mass of the corresponding gauge
boson comes about. The Abelian example will then be generalized in a
straightforward way to the system with the non-Abelian gauge symmetry in
the following section.

Let us take local phase transformation of the complex scalar �eld.For
this,we need to promote α to a local parameter α(x).Under local phase trans-
formation:

φ(x)→ φ(x)eiα(x) (2.13)

The kinetic term in the Lagrangian changes as follows:

∂µφ
∗(x)∂µφ(x)→ ∂µ(e−iα(x)φ∗(x))∂µ(φ(x)eiα(x)) (2.14)

∂µ(e−iα(x)φ∗(x))∂µ(φ(x)eiα(x)) =∂µφ
∗(x)∂µφ(x)− i∂µαφ∗(x)∂µφ(x)

+ i∂µα∂µφ
∗(x)∂µφ(x) + ∂µα∂µαφ

∗(x)∂µφ(x)
(2.15)

The above scalar �eld theory is not invariant under local phase transfor-
mation.we couple a gauge �eld Aµ to the complex scalar �eld, such that the
combined system has local gauge invariance.

Consider the following replacement in the action:

∂µφ→ (∂µ − iAµ)φ (2.16)

Under the gauge transformation,we know that :

φ(x)→ φ(x)eiα(x)

φ∗(x)→ e−iα(x)φ∗(x)

Aµ → Aµ + ∂µα

(2.17)

Using the above equations,we may check that (∂µ − iAµ) transforms as:

(∂µ − iAµ)φ→ eiα(x)(∂µ − iAµ)φ (2.18)
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This above formalism helps to write the generalized kinetic term as:

(∂µ + iAµ)φ∗(∂µ − iAµ)φ (2.19)

The above kinetic term is gauge invariant, as are the potential terms that
depend only on the scalar �eld. We have seen that,if a �eld has the local
transformation law,then it's covariant derivative has the same transformation
law. The same conclusion can also be applied to the commutator of covariant
derivatives:

[Dµ, Dν ]φ(x)→ eiα(x)[Dµ, Dν ]φ(x) (2.20)

Expanding the above term:

[Dµ, Dν ]φ(x) = i(∂µAν − ∂νAµ)φ(x)

⇒ [Dµ, Dν ]φ(x) = iFµνφ(x)
(2.21)

Where

Fµν = ∂µAν − ∂νAµ (2.22)

The factor of φ(x) on the right-hand side of the equation accounts for the
entire transformation law, so the multiplicative factor Fµν must be gauge
invariant.

The U(1) gauge invariant kinetic term is given by:

LA = −1

4
FµνF

µν (2.23)

One can see that LA is invariant under the transformation: Aµ → Aµ+∂µα.
When we add the above term to the Lagrangian, we end up with a coupled
theory that is gauge invariant.

From the previous section,we know that the potential has a local maxi-

mum at |φ| = 0 and local minimum at |φ| =
√

6m2

λ . As in the case of global

phase transformation, we will write the �eld(φ(x)) in terms of R and θ.

L =− 1

4
FµνF

µν +
1

2
∂µR∂

µR− 1

2
m2R2

− λ

4!
R4 +

R2

2
∂µθ∂

µθ

(2.24)

Under the local phase transformation :

R(x)eiθ(x) → R(x)eiθ(x)eiα(x) (2.25)

θ(x) independent terms are all invariant, but the last term of the Lagrangian
changes as:

9



1

2
R2∂µ(θ + α)∂µ(θ + α) (2.26)

From above, phase invariant Lagrangian may be achieved from the following
transformation:

∂µθ → ∂µθ −Aµ (2.27)

Under the above transformation, the Lagrangian changes as:

L = −1

4
FµνF

µν +
1

2
(∂µR∂

µR)− 1

2
m2R2 − λ

4!
R4 +

R2

2
(∂µθ −Aµ)2 (2.28)

The above Lagrangian is invariant under the transformation:

θ(x)→ θ(x) + α(x)

Aµ → Aµ + ∂µα
(2.29)

As we are interested in studying the theory around the minimum, we
shall de�ne a new �eld:

R̃ = R−
√

6m2

λ
(2.30)

Substituting R̃ in the above Lagrangian(2.28), which then changes to:

L = −1

4
FµνF

µν +
1

2
(∂µR̃∂

µR̃)−m2R̃2− λ

4!
R̃4 +

1

2
(R̃+

√
6m2

λ
)2(∂µθ−Aµ)2

(2.31)
consider the quadratic term in the Lagrangian:

3m2

λ
(∂µθ −Aµ)2 (2.32)

This is not a good quadratic term, as it has a cross term between Aµ and
∂µθ.This motivates us to perform the change of variables:

Aµ → Aµ + ∂µθ (2.33)

Under the above transformation, quadratic term changes to

3m2

λ
AµA

µ (2.34)

After all the transformations, the Lagrangian is:

L = −1

4
FµνF

µν+
1

2
(∂µR̃∂

µR̃)−m2R̃2− λ
4!
R̃4+

1

2
(R̃+

√
6m2

λ
)2AµA

µ (2.35)

The Lagrangian consists of a mass term for the gauge �eld Aµ. This process

of generating mass to the gauge bosons is called the Higgs mechanism and R̃
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is called the Higgs �eld. This above theory has a real massive scalar R̃ of mass
√

2m and a massive gauge �eld of mass µ =
√

3m2

λ .By comparing this with

the global symmetry case, we can see that the Goldstone term(θ) has been
completely disappeared from the theory and one can say that the Goldstone
boson has been eaten away to give the photon mass. Let us count degrees
of freedom before and after spontaneous symmetry breaking has occurred.
We started with a massless photon,which has two degrees of freedom and a
complex scalar �eld,which has two degrees of freedom. After spontaneous
symmetry breaking ,we have one massive photon,which has three degrees of
freedom and a real scalar �eld ,which has one degree of freedom. So,the total
number of degrees of freedom of the theory are conserved.

2.3.1 Why does a photon have only two degrees of freedom?

The massless vector �eld Aµ has four components. Hence it may seem that
Aµ has four degrees of freedom,but quantizing Aµ gives only two degrees of
freedom rather than four.In this section, we will study the reason behind this
interesting fact.

The equation of motion for the electromagnetic �eld is :

∂µ∂
µAν − ∂µ∂νAµ = 0 (2.36)

Gauge invariance allows us to choose a gauge. In this case, let us choose
Lorentz gauge.

∂µA
µ = 0 (2.37)

Under Lorentz gauge the equation of motion reduces to:

∂µ∂
µAν = 0 (2.38)

The above equation has solutions of the form:

Aµ = ξµ(p)e−ip.x (2.39)

where ξµ is the four component polarization vector and p is the photon four
momentum. The above equation has to satisfy the Lorentz condition.

ξµp
µ = 0 (2.40)

Inserting this constraint into eq.(2.39), we �nd that there are only three
independent components.
Next we will consider an additional gauge transformation, which is given as:

A
′
µ = Aµ + ∂µλ

∇2λ = 0
(2.41)

Let us choose λ = ibe−ip.x.For this choice, we �nd the following:
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Aµ → A
′
µ = Aµ + ∂µλ = (ξµ + bpµ)e−ip.x (2.42)

From the above equation, we �nd that the electromagnetic �eld is invariant
under the transformation ξ′µ → ξµ + bpµ. we can choose b such that
ξ0 = 0(Coulomb gauge).Therefore, from eq.(2.40), we �nd that:

−→
ξ .−→p = 0 (2.43)

From the eq.(2.43), we infer that there exists only two independent compo-
nents, both perpendicular to the photon's momentum. Thus, there are only
two degrees of freedom for the photon and they are transverse.

In the case of massive vector �eld, the Lagrangian is given as:

L = −1

4
FµνF

µν − m2

2
AµA

µ (2.44)

Equation of motion for the above Lagrangian is :

∂µF
µν = −2m2Aν (2.45)

We can see that the above Lagrangian is not invariant under the gauge trans-
formation due to the second term in the equation(2.44). Taking divergence
of the equation(2.44), we �nd that:

∂ν∂µF
µν = −2m2∂νA

ν (2.46)

Since Fµν is anti-symmetric, the above equation reduces to:

∂νA
ν = 0 (2.47)

For a massive vector boson,we can see that there exists only one constraint
equation reducing degrees of freedom from four to three. It is not possible to
have any further reduction of degrees of freedom. Therefore,a massive vector
�eld boson has three degrees of freedom.

We have seen that a complex scalar �eld and a massless vector �eld, both
with two degrees of freedom, as a result of the Higgs mechanism were trans-
formed into one real scalar �eld with one degree of freedom and a massive
vector boson �eld with 3 degrees of freedom respectively. A massless spin 1
particle has two transverse polarized states, while a massive spin 1 particle
has an additional longitudinal polarized state.

12



2.4 Basic facts about Non-Abelian gauge theory:

In order to work with the non-Abelian gauge theories in the following sec-
tions,it is worthwhile to glance through the general transformation properties
of the non-Abelian gauge theory.

Consider a set of complex scalar �elds φI(x), where I = 1, 2, .....N . The
natural generalization of a phase transformation on a single �eld would be a
unitary transformation on this set of �elds:

φI(x)→ UIJφJ(x) (2.48)

where UIJ satis�es U †U =I

Let us take the unitary symmetry to be a local one, which means that
U is an arbitrary function U(x). The Lagrangian above fails to be invariant
because:

∂µφ
†∂µφ→ ∂µ(φ†U−1)∂µ(Uφ) (2.49)

Expanding right hand side of the above equation we get:

(∂µφ
†U−1 + φ†∂µU

−1)(∂µUφ+ U∂µφ) =∂µφ
†∂µφ+ ∂µφ

†(U−1∂µU)φ+

φ†(∂µU
−1U)∂µφ+ φ†(∂µU

−1∂µU)φ
(2.50)

The terms that are made out of the UIJ and sandwiched between φ†I and
φJ can be canceled by introducing a matrix valued vector �eld AµIJ and
generalizing the derivative to:

∂µφI → (Dµφ)I = (∂µδIJ − ieAµIJ)φJ (2.51)

It can be written more implicitly as:

∂µφ→ Dµφ = (∂µ − ieAµ)φ (2.52)

We need to arrange in such a way that under the transformation φ(x) →
U(x)φ(x),

Dµφ→ U(x)Dµφ (2.53)

such that kinetic term Dµφ
†Dµφ remains invariant.This will be possible if

Aµ transforms to A
′
µ in such a way that:

(∂µ − ieA
′
µ)φ→ U(∂µ − ieAµ)φ (2.54)

=⇒ ∂µUφ+ U∂µφ− ieA
′
µUφ = U∂µφ−ieUAµφ (2.55)

Since the above equation is true for every φ, we have:

A
′
µ = UAµU

−1− i
e
∂µUU

−1 (2.56)
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Therefore, the commutator of the vector �eld and the gauge parameter en-
ters into the transformation law .Now, to �nd the kinetic term that will
make the matrix Aµ into a propagating �eld, let us consider the commuta-
tor of covariant derivatives([Dµ, Dν ]).Under the local transformation of the
�eld, covariant derivative also has the same transformation law Thus, the
second covariant derivative of φ also transforms as eq.(2.52). Therefore, we
can conclude that the above transformation law applies for commutator of
derivatives.

[Dµ, Dν ]φ(x)→ U(x)[Dµ, Dν ]φ(x) (2.57)

Inserting Dµ in the above equation and expanding the commutator, we �nd
that :

[Dµ, Dν ] = −ieFµν (2.58)

where,
Fµν = ∂µAν − ∂νAµ−ie[Aµ, Aν ] (2.59)

we can �nd the transformation law for Fµν by inserting eq.(2.56) in eq.(2.59),
which gives:

F
′
µν = U−1FµνU (2.60)

For a general case , any unitary matrix can be written as: U = eiΛ, where Λ
is a Hermitian matrix. The results for an in�nitesimal gauge transformation
by assuming the matrix has small entries and dropping terms of second and
higher orders are:

δAµ =
1

e
∂µΛ + i[Λ, Aµ] (2.61)

δFµν = −i[Λ,Fµν ] (2.62)

The above equation tells us that the �eld strength is no longer a gauge-
invariant quantity.However, we can �nd gauge invariant combinations of the
�eld strengths. One such gauge-invariant kinetic energy term for Aiµ is:

− 1

4
tr(FµνF

µν) (2.63)

The term ” − 1
4 tr(FµνF

µν)” is called Yang-Mills Lagrangian. Pure Yang-
Mills theory is an interacting theory, which we can see this by expanding
Yang-Mills Lagrangian:

−1

4
tr(FµνF

µν) =− 1

4
(∂µAν − ∂νAµ)2+

i

e
(∂µAν − ∂νAµ)[Aµ, Aν ]

+
e2

4
[Aµ, Aν ][Aµ, Aν ]

(2.64)

This term −1
4 tr(FµνF

µν) contains both free terms and interaction terms
that are precisely dictated: a 3-point and a 4-point interaction with related
coe�cients.
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2.4.1 Systematics of the Higgs mechanism:

The Higgs mechanism explained in the section 2.3 extends straightforwardly
to systems with non-Abelian gauge symmetry. Let us �rst derive the general
relation through which a set of scalar �eld VEV values lead to the appearance
of gauge bosons[4] and in the following sections we will apply this to SU(2)
gauge symmetry.

Consider a system of scalar �elds φi in a Lagrangian,which is invariant
under a symmetry group G that is represented by the transformation:

φi → (1 + iαata)ijφj (2.65)

In general, ta are Hermitian. To write the φi as real-valued �elds, ta must
be pure imaginary and antisymmetric.

taij = iT aij (2.66)

where T a are real and antisymmetric.
We promote symmetry group G to a local gauge symmetry, then the

co-variant derivative on the φi is:

Dµφ = (∂µ−iAaµta)φ = (∂µ +AaµT
a)φ (2.67)

Then the kinetic energy term reads as:

1

2
(Dµφ)2 =

1

2
(∂µφ)2 +Aaµ(∂µφiT

a
ijφj) +

1

2
AaµA

bµ(T aφ)i(T
bφ)i (2.68)

Let the VEV of φ be
〈φi〉 = (φ0)i (2.69)

When we expand the φi about these VEV, the last term of eq(2.68) contains
a term with the structure of a gauge boson mass,

1

2
(Dµφ)2 =

1

2
m2
abA

a
µA

bµ + .......................... (2.70)

where m2
ab = (T aφ)i(T

bφ)i evaluated at VEV. Therefore, all the gauge
bosons will receive positive masses and when a particular generator T a of G
leaves the vacuum invariant, the corresponding gauge boson remains mass-
less.
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2.4.2 SU(2)-Higgs Mechanism

In this section,we will apply the above mentioned general formalism to the
SU(2) representation[5],[6].SU(2) group has two important representations:
1)Doublet representation
2)Triplet representation
We will discuss the Higgs mechanism for each of the above representations.
In the case of SU(2), the unitary matrix is given by:

U(x)=exp(iαi(x)
σi

2
) (2.71)

Doublet Representation

The covariant derivative associated with local SU(2) symmetry:

Dµ = ∂µ−iAaµ
σa

2
(2.72)

The covariant derivative acting on φ is:

Dµφ = (∂µ−iAaµ
σa

2
)φ (2.73)

The Lagrangian for the complex scalar �eld is :

L = Tr(Dµφ
†Dµφ) +

g

4
(φ†φ− v

2

2
)2 (2.74)

From the above Lagrangian,we �nd that the V(φ) has local minimum at |φ| =
v√
2
.Using the freedom of rotations of SU(2), we can write the expectation

value in the form:

φ0 =
1√
2

(
0
v

)
(2.75)

In order to study the theory around the minimum, we will de�ne a new �eld:

φ̃ = φ− φ0 (2.76)

This new �eld φ̃ has its minimum value at 0 and therefore we can expect
this �eld to have decent properties. Inserting φ̃ in the above eq.(2.73), which
then becomes:

Dµφ = Dµφ̃+Dµφ0 (2.77)

The gauge boson masses arise from:

|Dµφ|2 =
1

2

(
0 v

) σa
2

σb

2

(
o
v

)
AaµA

bµ + ..................... (2.78)
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Symmetrizing the matrix product under the interchange of a and b, we �nd
that :

|Dµφ|2 =
v2

8
AaµA

aµ + ............ (2.79)

where
{
σa

2 ,
σb

2

}
= 1

2δ
ab.Therefore, all three gauge bosons become massive

with mass :

mA =
v

2
(2.80)

This tells us that all three generators of SU(2) are broken by the VEV (φ0).
For complex scalar doublet there are four degrees of freedom and there are six
degrees of freedom for the vector bosons. Through the Higgs mechanism, the
Lagrangian is transformed into one real scalar, three massive vector bosons.
The single remaining scalar is identi�ed with the Higgs boson. After Higgs
mechanism,again counting degrees of freedom, we have one from the Higgs
and nine from the massive vector bosons, adding up to ten.

Adjoint Representation:

In this section,we will discuss the above derived formalism in the case of
SU(2) gauge �eld coupled to Higgs �eld in the adjoint representation. The
covariant derivative of φ is written as:

Dµφ = ∂µφ− i[Aµ, φ] (2.81)

where φ = φaτa

φ = φaτa

Aµ = Aaµ
σa

2

(2.82)

In terms of matrices,Aµ is:

Aµ =
1

2

[
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

]
(2.83)

This is represented as:

Aµ =
1

2

[
aµ Wµ

W ∗µ −aµ

]
(2.84)

where
aµ = A3

µ

Wµ = A1
µ − iA2

µ

(2.85)

The Lagrangian is :

L = Tr(Dµφ
†Dµφ) +

g

4
(tr(φ2)− v

2

2
)2 (2.86)
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In the adjoint representation ,φ is a 2× 2 traceless Hermitian matrix,whose
e�ects can be analyzed by diagonalizing it(any 2×2 traceless Hermitian ma-
trix can be generated by taking a particular linear combination of generators
of SU(2)).

From eq.(2.86), we see that V(φ) has local minimum at :

Tr(φ2) =
v2

2
(2.87)

=⇒ a2 + b2 =
v2

2
(2.88)

Using the degree of freedom of SU(2) group, the VEV is reduced to :

φ0 =

[
a 0
0 b

]
(2.89)

where a2 + b2 = v2

2 and since φ is a traceless Hermitian matrix,we have

a2 = v2

4 . In order to study the theory around the minimum, we will de�ne a
new �eld:

φ̃ = φ− φ0 (2.90)

This new �eld φ̃ has its minimum value at 0. The Lagrangian in terms of
the new �eld is:

Dµφ = Dµφ̃+Dµφ0 (2.91)

⇒ Dµφ = Dµφ̃− i[Aµ, φ0] (2.92)

The mass terms come from the square of the kinetic term.

(Dµφ)2 = (Dµφ̃)2 − [Aµ, φ0]2 − iDµφ̃[Aµ, φ0]− i[Aµ, φ0]Dµφ (2.93)

Consider [Aµ, φ0]2, which may be expanded as:

[Aµ, φ0]2 =
1

4

[
WµW

µ∗(2ba− v2

2 ) 0

0 WµW
µ∗(2ba− v2

2 )

]
(2.94)

Using (a+ b)2 = 0 and a2 + b2 = v2

2 , we �nd that:

a2 + b2 = −2ab (2.95)

⇒ (2ba− v2

2
) = −v2 (2.96)

tr([Aµ, φ0]2) = −1

2
v2WµW

µ∗ (2.97)
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tr([Aµ, φ0]2) = −1

2
v2(A1

µ)2 − 1

2
v2(A2

µ)2 (2.98)

Therefore,one can see that the tr(Dµφ)2 picks up mass terms:

tr(Dµφ)2 =
1

2
m2((A1

µ)2 + (A2
µ)2) + ..................... (2.99)

Where m = v.The gauge bosons corresponding to the generators 1 and
2 acquire masses, while the boson corresponding to the generator 3 remain
massless. This means that the VEV destroys the symmetry of rotation about
two axis of rotation,but the symmetry of rotation about the third axis of
rotation that corresponds to the massless gauge boson is preserved. The
resulting theory has unbroken U(1) symmetry. For a scalar triplet there are
three degrees of freedom and there are six degrees of freedom for the vector
bosons. Through the Higgs mechanism, the Lagrangian is transformed into
one real scalar, two massive vector bosons. After the Higgs mechanism,
again counting degrees of freedom, we have one from the Higgs, six from the
massive vector bosons and two from the massless vector boson, adding to
nine
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Chapter 3

Bifundamental Higgs
mechanism

3.1 Introduction

A bifundamental representation is a tensor product of two fundamental or
anti fundamental representations. An example is the PQ-dimensional repre-
sentation (P, Q̄) of the group SU(P)×SU(Q). In this chapter, we will study
the Higgs mechanism in the context of di�erent gauge groups in the bifun-
damental representation. Our considerations apply to Yang-Mills in (3+1)d
as well as both Yang-Mills and Chern-simons in (2+1)d.

3.2 Spontaneous Breaking of SU(2) × U(1)

In this section, we will study the spontaneous breaking of SU(2) × U(1) ,
which gives the correct description of the weak interaction. This theory is
called �The Glashow-Weinberg-Salam Theory of Electroweak Interactions.�
The gauge transformation for this group is given as:

φ→ eiα
aτaeiβ/2φ (3.1)

Now if the �eld acquires a VEV, then general form of the VEV is given as:

〈φ〉 =

(
v1

v2

)
(3.2)

where v1 and v2 are complex. General element of SU(2) is given as :(
a b
−b∗ a∗

)
(3.3)

Acting SU(2) on < φ >, we get:(
a b
−b∗ a∗

)(
v1

v2

)
=

(
av1 + bv2

−b∗v1 + a∗v2

)
(3.4)
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we can choose a and b, such that av1 + bv2 = 0, which gives a
b = −v2

v1
. This

reduces VEV to:

〈φ〉 =

(
0

a∗

v∗2
(|v1|2 + |v2|2)

)
(3.5)

which can be further reduced to: (
0

υeiα

)
(3.6)

where υ and α are real. After acting U(1) on < φ > in (eq.(3.6)),VEV is :(
0

υeiα+iχ

)
(3.7)

Again using degree of freedom of SU(2) group, we �nd that:(
eiα+iχ 0

0 e−iα−iχ

)(
0

υeiα+iχ

)
=

(
0
υ

)
(3.8)

where υ is real. Therefore, most general form of VEV in the case of SU(2) × U(1)

gauge theory is given by:

〈φ〉 =

√
1

2

(
0
υ

)
(3.9)

where υ is real.

3.2.1 Mass spectrum of SU(2) × U(1)

In this section, we will work out the details of the mass spectrum generated by
SU(2) × U(1) gauge theory by using the methods discussed in the previous
sections.
The covariant derivative of φ is:

Dµφ = (∂µ − igAaµτa − i
g′

2
Bµ)φ (3.10)

where Aaµ and Bµ are SU(2) and U(1) gauge bosons respectively and g,g′

are coupling constants of SU(2) and U(1) gauge groups respectively. The
gauge boson mass terms come from the square of the kinetic terms,evaluated
at the VEV. The relevant terms are:

∆L =
1

2
(0 v)(gAaµτ

a +
g′

2
Bµ)(gAbµτ b +

g′

2
Bµ)

(
0
v

)
. (3.11)

After evaluating the matrix product explicitly, we �nd that:

∆L =
1

2

v2

4
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2]. (3.12)
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This gives rise to three massive vector bosons,which we will notate as follows:

W±µ =
1√
2

(A1
µ ∓ iA2

µ) with mass mW = g
v

2
;

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) with mass mZ =

√
g2 + g′2

v

2
.

(3.13)

Since this theory contains four gauge bosons, out of which three are mas-
sive,there exists a fourth vector �eld,which is massless and orthogonal to
Z0
µ:

Aµ =
1√

g2 + g′2
(gA3

µ + g′Bµ) with mass mA = 0. (3.14)

This theory contains one massless gauge boson and three gauge bosons that
acquire mass from the Higgs mechanism. These three gauge bosons were
detected in proton-antiproton collisions at the converted Super Proton Syn-
chrotron at mass values mW±=80.38 GeV/c

2 and mZ=91.19 GeV/c
2. Thus,

SU(2) × U(1) symmetry is broken to U(1) .

3.3 Spontaneous breaking of bifundamental
SU(2) × SU(2)

In this section,we shall discuss the breaking of bifundamental SU(2) × SU(2)

group. The gauge transformation for this group is given as:

φ→ eiα
aτae−iα

′bτb/2φ. (3.15)

where a=1,2,3 and b=1,2,3.
If the �eld acquires VEV,it is given as :

〈φ〉 =

(
v′1 v′2
v′3 v′4

)
(3.16)

where v′1, v
′
2, v
′
3, v
′
4 are complex entries.Now we shall focus on the problem

of diagonalizing the above VEV matrix using SU(2) × SU(2) symmetry
group. To diagonalize the above matrix,we need to discuss an important
theorem in the linear algebra called Singular Value Decomposition (SVD).

Singular Value Decomposition(SVD):

Singular Value Decomposition (SVD) is a factorization of a real or complex
matrix. This has many useful applications in signal processing and statistics.
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Statement of the theorem(SVD):

Suppose M is an m×n matrix whose entries come from the �eld K, which
is either the �eld of real numbers or the �eld of complex numbers. Then
there exists a factorization of the form

M = UΣV † (3.17)

where U is an m×m unitary matrix over K, the matrix Σ is an m×n diagonal
matrix with positive real numbers on the diagonal, and the n×n unitary
matrix V † is the conjugate transpose of the n×n unitary matrix V. Such a
factorization is called a singular value decomposition of M[7].

The diagonal entries σi of Σ are known as the singular values of M. The
diagonal matrix Σ is uniquely determined by M (though the matrices U and
V are not).

Consider the following transformation:

U = U ′P V = V ′Q (3.18)

where P ,Q are diagonal matrices and U
′
,V
′
are special unitary matrices.

Diagonalizing the matrix M in the eq.(3.17), using U
′
and V

′
:

U ′PΣQ†V ′† (3.19)

which reduces to :

U ′Σ̃V ′† (3.20)

From the eq.(3.20), we arrive at an interesting result that when the unitary
matrices are restricted to only special unitary matrices, this leads to a diag-
onal matrix Σ̃ with complex entries on the diagonal. So we may write the
above theorem(SVD), when restricted to special unitary matrices.

Singular Value Decomposition(SVD)

(restricted to special unitary matrices):

SupposeM is an m×n matrix whose entries come from the �eld K, which is
either the �eld of real numbers or the �eld of complex numbers. Then there
exists a factorization of the form

M = U ′Σ̃V ′
†

(3.21)

whereM is an m×m special unitary matrix over K, the matrix Σ̃ is an m×n
diagonal matrix with complex entries on the diagonal. This implies that
given any matrix and bifundamental symmetry group, we can diagonalize
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it using SVD. Going back to our discussion on Spontaneous Breaking of
SU(2) × SU(2) , using SVD the VEV in eq.(3.16) can be reduced to :

〈φ〉 =

(
υ1 0
0 υ2

)
(3.22)

where υ1 and υ2 are complex numbers.

3.3.1 Mass spectrum of SU(2) × SU(2)

In this section, we will explore the mass spectrum generated by SU(2) × SU(2)

gauge theory by using the methods discussed in the previous sections. The
covariant derivative of φ is:

Dµφ = ∂µφ− igAaµτaφ− ig′φÃbµτ b (3.23)

where Aaµ and Ãbµ are SU(2) × SU(2) gauge bosons and g,g′ are cou-
pling constants of the SU(2) gauge groups. The gauge boson mass terms
come from the kinetic term of the Lagrangian evaluated at the VEV. The
relevant terms are:

∆L = tr[gAaµτ
aφ+ g′φÃaµτ

a][gφ∗Aµbτ b + g′Ãµbτ bφ∗] (3.24)

⇒ ∆L =tr[g2Aaµτ
aφφ∗Aµbτ b + gg′Aaµτ

aφÃµbτ bφ∗

+ g′gφÃaµτ
aφ∗Aµbτ b + g′2φÃaµτ

aÃµbτ bφ∗]
(3.25)

where

Aµ = Aaµτ
a =

1

2

[
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

]
;

Ãµ = Ãaµτ
a =

1

2

[
Ã3
µ Ã1

µ − iÃ2
µ

Ã1
µ + iÃ2

µ −Ã3
µ

] (3.26)

Using VEV of eq.(3.22), we will explicitly write down each of the four terms
in the above eq.(3.25).

tr(g2Aaµτ
aφφ∗Ab

µ
τ b) =

g2

4
[|υ1|2A3

µA
µ3 + |υ2|2(A1

µA
µ1 +A2

µA
µ2)

+|υ1|2(A1
µA

µ1 +A2
µA

µ2) + |υ2|2A3
µA

µ3]

(3.27)

tr[gg′Aaµτ
aφÃµbτ bφ∗] =

gg′

4
[|υ1|2A3

µÃ
µ3 + υ∗1υ2(A1

µ − iA2
µ)(Ãµ1 + iÃµ2)

+ υ∗2υ1(A1
µ + iA2

µ)(Ãµ1 − iÃµ2) + |υ2|2A3
µÃ

µ3]
(3.28)
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tr[g′gφÃaµτ
aφ∗Aµ

b
τ b] =

g′g

4
[|υ1|2Ã3

µA
µ3 + υ1υ

∗
2(Ã1

µ − iÃ2
µ)(Aµ1 + iAµ2)

+ υ∗1υ2(Ã1
µ + iÃ2

µ)(Aµ1 − iAµ2) + |υ2|2Ã3
µA

µ3]
(3.29)

tr[g′2φÃaµτ
aÃµbτ bφ∗] =

g′2

4
[|υ1|2Ã3

µÃ
µ3 + |υ2|2(Ã1

µÃ
µ1 + Ã2

µÃ
µ2)

+|υ1|2(Ã1
µÃ

µ1 + Ã2
µÃ

µ2) + |υ2|2Ã3
µÃ

µ3]

(3.30)

Inserting the above equations (eq.(2.27)- eq.(3.30)) in eq.(3.25), we �nd
that:

∆L =
1

4
[g2(|υ1|2 + |υ2|2)(A1

µ)2 + g2(|υ1|2 + |υ2|2)(A2
µ)2 + g2(|υ1|2 + |υ2|2)(A3

µ)2

+ 2gg′(|υ1|2 + |υ2|2)Aµ3 Ã
µ3 + 2gg′υ∗1υ2(A1

µ − iA2
µ)(Ãµ1 + iÃµ2)

+ 2gg′υ∗2υ1(Aµ1 + iAµ2)(Ã1
µ − iÃ2

µ) + g′2(|υ1|2 + |υ2|2)(Ã1
µ)2

+ g′2(|υ1|2 + |υ2|2)(Ã2
µ)2 + g′2(|υ1|2 + |υ2|2)(Ã3

µ)2]
(3.31)

Based on the di�erent choices of VEV, we have three cases:

Case 1 : υ1 = υ2 = 0

⇒ ∆L = 0 (3.32)

This choice of VEV doesn't break the symmetry of SU(2) × SU(2) group.
Hence, there are no massive gauge bosons.

Case 2 : υ1 6= υ2 6= 0

⇒ ∆L =
1

4
[2|gυ1W

+
µ + g′υ2W̃

+
µ |2 + 2|gυ2W

−
µ + g′υ1W̃

−
µ |2

+ (|υ1|2 + |υ2|2)(gA3
µ + g′Ã3

µ)2]
(3.33)

where

W±µ =
1√
2

(A1
µ ∓ iA2

µ)

W̃±µ =
1√
2

(Ã1
µ ∓ iÃ2

µ)

(3.34)

For this (υ1 6= υ2 6= 0) choice of VEV, SU(2) × SU(2) group is broken
to U(1) , therefore the theory consists of �ve massive gauge bosons and
one massless vector �eld. For a bifundamental complex scalar �eld there are
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eight degrees of freedom and there are twelve degrees of freedom for the vec-
tor bosons. Through the Higgs mechanism, the Lagrangian is transformed
into three singlet �elds, �ve massive vector bosons and one massless boson.
After Higgs mechanism, again counting degrees of freedom, we have two from
the massless boson, three from the singlet �elds and �fteen from the massive
vector bosons, adding up to twenty.

Case 3 : υ1 = υ2 = υ

⇒ ∆L =
1

2
υ2[(gA1

µ + g′Ã1
µ)2 + (gA2

µ + g′Ã2
µ)2 + (gA3

µ + g′Ã3
µ)2]

⇒ ∆L =
1

2
υ2[2|gW−µ + g′W̃−µ |2 + (gA3

µ + g′Ã3
µ)2]

(3.35)

From eq.(3.35), we �nd that when υ1 = υ2 = υ, breaking of SU(2) × SU(2)

symmetry group gives rise to three massive gauge bosons and three massless
gauge bosons. The massless gauge bosons orthogonal to the massive gauge
bosons are :

(g′A1
µ − gÃ1

µ), (g′A2
µ − gÃ2

µ), (g′A3
µ − gÃ3

µ) (3.36)

Therefore,for this(υ1 = υ2 = υ) choice of VEV, spontaneous breaking
of SU(2) × SU(2) symmetry group leads to diagonal SU(2) group. For a
bifundamental complex scalar �eld there are eight degrees of freedom and
there are twelve degrees of freedom for the vector bosons. Through the Higgs
mechanism, the Lagrangian is transformed into scalar triplet, three massive
vector bosons, two scalar singlets and three massless bosons. After Higgs
mechanism,again counting degrees of freedom, we have six from the massless
bosons,two from the scalar singlets, three from the scalar triplet and nine
from the massive vector bosons, adding up to twenty. One can see that the
case 2 is a result of sequential Higgs mechanism of case 3.

3.4 Spontaneous breaking of bifundamental
SU(3)×SU(3)

As in the previous section, in this section we will study the spontaneous
breaking of SU(3)×SU(3) symmetry group. The gauge transformation for
this group is given as:

φ→ eiα
aτae−iα

′bτb/2φ. (3.37)

Where a=1,2,3,...8 and b=1,2,3,....8. If the �eld acquires VEV,it is given as
:

〈φ〉 =

v′1 v′2 v′3
v′4 v′5 v′6
v′7 v′8 v′9

 (3.38)
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Using Singular Value Decomposition, the above form of VEV can be reduced
to:

〈φ〉 =

υ1 0 0
0 υ2 0
0 0 υ3

 (3.39)

where υ1,υ2 and υ3 are complex entries.

3.4.1 Mass spectrum of SU(3)×SU(3)

In this section, we will study the mass spectrum of SU(3) × SU(3) group.
The covariant derivative of φ is:

Dµφ = ∂µφ− igAaµτaφ− ig′φÃbµτ b (3.40)

where Aaµ and Ãbµ are SU(3)× SU(3) gauge bosons and g,g′ are coupling
constants of the SU(3) gauge groups. The gauge boson mass terms come
from the kinetic term of the Lagrangian evaluated at the VEV. The relevant
terms are:

∆L = tr[gAaµτ
aφ+ g′φÃaµτ

a][gφ∗Aµbτ b + g′Ãµbτ bφ∗] (3.41)

⇒ ∆L =tr[g2Aaµτ
aφφ∗Aµbτ b + gg′Aaµτ

aφÃµbτ bφ∗

+ g′gφÃaµτ
aφ∗Aµbτ b + g′2φÃaµτ

aÃµbτ bφ∗]
(3.42)

After expanding each term and �nding the trace, we �nd that:

∆L =2|gυ1W
−
µ + g′υ2W̃

−
µ |2 + 2|gυ2W

+
µ + g′υ1W̃

+
µ |2

+ 2|gυ1K
−
µ + g′υ3K̃

−
µ |2 + 2|gυ3K

+
µ + g′υ1K̃

+
µ |2

+ 2|gυ2M
−
µ + g′υ3M̃

−
µ |2 + 2|gυ3M

+
µ + g′υ2M̃

+
µ |2

+ |υ1|2(Xµ + Zµ)2 + |υ2|2(Xµ − Zµ)2 + 4|υ3|2X2
µ

(3.43)

where

W±µ =
A1
µ ∓ iA2

µ√
2

,K± =
A4
µ ∓ iA5

µ√
2

,

M±µ =
A6
µ ∓ iA7

µ√
2

,

W̃±µ =
Ã1
µ ∓ iÃ2

µ√
2

, K̃± =
Ã4
µ ∓ iÃ5

µ√
2

,

M̃±µ =
Ã6
µ ∓ iÃ7

µ√
2

,

Zµ = gA3
µ + g′Ã3

µ, Xµ =
gA8

µ + g′Ã8
u√

3

(3.44)
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We will discuss three cases based on the choice of the VEV:

Case 1 : υ1 = υ2 = υ3 = 0
⇒ ∆L = 0 (3.45)

This choice of VEV doesn't break the symmetry of SU(3)×SU(3) group.
Therefore, there are no massive gauge bosons.

Case 2 : υ1 6= υ2 6= υ3 6= 0

⇒ ∆L =
1

4
[2|gυ1W

−
µ + g′υ2W̃

−
µ |2 + 2|gυ2W

+
µ + g′υ1W̃

+
µ |2

+ 2|gυ1K
−
µ + g′υ3K̃

−
µ |2 + 2|gυ3K

+
µ + g′υ1K̃

+
µ |2

+ 2|gυ2M
−
µ + g′υ3M̃

−
µ |2 + 2|gυ3M

+
µ + g′υ2M̃

+
µ |2

+ |υ1|2(Xµ + Zµ)2 + |υ2|2(Xµ − Zµ)2 + 4|υ3|2X2
µ

(3.46)

From eq.(3.46),we �nd that the theory gives 14 massive gauge bosons and
two massless gauge bosons. Therefore, for this choice(υ1 6= υ2 6= υ3 6= 0) of
VEV, SU(3)×SU(3) symmetry group is broken to U(1) × U(1) group. For
a bifundamental complex scalar �eld there are eighteen degrees of freedom
and there are 32 degrees of freedom for the vector bosons. Through the Higgs
mechanism, the Lagrangian is transformed into four scalar singlets,fourteen
massive vector bosons and two massless bosons. After Higgs mechanism,
again counting degrees of freedom, we have four from the massless bosons,
four from the scalar singlets and forty two from the massive vector bosons,
adding up to �fty.

Case 3 : υ1 = υ2 = υ3 = υ

⇒ ∆L =
υ2

4
[4|gW−µ + g′W̃−µ |2 + 4|gK−µ + g′K̃−µ |2

+ 4|gM−µ + g′M̃−µ |2 + 2Z2
µ + 6X2

µ]

(3.47)

⇒ ∆L =
1

2
υ2[(gA1

µ + g′Ã1
µ)2 + (gA2

µ + g′Ã2
µ)2 + (gA4

µ + g′Ã4
µ)2

+ (gA5
µ + g′Ã5

µ)2 + (gA6
µ + g′Ã6

µ)2 + (gA7
µ + g′Ã7

µ)2

+ (gA3
µ + g′Ã3

µ)2 + (gA8
µ + g′Ã8

µ)2]

(3.48)

From eq.(3.48),we �nd that there are 8 massive gauge bosons and 8 mass-
less gauge bosons. Therefore, for this(υ1 = υ2 = υ3 = υ) choice of VEV,
SU(3)×SU(3) symmetry group is broken to diagonal SU(3) group. For a bi-
fundamental complex scalar �eld there are eighteen degrees of freedom and
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there are 32 degrees of freedom for the vector bosons. Through the Higgs
mechanism, the Lagrangian is transformed into two scalar singlets, eight
massive vector bosons, one scalar triplet and eight massless bosons. After
Higgs mechanism,again counting degrees of freedom, we have sixteen from
the massless bosons, two from the singlet �elds, eight from the scalar triplet
and twenty four from the massive vector bosons, adding up to �fty. One can
notice that the case 2 is a result of sequential Higgs mechanism of case 3.

3.5 Discussion

In this chapter, we derived the mass spectrum of the bifundamental symme-
try groups. We found the following results:
1)When entries of the VEV are equal, bifundamental SU(3)×SU(3) and
SU(2) × SU(2) groups are broken to diagonal SU(3) and SU(2) respec-
tively.
2) When the entries of the VEV are not equal, bifundamental SU(3)×SU(3)
and SU(2) × SU(2) are broken to U(1) × U(1) and U(1) respectively.The
mass spectrum of the bifundamental theories depend on the choice of the
VEV. We may generalize the above symmetry breaking patterns to bifunda-
mental SU(N)×SU(N) symmetry group. We would like to study the sym-
metry breaking patterns in any bifundamental SU(N)× SU(M) group and
generalize our results.
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Chapter 4

Novel Higgs Mechanism(NHM)

4.1 Introduction

Chern-Simons gauge theories in 2+1 dimensions with multiple gauge �elds
exhibit novel properties. One of its striking features is the possibility of a
non-propagating Cherm-Simons �eld acquiring a massless propagating mode
via the Higgs mechanism[8]. This phenomenon is called Novel Higgs Mech-
anism. NHM was discovered and applied to study the Moduli space of
extended super-conformal �eld theories describing multiple membranes in
M-theory. In this chapter, we will study NHM in the case of di�erence
Chern-Simons theory[9].

4.2 Di�erence Chern-Simons theory

Non-Abelian di�erence Chern-Simons action is:

LCS =
k

4π
tr(A ∧ dA+

2

3
A ∧A ∧A− Ã ∧ dÃ− 2

3
Ã ∧ Ã ∧ Ã) (4.1)

where Aµ = AaµT
a and trT aT b = −1

2 δ
ab.

Aµ and Ãµ in matrix form are:

Aµ =
i

2

[
aµ A+

µ

A−µ −aµ

]
(4.2)

where
A±µ = A1

µ ∓A2
µ

aµ = A3
µ

(4.3)
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Ãµ =
i

2

[
ãµ Ã+

µ

Ã−µ −ãµ

]
(4.4)

where
Ã±µ = Ã1

µ ∓ Ã2
µ

ãµ = Ã3
µ

(4.5)

After substituting the above matrices(eq.(4.2) and eq.(4.3)) in the Lagrangian(eq.(4.1)),
we �nd that:

LCS =
k

4π
(−1

2
)(a ∧ da+A+ ∧ dA− + ia ∧A+ ∧A− − ã ∧ dã

− Ã+ ∧ dÃ− − iã ∧ Ã+ ∧ Ã−)
(4.6)

It is preferred to work in the basis, which is obtained by taking the following
linear combinations:

B± = (
A± − Ã±

2
), b = (

a− ã
2

)

C± = (
A± + Ã±

2
), c = (

a+ ã

2
)

F c = −dc− i

2
(C+ ∧ C−),

FC
+

= −dC+ + i(C+ ∧ C), FC
−

= −dC− − i(C− ∧ C).

(4.7)

In the above basis, the Lagrangian is:

LCS =
k

4π
(−2b ∧ dc−B+ ∧ dC− −B− ∧ dC+ − i(c ∧B+ ∧ C−

+c ∧ C+ ∧B− + b ∧B+ ∧B− + b ∧ C+ ∧ C−))
(4.8)

From chapter 2, we know that the mass can be given to the gauge �eld
through bifundamental Higgs mechanism. Consider the complex scalar �eld
(φ) coupled to the di�erence Chern-Simons action.
In this case the covariant derivative is:

Dµφ = ∂µφ+Aµφ− φÃµ (4.9)

The scalar kinetic term is normalized as :

k

4π
tr(Dµφ

†Dµφ) (4.10)

The above kinetic term gives rise to the interaction term:

k

4π
tr
∣∣∣Aµφ− φÃµ∣∣∣2 (4.11)
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The Higgs VEV is : (
v′1 v′2
v′3 v′4

)
(4.12)

Using Singular Value Decomposition, the above form is reduced to:

< φ >=

(
υ1 0
0 υ2

)
(4.13)

The VEV in the eq.(4.12) is written as:

< φ >= vI + wσ3 (4.14)

where

v =
υ1 + υ2

2

w =
υ1 − υ2

2

(4.15)

Expanding the interaction term:

tr
∣∣∣Aµφ− φÃµ∣∣∣2 =

1

4
[|v1A

−
µ − v2Ã

−
µ |2 + |v2A

+
µ − v1Ã

+
µ |2

+ |v1|2 + |v2|2(aµ − ãµ)]
(4.16)

In terms of the basis in eq.(4.7) and eq.(4.15), the above eq.(4.16) is:

tr|Aµφ− φÃµ|2 = −w
2

2
(C+ ∧ ∗C−)− v2

2
(B+ ∧ ∗B−)

− (v2 + w2)

2
(b ∧ ∗b)

(4.17)

The Lagrangian after adding the mass term:

LCS =[2b ∧ F c +B+ ∧ FC− +B− ∧ FC+ − ib ∧B+ ∧B−

− w2

2
(C+ ∧ ∗C−)− v2

2
(B+ ∧ ∗B−)− (v2 + w2)

2
(b ∧ ∗b)]

(4.18)

From the above Lagrangian, Equation of motion for b is:

2F c − iB+ ∧B− − (v2 + w2) ∗b = 0

⇒ b = − 1

(v2 + w2)
[2 ∗F c − i ∗(B+ ∧B−)]

(4.19)

Equation of motion for B+ is:

FC
−

+ ib ∧B− − v2

2
∗B− = 0

⇒ B− = − 2

v2
[ ∗FC

−
+ i ∗(b ∧B−)]

(4.20)
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Equation of motion for B− is:

FC
+ − ib ∧B+ − v2

2
∗B+ = 0

⇒ B+ = − 2

v2
[ ∗FC

+ − i ∗(b ∧B+)]

(4.21)

From eq.(4.20) and eq.(4.21), eq.(4.19) is:

b = − 1

(v2 + w2)
[2 ∗F c − i 4

v4
∗( ∗FC

+ ∧ ∗FC−) + .........] (4.22)

From eq.(4.19), eq.(4.20) is:

B− = − 2

v2
[ ∗FC

−
+ i

4

v2(v2 + w2)
∗( ∗F c ∧∗ FC−) + .........] (4.23)

From eq.(4.19), eq.(4.21) is :

B+ = − 2

v2
[ ∗FC

+ − i 4

v2(v2 + w2)
∗( ∗F c ∧∗ FC+

) + .........] (4.24)

The terms in ........ contain powers of FC
+
,FC

−
and F c appearing in com-

binations.
From the above equations,the term b ∧B+ ∧B− in the Lagrangian is:

b ∧B+ ∧B− = − 8

v4(v2 + w2)
( ∗F c ∧ ∗FC+ ∧ ∗FC−) + ....... (4.25)

Inserting the above equations in the Lagrangian, we �nd that:

L =
k

4π
(− 2

v2 + w2
∗F c ∧ F c − 2

v2
∗FC

− ∧ FC+

+ i
20

v4(v2 + w2)
( ∗F c ∧ ∗FC+ ∧ ∗FC−)− w2

2
C+ ∧ ∗C− + .....)

(4.26)

For the above Lagrangian, we need to consider di�erent cases:

Case 1 : v →∞ and w →∞:

In this limit, we can neglect higher order terms in v−1 and w−1. Thus, we
will consider terms only upto second order in both v−1 and w−1.We can
ignore the higher order terms in FC

+
,FC

−
and F c. In this limit equations

of motion are:

b = − 2

(v2 + w2)
∗F c

B− = − 2

v2
∗FC

−

B+ = − 2

v2
∗FC

+

(4.27)
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In this limit, the Lagrangian(eq.(4.26)) is:

L =
k

4π
(− 2

v2 + w2
∗F c ∧ F c − 2

v2
∗FC

− ∧ FC+ − w2

2
C+ ∧ ∗C− + .....)

(4.28)
One of the interesting points in the above Lagrangian is that the mass term
and the Yang-Mills coupling constant are dependent on each other.

Case 2 : v →∞ and w
v → 0:

In this limit, we can neglect higher order terms in v−1. In this case, the
Lagrangian is:

L =
k

4π
(− 2

v2
∗F c ∧ F c − 2

v2
∗FC

− ∧ FC+ − w2

2
C+ ∧ ∗C− + .....) (4.29)

In this limit,Chern-Simons Lagrangian reduces to massive Yang-Mills La-
grangian. The coupling constant of Yang-Mills term is v√

k
and the mass of

the gauge boson is �w�.

Case 3 : v →∞ and w = 0:

In this limit,the Lagrangian is:

L =
k

4π
(− 2

v2
∗F c ∧ F c − 2

v2
∗FC

− ∧ FC+
+ .....) (4.30)

In this case, the Lagrangian reduces to the massless Yang-Mills Lagrangian.
In the above Lagrangian, v2 plays the role of the Yang-Mills coupling con-
stant [8]. In the same limit that decouples the higher-order terms, the Yang-
Mills term becomes strongly coupled.This can be avoided by simultaneously
scaling k → ∞,v → ∞ keeping k

v2
�xed[10]. In this limit (k → ∞,v → ∞)

the higher-order terms drop out,but the Yang-Mills coupling v√
k
remains

�nite and can be chosen arbitrarily.
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4.3 Discussion

It is already known that a non-propagating gauge �eld absorbs the degree
of a Higgs �eld and turns into a massless propagating gauge �eld. In this
chapter, we showed how this can be generalized. Some of the interesting
results which we derived are:
1)In a certain limit,non-propagating Chern-Simons �eld reduces to massless
Yang-Mills �eld and
2)In certain other limit, the non-propagating Chern-Simons �eld reduces to
massive Yang-Mills term with mass of the gauge boson dependent on the
coupling constant of the Yang-Mills term.

We wish to further study the above mentioned results and their implica-
tions in Condensed matter systems and (2+1)d gravity.
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Chapter 5

The Higgs mechanism for more
general potentials

5.1 Introduction

In the previous chapters, we studied some interesting physics when a complex
scalar �eld is coupled to a gauge �eld. Mass of a gauge �eld depends on the
VEV. So, VEV plays an important role to study the symmetry breaking
patterns. Number of massive bosons and massless bosons depends on the
choice of VEV. For example, when VEV is equal to zero, we don't see any
massive gauge bosons. In this chapter, we will study the dependency of mass
of the gauge bosons resulting from the Higgs mechanism on the coe�cients
of general potential of the complex scalar �eld.

5.2 Bifundamental Scalar �eld in SU(2)×SU(2)
In this section, we will discuss the dependency of mass of the gauge bosons of
bi fundamental SU(2)×SU(2) group on the coe�cients of a general potential
of the complex scalar �eld.
For a complex scalar �eld φ, Let us consider the following form of the po-
tential

V = αtr(φφ†) + β(tr(φφ†))2 + γtr(φφ†φφ†) (5.1)

δV

δφ†
= 0

⇒ αφ+ 2βtr(φφ†)φ+ 2γφφ†φ = 0

(5.2)
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From chapter 3, VEV is :

< φ >=

(
v1 v2

υ3 υ4

)
(5.3)

Using singular value decomposition, the above form can be reduced to :(
a 0
0 b

)
(5.4)

The VEV in eq.(5.4) should satisfy eq.(5.2),

α

(
a 0
0 b

)
+ 2β(|a|2 + |b|2)

(
a 0
0 b

)
+ 2γ

(
a|a|2 0

0 b|b|2
)

= 0 (5.5)

From above eq.(5.5), we �nd that:

aα+ 2aβ(|a|2 + |b|2) + 2γa|a|2 = 0 (5.6)

and
bα+ 2bβ(|a|2 + |b|2) + 2γb|b|2 = 0 (5.7)

From chapter 3, we know that for SU(2)×SU(2) symmetry group, gauge
boson mass terms come from the following lagrangian:

∆L =
1

4
[g2(|a|2 + |b|2)(A1

µ)2 + g2(|a|2 + |b|2)(A2
µ)2 + g2(|a|2 + |b|2)(A3

µ)2

+ 2gg′(|a|2 + |b|2)Aµ3 Ã
µ3 + 2gg′a∗b(A1

µ − iA2
µ)(Ãµ1 + iÃµ2)

+ 2gg′b∗a(Aµ1 + iAµ2)(Ã1
µ − iÃ2

µ) + g′2(|a|2 + |b|2)(Ã1
µ)2

+ g′2(|a|2 + |b|2)(Ã2
µ)2 + g′2(|a|2 + |b|2)(Ã3

µ)2]
(5.8)

We like to study the mass spectrum of the above Lagrangian for various
choices of a and b:

Case 1: a = 0, b = 0

∆L = 0
(5.9)

For this coice of a and b,the mass spectrum doesn't contain massive gauge
bosons. Therefore for this choice of VEV, SU(2)×SU(2) symmetry in not
broken.
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Case 2: a 6= 0 ; b 6= 0

From eq.(5.6) and eq.(5.7),we �nd that:

α+ 2β(|a|2 + |b|2) + 2γ|a|2 = 0 (5.10)

α+ 2β(|a|2 + |b|2) + 2γ|b|2 = 0 (5.11)

subtracting the above two equations:

(|a|2 − |b|2)γ = 0 (5.12)

For the above equation, we need to consider two possibilities:

a) when γ 6= 0 ,eq.(5.12) gives:

|a|2 = |b|2 (5.13)

Using the above eq.(5.13) in eq.(5.9) and eq.(5.10),we �nd that:

α+ (4β + 2γ)|b|2 = 0 ⇒ |a|2 = |b|2 =
−α

4β + 2γ
(5.14)

For the above choice of VEV,the mass spectrum is:

∆L =
1

2
|a|2[(gA1

µ + g′Ã1
µ)2 + (gA2

µ + g′Ã2
µ)2 + (gA3

µ + g′Ã3
µ)2]

⇒ ∆L =
1

2
|a|2[2|gW−µ + g′W̃−µ |2 + (gA3

µ + g′Ã3
µ)2]

(5.15)

where

W±µ =
1√
2

(A1
µ ∓ iA2

µ),

W̃±µ =
1√
2

(Ã1
µ ∓ iÃ2

µ),

|a|2 =
−α

4β + 2γ
.

(5.16)

When γ in the potential term (eq.(5.1)) is not equal to zero, the mass spec-
trum consists of three massive gauge bosons with mass proportional to |a|2.

b)when (|a|2 − |b|2 6= 0), eq.(5.12) gives:

γ = 0 (5.17)

From the above equations, eq.(5.10) and eq.(5.12),we �nd that:

|a|2 + |b|2 =
−α
2β

(5.18)
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For this choice of VEV,the mass spectrum is:

⇒ ∆L =
1

4
[2|gaW+

µ + g′bW̃+
µ |2 + 2|gbW−µ + g′aW̃−µ |2

+ (|a|2 + |b|2)(gA3
µ + g′Ã3

µ)2]
(5.19)

where a and b satisfy: |a|2 + |b|2 = −α
2β . When γ = 0 in the potential

term,the mass spectrum consists of �ve massive gauge bosons whose mass is
proportional to |a|2 + |b|2.

5.3 Bifundamental Scalar �eld in SU(N)×SU(N)

In the this section, we will extend the above mentioned formalism for a
general bifundamental SU(N)×SU(N) group. We will obtain a relationship
between VEV and coe�cients of the scalar potential.

< φ >=


υ11 υ12 · · · υ1n

υ21 υ22 · · · υ2n
...

...
. . .

...
υn1 υn2 · · · υn,n

 (5.20)

Using singular value decomposition, we can reduce the above form of VEV
as follows:

< φ >=


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 0 ann

 (5.21)

where a11, a22, a33, ........., ann are complex.

Based on the various choices of a11, a22, a33, ........., ann , we will discuss
di�erent cases:

Case 1: a11 = a22 = ....... = ann = 0.

⇒< φ >= 0 (5.22)

Case 2: a11 6= a22 6= ....... 6= ann 6= 0.

For this case, we get n equations by substituting < φ > in eq.(5.2),
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a11α+ 2β(|a11|2 + |a22|2 + .........+ |ann|2)a11 + 2γa11|a11|2 = 0

a22α+ 2β(|a11|2 + |a22|2 + .........+ |ann|2)a22 + 2γa22|a22|2 = 0

a33α+ 2β(|a11|2 + |a22|2 + .........+ |ann|2)a33 + 2γa33|a33|2 = 0

...

...

...

...

...

annα+ 2β(|a11|2 + |a22|2 + .........+ |ann|2)ann + 2γann|ann|2 = 0

(5.23)

Subtracting any two equations in the above eq.(5.23) gives:

γ(|aii|2 − |aij |2) = 0 (5.24)

where, i 6= j=1,2,.....,n.

For the eq.(5.24), we have two possibilities:

a) when γ 6= 0, we �nd that:

a11 = a22 = a33 = ............. = ann (5.25)

Substituting the eq.(5.25) in eq.(5.23), we �nd that:

a22 = a33 = ............. = ann =

√
−α

2βn+ 2γ
,

|a11|2 =
−α

2βn+ 2γ

(5.26)

In the above eq.(5.26), we made use of the fact that all the diagonal en-
tries of the < φ > can be made real except one entry by using the freedom
of rotations of SU(N) group.In this case a11 is complex and all other entries
are real.

b) When (|aii|2 − |aij |2) 6= 0, we �nd that:

γ = 0 (5.27)

From eq.(5.23), we �nd that:

|a11|2 + |a22|2 + .........+ |ann|2 =
−α
2β

(5.28)

40



Case 3: a11 = 0; a22, a33......ann 6= 0.

In this case, we get n-1 equations by substituting < φ > in eq.(5.2):

α+ 2β(|a22|2 + .........+ |ann|2) + 2γ|a22|2 = 0

α+ 2β(|a33|2 + .........+ |ann|2) + 2γ|a33|2 = 0

...

...

...

...

...

α+ 2β(|a22|2 + .........+ |ann|2) + 2γ|ann|2 = 0

(5.29)

Subtracting any two equations in eq.(5.29), we �nd that:

γ(|aii|2 − |ajj |2) = 0 (5.30)

where, i 6= j=2,.....,n

For eq.(5.30), we have two possibilities:

a) when γ 6= 0, we �nd that:

a22 = a33 = ............. = ann (5.31)

Substituting the above eq.(5.31) in eq.(5.29), we �nd that:

a22 = a33............. = ann =

√
−α

2β(n− 1) + 2γ
(5.32)

In the above eq.(5.32), a22, a33, ....., ann are real.

b) When (|aii|2 − |aij |2) 6= 0, we �nd that:

γ = 0 (5.33)

From eq.(5.23), we �nd that:

|a22|2 + .........+ |ann|2 =
−α
2β

(5.34)

Case 4: a11 = 0; a22 = 0, a33......ann 6= 0. For this case, we get n-2
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equations by substituting < φ > in eq.(5.2):

α+ 2β(|a33|2 + .........+ |ann|2) + 2γ|a33|2 = 0

...

...

...

...

...

α+ 2β(|a33|2 + .........+ |ann|2) + 2γ|ann|2 = 0

(5.35)

Subtracting any two equations in eq.(5.35) gives:

γ(|aii|2 − |ajj |2) = 0 (5.36)

where, i 6= j=3,.....,n

For the eq.(5.36), we have two possibilities:

a) When γ 6= 0, we �nd that:

a33 = a44 = ............ = ann (5.37)

Substituting the above eq.(5.37) in eq.(5.35), we �nd that:

a33 = a44............. = ann =

√
−α

2β(n− 2) + 2γ
(5.38)

where a33, ....., ann are real.

b) When (|aii|2 − |aij |2) 6= 0, we �nd that:

γ = 0 (5.39)

From eq.(5.35), we �nd that:

|a33|2 + .........+ |ann|2 =
−α
2β

(5.40)

Case 5: a11 = 0; a22 = 0, a33 = 0, ......an−1n−1 = 0, ann 6= 0.
For this case, we have only one equation by substituting < φ > in eq.(5.2):

.

α+ 2β|ann|2 + 2γ|ann|2 = 0
(5.41)

42



From the above eq.(5.41), we have the following equations:

a)When γ 6= 0, we �nd that:

ann =

√
−α

2β + 2γ
(5.42)

where ann is real.

b) When γ = 0, we �nd that:

|ann|2 =
−α
2β

(5.43)

When γ 6= 0, we notice that the value of the entries of the VEV depend on
the number of non-zero entries of VEV and when γ = 0 we get a sphere,
whose radius depends on the coe�cients of the potential. The above derived
relations can be used directly to study the mass spectrum of bifundamental
SU(N)×SU(N) symmetry group for a given scalar potential.
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5.4 Discussion

In section 5.2, we found that how mass spectrum of a bifundamental sym-
metry group depends on the potential of a complex scalar �eld. In addition
to this, we derived mass of the gauge bosons in terms of coe�cients of the
scalar potential. Therefore, once we know the mass spectrum of bifunda-
mental SU(2)×SU(2) group, we can get the mass of the gauge bosons for
any arbitrarily given scalar potential.

In section 5.3, we extended the formalism in section 5.2 to a general bi-
fundamental SU(N)×SU(N) symmetry group. We found that the values of
the VEV entries follow an interesting pattern based on the number of non-
zero entries. This formalism is very useful when we want to study the mass
spectrum of a bifundamental symmetry groups for di�erent potentials. In
addition to this, using the above derived relations we can know the mass of
the gauge bosons by inserting the coe�cients of the potential.In this chap-
ter, we only focused on the mass spectrum of bifundamental SU(2)×SU(2)
group,but we can also easily derive these relations for the mass spectrum of
bifundamental SU(3)×SU(3) group, which we derived in chapter 3.
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Appendix A

Convention

We work with the (2+1)d metric:

ηµυ = diag(−,+,+) (A.1)

The di�erential form notation can be translated into conventional index no-
tation using the following identities:

A ∧ ∗A = −AµAµ

A ∧ dA = εµνλAµ∂υAλ

dA ∧ ∗dA = −1

2
FµνF

µν

(A.2)

In the non-Abelian context with compact groups, we have:

A = AaT a, F = F aT a (A.3)

where T a = iσa

2 are anti-Hermitian,and:

tr(T aT b) = −1

2
δab (A.4)

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(A.5)
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