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Abstract

Complex networks, with their ability to model the essential elements of a system of
interacting entities, have become a versatile tool with immense scope for application.
Network science, as a tool, has found relevance in studying physical, biological and
chemical systems, transport systems, social systems, medicine, finance and risk etc.
While there are many different aspects to a complete and systematic study of complex
networks, one of the more important properties is their robustness to perturbation. In
this thesis, we are particularly interested in those types of perturbations that result in
loss of connectivity of the network. We focus our study on the effects of loss of links
in directed complex networks. Investigating the performance of a network, when it
is subject to loss of links, helps to design precautionary measures, introduce fail-safes
and implement alternate solutions, thus resulting in improved overall performance. Al-
ternatively, it can also be used to design effective strategies to maximally disrupt the
connectivity in a network. With this very concise motivation, we set out to explore
the structural and dynamical response of directed networks to failures (random loss of
links) and attacks (targeted removal of links).

The organization of the thesis is as follows: In chapter-1, we provide a brief intro-
duction to the field of complex networks, discuss their wide range of applications and
ever-increasing relevance. From local to intermediate to global scales, we define the
most important and relevant network properties and their corresponding measures.
Based on these properties, we discuss some standard models of network generation,
their advantages and limitations. We finish with a brief mention of a couple of dynam-
ical processes taking place on networks.

In chapter 2, we introduce methods, based on degree preserving rewiring (DPR), to
tune clustering and degree-correlations in random and scale-free directed networks.
They provide null-models to investigate the role of the mentioned properties along
with their strengths and limitations. For both clustering and degree-correlations, we
first discuss how they get redefined for the case of directed networks. As we tune clus-
tering, we qualitatively analyze the results of rewiring, as a function of the respective
topological parameters. In both random and scale-free networks, we fix the parameter
values so that they have the same average degree, and then study the effect of topology
itself on the rewiring process. We rewire the two types of networks, for both assortative
and dissortative correlations, and study the role of topology, as well as the effects of
the respective topological parameters. To explain the observations in scale-free net-
works, we explore the role of 1-node correlations for both assortative and dissortative
rewiring. In both topologies, we study the behavior of the limiting value of dissortative
degree-correlation, as a function of parameters of the networks.
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Besides the intended purpose of tuning network properties, the proposed mechanisms
are also used as a tool to reveal structural relationships and topological constraints.
We take a deeper look at the effects of DPR mechanisms that we have introduced and
treat the process of rewiring as exploring the space of second-order maximally random
directed graphs. Based on this, we make analytic arguments to show that the DPR
mechanisms, designed to tune specific type of correlations, also uniquely affect the
clustering coefficients. We provide numerical corroboration and present explanations
for the same. Consequent to the explanation, we expect to see changes in sizes of the
connected components, specific to the type of correlations being tuned.

In chapter 3, we look at the structural response of directed networks to link deletion.
We conduct a systematic and detailed analysis of the robustness of the networks under
random and targeted removal of links. We work with a set of network models of ran-
dom and scale-free type, generated with specific features of clustering and assortativity.
Besides random deletion, we define strategies based on global (Edge Betweenness Cen-
trality) and local (Edge Degree) properties and use them to breakdown the networks
by targeted removal of links. The robustness of the networks to the sustained loss of
links is studied in terms of the sizes of the connected components and the inverse path
lengths. The effects of clustering and 2-node degree correlations, on the robustness
to attack, are also explored. We provide specific illustrations of our study on three
real-world data-sets: protein-protein interaction networks, road-network based on the
city of Austin TX and the worldwide airport network.

In chapter 4, we explore the dynamical response to link deletion. We study the effects
of random and weighted link deletion on a 1-to-1 transmission process, taking place
simultaneously on the network. By characterizing the performance of the transmission
process in terms of the average number of successful transmissions and the average
transmission time, we analyze the results, first by topology and then by strategy, and
also study the role of assortative and dissortative correlations. We provide qualitative
arguments to show that the behaviours of probability of successful transmission and
normalized transmission times are captured by the fractional size of the strongly con-
nected component (SCC) and the average path-length of the SCC respectively, and
also provide numerical evidence. In the context of a specific road-network, derived
from road intersections in the city of Barcelona, we study the roles of various process
parameters like request-rate, probability of transmission and probability of deletion,
and interpret the results in the context of traffic flow. We conclude the chapter by
proposing and detailing a method, based on weighted selection of nodes, to partially
mitigate the loss of transmission.

In the concluding chapter, we compile all the important results from earlier chapters
and present them in a broader perspective.
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Chapter 1

Introduction

1.1 Introduction

Complex networks, as a field, has captured the interest of the research community
in a big way in the last couple of decades. Many real-world systems can be mod-
elled based on the relationship between the underlying topological structures, their
interactions and the resulting emergent dynamics. The ability of complex networks to
capture the essential elements of such systems of interacting entities and their dynam-
ics makes them an indispensable tool of systemic analysis [2–5]. The versatile nature of
this toolkit has enabled applications in a wide range of problems cutting across many
branches of science, engineering, commerce, management and sociology. They have
found relevance in physical, biological [6–9] and chemical systems [10, 11], transport
systems [12–14], social systems [15–17], medicine [18,19], financial risk analysis [20,21]
etc. Depending on the problem at hand, networks have been used for visualiza-
tion [22–24], robustness/vulnerability analysis [25–34], community-detection [35–42],
link-prediction [43–45], information-spreading [46–49] etc. The computerization of
data-acquisition and the consequent availability of large amounts of data have also
been important contributing factors. With the focus now on interdisciplinary research,
network science stands out as a very natural and generic tool of choice.

Further, in this chapter, we start with a description of some very basic network
properties and their corresponding metrics. This is followed by a discussion of standard
models of network generations and finally we detail a couple of important processes on
networks.

1.2 Properties and Metrics

1.2.1 Degree

In a network with N nodes and m edges, two nodes that are connected by an edge are
referred to as neighbours. The degree of a node is defined as the number of neighbours
of that node and can be calculated as

ki =
N∑
j=1

Aij (1.1)

where A is the adjacency matrix of the network and Aij = 1 if nodes i and j are con-
nected and 0 otherwise. The degree distribution p(k) is defined for the network and
gives the fraction of nodes with degree k. It can also be interpreted as the probability
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that a randomly chosen node from that network has a degree k. In this case, an edge
between two nodes indicates bidirectional connectivity and therefore A is a symmetric
matrix and the network is said to be undirected.

When the edge between i and j is unidirectional, say from i to j, it results in
a directed network and the corresponding adjacency matrix is not symmetric. The
elements of the adjacency matrix, Aij now indicate connection only from i to j. As a
result, each node has an in− degree and an out− degree. The in− degree (kin) is the
number of edges that arrive to the node and the out− degree (kout) is the number of
edges that depart from the node. Accordingly, the networks is characterized by a joint
degree distribution p(kin, kout) which the probability that a randomly chosen node has
an in-degree kin and out-degree kout.

kouti =
N∑
j=1

Aij kini =
N∑
j=1

ATij (1.2)

This edge-attribute provides an important classification scheme, bisecting all net-
works into undirected and directed types. If a network contains both types of edges, it
can be represented as a directed network with the undirected edges split into two di-
rected edges pointing in opposite directions. Besides the directionality of the edges, the
form of the degree distribution itself provides another important classification method.
In an undirected network, when nodes are connected by an edge uniformly randomly,
the resulting degree distribution takes a binomial form and in the limit of large network
size, it becomes a poisson distribution

p(k) = e−k
k
k

k!
(1.3)

where k = m/N is the average degree of the network. This class of networks are com-
monly referred to as random networks or Erdos-Renyi (ER) networks [50, 51],
named after the two scientists who made significant contributions to their understand-
ing. However, it has been observed that the degree distributions of most real-world
networks deviate significantly from that of random networks. Instead, they follow
an asymptotic power-law with the scaling exponent α, in the large N limit. These
networks are also popularly known as scale-free (SF) networks and their degree
distribution takes the form

p(k) = Ck−α (1.4)

1.2.2 Assortativity

An important property of any network is the correlation between properties of con-
nected nodes. The extent of (dis)similarity of the properties of connected nodes is
given by the assortativity of the network [51]. If the property is enumerative (like
nationality, race, gender etc.) and takes a finite number of discrete values, then the
assortativity is quantified using modularity, which is defined as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (1.5)

where δ(a, b) is the kronecker delta. On the other hand, if the properties are scalar
and take continuous values (like age, income etc.), the assortativity is calculated using
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Figure 1.1: Degree distributions of an ER network and SF network for N = 104 and m = 6 x 104

the assortativity coefficient, derived from the Pearson’s correlation coefficient and
takes a value between −1 to 1 [52,53].

r =

∑
ij

(
Aij − kikj/2m

)
xi.xj∑

ij

(
kiδij − kikj/2m

)
xi.xj

(1.6)

A particularly interesting case arises when we calculate the extent to which nodes
with (dis)similar degrees connect to each other. These are referred to as degree cor-
relations and gain importance because of the interplay between the two structural
properties involved.

Figure 1.2: Schematic visualization of assortative and dissortative networks. Source - Quora.com

r =

∑
ij

(
Aij − kikj/2m

)
ki.kj∑

ij

(
kiδij − kikj/2m

)
ki.kj

(1.7)

This pattern of connections is also the basis for classification of networks. When nodes
of similar degrees (property) are more likely to connect to each other, the value of r
takes a positive value and the networks are said to be assortative. Typical examples
include social networks, collaboration networks, citation networks etc. A value of r < 0

5



1.2. PROPERTIES AND METRICS

indicates that nodes with dissimilar degrees (property) are more likely to be joined by
an edge and such networks are called dissortative and examples include internet,
World Wide Web (WWW) and most biological networks [52,53].

1.2.3 Clustering

Clustering is defined as the tendency of nodes to organize into well-knit neighbourhoods
or form cliques and is quantified by the clustering coefficients (CC). They play an
important role in the spreading of epidemics in large communities and also affect flow
in local neighbourhoods.

Given a node i with degree ki, the local clustering coefficient (ci) of the node is
defined as the ratio of number of pairs of connected neighbours of i to the number of
pairs of neighbours of the node [51].

ci =
[A3]ii

ki(ki − 1)
(1.8)

where A is the adjacency matrix of the undirected network. Alternatively, it quan-
tifies the extent to which the neighbours of i form closed triplets with i. The mean
clustering coefficient is defined as the average of local clustering coefficients of all
nodes in the network.

C =
1

N

∑
i

ci (1.9)

The global clustering coefficient is defined as the ratio of number of closed
triplets to the number of connected triplets in the network.

C =

∑N
i=1[A

3]ii∑
i,j[A

2]ij −
∑N

i=1[A
2]ii

(1.10)

1.2.4 Paths

So far, we have defined local network properties like degree, degree-correlations, clus-
tering etc., that are all associated with a single node/edge or within their immediate
neighbourhoods. Now, we move on to another important set of properties, based on
the notion of paths, whose understanding provides the basis for defining global network
properties.

A path, in a network, is defined as a sequence of nodes where each consecutive pair
of nodes in the sequence is connected by an edge [51]. While in undirected networks,
a path from node i to node j implies a path from j to i, in directed network, they
constitute two unique paths. The length of a path is the number of edges traversed
along the path. This may include edges that are visited more than once and are counted
separately for each visit. In a simple network, represented by adjacency matrix A, the
number of paths of length l from node i to node j is given by the lth power of A.

N
(l)
ij = [Al]ij (1.11)

A path is said to become a loop when it terminates at the node where it originated.
The number of loops of length l is given by the trace of the lth power of A.

L(l) =
N∑
i=1

[Al]ii = Tr(Al) (1.12)
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Paths that visit each edge in a network exactly once are referred to as eulerian paths
and those that visit each node exactly once are called hamiltonian paths. The study
of these paths has had historic significance and continues to play an important role in
current-day applications like vehicle-routing, parallel-processing, job-sequencing etc.

It is often the case that two nodes in a network are connected by more than just
one unique path. For any two given nodes, the shortest path between is called the
geodesic path or simply the shortest path and the length of this path is called the
geodesic length (dij). The geodesic path between any two nodes is not necessarily
unique and by convention, if a pair of nodes are not connected by atleast one path, the
distance is taken to be ∞. The largest geodesic distance between all pairs of nodes in
the network, for which paths exist, is defined as the diameter of the network.

diameter = max(dij) ∀i, j 3 dij 6=∞ (1.13)

However, the more interesting quantity is the average path-length of the network,
defined as the mean of distances between all pairs of nodes in the network.

APL =
1

N

N∑
i=1

1

N − 1

N−1∑
j=1,j 6=i

dij (1.14)

The above definition presents an obvious mathematical issue when the network is very
sparse or there exist isolated nodes (dij = ∞). To work around this problem, the
average inverse path-length or efficiency of the network was defined as the mean
of inverse distances between all pairs of nodes in the network. In this case, when there
are disconnected pairs of nodes, the inverse distance becomes 0 and the average value
remains well-defined.

AIPL =
1

N

N∑
i=1

1

N − 1

N−1∑
j=1,j 6=i

1

dij
(1.15)

If we calculate the mean distance of all shortest paths associated with node i, the me-
dian value of all such distances gives the characteristic path-length of the network.

1.2.5 Connected Components

As mentioned earlier, based on the existence of paths, it is possible to define global
metrics for a network. The set of all nodes in a network, such that every node is
connected to every other node in the set, is called a connected component. It can
happen that there are multiple distinct connected components in the same network, in
which case, the network is said to be disconnected and the size of the largest con-
nected component becomes of primary interest. When the size of the largest connected
component scales as a function of the network size, it is called the giant component
of the network [51]. It is a measure of the extent of connectivity in the network and
plays an important role during any spreading process.

In a directed network, the set of all nodes, for which there exists a directed path
from every node in the set to every other node in the set, is defined as the strongly
connected component (SCC). A similar set of nodes, for which there exists an undi-
rected path between all pairs of nodes in the set, is defined as the weakly connected
component (WCC). Together, the SCC and WCC give rise to a macroscopic organi-
zation referred to as the bow-tie structure [54,55]. This is again a sub-class in a broader
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set of core-periphery structures [55] where the core is dense and strongly-connected
while the periphery consists of nodes with sparse connectivity. The study of these
connected components provides crucial understanding of the large-scale organization
in the networks and is also at the heart of percolation studies on networks.

Figure 1.3: Schematic depiction of strongly and weakly connected components in directed network. In
this figure, the entire set of nodes constitute the WCC and each highlighted sub-set of nodes represent
a SCC. Source - Google Images (NOI.PH/training)

1.2.6 Centrality

A centrality measure is used to characterize and rank the most important nodes/edges
in a network w.r.t one or more properties. Depending on the definition of important,
centrality can be defined in many different ways [51].

We first discuss two types of centralities that are defined based on the involve-
ment of a node in the overall cohesiveness of the network. The simplest and most
straightforward characterization of the importance of a node is its degree, also known
as the degree centrality. In directed networks, corresponding to in and out degrees
of a node, separate values of centrality may be defined or they could be combined
to generate a single value. Despite its apparent simplicity, this measure can capture
the influence of a node in its immediate neighbourhood and has found application in
citation networks, social networks, collaboration networks etc.

The degree centrality of a node, while measuring the number of neighbours, makes
an underlying assumption that any two neighbours are of equal importance. This is
not realistic, since each neighbour may have a different degree and therefore varying
amounts of influence. Therefore, the eigenvector centrality of a node assigns a score
proportional to the sum of scores of its neighbours. For example, in the WWW, a
web-page that is not important by itself, could gain importance by connecting to few
but very popular web-pages. Mathematically, the eigenvector centrality of a node i is
calculated as

xi =
1

κ1

N∑
j=1

Aijxj (1.16)

where κ1 is the largest eigenvalue of the adjacency matrix. From the above equation, it
is clear that the centrality of i depends on the centrality of its neighbours, xj and also
on the number of its neighbours via A. Extensions, for the case of directed networks,
have led to more accurate modifications, leading to the definitions of Katz centrality,
Pagerank etc [51, 56,57].
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The next couple of centrality measures are based on the contribution of a node to the
overflow in the network and effectively depend on the geodesic paths in the network.
For each node i, the mean of the geodesic path-lengths from i to every other node in
the network, is defined as its closeness centrality li. If dij is the shortest path-length
from i to j, then the closeness centrality of i is given by

li =
1

N − 1

N∑
j=1,j 6=i

dij (1.17)

where we do not consider the influence of i on itself. An interesting property of the
closeness centrality is that, in contrast to most other centrality measures, lower values
of li indicate higher influence. For this reason, in the study of social networks, li is
calculated using the inverse path-lengths 1/dij. Despite its simplicity, the closeness
centrality spans a very small dynamics range, because of the logarithmic scaling of
average path-length with network size, thereby making it hard to distinguish between
nodes with high and low centralities. Also, when dij = ∞, this measure becomes
ill-defined, hence making it valid only for strongly connected networks [51].

The last type of centrality, that we will discuss, is the betweenness centrality
[51, 58], which measures the extent to which a vertex lies on the paths between other
vertices. The betweenness centrality of a node gives the fraction of shortest paths,
between any pair of nodes in the network, which pass through that node. For node i, if
nist is the number of shortest paths from s to t that pass through i and nst is the total
number of shortest paths from s to t, then the betweenness centrality xi is calculated
as

bi =
∑
st

nist
nst

(1.18)

Nodes with high betweenness have a strong influence on any spreading processes taking
place on the network and consequently, their removal results in maximal disruption.
This measure has found extensive application in the areas of social sciences, epidemic
spreading, information routing in the internet and WWW etc [51]. The definition of
betweenness centrality can also be extended to rank edges.

1.3 Models of network generation

So far, in this chapter, we have looked at properties of networks, from the local to
the global scale. But throughout this process, we have taken for granted that the
underlying network structure, that resulted in those properties, was given. In this
section, we will focus our attention on the underlying structures of these networks and
the models used to generate them, based on empirically observed characteristics. In
particular, we will discuss the Erdos-Renyi (ER) model, Barabasi-Albert (BA) model
and the watts-Strogatz (WS) model. These models attempt to capture the properties
like scale-free nature, high-clustering, finite degree-correlation and small average path-
length, that are commonly observed in real-world networks.

1.3.1 Erdös-Rényi (ER) model

The Erdös-Rényi model generates a random network, G(N, p), with N disconnected
nodes initially [50]. Then, every pair of nodes is connected with a probability p. In the
infinite size limit, the resulting network has a poisson degree distribution, characterized
by a fixed average degree (≈ pN). Alternatively, if k is a desired average degree, then
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Figure 1.4: A schematic representation of the Watts-Strogatz model. Image taken from [1]

kN edges can be placed among N nodes uniformly randomly. This gives a network
G(N, kN) with a fixed number of edges kN . As N → ∞, the mean clustering coeffi-
cient, global clustering coefficient and assortativity coefficient go to 0 and the average
path-length scales logarithmically with the network size.

However, most real-world networks are found to exhibit an asymptotic power-law
degree distribution and finite clustering and/or degree correlations. Therefore, net-
works generated using this model do not accurately represent observed networks. But
being the first model to be studied, this model holds historical significance. Also, being
a class of maximally random networks, their simplicity allows for calculation of many
exact analytical results. They also act as a good null-model to compare against other
empirically observed properties.

1.3.2 Watts-Strogatz (WS) model

As mentioned earlier, the networks generated by the ER model exhibit negligible
amount of clustering but still capture the small-world nature observed in many real-
world networks. In an attempt to generate networks with both high clustering and
small average path-length, Watts and Strogatz put forward the Watts-Strogatz (WS)
model [1].

The construction process starts with a k-regular ring lattice with N nodes (fig-1.4).
For every node, each associated edge is rewired to a randomly chosen, with a rewiring
probability pr, while avoiding multi-edges and self-loops. For pr = 1, the rewired
network is completely random. Initially, the ring lattice has very high clustering and
high average path-length. But the rewiring process introduces long-range connections
which lead to an exponential decrease in path-length while the global clustering still
remains relatively high. Thus, for an optimal value of pr, the process generates networks
with high clustering and small average path-lengths, typically referred to as small-world
networks. While this model captures the clustering and average path-length, its degree
distribution is quite unrealistic and assortativity goes from exactly 0 (for pr = 0) to
zero on average (for pr = 1).
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1.3.3 Barabasi-Albert (BA) model

The Barabasi-Albert model is designed to explain the occurrence of a heavy-tail in the
degree distribution, as observed in many real-world networks. The presence of these
nodes, with disproportionately high degrees (hubs), holds important consequences for
network control, robustness, flows etc. The model is based on the mechanisms of
growth and preferential attachment, both of which are crucial to real-world networks.

In this model [59], the growth-process starts with a small number of connected
nodes (n0). At every successive time-step, a single node is added to the network until
a predetermined size N is reached. The incoming node connects with m < n0 existing
nodes with a probability proportional to their respective degrees. As N → ∞, the
process generates a power-law degree distribution with scaling exponent equal to 3.
The presence of hubs results in a very small average path-length, that scales with
the network size as ln(N)/ln(ln(N)). The assortativity coefficient is again 0 and the
clustering goes to 0 asymptotically, although slower than in ER networks. Despite its
partial shortcomings, this model has gained extreme importance and many current and
more accurate models of real-world networks use the basic features of this model.

While the ER model, WS model and BA model capture essential properties like
degree distribution and clustering, they are by no means representative of the vast
number and types of generative methods. While these methods laid out the foundation,
many more models have been built upon similar principles. Non-linear preferential
attachment models, vertex-copying models, random-walk models etc. have essentially
broadened the usage of preferential attachment along with growth. Similarly, static
methods have also been developed, like exponential random graph models, stochastic
block models, latent space models models etc. However, an interesting set of methods
have been developed using the idea of dynamic edge distributions. These methods,
also popularly known as rewiring methods, are of particular interest in this work. We
develop such methods to preserve degree distribution, while adjusting the values of
properties like correlations and clustering.

1.4 Processes on network

In this section, we are take quick overview of two kinds of processes that take place
on complex networks. This aspect of network science is focused on understanding the
interrelationship between the structure and function of complex real-world networks.
Although there are many different types of processes observed to be taking place on
networks, like virus-spreading in a computer-network, rumour-spreading in a commu-
nity, neuronal firing in the human-brain, synchronization of dynamical systems on a
network and many more, we will discuss only two such processes in further detail.

1.4.1 Network Resilience and Percolation

The first process of interest is the problem of percolation, which was first proposed in
the 1950s and immediate application to the problem of disease-spreading [60, 61]. For
the same reason, it gained popularity when real-world data-sets became available and
relevant [62]. A percolation process is one in which nodes or edges in a network
are randomly labelled as occupied or unoccupied and the properties of the resulting
patterns of occupancy of nodes/edges are studied. When the entity of interest is a node,
we have site percolation and if it an edge, it is called bond percolation. Although the
early motivation for percolation studies was disease-spreading, we limit this discussion
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to the context of network resilience.
Network resilience can be measured in different ways but a simple indicator is the

behaviour of nodes in the largest connected component (giant component) of the net-
work. For example, if we consider a hypothetical communication network, in which a
path connecting two nodes means that the nodes can communicate with each other,
then those nodes that belong to the giant component can communicate with a large
fraction of nodes in the network, and those in small components can only communicate
with a small number of nodes. Following initial numerical works on subsets of the
WWW [25,27, 54, 63], it became quite clear that the problem of random loss of nodes
could be mapped to the problem of site percolation on the network. Nodes are ran-
domly occupied (working) or unoccupied (not working), and the number of remaining
nodes that can communicate with each other is exactly the size of the giant component
in the corresponding percolation model.

The study of percolation on networks, generated by the configuration model, has
produced many analytic results. Cohen et. al [27] used a configuration model for a
general degree distribution p(k), in which a randomly chosen fraction q of nodes were
occupied, and studied the behaviour of the giant component. They found that in the
case of power-law degree distributions (p(k) ∼ k−α), for α ≤ 3, the critical value qc at
which the giant component disappears is zero. This implies that such networks, with a
diverging second moment of p(k) always have a giant component. Callaway et. al [63]
took this model further by introducing a probability of failure, that was proportional to
the degree of the nodes. This made it possible to study the effects of targeted attacks
on nodes instead of just random failures. It was found that networks with power-
law degree distribution were particularly susceptible to this type of attacks [64, 65].
These works were extended by Moreno and Vasquez [66] to the case of networks with
degree-correlations, where they have shown that the critical fraction qc is zero even for
networks with finite second moments, if they are assortative.

Besides random failure and targeted attacks on nodes, many more works have dealt
with modifications or extensions of these problems. For example, this theory has
been extended to the case of directed networks as also to study the problem of bond
percolation, which mimics the random/targeted loss of edges in the network. Another
closely related problem that has received a lot of attention is the cascading failure in
networks [29,67–70]. In this problem, each node has a load-capacity and is involved in
distributing load across the network. If the load on the node exceeds its capacity, then
the node fails and the load is redistributed to its neighbours, causing them to possibly
get overloaded. This has profound implications in the context of power-grids.

1.4.2 Spreading processes on networks

While there are many types of spreading processes that can occur on networks, depend-
ing on the type of application, like information, computer-viruses, rumors etc [71], one
of the more important and well-studied is that of epidemic spreading.

The study of epidemic spreading is based on compartmental models, where the
population of interest is divided into mutually exclusive subsets based on their disease
state [72]. Although many different compartmental models have been developed, one
model in particular captures the most basic and fundamental aspects of common in-
fections/diseases, namely the SIR model. In this model, each individual (node) can be
in either susceptible (S), infected (I) or recovered (R) state. A susceptible individual
is healthy but gets infected with some probability of infection, if exposed to an in-
fected individual. An infected individual stays infected for some time, before changing
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to a recovered/removed state with some probability of recovery. Once an individual
recovers, the state remains constant and cannot become susceptible again.

The long-term evolution of this model reflects the contrasting dynamics w.r.t the
other compartmental models. In the SIR model, the recovered population does not
become susceptible again and therefore the disease eventually dies out. In this case,
the quantity of interest is the fraction of population that is infected after the susceptible
population completely dies down. The probability that the initial fraction of susceptible
individuals lead to an epidemic is proportional to the ratio of probability of infection
to probability of recovery. The critical value of this ratio, below which the probability
of an epidemic is zero and above which there is a finite probability of an epidemic,
is called the epidemic transition. In all compartmental models, there is an implicit
assumption of homogeneous mixing meaning that an infected individual can interact
with any randomly chosen individual in the entire population and potentially infect
them [72, 73]. While this makes it possible to write down a system of analytically
solvable differential equations, it also overlooks or averages over all local details and is
very unrealistic. But, over the years, these models have become the starting points for
more advanced models that include details like the underlying network structure [74],
non-zero correlation of interactions between individuals, community-structure, age-
classes, spatial-data etc.

In the limit of infinite size, the epidemic threshold is analogous to the critical fraction
qc and the fraction of infected population to the size of the giant component while
the homogeneous mixing hypothesis is equivalent to the mean-field treatment. The
SIR model on a network, with fixed probabilities of recovery and infection, can be
exactly mapped to the problem of bond percolation on the same network. Based on
this mapping, many results on the size of the epidemic have been derived in various
networks with arbitrary degree distributions. In the absence of degree-correlations
and for fixed average degree < k >, the epidemic threshold can be derived as <
k > / < k2 >, below which the there is no epidemic and over which the disease
affects a finite size of the population. In networks with a diverging second moment
(< k2 >→ ∞), the threshold always has a finite value and the disease persists but
in networks with fluctuating second moment (scale-free with exponent between 2 and
3), the disease completely vanishes as N →∞. Many more important and interesting
results have been derived for more advanced models and also include more realistic
details like degree-correlations, clustering, memory-based infection etc [71, 72, 75, 76].
Complimentary to this approach, methods based on generating functions have also
been studied to develop exact solutions for the SIR model. Another important set of
results that has emerged is the study of immunization techniques [77, 78], and their
effectiveness on networks with various topologies and combinations of properties, which
can be applied to develop preventive and curative strategies.

Before we conclude this chapter, we take a quick look at some of the other important
processes that have been studied on complex networks. Considerable efforts have been
devoted to understanding the process of diffusion on networks [79–82]. Watts and
Strogatz studied models of opinion formation and voter models as cellular automaton
processes on networks [1, 83]. The role of network topology on the progression of
iterated games has also generated considerable interest [1, 84, 85]. But perhaps the
largest body of literature delves into the emergent behaviour of dynamical systems on
networks [86–89].
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1.5. SUMMARY

1.5 Summary

In this chapter, we have briefly touched upon complex networks, their characteristics,
the processes taking place on networks and their applications. However, we have mostly
limited our discussion to the case of undirected networks, which have been extensively
studied and for which vast amounts of literature is already available. In contrast, the
focus on the current thesis will be on directed networks. This is mainly motivated
by their abundant application to important real-world systems and the obvious gaps
in existing literature. Since most properties do not automatically extend to the case
of directed networks, we redefine them as and when relevant. In the chapters ahead,
we present the results of a study on degree preserving rewiring methods in directed
networks, the effects of random and targeted link deletion on the structural properties
and the changing dynamics of a transmission process occurring on the networks.
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Chapter 2

Degree Preserving Rewiring in
directed networks

2.1 Introduction

Technological advancements have made it possible to amass vast amounts of data from
many real-word systems and this is redefining the way we approach complex networks.
Analysis of such data-sets has opened up access to a host of properties associated with
the respective networks and has made it clear that an understanding of such properties,
their origins and relationships is of utmost importance in order to fully understand the
underlying systems. Although the origins of these properties are not well understood,
we are nevertheless interested in exploring their relationships and also their influence
on the overall structure and functioning of the network.

In this regard, considerable work has been done on generating model networks,
using both growth [59, 90–96] and static [1, 50, 97, 98] methods. These models have
also been modified to incorporate further properties like 2-node degree-correlations
and clustering [52, 53, 99–107]. However, the vast majority of this literature is limited
to the case of undirected networks and cannot be broadened to incorporate the case
of directed networks [108–112]. Most often, directed networks have been studied by
transforming them into undirected networks.

The contents of this chapter include our results from the study of network rewiring
mechanisms on directed networks [113]. Two important properties, namely clustering
and degree-correlations, are tuned using these mechanisms. After generating directed
ER and SF networks using existing models, we tune the properties of interest in these
networks using our proposed Degree Preserving Rewiring (DPR) mechanisms. By
isolating the role of the degree distribution and the intrinsic structural properties,
these mechanisms allow us to focus on the unique role played by such properties [112,
114–118]. We study each mechanism on two network topologies, the resulting effects
and cross-effects and compare their performances.

2.2 Clustering in directed networks

In complex networks, clustering is defined as the tendency for node to organize into
well-connected neighbourhoods. it is quantified by any of the three types of clustering
coefficients, as discussed in sec-1.2.3. In this chapter, we prefer to use the mean cluster-
ing coefficient (MCC), rather than local clustering coefficients (LCC) of the network.
This is because it produces a single number that is representative of the average local
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2.2. CLUSTERING IN DIRECTED NETWORKS

connectivity in the network. This makes it possible to effectively and easily compare
results from different networks, without bypassing any important information.

Figure 2.1: The four types of closed triplets that are formed in directed networks: Cycles - (A,B),
Mids - (C,D), Intri - (E,F) and Outri - (G,H). In each case, the triplet of interest is shown w.r.t node
1.

In directed networks, owing to the directed nature of edges, there are four possible
types of simple closed triplets [108]. The four types of closed triplets, namely, Cycles,
Middleman-triangles (Mids), In-triangles (Intri) and Out-triangles (Outri) are shown
in fig-2.1.

Consider a network of size N . For any node i in the network, let douti , dini , d↔i and
ci represent the out-degree, in-degree, bidirectional edges and LCC of i respectively.
If this network is denoted by an adjacency matrix A where Aij = 1/0 indicates pres-
ence/absence of an edge from node i to node j, then the MCC for each type of triplet
can be calculated as follows:

Ccyc =
1

N

N∑
i=1

ccyci =
1

N

N∑
i=1

(AAA)ii
dini d

out
i − d↔i

(2.1)

Cmid =
1

N

N∑
i=1

cmidi =
1

N

N∑
i=1

(AATA)ii
dini d

out
i − d↔i

(2.2)

Cint =
1

N

N∑
i=1

cinti =
1

N

N∑
i=1

(ATAA)ii
dini (dini − 1)

(2.3)

Cout =
1

N

N∑
i=1

couti =
1

N

N∑
i=1

(AAAT )ii
douti (douti − 1)

(2.4)

From the above equations, it is clear that for a node i to have a well-defined ci with
respect to in-triangles and out-triangles, the respective in and out degrees of i must
be greater than 1. In order for it to have a well-defined ci w.r.t cycles or middleman
triangles, it is sufficient to have both in-degree and out-degree atleast equal to 1,
provided they are not associated with the same neighbour of i.
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2.2. CLUSTERING IN DIRECTED NETWORKS

2.2.1 DPR mechanisms

To tune the amount of clustering in a network, our mechanisms identify a suitable
chain of connected nodes. The edges within this set of nodes are reorganized in such
a way that a desired type of closed triplet is generated, all the while preserving the
degrees of the nodes involved. For all variants of clustering, schematic representations
of the rewiring processes are given in fig-2.2 and the corresponding algorithms are
given in appendix-A. While the mechanisms do appear very similar to some extent,
they have minor but critical differences, which we will discuss in greater detail as we go
ahead. In order to focus on these minor variations, we do not attempt to generalize the
procedures. In all the different mechanisms, there is some ambiguity associated with the
choice of node i, whose neighborhood we seek to modify. There are two main schemes
for the choice of i. It can be chosen either randomly or in some ordered fashion, where
the ordering may be based on ci, in-degree of i, out-degree of i etc. While a weighted
choice seems intuitively effective, we find that the change in clustering is comparable
in either scheme for a given number of rewiring steps. Therefore, for computational
efficiency, in all the procedures, we choose i uniformly randomly.

Figure 2.2: An illustration of the degree preserving rewiring mechanisms for increasing the clustering,
in directed networks, w.r.t each of the four types of triangles.

The choice of second neighbors of i (in steps 11 and 12 of alg-??) is the most
important difference between the rewiring schemes for cycles and middleman-triangles.
When rewiring for cycles, for the incoming neighbour k of i, we choose one of the
incoming neighbor n of k and for the outgoing neighbor j of i, we choose an outgoing
neighbor m of j. In the case of middleman-triangles, for the incoming neighbor k of
i, we choose an outgoing neighbor n of k and an outgoing neighbor j of i, we choose
an incoming neighbor m of j. Besides this crucial difference and the calculation of the
relevant clustering coefficient, the algorithms for the cycles and middleman-triangles
are exactly the same. For each type of triangle involved, there is a unique selection of
neighbours. For both cycles and middleman-triangles, a successful rewiring step can
generate only one triangle w.r.t i.

The algorithm for tuning clustering w.r.t In-Triangles is given in alg-??. The same
algorithm can be used to explain the rewiring procedure for out-triangles by bringing
out the important differences. While tuning for Out-Triangles, in step-7 of alg-??, we
ensure that douti > 1 and if so, in step-8, we select two distinct nodes, j and k, that are
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2.2. CLUSTERING IN DIRECTED NETWORKS

outgoing neighbors of i. Also, throughout the procedure, we work with C
init

out , C
final

out

and C
des

out instead of C
init

int , C
final

int and C
des

int . An important difference that is immediately
obvious, is that the rewiring procedures for intri/outri generate one of two possible
in/out-triangles w.r.t i for every successful rewiring step. The exact type of triangle is
dependent on the actual choice and availability of second neighbours of i. Also, the in-
degree and out-degree of i must be greater than 1 when tuning for in and out triangles
respectively. The choice of second neighbors also determines the type of complimentary
triangles that are formed. For example, in the schematic for in-triangles (top) in fig-2.2,
we have an out-triangle w.r.t j and middleman-triangle w.r.t k, while it is the other
way around in the bottom schematic. If j and k do not have the same in and out
degrees (which is normally the case), then the LCCs w.r.t the two nodes, in the two
cases are different. This is also reflected in the respective MCCs.

In the algorithms, at the end of every rewiring step, a new value of MCC is calculated
and compared to the old value, to decide if the new arrangement should be retained or
rejected. To make the algorithm more efficient, it would seem that calculation of the
LCCs of the affected nodes, instead of the MCC, should be sufficient as the rewiring
process affects only a local change. This is, however, not possible for two main reasons.
First, besides the nodes constituting the triangle of interest, the second and possibly
third neighbors of i may also be affected. Second, we find that there is no unique
way to identify this set of affected nodes. It is dependent on the number of shared
neighbors of different pairs of nodes in the neighbourhood of i. The entire argument
narrows down to a trade-off between recalculating all the LCCs or first identifying the
affected nodes and calculating only their LCCs. We go with recalculating all the LCCs.

Before we move into the results of rewiring, we will quickly discuss the complexity
of the algorithms. The evaluation of MCC is the time-dominant step in the entire
algorithm. This calculation is crucial to the performance of the algorithm because
the algorithm does not ensure an monotonic change in clustering. The rejection of a
particular rewiring is dependent on this step. The calculation happens in O(N). We
convert the input edge-list to an adjacency list at the very beginning, to make the
calculation of MCC more efficient. This step has a complexity O(M), where M is
the number of edges in the network. Having the adjacency list is an added advantage
because random-sampling from the lists of neighbors can now be completed in constant
time. If, in the worst case, we do not reach the desired value of clustering and therefore
have to go through the fixed number of rewiring steps, the number of times MCC is
evaluated and the number of sampling operations and comparisons is dependent on
the fraction of rewiring steps in which the conditionals are satisfied. In the limiting
case, when the number of rewirings is much greater than the network size N , each of
the conditionals are satisfied a fixed number of times (equal to an integral multiple
of the network size). Overall, we find that the algorithm has a cumulative time-
complexity of the order of O(N2 + M). Between the algorithms for in/out-triangles
and cycles/middleman triangles, the actual running times differ only by an additive
term.

2.2.2 Role of topology

We test the performance of the proposed mechanisms on directed ER and SF networks
and also their effectiveness in generating the desired properties. Directed random
networks are generated using the Erdos-Renyi model [50] and the model by Bollobas
et al. [93] is used to generate directed SF networks. The rewiring mechanisms are
first tested for fixed parameter values in both topologies. This is followed by further
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2.2. CLUSTERING IN DIRECTED NETWORKS

analysis to understand the role of changing parameter values. In the model for SF
networks, the link-density (k̄) can be parameterized by β. In the limit of infinite size,
β and k̄ are related as k̄ = 1/(1-β). Knowledge of his relationship allows us to compare
the performance of ER and SF networks having approximately the same link-density.

Before we go any further, we present a brief discussion of the model, for the gener-
ation of SF networks, as proposed in [93]. We also derive the relationship between k̄
and β that we stated earlier. This generative model is based on a growth mechanism
combined with preferential attachment. It is controlled by five non-negative real-valued
parameters α, β, γ, δin and δout, and α + β + γ = 1. Different properties of the result-
ing network can be manipulated using one or more combinations of parameter values.
For example, an appropriate choice of α and δin can fix the value of the in-exponent
(XIN), and the value of the out-exponent (XOUT ) can be fixed by choosing γ and δout.
Similarly, the combination of α and γ controls the number of nodes in the network at
any given time-step and the density of links in the network can be changed using β.
From sec-3 in [93], assuming t0 = n0 = 0, the average number of nodes in the network
at a given time t is approximated by (α + γ)t. A single link is added to the network
at every time-step and therefore, the total number of links in the network at time t is
t. Using this information, the link-density at time t can be estimated by

k̄ =
t

(α + γ)t
=

1

(1− β)
(2.5)

Since the entire process of generation is completely probabilistic, all the results hold
true, on average, and in the t → ∞ limit. Simultaneously tuning five parameters can
quickly get exhausting and overwhelming, therefore, we fix the values of all parameters
except β. The values are decided in such a way that the resulting networks exhibit some
desired characteristics. Having the freedom to manipulate β, allows us to compare the
results of rewiring in SF networks and ER networks, on the basis of link-density. In
our work, we fix XIN = XOUT = 2.5. The value of β is decided based on the desired
value of link-density. To keep everything simple and easy to understand, we also make
α = γ = ((1− β)/2). Having fixed the values of α, β and γ, the values of δin and δout

are calculated, such that XIN = XOUT = 2.5. Using these values for the parameters,
we implement the construction process as described in [93].

To study the working of our proposed rewiring mechanisms, we start by generating
two ensembles, one each for ER and SF networks, and each consisting of 100 networks.
Both ensembles consist of networks with 1000 nodes. The SF networks are generated
with β = 0.8 and the average degree of the ER networks is equal to 5. For each
variant of clustering, the respective procedure is applied iteratively to both ER and SF
networks. The results, taken as ensemble averages, as given in fig-2.3 for ER networks
and fig-2.4 for SF networks. We observe, from fig-2.3 and fig-2.4, that for a given
network size N having approximately the same link-density and for the same number
of rewiring steps, the mechanisms introduce a substantially greater amount clustering
in the ER network as compared to the SF network. In the case of Cout, this difference is
particularly pronounced. The DPR mechanism introduces twice the amount of change
in ER networks than in SF networks. For all MCCs, we observe a rapid initial increase
an this is followed by a state where they remain more or less constant or show a very
slow increase.

We also observe certain structural side-effects that manifest themselves, indepen-
dent of topology. When we rewire the network to increase Cout, we also observe an
increase in Cint and Cmid. Looking at the schematic for out-triangles in fig-2.2, we
see that the rewiring of edges between the first and second neighbours of i generates
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2.2. CLUSTERING IN DIRECTED NETWORKS

Figure 2.3: Behaviour of MCC values as a function of rewiring steps, in directed ER networks, while
being tuned for the various types of clustering. The specific type of clustering, that is being tuned in
each case, is indicated by the respective subplot label. Ccyc - green-triangles, Cmid - red-circles, Cint

- blue-diamonds and Cout - black-squares.

two complimentary triangles, one each w.r.t the nearest neighbours of i, which explain
the increase in Cint and Cmid. We observe a similar increase in Cint and Cout when
rewiring for Cmid and in Cmid and Cout when rewiring for Cint. However, in the case
of cycles, we do not observe any such occurrence because the complimentary triangles
are also cycles.

Figure 2.4: Behaviour of MCC values as a function of rewiring steps, in directed SF networks, while
being tuned for the various types of clustering. The specific type of clustering, that is being tuned in
each case, is indicated by the respective subplot label. Ccyc - green-triangles, Cmid - red-circles, Cint

- blue-diamonds and Cout - black-squares.
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2.3. DEGREE-CORRELATIONS IN DIRECTED NETWORKS

2.2.3 Role of topological parameters

Figure 2.5: Behaviour of MCC values as a function of the corresponding topological parameter values
in (a) ER networks and (b) SF networks. In each case, the results are presented for 106 rewiring steps.
For plot-legends, refer to the caption in fig-2.3.

In SF networks (fig-2.5), we observe that for different MCCs, the qualitative be-
haviour remains the same while the quantitative behaviours vary as the link-density
is increased. For the same number of rewiring steps, different MCCs reach different
values. Further studies are required to confirm if this is a true structural limitation.
While Cmid and Ccyc go as high as 0.4 for β = 0.8, Cout reaches a maximum value of
0.6 and Cint approaches 0.3. For all four types of MCCs, the qualitative behaviour
remains the same as β is increased. In ER networks, the smooth variation of MCCs,
as seen in SF networks, is evidently absent. The values of Ccyc and Cmid are clustered
close together for k̄ = 2, 3, 4, 5 while the values for Cint and Cout show a consistent
variation. Overall, a comparison of results on both ER and SF networks reveals that
the topology does affect the DPR mechanisms to some extent in both cases.

2.3 Degree-correlations in directed networks

In a network with a given degree distribution, the tendency of similar/dissimilar nodes
to form connections among themselves is measured by degree-correlations. Whether
the role of such correlations is causal or consequential is not completely understood but
their effect on the network structure and function is well-accepted. While correlations
can be studied with respect to any enumerative (color, race) or scalar (income, age)
property, the study of correlations between node-degrees takes priority because of the
interplay between the two structural properties involved.

Figure 2.6: The four different types of 2-node degree-correlations in directed networks: In − In,
In−Out, Out− In and Out−Out.

In directed networks, we can define four different types of 2-node degree-correlations.
Due to the distinct in-degree and out-degree associated with each node, we have In−In,

21



2.3. DEGREE-CORRELATIONS IN DIRECTED NETWORKS

In − Out, Out − In and Out − Out degree correlations. Going ahead, we use p − q
to represent a general type of correlation, where p, q ∈ {In,Out} and p and q are
associated with the source and target nodes respectively. Traditionally, the Pearson
correlation coefficient, rpq , has been the metric of choice to quantify correlations [52].

rpq =

∑
e k

p
ek

q
e −M−1∑

e k
p
e

∑
e′ k

q
e′√[∑

e(k
p
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(∑
e k

p
e

)2]− [∑e(k
q
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e k

q
e

)2] (2.6)

where e runs over the edge-list. But, as was shown in [119–121], in networks with
heavy-tailed degree distributions, the value of rpq scales with the network size N . In
the infinite size limit, it converges to a non-negative value. For this reason, rpq is not a
good metric to study very large SF networks, especially if they are dissortative. And so
we turn to the Spearman’s rank correlation (eqn-2.7), to quantify these dependencies.

ρpq =
12
∑

eR
p
eR

q
e − 3M(M + 1)2

M3 −M
(2.7)

where Rp
e and Rq

e are the ranks of source and target nodes associated with edge e,
based on their p and q-degrees, respectively, and ρpq is referred to as the Spearman’s
Rho [121].

Using the following rule, we assign ranks, Rp
e and Rq

e, to all the nodes in the network.
Given a sequence of n distinct values {xi : 1 ≤ i ≤ n}, R(xi) denotes the rank of xi
and is given by R(xi) = {j : xj ≥ xi}, 1 ≤ i ≤ n. If xi belong to a degree sequence,
we have multiple duplicate values due to the presence of multiple neighbours. As a
result, the assigned ranks are not unique. Either the ties can be broken in a uniformly
random manner or the tied ranks can share an average rank [121]. If we consider an
example of a sequence with repeated values, xi = {3, 1, 10, 4, 3}, the resulting ranks
with ties would be {3, 1, 5, 4, 3}. If we resolve the ties uniformly randomly, we can get
either {3, 1, 5, 4, 2} or {2, 1, 5, 4, 3}. Basically, a sequence of repeated ranks are assigned
unique ranks with equal probability. On the other hand, if we use an average rank to
replace the tied ranks, we end up with {2.5, 1, 5, 4, 2.5}. A proof for the equivalence of
the two methods is detailed and discussed in [121]. For the purpose of this study, the
ties are broken uniformly at random.

Both ρpq and rpq take values in the range [-1,1]. When edges are placed preferentially
between nodes of similar degree, the values of correlation is positive and it is negative
when they are placed between nodes of dissimilar degrees. In the absence of net bias,
the value is close to zero.

2.3.1 DPR mechanisms

To tune 2-node degree correlations in directed networks, we propose mechanisms based
on the rewiring rule in [114]. We alter the rule to adapt it to the case of directed
edges and ensure that the identities of the source and target nodes are preserved. We
introduce the following modifications to the procedure in [114].

Two edges, (a, b) and (c, d), are chosen at random from the edge-list. Given that
p,q ∈ {in, out} and a and c are the source nodes, we select the node with the higher
value of p-degree. Similarly, from the target nodes, b and d, we select the node with the
higher value of q-degree. An edge is placed between the two nodes after ensuring that
they are not identical and are not already connected. A second edge is placed between
the two rejected nodes given that they also satisfy similar constraints. Simultaneously,
we delete the original edges (a, b) and (c, d). The constraints are put in place to avoid

22



2.3. DEGREE-CORRELATIONS IN DIRECTED NETWORKS

Figure 2.7: An illustration of the DPR mechanisms used for tuning assortative correlations (Top) and
dissortative correlations (Bottom) on directed networks.

self-loops and multi-edges. The above sequence of steps represents a single rewiring
step (top part of fig-2.7). When this rewiring step is repeatedly applied to the edge-
list, the resulting network has assortative p-q type of correlation. When a desired value
of ρpq is reached or if we finish a predetermined number of iterations, the process is
terminated. The algorithm for implementation is given in the appendix as alg-??.

In order to tune dissortative p − q correlations in a network, we again start by
randomly choosing two edges (a, b) and (c, d) from the edge-list. Between nodes a and
c, the one with higher value of p-degree is chosen. But from the set of target nodes,
we choose the node with the lower value of q-degree. Similarly, the rejected nodes
also form a pair. If both the selected pairs of nodes satisfy the constraints mentioned
earlier, two edges are placed between them while the original edges are simultaneously
deleted. Once again, we ensure that the network remains simple. Repeated iteration
of the above rewiring step (bottom part of fig-2.7) generates a network with dissortaive
p − q correlations. Once again, the procedure is terminated when a desired value of
correlations is reached or after a predetermined number of iterations are run.

The algorithm for tuning degree correlations has an overall time-complexity of
O(N2). We find this by using an approach similar to the one discussed in the con-
text of clustering. In this case, the time-consuming step is the evaluation of ρpq that
runs in O(N). Because we do not use an adjacency list, there is no O(M) term.

2.3.2 Role of topology

The results of DPR mechanisms, are analyzed on both ER and SF networks. For each
topology, we generate an ensemble of 100 networks, each with N = 104 nodes. ER
networks are generated with k̄ = 5 and SF networks with β = 0.8. On each ensemble,
we iterate the rewiring mechanisms, for both assortative and dissortative correlations.
The results are averaged over the ensemble and are shown in fig-2.8 and fig-2.9, for ER
and SF networks respectively.

In ER networks, the results of the tuning mechanisms are along expected lines (fig-
2.8). For each mechanism, only the relevant p− q type of correlation (p, q ∈ {in, out})
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Figure 2.8: Performance of the rewiring mechanisms as a function of rewiring steps, for all four
variants of degree-correlations, in directed ER networks. The results of assortative and dissortative
rewiring, for each variant, are plotted together for easy comparison. In each case, the specific type
of correlation that is being tuned is indicated the corresponding subplot label. ρinin - green-triangles,
ρinout - red-circles, ρoutin - blue-diamonds and ρoutout - black-squares.

shows an increase while the change in all the other variants remains negligible. However,
the results of rewiring in SF networks present a far more interesting scenario (fig-2.9).
When tuning for p − q type of correlations, the desired variant is introduced to the
largest extent, along with small but considerable increases in all the other variants.
Since this is not observed in ER networks, we conclude that this behaviour is not a
result of the rewiring mechanisms but of some other topological property.

On further analysis, we find that besides the degree distributions, the two types of
networks are differentiated by exactly one other property, which is 1-node correlations
(rin−out). The correlation between the in and out degrees of a given node is negligible in
ER networks while it is strongly positive in SF networks. A quick recap of the model
in [93] reveals that it is indeed an artefact of the generative process, where nodes
appearing early in the growth process tend to have high in and out degrees while those
appearing in the later stages have lower degrees. We introduce 1-node correlations into
ER networks, in a controlled manner, to confirm our argument on the role of rin−out.
Given a network of size N with an in-degree sequence din and an out-degree sequence
dout, rin−out is calculated as the Pearson correlation coefficient of din and dout (eqn-2.8).
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Figure 2.9: Performance of the rewiring mechanisms as a function of rewiring steps, for all four variants
of degree-correlations, in directed SF networks. (Refer to the caption of Fig.2.8 for plot-legends)

rin−out =
1

N

N∑
i=1

(dini − k̄)(douti − k̄)

σinσout
(2.8)

where σin and σout are the standard deviations of din and dout respectively and k̄ is the
average degree of the network. We also mention that the use of rin−out, as compared to
Spearman’s Rho, is completely justified. As such, the Pearson correlation coefficient
and Spearman’s Rho do not take the exact same value. But the absence of a heavy-tail
in the degree distribution of ER networks means that we do not observe any scaling
effects with network size. To confirm this, we analyzed an ensemble of ER networks,
for which we calculated both r and ρ and found them to be closely distributed around
the same average value. For the specific case of Out-Out correlations, we study the
effect of increasing values of rin−out on the behaviour of 2-node correlations. Although
the results presented in fig-2.10 are for Out-Out correlations, they hold true for any
general type of 2-node correlation.

In a SF network (fig-2.9), for the same number of rewiring steps, dissortative rewiring
results in a higher absolute value of ρpq as compared to assortative rewiring. We find
that, when the network is rewired for asymmetric types of correlations, both assorta-
tive and dissortative types result in qualitatively similar behaviour. All four types of
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correlations take only three distinct values. However, when the networks are rewired
for symmetric types of correlations, this behaviour is still present but only in the case
of dissortative rewiring. During assortative rewiring, we observe a further splitting, so
that all four variants of correlations take distinct values. This raises important question
about the role of 1-node correlations and its effect on the rewiring process.

Figure 2.10: Performance of the tuning mechanisms for 2-node Out-Out correlations in ER networks,
as rin−out is gradually increased to take values of (a)-0, (b)-0.2, (c)-0.4 and (d)-0.6. The results extend
without loss of generality to other variants of 2-node correlations. (Refer to the caption of Fig.2.8 for
color-codes)

2.3.3 Role of topological parameters

In ER networks, we study the effects of assortative and dissortative rewirings for k̄ =
2, 3, 4, 5. In both cases, we see that the behaviour is identical, with slower rate of
change for higher values of link-density (fig-2.11 - left). For all values of k̄, ρpq appears
to converge to 1, provided there are sufficiently large number of rewiring steps. In SF
networks, as we increase value of β, the results for dissortative rewiring remain similar
to those in ER networks (fig-2.11 - right). However, when the network is rewired for
assortative correlations, we observe that the value of ρpq does not quite converge to 1
as β is increased. Instead, for the same number of rewiring steps, the value at which
ρpq saturates is lower for higher values of β.
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Figure 2.11: Role of link-density on the performance of DPR mechanisms for In-In correlations in ER
networks (a) and SF networks (b). Rewiring for In-Out, Out-In and Out-Out correlations also show
similar qualitative and quantitative behaviors.

The behaviour of the limiting value of ρpq , when a network is rewired for dissortative
correlations, is our next topic of interest. In [122], the authors provide a theoretical
estimation and numerical corroboration of the behaviour of the limiting value. But the
results are limited to undirected networks. In [122], a Dissortative Graph Algortihm
(DAG) is used to generate maximally dissortative graphs and the behaviour of the
limiting value of dissortativity is studied as a function of the topological parameters in
ER and SF networks. However, in our work, a neutral network is made incrementally
dissortative using a rewiring process. But in both cases, the degree sequence of the
network is preserved. In an attempt to compare the limiting values obtained by DPR
and DGA, we try to extend the DGA to directed networks. With the exception of
Out-in correlations, we find that such an extension is not possible. Nevertheless, we
still study the effect of topological parameters on the limiting values of correlations in
directed ER and SF networks.

Figure 2.12: Behaviour of the limiting values of all the variants of degree-correlations as a function of
link-density in ER networks and as a function of the power-law exponents in SF networks. For the
case of SF networks, the in and out exponents have been constrained to stay equal.

In ER networks, we observe that the behaviour of the limiting value is exactly same
for all four types of correlations (fig-2.12 - left). In all cases, the values approach -1
very rapidly as the value of link density is increased. This is also consistent with the
observations in undirected networks in [122]. To study the behaviour of the limiting
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Figure 2.13: Contour plots of all four variants of degree-correlations as we simultaneously vary the
values of both in-exponent and out-exponent. In each sub-figure, the color-coded values indicate the
limiting values of ρpq in the limit of large number of rewirings.

values as a function of the scaling exponents in SF networks, we start by setting
X in = Xout. The limiting values tend to -1 as the exponents become more negative.
The single exception to this is the case of Out-In correlations, where the limiting value
remains quite constant and very close to -1 for all values of X in. The results are also in
complete contrast to the observations in [122] where the authors show that the limiting
values increase as the exponents becomes more negative. Next, we independently vary
X in and Xout, and for various types of correlations, we study the changing contours
of the limiting values 2.13. The observations are qualitatively similar for symmetric
correlations (In-In and Out-Out). For In-In correlations, ρ depends only on X in and
similarly only on Xout for Out-Out correlations. In both cases, as the relevant exponent
becomes more negative, the limiting values rapidly approaches -1. In the case of In-
Out correlations, the limiting value has a direct dependence on both the exponents.
The behaviour is exactly opposite in the case of Out-In correlations where the limiting
values move away from -1 as the exponents become more negative. Although this result
is qualitatively consistent with [122], the actual amount of change is quite negligible.
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2.4 Cross-effects of rewiring

During the rewiring process, we are basically exploring the space of second-order max-
imally random graphs. This means that we are considering the set of all graphs with
fixed average degree as well as a fixed pattern of connectivity, in form of the degree
distribution. In this section, we will look at the behaviour of some higher-order struc-
tural properties, when directed ER and SF networks are rewired for tuning degree-
correlations under the above constraints.

To study these cross-effects, we revert to the use of the Pearson Correlation Coef-
ficient. This is because the formula retains the information about the actual degrees
of the nodes unlike the rank correlations, where the heterogeneity of the degrees is re-
placed by the uniform spacing of ranks. The primary reason we expect to see a change
in other structural properties is due to the constraint imposed by the degree distribu-
tion. For example, the degree distribution determines the number of possible paths of
length three in a given network and the clustering coefficient depends on the fraction
of such paths that are closed. However, the number of paths of length three can also
be treated as a higher-order degree-correlation between degrees of nodes connected by
a path of length three, which is the multiplicative result of degree-correlations across
each of the individual edges. Therefore, when the rewiring process changes the pattern
of correlations across a single edge, we expect to see the effects propagate to higher
order structures. Since the extent of change decreases significantly for higher orders, we
expect maximum change in the next higher order and consequently on the clustering
coefficient.

2.4.1 Rewiring in undirected networks

In [114], the authors transform the traditional definition of assortativity (r) into a form
comprised of the sum of elements of powers of the adjacency matrix A.

r =
N1N3 −N2

2

N1

∑N
i=1 d

3
i −N2

2

(2.9)

where Nk =
∑N

i=1

∑N
j=1(A

k)ij = uTAku and u is the vector of all-ones. In terms

of the degree vector d = Au, we have N3 = dTAd, N2 = dTd and N1 = Total(d)
= total number of edges in the network (M). The process of DPR does not affect d
and therefore we find that when DPR methods are used to increase assortativity in a
network, the change can be narrowed down to the increase in N3. Since N3 gives the
total number of paths of length three in the network, a special subset of which is the
set of 3-cycles, an overall increase in N3 should result in an increase in the number
of 3-cycles. In fact, we observe that there is a preferential increase in closed paths of
length three as compared to open paths. In other words, we should observe an increase
in the clustering coefficients of the network. We observe that this is indeed the case
and the results for undirected ER and SF networks are shown in fig-2.14.

We can also make a qualitative argument in support of the above observation.
When a network is assortatively rewired, the DPR process forces the nodes with similar
degrees to come together and attempts to form complete sub-graphs, thus leading to an
increased number of cycles. Clearly, the size of such sub-graphs depends on the degrees
of the nodes involved. This becomes important in the case of scale-free networks,
where there is an abundance of nodes with low-degrees and also a statistically relevant
number of nodes with very high-degrees. While nodes with smaller degrees are able to
come together and form tightly knit sub-graphs leading to increased local clustering,
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Figure 2.14: Results for DPR in undirected ER networks (Top) and SF networks (Bottom). The
SF networks are generated using the Barabasi-Albert model and all the results are averaged over
50 realizations of the network, each generated with N = 1000 and < k >∼ 5 and undergoing 106

rewiring steps. Left - The behavior of Assortativity (ρ), Mean Clustering Coefficient (MCC) and
Global Clustering Coefficient (GCC) as a function of rewiring steps. Center - Plot of MCC and GCC
against ρ. Right - Plot of initial and final values of the Local Clustering Coefficients (LCCs) against
their respective node degree.

the nodes with high-degrees are unable to form such tightly knit neighbourhoods.
This is because there are not enough nodes to simultaneously satisfy the condition of
assortativity and also form cliques. While a considerable fraction of their edges are
shared among themselves, the rest of the edges connect them to nodes with intermediate
degrees. For this reason, we observe that in SF networks, the LCC of nodes initially
increases with degree, then reaches a maximum at some intermediate value and drops
considerably for high-degrees. This behavior does not arise in ER networks because of
the absence of nodes with very high-degree.

2.4.2 Rewiring in directed networks

In directed networks, owing to the distinction between in and out degrees of a node, we
have four types of 2-node degree-correlations: In−In, In−Out,Out−In andOut−Out.
Earlier, we have presented DPR mechanisms to tune each type of correlation either
assortatively or dissortatively. Using these tuning mechanisms and quantifying the
change in correlations in terms of the Pearson Correlation Coefficient (rpq), so as to
relate to other network properties such as clustering coefficients, we study the effects
of tuning specific correlations on specific types of clustering coefficients.

As we have seen in the case of undirected networks, the change in clustering is
proportional to the change in correlations. We expect qualitatively similar behaviour
in directed networks. Since the initial networks have very low (or negligible) values
of clustering coefficients, further decreasing the value of correlations by dissortative
rewiring cannot have any substantial impact of the clustering coefficients. However,
increasing the correlations by assortative rewiring can be expected to increase the
amount of clustering. Therefore, we only focus on rewiring the networks for assortative
correlations.

Given a directed network G(N,M), rpq is defined as the pearson correlation coeffi-
cient of the p-degrees and q-degrees of the source and target nodes, respectively, in the
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When we substitute for p and q in eqn-2.10, the individual formulae come out to be
the following:
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where we use the matrix relations for the in and out degree-vectors, given as kin =
AT .u and kout = A.u and uT = [1, 1, ..., 1] ∈ R1×N .

Since any DPR mechanism preserves the values of k
in

, k
out

, σkin and σkout , when
the network is assortatively/dissortatively rewired, the increase/decrease in rpq can
only correspond to an increase/decrease in the positive term. The various product
combinations of A and AT in eqn - 2.11 to 2.14, give the total number of different
types of paths of length three. Thus, the diagonal terms of the resulting matrices give
the number of various closed triplets and can each be matched to a particular type of
clustering coefficient as given in eqn-2.1 to 2.4.
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Figure 2.15: Behaviour of various clustering coefficients when the directed ER network is rewired to
increase each of the different types of degree correlations.

Figure 2.16: Behaviour of various clustering coefficients when the directed SF network is rewired to
increase each of the different types of degree correlations.

Therefore, we expect to observe that changes in rinin, rinout, r
out
in and routout lead to changes

in Cout, Ccyc, Cmid and Cint respectively. From fig-2.15 (for ER) and fig-2.16 (for SF),
we find that it is indeed the case but only for the symmetric type of correlations,
rinin and routout. In the case of rinout and routin , there is no distinct change in Ccyc and Cmid
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respectively. In both ER and SF networks, we observe a substantial increase in Cout and
Cint whereas in the case of rinout, there appears to be an increase in Ccyc in the limiting
case, which leads us to believe that this effect of DPR is most likely independent of
topology. In both ER and SF networks, Cmid decreases with increase in routin .

In order to explain the observed results, we take a more detailed look at the local
mechanisms by which the rewiring process may or may not lead to an increase in
clustering. This is based on the premise that a sequence of rewiring steps involving a
common set of nodes results in closure of triads. When we rewire a network to tune
degree-correlations, we are interested in the processes that take place in the common
neighbourhood of 2 nodes on either ends of an edge. Broadly speaking, these processes
can be of two types.

In the first type, the rewiring process results in an edge being placed between two
nodes that do not have a common neighbour. In the case of rewiring for symmetric
type of assortative correlations rpp, where p ∈ {in, out}, if an edge is placed between
nodes i and j, then they must have similar values of p-degree. In some successive
step, another edge may be placed either reciprocally or from one of the nodes, say j
to another node k with a similar p-degree. Based on the constraint of the rewiring
process, there is a high probability that an edge may be placed between i and k, since
they must be of similar p-degree, thus resulting in a closed triplet. In general, this
process can lead to formation of closed loops of any length, where the probability of
loops decreases with loop-length. As a result, the network reorganizes into cliques of
various sizes, thus resulting in densely connected neighbourhoods for sets of nodes of
comparable degree, consequently increasing the the value of the respective clustering
coefficients. Additionally, the presence of reciprocal edges adds to the efficiency of
triadic closure. In the case of asymmetric type of correlations rpq , where p, q ∈ {in, out}
and p 6= q, if an edge is placed from i to j and the next edge is placed from k to j, the
rewiring process mandates that i and k have the same type of degree. Therefore, an
edge between i and k is not preferred, resulting in loss of triadic closure. As a result,
rewiring for asymmetric type of correlations do not show any substantial increase in
the respective type of clustering.

The second type of process is essentially an extension of the first. During rewiring
for symmetric type of correlations, if the nodes already have a valid (comparable de-
gree) common neighbour or have attained one from the first process, then two triads
are simultaneously setup, thus increasing the probability of triadic closure. The high
possibility of valid reciprocal edges further improve the chances of increased clustering.
In case of asymmetric correlations, no reciprocal edges are possible and no triads are
formed, resulting in negligible increase in clustering.

2.4.3 Effects on connected components

As discussed above, rewiring for assortative symmetric type of correlations results in
an increase in clustering coefficient. This is due to nodes of similar degree-type and
degree-value coming together to form smaller complete sub-graphs. For example, when
we rewire for assortative in-in correlations, a large number of in-links get concentrated
among these smaller sets of nodes, thus leading to lesser heterogeneity in edge distri-
bution. Consequently, the fractional size of the in-component decreases significantly.
A similar observation is made for the out-component when rewiring for assortative
out-out correlations. Since the size of the strongly connected component (SCC) de-
pends on the intersection of the in and out components and in the limiting case, the
upper bound on its size is given by the smaller of the two component sizes. When we

33



2.5. SUMMARY

numerically estimate the fractional size of the SCC, we find this is indeed true in both
ER and SF networks as seen in fig-2.17.

Figure 2.17: Changes in the fractional sizes of the SCC (left), In-Component (center) and Out-
Component (right), plotted as a function of rewiring steps, during assortative rewiring in ER networks
(top) and SF networks (bottom).

During asymmetric type of correlations, we have seen that there is negligible change
in clustering and therefore the heterogeneity of the edge distribution is maintained.
This leaves behind a much larger in/out component and consequently a much larger
SCC, as shown in fig-2.17 (top). In the case of SF networks, the presence of large
1-node correlations results in a small decrease in component size even for asymmetric
correlations (fig-2.17 bottom).

2.5 Summary

In this chapter, we propose DPR mechanisms to tune 2-node degree-correlations and
clustering in directed networks and present the results of our study on ER and SF
networks. Using these mechanisms, we are able to explore the roles of certain structural
properties, independent of the topology of the network and also understand their role in
the overall organization of the network. In the absence of viable growth mechanisms,
these mechanisms provide alternate ways to introduce and tune network properties.
They also play an important role when there is a lack of understanding about the
underlying processes or mechanisms that give to these properties in the first place.
The ability to artificially tune the amount of clustering in a network, makes it easier
to study its role in information dissemination in computer or social networks and
rumor-spreading in online or offline communities. It also helps in designing and testing
efficient mitigation strategies to contain epidemics in contact networks. Being able to
control the amount of degree-correlations also plays an important role in this context.
It helps us to explore the role of correlations, on the robustness of networks to failure,
in a systematic and controlled manner.

When tuning either correlations or clustering, the link-density of the network does
not affect any qualitative change in the working of the mechanisms. The effect of
rewiring is in general lower for higher link densities. We also conclude that the topology
itself affects the qualitative behavior of the mechanisms. We find that some properties
cannot be tuned in isolation due to inherent structural relationships that are built into
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the definitions of the properties. This is especially relevant in the case of directed SF
networks. We also present a brief discussion on the running-times of the algorithms.
For both clustering and correlations, the algorithms have approximately quadratic
time-complexity.

In the case of degree-correlations, for sufficiently large number of rewirings steps
(>> N), the behavior of the limiting values of ρpq is studied as a function of the
parameters of the networks. In both ER and SF networks, we observe that the limiting
values of ρpq rapidly approach -1 for increasing values of parameters of the networks.

Finally, we find that the same mechanisms that were designed to tune correlations
and clustering in directed networks can also be used as tools to explore deep structural
relationships in the same networks. We find that rewiring for specific types of degree-
correlations theoretically result in change in specific types of clustering coefficients but
in practise, it only holds true for symmetric types of correlations but not for asymmetric
types. We propose mechanisms by which this could most likely be occurring and find
that they predict a decrease in connected component sizes, which we verify numerically.
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Chapter 3

Structural response to link deletion

3.1 Introduction

Having established the importance of studying complex networks and proposing DPR
mechanisms to tune and control clustering and degree-correlations in directed networks,
from this chapter onwards, we will focus on the process of link deletion and its effects
on various aspects of these networks. Specifically, in this chapter, we present our
studies related to the structural robustness to link deletion. It is one of the more
important aspects and measures the ability of the network to withstand and (or) adapt
to internal and (or) external changes. A string of recent global events like electricity
blackouts [123–127], stock-market crashes [128–131], large-scale email attacks [132]
and global internet failures have spiked the interest in network robustness and brought
attention to the structural integrity of such systems.

Loss of nodes and/or links can compromise the structural integrity of a network.
However, considerable efforts have already been dedicated to understanding the role of
node deletion [25–32, 64, 133–136]. These studies are also much more extensive in the
case of undirected networks. Therefore, only the problem of link deletion, especially in
the case of directed networks has remained relatively unexplored [63,137–143]. Even the
existing studies on the robustness of directed networks [33,34], are very limited in scope.
They deal with very specific examples or applications and the results do not extend to
the general case of directed networks. Although many real-world networks are directed
in nature, like biological networks, technological networks, transport networks etc.,
we do not find any proportionate effort to understand their properties and behaviour.
Due to the lack of literature concerning the robustness of standard models of directed
networks or common strategies for loss of nodes/edges and resulting response, we find
this area to be promising and worth exploring.

While link deletion and node deletion may initially seem very similar, this notion
changes when we realize that link deletion allows us to manipulate the network connec-
tivity in a much more controlled manner. Also, during link deletion, the nodes remain
completely functional with the possibility of reconnection. As a result, removal of links
can be used to improve and/or impede the efficiency of flow on a network. An interest-
ing example is the case of the power-grid. When transmission lines are disconnected,
either by natural or man-made causes, there is loss of transmission. This has a 2-fold
effect on the grid. Besides a decrease in overall transmission efficiency, the loss of a
single transmission line can result in overloading of neighbouring nodes and links, thus
leading to cascade of failures. In this case, isolating the unstable node from the rest
of the network by link deletion, can help prevent a breakdown salvage the remainder
of the network. Similar arguments can be made in other applications like computer
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networks (to control the spread of a virus), epidemic networks (prevent interactions to
control the spread of a disease) and road/rail networks (how will a damaged road/track
or a traffic jam effect the movement of traffic?). The study of neuro-degenerative dis-
orders like Alzheimer’s Disease (AD) is another important application of link deletion,
where the loss of connectivity between neurons leads to lowered efficiency of signal
transmission in the nervous system. Alternatively, the trimming of links can also be
used to streamline the flow in a network. During the process of breakdown, if the be-
haviour of the network is known, it helps us to pinpoint the structural and functional
vulnerabilities, which in turn helps to design robust systems that are resilient to such
specific types of losses. Precautionary measures, that come into play in the event of
breakdown, can also be deployed.

In this chapter, we present random and targeted strategies of link deletion and their
effects on directed networks. The studies are conducted on networks with random and
scale-free topologies, exhibiting other properties like correlations and clustering [144].
We start by selecting a set of network models and then outlining strategies for deletion,
based on local and global information. Initially, we work with a set of network models
rather than actual real networks. This is done to isolate the roles of specific properties
to specific strategies of deletion. This is followed by a discussion of the results of
link deletion in the selected networks models and the role of clustering and degree-
correlations. Finally, the responses of three real-world networks to the various types of
deletion are studied and compared with the results on network models.

3.2 Network models

Despite the wide range of applications that can be modelled by a network based ap-
proach, many of the resulting networks tend to exhibit some predominantly common
characteristics. As was mentioned in chapter-1, a common occurrence among many
real-world networks is the heavy-tailed degree distribution and the resulting scale-free
behaviour, that is well-captured by the power-law distribution. The property of clus-
tering, is also observed in many of these networks. Some classes of networks like animal
brain networks and social networks, including facebook, twitter, quora etc., show very
high values of clustering. In other biological networks like protein interaction networks,
gene regulatory networks, metabolic networks and also most technological networks,
the clustering is quite negligible. Degree-correlations, based on both enumerative and
scalar properties, are also observed in many networks and are an important classifi-
cation factor. Most prominently, large positive correlations (assortativity) have been
observed in social networks with respect to many factors like age, sex, hobbies etc.
On the other hand, networks like the World Wide Web (WWW) and the internet
show negative correlations (dissortativity). Some networks also exhibit other higher
order properties like long-range correlation, occurrence of communities, hierarchical
community structure etc.

The process of modelling and studying the response of a network external pertur-
bation becomes a challenging task, due to the wide range of network properties. The
complex nature of network organization and the co-occurrence of multiple properties
means that a systematic and comprehensive analysis of networks requires us to isolate
the role of individual properties. This can also provide insight into the relationship
between various network properties. In order to carry out such an analysis, we generate
ensembles of networks that exhibit only select properties while others become statisti-
cally negligible. These ensembles are generated using existing network models and the
desired network properties are introduced by way of degree preserving rewiring mech-
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anisms. Specifically, we focus the roles of 2-node degree-correlations and clustering. A
brief description of the relevant network models is provided below.

3.2.1 Directed Erdös-Rényi (ER) network

The first network of interest is the directed ER model [50], that was earlier discussed
in section-1.3.1. In contrast to what was earlier presented, in this case M directed
edges are placed uniformly randomly between N nodes. The in and out degrees have
a poisson distribution, with fixed average degree, negligible clustering and correlations
and the average path-length scales as the logarithm of N . This model is very simplistic
and exhibits no intrinsic structural biases. In the current study, we generate ensembles
of ER networks of size N = 2500 and average degree equal to 5 and subject them to
multiple strategies of link-deletion.

3.2.2 Directed scale-free (SF) networks

Despite its historical importance, the ER model has some important shortcomings,
most notably in the degree distribution. Unlike the poisson distribution observed in
ER networks, most real world networks exhibit a power-law degree distribution. To
capture the role of this power-law distribution, on the robustness to loss of links, we
employ the model proposed by Bollobás et. al. in [93]. A detailed discussion of
this model is presented in section-2.2.2. The model uses a growth mechanism, along
with preferential attachment, to generate directed scale-free networks. In the infinite
size limit, the degree-correlations and clustering become negligible, and this allows us
to study the effects of scale-free nature in isolation. An ensemble of networks, with
N = 2500, ∼ 9000 links and exponents equal to 2.5, are used in this study.

3.2.3 Degree-correlated ER and SF networks

An important property observed in many real world networks is that of 2-node degree
correlations. In some categories of networks, like social networks, the correlations are
positive and in others, like technological and computer networks, they are negative. To
investigate their contribution, to the resilience of networks to link deletion, we generate
neutral ER and SF networks and then introduce degree-correlations into them, using
the degree preserving rewiring mechanisms presented in section-2.3.1. Neutral ER and
SF networks are generated using ER model and Bollobás model respectively. The
directed nature of links gives rise to four different types of 2-node degree correlations,
namely In − In, In − Out, Out − In and Out − Out. In the present study, both
ER and SF networks are generated with N = 2500 and are tuned for all four types
of correlations an dto the same extent (ρpq ≈ ±0.4). Spearman’s rank correlation, as
defined in eqn-2.7, is used to calculate the value of correlation.

3.2.4 Clustered ER and SF networks

Another important property, that is not captured in the ER model or SF model [93], but
is observed in many real networks (social networks in particular), is clustering. The
ability of a network to organize into well-knit neighbourhoods, it is mathematically
defined as shown in eqn-(2.1 - 2.4).

We first use the Watts-Strogatz (WS) model [1], adapted to the case of directed
networks, to explore the role of clustering in the absence of scale-free behaviour. The
initial network is 1-D lattice of size N = 1000 nodes where every node is connected
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to three immediate neighbours on each side via in and out links. We rewire each link
with a rewiring probability pr = 0.1, so that the resulting network has a clustering
coefficient ∼ 0.4 and the degree distributions move closer to the poisson distribution.
These networks are then subjected to various strategies of deletion and the results
are analyzed. For the case of SF networks with clustering, we generate the initial
network using [93], and then increase the clustering using degree preserving rewiring
mechanisms introduced in section-2.2.1.

3.2.5 Real-world networks

Until this point, we have only discussed standard models that generate networks with
some desired properties. But the resulting networks are not always accurate represen-
tations of real networks. However, investigation of these model networks allows us to
study the specific roles of various network properties on the robustness to loss of links.
This can then help us to identify and analyze important results in real networks, where
one or many properties can coexist. To this end, we now introduce three real networks,
on which we study the problem of link deletion. These data-sets have been chosen to
highlight the role of aforementioned properties like SF nature, degree-correlations and
clustering. Below, we provide a brief description of each data-set.

Austin Road Network : The first data-set is an example of road transport net-
work, and represents the flow of traffic between road intersections in the city of Austin,
Texas. Nodes represent the intersection of two or more roads and the flow of traf-
fic between such nodes constitutes the links. Although the original data-set, sourced
from [145], contains detailed metadata, we concern ourselves with only the edge-list of
the network. With 7388 intersections and 18596 connections, the degree distribution
of this network is quite homogeneous and close to a poisson distribution. As expected
of any city transport network, it is highly assortative with respect to all four types
of degree correlations but shows negligible clustering. The connected components also
span almost the entire network. As a transport network, it lends itself as an extremely
relevant system for the study of link deletion. The process of link deletion can be
used to model many problems like shutting down of certain roads due to emergencies,
unavailability of roads due to traffic jams, closure for maintenance purposes etc. Since
this network dominantly exhibits only assortative degree-correlations and no other ma-
jor attributes, we can expect to study the singular effect of positive degree-correlations
on link deletion.

Protein Interaction Network : This data-set comprises a network of interacting
human proteins and was put together by U. Stelzl et al. [146,147]. This was done in an
effort to improve the understanding of the organization of the human proteome. The
network is constructed using 1706 proteins (nodes) undergoing 6171 unique interac-
tions (links) and the data was obtained by high-throughput Y2H (Yeast Two-Hybrid)
screening. The network has very high 1-node correlation and both the in and out de-
gree distributions follow power-laws. The clustering in the network is negligible and the
strongly connected component includes 1493 nodes. All four types of 2-node degree-
correlations, in this network, are strongly negative. Hence, this network is a good
representative of a dissortative SF network and is perfectly suited for us to explore the
effects of link deletion on such a network. The process of link deletion can be used to
model the problem of failed interactions between proteins, which could happen due to
various reasons like random failure, structural mismatch, prohibitive media etc.. We
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Table 3.1: Summary of the network models and real networks used in the study.

Network Nodes Links WCC SCC AIPL Assortativity Clustering

Erdös Rényi (ER) 2500 12500 2500 2465 0.20 - -
Scale-Free (SF) 2500 8750 2500 975 0.12 - -
Assortative ER 2500 12500 2500 2462 0.20 0.30 ± 0.001 -
Assortative SF 2500 8750 2500 970 0.12 0.35 ± 0.002 -
Dissortative ER 2500 12500 2500 2466 0.20 -0.30 ± 0.001 -
Dissortative SF 2500 8650 2500 1080 0.14 -0.40 ± 0.001 -
Watts-Strogatz 1000 6000 1000 1000 0.18 - 0.45 ± 0.002
Clustered SF 1000 4000 1000 500 0.17 - 0.23 ± 0.016
Austin Road 7388 18956 7388 7381 0.02 0.23 ± 0.012 0.009 ± 0.0009

Protein Interactions 1706 6171 1615 1492 0.19 -0.13 ± 0.008 0.005 ± 0.0005
Airport 3425 37594 3397 3354 0.25 0.047 ± 0.0005 0.45 ± 0.018

study the resilience of this protein interaction network and try to present biological
interpretation wherever relevant.

Airport Network : Using data obtained from the openflights.org dataset [148], the
network represents the patterns of flight connectivity between various airports across
the world. The airports represent nodes in the network and any two airports are said
to be connected by a link if there is atleast one flight connecting the source to the
destination airport. The constructed network has 3425 airports that are connected
by 37594 flights. Although the original network has multi-edges, because of multiple
flights connecting the same two airports, for the purpose of this study, we approximate
it to a binary, simple graph. Since there is almost always to and fro connectivity be-
tween airports, the network has a very high 1-node correlations. The largest strongly
connected component in the network spans 3354 airports. The amount of 2-node
degree-correlations is negligible but the network is strongly clustered with respect to
all four types of triangles. Therefore, this network lends itself as a good example of a
scale-free clustered network. By studying the problem of link deletion on this network,
we can model the effects of specific flight cancellations, happening on select important
routes, and study the effect on dynamics of passenger traffic and the extent of loss of
connectivity.

In Table - 3.1, we present a list of models and real networks that are used in this
study and the relevant properties for each network are also summarized. For each
network, we calculate the average value of all types of degree-correlations and present
a single value under the column for assortativity. Similarly, the values given in the
column for clustering are averages of MCCs of all types of closed triplets.

3.3 Strategies for link deletion

When designing a deletion strategy, the list of possibilities is quite open-ended. It is
only limited by the actual type/amount of information available to carry out a partic-
ular type of attack and the purpose of the deletion itself. We choose strategies that
independently utilize both local and global information about the network. Whenever
we implement a particular strategy, it is assumed that all the necessary information is
available. This is not always a very realistic assumption. For example, in many cases,
knowledge of the network is limited/incomplete and we cannot accurately calculate
the node/edge properties. This could happen due to many reasons including very large
sizes or faulty data acquisition methods. Either way, strategies may need to be imple-
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Figure 3.1: We depict the early stages of the link deletion using a schematic representation of the
process (Left to Right). Top - During random deletion, every link is equally important and they all
have the same fixed weight and so we do not specify any particular value. At any given step, each link
is equally likely to be deleted. Bottom - For the case of targeted deletion, in this specific example, we
provide the EBC values. In general, however, it could be any property of the edges. In any instance
of deletion, the link with the highest weight (EBC) is deleted. If there is more than one edge with
the highest value, then one of the edges is selected at random for deletion. Also, after every instance
of deletion, the edge-weights are recalculated before the process is repeated.

mented with incomplete information. Some strategies may also involve the calculation
of computationally intensive metrics. Centrality based strategies are an immediate
example. The implementation of such strategies is extremely time-consuming and not
viable for very large networks.

In our study, we consider both random and targeted deletion of links. When imple-
menting targeted deletion, properties like Edge-Degree (local-information) and Edge
Betweenness Centrality (global-information) are used to determine weights for the links.
We also consider deletion based on ascending and descending orders of weights sepa-
rately. Next, we discuss each strategy in greater detail. This is followed by an analysis
of the relationship between Edge-Degree and Edge Betweenness Centrality and its im-
portance.

3.3.1 Random Deletion (S1)

When it comes to real-world networks, most often, links are lost in an unforeseen and
random manner. For example in the case of the power-grid, transmission could be lost
due to inclement weather, or in the case of peer-to-peer networks, wear and tear of
cables leads to loss of communication between routers. Even in the brain, the decay
of synapses is very unpredictable and leads to neuro-degenerative disorders. In the
case airport networks, flights may be cancelled due to unforeseen circumstances and it
affects the performance of airports across the world. The unpredictable nature of this
kind of loss of connectivity is best captured by random deletion of links. In this study,
at every step, we choose a random link and delete it from the network. The resulting
structural changes are studied as a function of loss of links. Although in the strict sense
of the term, random deletion does not constitute an attack strategy, it still acts as a
good null-model for other attack strategies. In fact, it is more correctly interpreted as
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a failure of links. We refer to this type of random deletion of links as strategy S1.

3.3.2 EBC based deletion (S2,S3)

The betweenness centrality for links is a direct extension of the corresponding definition
for nodes (eqn - 1.18). If neij is the number of shortest paths between nodes i and j,
that pass through link e and nij is the total number of shortest paths between i and j.
Then, the EBC of e is defined as the ratio of neij to nij, summed over all possible pairs
of nodes in the network. But this results in a single real number that has limited use
when comparing different networks with varying sizes. Therefore, we normalize this
number by the total number of vertex pairs, and the resulting value of EBC is in the
range from 0 to 1.

EBCe =
1

N(N − 1)

∑
i,j

neij
nij

(3.1)

When using strategy S2, the links are arranged in decreasing order of EBC value.
At every step of deletion, the link with highest value is removed. In any network,
the links with the highest EBC values are the ones that play the role of ′bridges′ and
connect groups of nodes that would otherwise be disconnected. Since they connect large
groups of nodes, the loss of such links results in groups of nodes getting disconnected
and loss of multiple shortest paths in a single step of deletion. In undirected networks,
betweenness centrality based deletion has been explored earlier and has been shown
to be very effective in breaking down a network. In strategy S3, the link with the
lowest value of EBC is deleted. These are typically the links that connect already well-
connected nodes or groups of nodes. Deleting these links would, at worst, result in
longer path-lengths and lower efficiency but will not immediately create disconnected
nodes or groups of nodes. After every deletion, we allow the network to reorganize and
recalculate the values of EBC. Measures of robustness, degree-correlations, clustering
coefficients are also evaluated at regularly timed intervals.

3.3.3 ED based deletion (S4,S5)

While the idea of degree of a node comes quite intuitively, the idea of a degree of an
edge is not equally intuitive. In the context of undirected networks, the edge-degree of
an edge is defined as the product of degrees of nodes on either ends of the edge. This
was first introduced in [143]. In the present study, we adapt this definition to the case
of directed networks. The edge-degree of a directed edge is defined as the product of
in-degree and out-degree of the source-node and target-node respectively. Later, in this
section, we justify the choice of this definition. If kini and koutj are in and out degrees
of source-node i and target-node j, respectively, then ED is given by eqn-3.2.

EDe = kini k
out
j (3.2)

The primary motivation behind defining an edge-degree is to assign a property to
a link such that it can be evaluated using only local information concerning the link.
Therefore, with eqn-3.2 as the working definition of ED, we assign weights to the links
and order them in increasing/decreasing order of their weights.

In strategy S4, the links are ordered in descending order of ED values and the link
with the highest value of ED is deleted. The network is then allowed to reorganize and
the values of ED and other network properties are recalculated. Based on the definition
of ED, during S4 type of deletion, links connecting in-hubs and out-hubs are deleted
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first. As a result, we can expect the network to split into multiple strongly connected
components. Meanwhile, S5 targets links that connect low degree nodes and should
therefore result in chipping away of the network structure.

3.3.4 Relationship between EBC and ED

As mentioned earlier in this section, there are two important requirements to designing
an effective deletion strategy, namely the type and amount of information available
about the network. Besides random deletion (S1), all other strategies utilize some
knowledge about the network and accordingly assign weights to the edges. However,
the difference between ED based strategies (S4,S5) and EBC based strategies (S2,S3)
lies in the type of information being used. Strategies S2 and S3 use global information
(betweenness centrality) while S4 and S5 use only local information (node-degree). We
attempt to extend the traditional definition of ED to the case of directed networks,
such that we can also establish a relationship between ED and EBC. By identifying this
connection and also comparing the results of S2 and S4 types of deletion, we investigate
the possibility of finding an ED based strategy that can replicate the results of an EBC
based strategy.

ktoti ktotj = (kini + kouti )(kinj + koutj )

= kini k
in
j + kini k

out
j + kouti kinj + kouti koutj

(3.3)

Figure 3.2: Scatter plots of EBC vs ED for (a)-ER (b)-Assortative ER (c)-Dissortative ER (d)-Directed
WS. The values of the correlation coefficient are inset in the respective subfigures.
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Figure 3.3: Scatter plots of EBC vs ED for (e)-SF (f)-Assortative SF (g)-Dissortative SF and (h)-
Clustered SF networks. The values of the correlation coefficient are inset in the respective subfigures.

Given a link e, we start by defining ED as the product of total-degrees of the source-
node i and target-node j. A study of the scatter plots of EBC vs ED does not yield
any interesting relationship. We then decompose the product of total-degrees into sum
of products of in and out degrees of i and j (eqn-3.3). We then study scatter plots of
EBC versus each of the terms in eqn-3.3. While there is no discernible dependence for
three terms, one of the terms, kini .k

out
j , shows a strong positive correlation with EBC,

especially for the case of links that connect hubs. The Pearson correlation coefficient
of the two quantities is calculated as a measure of this dependence.

In fig-3.2 and fig-3.3, the scatter plots of EBC vs kini .k
out
j for the various networks

discussed in the previous section are shown. Fig-3.2 (a) and Fig-3.3 (e) show the
plots for ER and SF networks respectively. We see that there is a strong positive
correlation in both cases but it is slightly higher in ER networks. In SF networks, we
see that the links connecting nodes of low degrees show a wide range of EBC values
and are spread over three orders of magnitude. In fig-3.2 (b,c), we look at the role
of positive and negative degree correlations in ER networks on the EBC vs kini .k

out
j

scatter plots. The same for SF networks is shown in Fig-3.3 (f,g). We find that, in
both ER and SF networks, assortative rewiring leads to lower values of correlation
coefficient, particularly for links connecting nodes of low degrees, while dissortative
rewiring does not have any significant effect. From Fig-3.3 (h), we see that rewiring
for clustering in SF networks lowers the value of ρ to 0.5. In the directed WS model,
the dependence is further skewed but still quite positive as seen from the value of
ρ = 0.6, and clearly visible for links connecting nodes with relatively high degrees.

45



3.4. MEASURES

This dependence between EBC and kini .k
out
j , justifies the definition of ED given in eqn-

3.2. This correlation between EBC and ED of a link is very important because it is
much easier to deal with local properties, whether it is data collection or computational
ease. Having this relationship gives us the freedom to design strategies based on local
properties that are easy to execute and are also as effective as the EBC based strategies.

3.4 Measures

The process of link deletion brings about various changes in the network structure.
In order to quantify these changes and understand the behaviour of the network, it is
important that we choose a set of relevant measures that can capture the changes and
also provide meaningful interpretations. To this end, we work with a set of reliable
metrics, which clearly map the changes, their relationships and also bring out the
physical implications.

3.4.1 Largest Connected Components

To understand the effects of link deletion on the macroscopic organization of the net-
work, we study the fractional sizes of largest weakly connected component and largest
strongly connected component. These metrics were discussed earlier in sec-1.2.5 but
we quickly recap the definitions in directed networks. In directed networks, the set
of all nodes, for which there exists a directed path between all unique pairs of nodes,
is defined as the Strongly Connected Component (SCC). And the Weakly Connected
Component (WCC) is defined as the set of all nodes for which there exists atleast an
undirected path between all pairs of nodes in the set. The set of all nodes that can
be reached by following the out-links from all nodes in the SCC is called the Out-
Component (OUT) of the network. Similarly, the In-Component (IN) is obtained by
following the in-links from all nodes in the SCC. The set of all nodes, that is the union
of SCC, IN and OUT components is defined as the Weakly Connected Component
(WCC) of the network. These different types of connected components come together
to give rise to a macroscopic organization referred to as the Bow-Tie structure [54,55].
This is a subclass in a broader set of core-periphery structures [55] where the core
consists of high-degree nodes (hubs) and is very dense and strongly connected while
the periphery is comprised mostly of low-degree nodes with sparse connectivity among
themselves.

We will see that this core-periphery organization plays an important role in how
various types of link-deletion play out in different types of networks. The analysis
of the behaviour of these connected components leads to an understanding of the
macroscopic organization in networks and is also at the heart of percolation studies
on networks. In this work, we restrict our study to the fractional sizes of the largest
weakly connected component (W ) and the largest strongly connected component (S).
We do not focus on the sizes of the associated IN and OUT components since they
behave in the same manner as S.

3.4.2 Efficiency

While the behaviour of connected components helps us to study the structural changes
and also the extent of flow/spread in the network, it does not shed any light on the
rate of a spreading process or information flow in the network. In order to understand
the rate, we calculate the Average Inverse Path Length (AIPL), also referred to as
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Efficiency. It is defined as the average of the inverse geodesic lengths between all pairs
of nodes in the network [149] (eqn-1.14).

Efficiency =
1

N

N∑
i=1

1

N − 1

N−1∑
j=1,j 6=i

1

dij
(3.4)

From the previous three sections, it is clear that we are dealing with substantial set
of results involving five different strategies of deletion on eleven types of networks. In
order to compare results on the various networks, we normalize all values of the metrics
by their initial values, so that they are all bound between 0 and 1. The normalized
measures are represented byW/W0, S/S0 and E/E0, whereW0, S0 and E0 are the initial
values of largest weakly connected component, largest strongly connected component
and efficiency respectively.

3.5 Results

In this section, we present the results of link deletion on the various network models
and real-world networks discussed in sec-3.2. The networks are subject to various types
of random and targeted deletion strategies and their performance is analyzed using the
metrics described in sec-3.4. For each network model, subject to each type of deletion
strategy, the network metrics are calculated after each event of deletion. The final
results are averaged over an ensemble of 500 networks. We study the plots of each of
the measures as a function of fraction of total links lost (1 −M/M0). Starting with
neutral ER and SF networks, we go on to study the role of assortative and dissortative
degree-correlations in each topology. This is followed by a study of effect of clustering.
Finally, we take up three real world networks and study their performance under various
kinds of deletion and analyze the results.

3.5.1 Link deletion in ER networks

For all strategies of deletion, the fractional size of the weakly connected component
W/W0 in ER networks, shows strong robustness (fig-3.4 (a - c)). Atleast 60% of the
links are lost beforeW/W0 shows any substantial decrease. However, different strategies
have different effects on the behaviour of the largest strongly connected component (S).
S/S0 is initially robust to random deletion of links (S1), and breaks down rapidly after
more than half the initial number of links are removed and it ceases to exist for (1-
M/M0) ≥ 0.8. Also, (1-M/M0) = 0.8 matches the known critical value of 1/N , for
structural phase-transition in random networks. The network is extremely vulnerable
to S2 and S4 types of deletion and we observe instant deterioration of the strongly
connected component. During S2 type of deletion, loss of less than ∼ 20% of the most
central links leads to complete breakdown of the SCC while it is only slightly better,
at ∼ 30%, in the case of S4 type of deletion. The behaviour of efficiency (E/E0) is
qualitatively similar to that of SCC, for all strategies of deletion. E/E0 and S/S0 show
almost identical behaviour, for S2 and S4 strategies, except at the point of transition
to complete breakdown.

In strategies S3 and S5, we see that the SCC remains quite robust until ∼ 40%
of the links are lost while the efficiency starts to decrease immediately. This implies
that the nodes are initially strongly connected via small-paths but with the initial
loss of links, the paths get longer and less efficient. When, approximately half of the
links are removed, nodes begin to get disconnected from the network and connecting
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paths do not exist anymore, to or from such nodes. This results in an accelerated
decrease in efficiency around M/M0 ≈ 0.5. This is further supported by the behavior
of W/W0, which also begins to depart from 1 at approximately the same value of
1 −M/M0, suggesting the appearance of disconnected nodes. We also note that the
SCC undergoes accelerated breakdown, during S2 and S4 types of deletion, while the
decrease in efficiency is quite constant.

Figure 3.4: Performance of WCC (W/W0), SCC (S/S0) and Efficiency (E/E0) as function of the
fraction of removed links (1 - M/M0), during various strategies of link deletion, in directed ER
networks (a - c) and SF networks (d - f). S1 - red circles, S2 - blue up-triangles, S3 - green down-
triangles, S4 - brown squares and S5 - black diamonds.

3.5.2 Link deletion in SF networks

The WCC is quite robust to all strategies of link deletion in SF networks (fig-3.4 (d -
f)). During S1 type of deletion, the decrease in WCC is initially slow and continuous
but becomes more rapid during the later stages of deletion. It is more resilient to
S2 and S4 strategies as compared to random deletion. The reason for this is the
well-emphasized core-periphery structure that is observed in SF networks. Since most
of the hubs are contained within the core, the links in the core tend to have very
high values of ED and these are targeted during S4 type of deletion. Due to the
large number of redundant links in the core, the network stays connected for a longer
period (1−M/M0 ∼ 0.4) before it ultimately begins to break down into disconnected
components. Removal based on strategy S5, leads to considerable decrease in W/W0

from the very beginning. This is because S5 targets the links in the sparsely connected
periphery,creating isolated nodes, while the densely connected core remains robust. As
the core-periphery structure is more emphasized in SF networks, the response to S5 is
also clear-cut.

The effects of strategies S2 and S4, on the behaviour of SCC, are not very different
in ER and SF networks. With loss of just 10% and 30% of initial number of links,
S2 and S4 respectively lead to complete breakdown of the SCC. However, the effect
of random deletion is quite different. In this case, the SCC undergoes a continuous
decrease and does not exhibit any threshold behaviour. This is also consistent with
results from percolation studies on networks.

Unlike ER networks, the SCC shows strong initial robustness during S5 type of
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deletion. This leads back to the core-periphery structure where the low-degree nodes
lie in the periphery and the hubs constitute the strongly connected core. Because of
the structural bias present in the generated SF networks, where in and out degrees of
a node are highly correlated, the links connecting nodes in the periphery will have the
smallest values of ED. Therefore, when these links are removed, the network structure
gets chipped away at the periphery, creating isolated nodes, while the core remains
quite intact. The value of 1 −M/M0 ≈ 0.4, at which the SCC begins to fall apart, is
also markedly visible in the behavior of WCC as the point at which the rate of decrease
abruptly slows down.

The change in efficiency follows along the lines of WCC. For S2 and S4 strategies,
there is rapid initial decrease in efficiency until about 40% of the initial number of links
are lost. Due to the large number of redundant links in the core, during the initial
stages of deletion, the network remains well-connected while progressively becoming
less efficient. This is observed until the first isolated nodes begin to appear, which
also corresponds to the sharp decrease in WCC. During random deletion, we observe
a monotonic decrease with a constant rate. During S5, we observe a rapid initial
decrease which slows down around 1 − M/M0 ≈ 0.4. This is the same point near
which the behavior of SCC and WCC also undergoes a qualitative change. Following
from our earlier explanation (for SCC), the nodes with low-degrees get isolated in the
early stages, resulting in decrease in the overall number of shortest paths, which has a
greater effect on efficiency compared to increased path lengths. The transition point,
where the SCC and WCC also begins to breakdown, indicates the beginning of the
decomposition of the core. During this phase, well-connected nodes become not-so-
well-connected (rather than disconnected) and therefore the rate of change of E/E0

decreases.

3.5.3 Role of assortative rewiring in ER and SF networks

Figure 3.5: Performance of WCC (W/W0), SCC (S/S0) and Efficiency (E/E0) as function of the
fraction of removed links (1 - M/M0), during various strategies of link deletion, in directed ER
networks (a - c) and SF networks (d - f) with assortative degree-correlations. S1 - red circles, S2 -
blue up-triangles, S3 - green down-triangles, S4 - brown squares and S5 - black diamonds.

Next, we study the response of networks to link deletion in the presence of 2-node
degree correlations. We first consider ER and SF networks with assortative correla-
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tions. The rewiring process reorganizes the network so that links connect nodes of
similar degrees, while preserving the degree distributions. The resulting configuration,
where low degree nodes connect to other nodes with low-degrees and hubs connect to
other hubs, effectively enhances the core-periphery structure of the network. The core
and periphery, each become well-defined, while the connections between the two are
few. The effects of strategies S4 and S5 are strongly affected as a result of hetero-
geneity introduced into the distribution of ED values. In ER networks, the absence
of heterogeneity in the degree distributions ensures that there is minimal effect on the
large-scale organization of the network due to rewiring. As a result, the effects of link
deletion in assortative ER networks are similar to those of neutral ER networks (fig-3.5
(a - c)). The rewiring process further enhances the already prominent core-periphery
structure found in SF networks and the ED based strategies elicit a strong response
in accordance with this. S4 and S5 affect a qualitative change in the responses of
SCC and WCC, while the effects of random and centrality based strategies do not vary
considerably from that of neutral SF networks.

The WCC shows some initial robustness to S4 type of deletion but as much as the
neutral SF networks. This is due to the high concentration of links in the core. As
more links with high values of ED are lost, links with intermediate values of ED (that
connect the core and periphery) become more relevant. The rapid collapse seen in the
intermediate stages of deletion can be attributed to the loss of these links. When the
deletion process reaches the low ED edges in the periphery, there are fewer links and
the breakdown is more controlled. During the early stages of link removal, the WCC
and SCC show comparatively less resilience to S5 and in the later stages, the rate of
change slows down. In neutral SF networks, S/S0 remains equal to 1 until about 40%
of the links are lost while in the assortative SF network, the SCC begins to breakdown
after only 20% of the links are lost. In the later stages, when the process of deletion
reaches the strongly connected core, the rate of breakdown decreases. This is seen
in the behavior of W/W0, S/S0 and E/E0 after about half the links have been lost.
This is because, in the early stages, S5 targets and removes the links in the periphery,
leading to isolation of those nodes. But the process of breakdown decelerates, in the
later stages, when the attack reaches the densely connected core.

3.5.4 Role of dissortative rewiring in ER and SF networks

When dissortative correlations are introduced into the networks, links get reorganized
to connect nodes of dissimilar degrees. With a greater fraction of links now connecting
the core and periphery, the distinction between the two is blurred. This results in a
decrease in density of links in the core. As a result, the distribution of ED becomes more
homogeneous and is dominated by intermediate values. Once again, in ER networks,
the rewiring process does not affect the response to loss of links considerably.

In scale-free networks (fig-3.6 (d - f)), random deletion and centrality based deletion
evoke a response similar to that of neutral SF networks. However, the ED based
strategies bring out the effects of reduced concentration of links in the core. Both,
WCC and SCC show reduced resilience when links are removed in decreasing order of
ED values (S4). When the links are deleted in increasing order of ED values (S5), the
response is exactly the opposite of that seen in assortative SF networks. W/W0 shows
significant robustness initially and around 1−M/M0 ≈ 0.6, it begins to deteriorate more
rapidly. The SCC, on the other hand, begins to breakdown very early and maintains
a steady rate to the very end. The behavior of E/E0 closely follows that of S/S0.
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Figure 3.6: Performance of WCC (W/W0), SCC (S/S0) and Efficiency (E/E0) as function of the
fraction of removed links (1 - M/M0), during various strategies of link deletion, in directed ER
networks (a - c) and SF networks (d - f) with dissortative degree-correlations. S1 - red circles, S2 -
blue up-triangles, S3 - green down-triangles, S4 - brown squares and S5 - black diamonds.

3.5.5 Role of clustering in ER and SF networks

The role of clustering, on the resilience of random networks to loss of links, is studied
using the directed WS model (fig-3.7 (a - c)). The network is generated using a 3-
regular lattice, in which the links are randomly rewired with a probability pr = 0.1.
When we consider an average over an ensemble of such networks, about 10% of the
links in each network are rewired. This implies that the network could retain some
lattice-like characteristics while simultaneously exhibiting small-world nature. As the
probability of rewiring increases, the network becomes more random and the high values
of EBC (characteristic of lattice-structures) drop by an order of magnitude. Since we
rewire only 10% of the links, the distribution of EBC values retains a substantially
large number of links with very high EBC values. As a result, the rewired networks
remain prone to EBC based deletion strategies. Consequently, the SCC becomes highly
vulnerable and we observe a 90% breakdown with the loss of just 10% of the highly
central links. The WCC also begins to deteriorate after losing just 20% of the links.
Right from the beginning, there are links with low values of EBC, due to which the
there is no pronounced effect of S3 type of deletion.

When it comes to ED based strategies, we observe an increased resilience to deletion.
Due to the lattice-like structure, where there is a large redundancy in paths with
comparable path-lengths, both SCC and WCC show comparably higher robustness to
loss of links with high ED values. However, the response to strategy S4 is less effective
when compared to ER networks.

In SF networks, the effect of rewiring for clustering is clearly seen in the change in
response to S5 type of deletion (fig-3.7 (d - f)). The WCC becomes significantly more
robust while the SCC becomes less so. The behavior of E/E0 is consistent with that
of the SCC. However, during random deletion, the results are consistent with those of
neutral SF networks. After rewiring, the network is still vulnerable to S2 and S4 types
of deletion. In strategy S2, the SCC breaks down completely with the removal of just
20% of the links and the same happens during strategy S4 but with the loss of 30% of
the links.
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Figure 3.7: Performance of WCC (W/W0), SCC (S/S0) and Efficiency (E/E0) as function of the
fraction of removed links (1 - M/M0), during various strategies of link deletion, in directed and
clustered ER networks (a - c) and SF networks (d - f). S1 - red circles, S2 - blue up-triangles, S3 -
green down-triangles, S4 - brown squares and S5 - black diamonds.

3.5.6 Analysis of real-world networks

So far, we have dealt with the results on network models. Now, we shift our attention
to the results of random and targeted link deletion on three real world networks. The
first network under consideration is based on traffic flow between road intersections in
the city of Austin, TX (fig-3.8 (a - c)). The degree distribution is close to a poisson
distribution and the only dominant property is the assortative nature of links. As
a transport network, we expect it to be fully reciprocal, but due to the presence of
one-way lanes and closed down roads, that assumption is not always true. Another
important property is the presence of 1-node correlations as a result of important
intersections having large to and fro connectivity.

It is immediately obvious that both the strongly and weakly connected components
as well as the efficiency are extremely vulnerable to all strategies of link deletion. The
SCC is extremely vulnerable to S2 and completely breaks down after losing only 10%
of the links. However, it is more robust to S1 and S4 types of deletion. The behaviour
of WCC is not very different that of SCC. It is very vulnerable to EBC based deletion
strategies, suggesting that early losses could very well lead to isolated road intersections.
The connected components are particularly susceptible to S5 indicating that the roads
joining less popular intersections play a pivotal role in the overall connectivity of the
city.

An analysis of this nature helps us to tackle any issues arising from the closure
of roads and/or rerouting of traffic. Shutting down of select roads for maintenance
reasons is an important example in this regard. An analysis based on link deletion
studies helps us to identify roads for closure, such that the effect on overall connectivity
is minimal. It also helps to plan for rate of progress of maintenance. Alternatively, in a
scenario where certain roads become unavailable due to unexpected events like traffic
jams or accidents, we can make informed decisions for rerouting traffic based on an
understanding of the loss of further connectivity and traffic pile-ups.

Next, we look at the results of link deletion on the Protein Interaction Network.
This network is scale-free and dominantly dissortative. As expected, the results on this
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Figure 3.8: Performance of WCC (W/W0), SCC (S/S0) and Efficiency (E/E0) as function of the
fraction of removed links (1 - M/M0), during various strategies of link deletion, in the road-intersection
network (a - c), protein-protein interaction network (d - f) and the airport network (g - i). S1 - red
circles, S2 - blue up-triangles, S3 - green down-triangles, S4 - brown squares and S5 - black diamonds.

network closely resemble those obtained during deletion in dissortatively rewired SF
networks. (fig-3.8 (d - f)). During S1 type of deletion, the WCC disintegrates slowly
while the SCC and Efficiency have a steady continuous decline. The decentralized
organization in the network is brought out by the behaviour of WCC, which shows
considerable resistance to S2 type of deletion. However, the SCC is not similarly
resilient to S2 and undergoes an exponential breakdown. Its response to S3 is more
resilient compared to its response to S2 and it remains robust until ∼ 40% of the
links are lost. The WCC appears to be most vulnerable to S5 type of deletion, where
links connecting the nodes with lowest degrees are removed first, but moreresilient
to strategy S4. This suggests that the proteins undergoing fewer interactions play
an important role in sustaining the range of functional connectivity in the proteome.
While the SCC is initially robust to loss of links with high ED values, it undergoes
sudden and extensive disintegration soon after. Overall, in this network, the WCC
exhibits more robustness as compared to the more vulnerable behaviour of the SCC.
The changes in efficiency follow along the lines of SCC.

Finally, we come to the results of our study on the network of airports across the
world (fig-3.8 (g - i)). The network is scale-free for both the in and out degree dis-
tributions ans also shows substantial clustering. As another example of a transport
network, it shows substantial 1-node correlation and very low values of 2-node degree-
correlations. As this network is subject to various strategies of link deletion, we analyze
the results and attempt to validate them using results obtained earlier on corresponding
network models.

During random deletion of links, the WCC and SCC show immediate and continuous
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reduction in relative sizes. As seen in earlier results for directed scale-free networks, the
connected components show continuous deterioration and the threshold for breakdown
is absent. The WCC shows strong resilience to strategy S4 and W/W0 retains a value
very close to 1 until about 80% of the links are lost. The WCC undergoes an exponential
decrease, after showing little resilience to centrality based deletion of links. Strategy
S5 is much more effective on this network as compared to the clustered SF mode or
the WS model. The change in SCC is remarkably close to that of the WCC. The SCC
is initially robust to S4 type of deletion but not as much as the WCC. With the loss
of links with high ED, the SCC undergoes a sharp transition after loss of 50% of the
links. We observe an immediate exponential decline when links with high values of
betweenness centrality are lost.

The behaviour of efficiency, most conspicuously brings out the susceptibility of the
airport network to targeted removal of links. This observation implies that connectivity
is not fatally affected when flights between major cities are cancelled. Rather, it leads
to a pileup of passenger volume at airports while making travel less efficient and more
cumbersome. On the other hand, cancelling flights between smaller cities, for any
reason, presents a strong risk of isolating them from the overall network. In this
network, the links connecting the hubs to the smaller airports play the most central
role. There is immediate and extensive damage, to both the extent and efficiency of
connectivity, when such links are lost.

3.6 Summary

In this chapter, we present the results of a comprehensive study on the effects of link
deletion in directed networks. We consider ER and SF networks and subject to them
to various strategies of link deletion. In particular, we consider random deletion and
EBC and ED based strategies. We also study the roles of 2-node degree-correlations
and clustering, on the resilience to link deletion, in both ER and SF networks. These
properties are independently introduced into initially neutral networks by means of
degree preserving rewiring mechanisms.

As the process of deletion progresses, the changes occurring in the network are
analyzed by studying the behaviour of the fractional sizes of the strongly and weakly
connected components and the efficiency. Irrespective of the strategy of deletion, ER
networks consistently showed more robustness than SF networks. In ER networks,
assortative correlations do not make any difference while dissortative correlations lead
to a decrease in the robustness of the SCC and an increase in the case of WCC. However,
in SF networks, both types of correlations lead to an decrease in the resilience of the
connected components. Presence of clustering increases the vulnerability of both ER
and SF networks.

We find that the loss of highly central links has the most damaging effect on any
network topology while the removal of the least central links is the least effective.
The effects of random deletion are quite moderate when compared to ED and EBC
based strategies and are different for different topologies. The analyses of the responses
of real-world networks, chosen from the broad areas of transportation and biological
interactions, have implications on the definitions of strategies for deletion. They also
play an important role in the design of alternate measures to counter or repair the
damages of loss of connectivity in the networks.

The response of networks to EBC based strategies of deletion is approximately repro-
duced using only local information (node degrees) about the networks. A combination
of degrees of nodes on either ends of a directed edge, given as kini .k

out
j , is found to be
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a suitable choice for the definition of ED. For large values of ED and EBC, we observe
a strong positive correlation. This is further supported by the response that strate-
gies S2 and S4 evoke in the various network models. Therefore, ED based strategies
can be used as a computationally viable alternative to launch highly effective targeted
counterattacks on networks to contain unwanted spreading processes.

In this study, while the strategies for deletion are chosen quite arbitrarily, the net-
work models are chosen to represent a broad classification of real-world networks. The
results in this chapter are meant to provide a qualitative picture of the responses of
networks to link deletion and the roles of various network properties in an idealistic
scenario. Exact results for real-world networks require a narrow and focused effort and
may diverge considerably from those of network models.
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Chapter 4

Dynamical response to link deletion

4.1 Introduction

In the previous chapter, we have dealt with the effects of random and targeted link
deletion on the structural aspects of directed networks. In this chapter, we focus on
the dynamical response to link deletion. We investigate the effects of loss of links, and
the resulting structural responses, on a 1-to-1 transmission process occurring on the
network. While the process of 1-to-1 transmission is implemented as a model of ping-
generation and propagation, the mechanism can be generalized to study particular
kinds of flows in a network. This process is also significantly different from most
existing methods that are used to study spreading processes [150–154]. With suitable
modifications and interpretation, this model can be used to represent many important
applications. For example, the pings could be made to represent packets of data, on the
internet, that travel between routers or they could be representing pulses of current
flowing along well-defined transmission lines between input and output gates on a
digital circuit [155,156]. Another interesting example is the case of reaction networks,
where the pings represent chemicals/compounds, that transform from reactants to
products by following a sequence of pre-determined steps [157,158].

However, in this work, we focus our efforts on the study of traffic flow in transporta-
tion networks. In particular, we are interested in traffic flow on road networks [159–162].
In this example, the pings represent traffic (people/vehicles), travelling from origin to
destination locations. While there has been substantial work done on transportation
networks and their vulnerabilities and robust design, the vast majority of it takes the
approach of congestion-analysis caused by overloading of nodes [163–166]. We over-
look the problem of congestion and try to focus on the role of the underlying network
structure. The aim is to study the changes in the dynamics of the transmission process
as a response to the deletion of links. To the best of our knowledge, the proposed kind
of study has not been undertaken, especially using models of directed networks. We
find that it leads to a better understanding of the relationship between the structure
of the network and the dynamics occurring on it.

In this chapter, we start by introducing the two processes occurring on the network
and define the respective process parameters. Then, we present the results on some
standard network topologies and also discuss the effects of 2-node degree-correlations
in each case. To bring out the relationship between the two processes, we provide
qualitative arguments and supporting numerical results. We study, independently,
the roles of three different process parameters, in the context of a real-world road
network. Finally, we propose a scheme, based on weighted selection of nodes, to improve
transmission during link deletion.
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4.2 Co-occurring processes

Having introduced and motivated the aim of this work and its potential applications,
we now discuss each of the co-occurring processes in greater detail and also introduce
the terminology and definitions. We first detail the process of link deletion, followed by
the transmission process, so as to emphasize the unidirectional influence of the former
on the latter. A schematic depiction of the processes is given in fig-4.1.

4.2.1 Link deletion

In this section, we discuss the process of link deletion in greater detail. We start by
defining two parameters of the deletion process, namely the rate of deletion (vD) and
the probability of deletion (pD). The rate of deletion (vD) is defined as the number
of selected links that can be deleted at any time-step and pD is the probability with
which each of the vD selected links are deleted.

Therefore, at every time-step, vD number of links are chosen according to one of the
three strategies as discussed in the previous chapter. To briefly summarize, links are
deleted using one of three strategies: S1 - Random deletion, S2 - Edge Betweenness
Centrality (EBC) based deletion and S3 - Edge Degree (ED) based deletion. In strategy
S1, vD number of links are chosen uniformly randomly from the existing pool of links
and each of them is deleted with a probability pD. In strategy S2, all the existing
links are ordered in decreasing order of their EBC values and the most central links
are selected as vD and deleted with probability pD. In strategy S3, vD links with the
highest values of ED are selected and deleted with a probability pD.

At every time-step, after link deletion has occurred, the change in the networks
structure is quantified by calculating the size of the largest strongly connected com-
ponent (SCC) and the average path-length in the SCC. The size of the SCC gives an
estimate of the extent of connectivity in the network while the latter points to the
efficiency of connectivity. Further reasons for calculating the average path-length of
the SCC as opposed to that of the entire network are discussed in sec-4.4. It is also
worth noting that there is no unique way in which the deletion process depends on the
transmission process but rather only on the structural properties of the network.

4.2.2 1-to-1 transmission

Occurring simultaneously with link deletion is the process of 1-to-1 transmission on the
network. At every time-step t, a fixed number of requests/pings are generated with
randomly chosen start and stop nodes. This number is defined as the request − rate
r. The shortest (most efficient) path between the start and stop nodes is calculated at
t and assigned to the respective pings. If, for any ping, no valid path can be found,
it is terminated and characterized as a failed transmission. If multiple such paths
exist for a single ping, one of them is assigned at random. This pre-assignment of
specified paths to each ping differentiates this study from those based on random-
walk models. Once transmission starts, at every successive time-step, the pings can
traverse a maximum number of links, given by the transmission velocity (vT ), with a
transmission probability (pT ). The idea behind introducing a separate probability for
transmission is to effectively implement traversal of fractional edges.

During transmission, if the subsequent link in the currently assigned path is lost
due to link deletion, the ping is rerouted via a new shortest path calculated from the
current location of the ping to the stop-node. If no such valid path can be found,
the ping is terminated as a failed transmission. A ping is considered successful if it
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Figure 4.1: Schematic representation of the co-occurring deletion and transmission processes. At
T = 1, three pings (P1 - red, P2 - blue and P3 - green) are generated and the pre-assigned paths
from start to stop are highlighted in the corresponding colors. at T = 2, two links are deleted at
random and in the process, P2 gets rerouted via a new longer path. At T = 3, after two more links
are deleted, the path of P3 gets disrupted and no alternate path is available and therefore, it is a
failed transmission. At t = 4, P1 reaches its destination and is a successful transmission.

gets transmitted from the start-node to the stop-node, either by the originally assigned
path or via a rerouted path.

The time taken by a ping to travel from the start-node to the stop-node is defined as
the ping time and is calculated as the difference between the time it is generated and
the time it reaches the stop-node. For successful pings, the transmission efficiency is
calculated as the ratio of the predicted ping time to the actual ping time associated with
the path assigned during generation. This gives a measure of the extent of rerouting.

4.3 Results on standard network models

In this section, we present results on networks from standard models such as directed
Erdös-Rényi (ER) networks, directed scale-free (SF) networks and directed small-world
(SW) networks. The process starts with a network size N (= 1000) and average de-
gree equal to 4. At every time-step, links are deleted according to a given strategy.
Simultaneously, new pings are generated while existing pings traverse their respective
prescribed routes. This sequence of events continues until the number of links remain-
ing is equal to or less than half the number of nodes in the network. The effect of link
deletion on the transmission process is characterized in terms of the number of success-
ful pings and the normalized ping times. All results are averaged over 200 realizations.
The process parameters vD, pD, vT and pT are all set to 1 and the request rate r = 5.
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4.3.1 Role of topology and strategy

Figure 4.2: Top - Decrease in the average number of successful pings with time (or equivalently loss
of links) in ER networks (blue), SF networks (red) and SW networks (green). Bottom - The change
in behaviour of ping-times during loss of links in the three types of directed networks models. The
above quantities are studied for S1 - random deletion (a, d), S2 - EBC based deletion (b, e) and S3 -
ED based deletion (c, f).

We start by looking at the effects of topology (fig-4.2) and strategy of deletion (fig-
4.3) on the transmission process. During random deletion, in ER and SW networks,
the transmission process exhibits very similar initial behavior, in terms of the number
of successful pings. In both networks, there is a high volume of successful pings until
about the halfway point, beyond which transmission fails at an accelerated pace in the
SW network. As a result, complete failure of the transmission process, occurs earlier
in SW networks. This is also reflected in the behaviour of normalized ping-times,
which show an exponential increase, with the rate of increase consistently higher in
SW networks than in ER networks.

From our understanding of the link deletion process from the previous chapter, we
know that two types of changes take place in the network in parallel - (a) Among the
set of connected nodes, there is an increase in the path-lengths and (b) appearance
of disconnected nodes. Therefore, this increase in ping-times must be indicative of
the increasing path-lengths in the networks and implying that while both ER and SW
networks sustain a similar number of successful pings initially, the pings are traversing
longer paths in the SW network in order to be successful. We see that there is a quali-
tative change in behaviour of ping-times in the latter half of the deletion process. The
exponential increase in ping-times indicates the dominance of increasing path-lengths
while the region of exponential decrease marks the dominance of disconnected nodes.
Therefore, the occurrence of the peak coincides with the breakdown of the transmission
process. Meanwhile, in the SF network, there is relatively smaller number of success-
ful pings but the decrease remains consistently linear until complete breakdown. The
normalized ping-times also remain very close to 1, demonstrating the limited role of
increasing path-lengths and consequently the limited role of rerouting.

When links are deleted by strategy S2, transmission is affected most aggressively
in SW networks where successful transmissions decrease exponentially from the very
beginning. In comparison, transmission in ER and SF networks decreases linearly at the
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start but later becomes exponential although in SF networks there is a relatively smaller
number of successful pings even at the start. Similarly, the normalized ping-times also
show very little influence of increasing path-length and switch to exponential decrease
at very early stages in the deletion process implying an abundance of disconnected
nodes.

Figure 4.3: Top - Decrease in average number of successful pings/transmissions for various types of
link deletion (S1 (Blue) - Random deletion, S2 (Red) - EBC based deletion and S3 (Green) - ED
based deletion). Bottom - The change in behaviour of average ping-times during loss of links for
various types of deletion strategies. This is studied in ER networks (a, d), SF networks (b, e) and SW
networks (c, f).

During S3 type of deletion, the effect on the number of successful pings and the
normalized ping-times is very similar for all three network topologies. In the early
stage of deletion, there is a sustained number of successful pings which then undergoes a
rapid decrease at almost the same time in all topologies. Even in the case of ping-times,
almost equal increase in all the networks. This suggests that the network topology may
not play an important role on the effect of ED based deletion on 1-to-1 transmission
in the network.

4.3.2 Role of correlations

In this section, we study the effect of 2-node degree-correlations in directed ER and SF
networks. Neutral networks with desired topologies are first generated and correlations
are introduced into them by process of degree-preserving rewiring (DPR) mechanisms,
as proposed in chapter-2. The resulting networks are subject to various strategies of
link deletion and the results are presented in fig-4.4.

During random deletion in ER networks, dissortative rewiring does not affect any
substantial change in the average number of successful pings or the normalized ping-
times, as compared to the neutral case. However, during assortative rewiring, there
is visible decrease in the number of successful pings but these pings also travel more
efficiently as indicated by the smaller rate of increase in ping-times. In SF networks,
assortative rewiring has a qualitatively similar effect but the decrease in number of
successful pings is quite significant. Dissortative correlations, on the other hand, lead
to a small increase in successful pings but they become less efficient, especially in the
later stages of deletion.

61



4.4. RELATIONSHIP BETWEEN LINK DELETION AND TRANSMISSION

Figure 4.4: Change in average number of successful pings/transmissions (top) and average ping-times
(bottom) during S1 - (a, d), S2 - (b, e) and S3 - (c, f) types of deletion strategies in assortatively and
dissortatively rewired ER and SF networks.

When links are deleted based on their betweenness centrality values (S2), both
assortative and dissortative rewiring result in decreased number of successful pings
irrespective of topology but the rate of decrease is faster in case of assortative corre-
lations. In the neutral case, the role of longer, less efficient paths is mildly evident
as seen from the small initial increase in the ping-times while in assortative networks,
the transmission process is immediately affected by the appearance of isolated nodes.
Transmission in dissortative ER networks, however, shows a small initial robustness to
deletion.

When links are removed by strategy S3, neither assortative nor dissortative corre-
lations have any significant impact on the number of successful transmissions in ER
networks. The normalized ping-times, however, are reasonably affected. There is con-
siderable decrease in assortative ER networks while in dissortative ER networks, the
change in ping-times is faster compared to the neutral case. In assortative SF net-
works, there is considerable reduction in number of successful pings but the behaviour
is qualitatively similar to the neutral SF network. The normalized ping-times are also
much lower. Dissortative rewiring in SF networks leads to linear decrease in successful
pings while the behaviour of ping-times is similar to the neutral SF network.

4.4 Relationship between link deletion and transmission

Since we have two processes taking place on the network; link deletion - which directly
affects the network structure and transmission - which is affected by the structural
changes in the network, and they are both parameterized by the same time variable,
we can study the transmission process as a function of the deletion process to gain
insight into the relationship between the two processes. The results are shown in fig-
4.5 where we plot the fraction of successful pings and the normalized ping-times as a
function of fraction of links removed, which is an indicator of the extent of link deletion.

We first explore the relation between the size of the Strongly Connected Component
(SCC) and the number of successful pings. For a ping to be successful, at least one path
must exist from the start-node to the stop-node and must continue to exist (subject to
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Figure 4.5: Relationship between the link deletion process and the transmission process is explored as
the correlation between the average fraction of successful pings and fractional SCC size of the network
when plotted as a function of fraction of deleted links (top). We also see that the average path-
length of the SCC captures the behaviour of average ping-times as the process of deletion progresses
(bottom). This observations remains consistent for all network topology and strategy of deletion.

rerouting) until the stop-node is reached. But a unique path that runs in the opposite
direction is not necessary. From a network point of view, such a condition is satisfied
when the end-points belong to the Weakly Connected Component (WCC) but not
necessarily to the SCC. Therefore, it would seem that the probability of a ping being
successful is proportional to the probability that the start and stop nodes belong to
the WCC and therefore on the fractional size of the WCC itself. But when we consider
the fact that during generation of pings, the start-nodes and stop-nodes are chosen
uniformly randomly, it becomes necessary for paths must exist in to and fro directions.
This is because it is possible to assign the two unique paths to two unique pings. In
this scenario, paths between all possible pairs of nodes must be considered. As a result,
the probability of a ping being successful is proportional to the probability that the
start-node and stop-node belong to the SCC and consequently on the fractional size of
the SCC itself. Therefore, the fractional size of the SCC (which is itself varying with
the number of links in the network) captures the average behaviour of the probability
of successful transmission. This is true irrespective of network topology and strategy
of deletion.

If R is the number of pings generated at time t and S is the number of successful
pings, then the probability of success for a ping generated at t is given by

S

R
= f(t) (4.1)

where f is the time-dependent probability and is equal to the fractional size of the SCC.
If we consider the pings generated in an interval of time ∆t, then we have S/R = f(∆t)
and f(∆t) is the fractional size of the SCC that remains constant in ∆t. Eqn - 4.1 can
then be written in terms of the request rate r as

S = fr∆t (4.2)

In the context of the above argument, we move to infer the relationship between
the ping-times and the average path-length (APL) in the SCC. Since the probability of
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successful transmission is equal to the fractional size of the SCC, it is evident that the
ping-times must correlate to the characteristic length scale of the SCC. Since certain
pings may not be contained within the SCC (may lead into or out of the SCC), the
average behaviour of normalized ping-times is captured exactly by the normalized
average path-length of the SCC. This is also an added advantage because the path-
length of the SCC remains well-defined during the deletion process in contrast to the
path-length of the whole network. Once again, this result is independent of deletion
strategy and network topology but dependent only on the random selection of start
and stop nodes.

For a ping generated at time t and travelling a distance dp, let the time taken be tp.
Then

tp =
dp

pT .vT
(4.3)

If we consider many such pings at t, and given that pT and vT are fixed, then the
average ping-time is given by

< tp >=
< dp >

pT .vT
=
< APLscc >

pT .vT
(4.4)

4.5 Role of process parameters

We now shift our attention to the roles of the different process parameters involved. As
mentioned earlier, the parameters involved are vD and pD (associated with the deletion
process) and vT , pT and r (associated with the transmission process). We focus on
the independent study of r, pT and pD, since they play the essential role in capturing
the dependencies, while vT and vD provide for greater control. We do not consider the
parameters of the network, like size and density, because the metrics of interest are
normalized so as to make the results independent of them.

We also move away from the network models and instead work with a road-network
based on the city of Barcelona. The data-set consists of 1020 nodes and 2522 links
where nodes represent road intersections and links are the traffic-flows between these
intersections. The network is largely lattice-like, moderately assortative with negligible
clustering and the largest SCC spans 929 nodes.

The problem of 1-to-1 transmission can be recast as a model for the flow of road
traffic in some geographic setting. In our specific case, every trip taken by a vehicle
is associated with unique origin and destination. Since the network itself has well-
defined nodes, the exact origins and destinations can be approximated to the nearest
intersections. The combination of vT and pT captures the distance travelled including
fractional lengths of connecting roads. Inaccessible roads are modelled as deleted links.
This could happen due to various causes, like traffic-jams, repair-works, accidents etc.,
that are either systematic or random. When a vehicle reaches an inaccessible road,
the driver can ideally make a decision to take a possible (and less efficient) detour or
cancel the trip. While cancelling an ongoing trip seems unrealistic, it is incorporated
to stay consistent with the case that deletion of links is irreversible in the model. We
now explore the role of each parameter and interpret the results in the current context.

4.5.1 Role of request-rate

The request rate r is defined as the average number of pings being generated in unit
time. At time t, r(t) is the average number of trips that start at t. Since, we work
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with a simplified model, where there is no constraint on the number of vehicles at
a particular intersection or a connecting road, an increase in the number of trips at
starting t should result in proportional increase in the number of successful trips while
the probability of successful transmission remains constant for fixed r.

Figure 4.6: Effect of changing request rate on the average number of successful pings (top) and the
average normalized ping-times (bottom) during link deletion by various strategies (S1 - a, d; S2- b, e;
S3 - c, f) in the Barcelona road network.

From eqn-4.2, for unit time-interval, we have S(t) proportional to r for given t.
S(t) is related only to the transmission process and f(t) is related only to the deletion
process via the surviving fraction of links (m(t)). We take r to be a fixed integer value
for the entire duration of deletion but it could also be a set of integers drawn from a
poisson distribution with fixed mean. While it mimics a more realistic scenario, it adds
no new understanding. Since, r affects only the transmission process and not f(t), the
temporal behaviour of S(t) is dependent on f(t) but for a specific t, S(t) is larger by
a factor of r. This is seen in fig-4.6 (a - c).

The behaviour of f as a function of fraction of surviving links in the network (m) is
specific to the strategy of deletion but the effect of r itself is independent of strategy.
For pD = vD = 1, the qualitative behaviour of the slope of S is governed by the rate
of change of f(m), but the exact value is scaled by a factor of r. Therefore, for higher
values of r, the rate of decrease of S is proportionally higher as is seen in fig-4.6. From
eqn-4.4, we see that the average normalized ping-times do not, in any way, depend on
the value of r. While the results are not specified here, we do find that there is no
effect of changing r on the behaviour of normalized ping-times.

4.5.2 Role of transmission probability

In the transmission process, each ping travels vT number of links at every time-step,
with a probability pT . The value of pT sets a time-scale for the transmission process
relative to the deletion process. A value of pT less than 1 implies that a ping will
take more time to traverse the same distance. In the context of traffic-flow on a road
network, pT < pD is not very realistic and points to possible case of rapid spread
of cascading traffic jams. As a result, the time-interval in which f remains constant
decreases by pT relative to the rate of deletion and eqn-4.2 becomes
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S = fr(pT∆t) (4.5)

The above equation can be understood as the decrease in the probability of success
of a trip as a result of the network losing links faster than the pings can traverse them.
But if we plot the results, as shown in fig-4.7 (a - c), we do not see the expected decrease
in the number of successful pings. In fact, it appears like transmission probability does
not play a role at all. This is where the effect of rerouting comes into play.

Figure 4.7: Effect of decreased probability of transmission on the average number of successful pings
(top) and the average normalized ping-times (bottom) during link deletion by various strategies (S1
- a, d; S2 - b, e; S3 - c, f) in the Barcelona road network.

When a trip is started at t, and pT < 1, there is a higher chance that the assigned
path will be disrupted by a deleted link. But this loss of links is well-compensated by
the rerouting process with exploits the large number of redundant paths available in
the network. Consequently, the trips are successful but they take longer, less efficient
paths.

When it comes to ping-times, pT plays a very direct role on the response to deletion.
From eqn-4.4, it is clear that at t, values of < tp > get scaled by a factor of 1/pT , as
is shown in fig-4.7 (d - f). This also provides justification for the qualitative argument
that trips take longer, less efficient paths but are ultimately successful. From the same
set of plots, we also observe that the rate of change of < tp > is constant for decreasing
values of pT . This becomes clear when we take the time-derivative of eqn-4.4 and see
that it is inversely related to pT . But we also know that the distance travelled by a
ping generated at t increases proportional to pT and therefore, the expression for the
slope of < tp > is independent of pT . If the ping-times were to be normalized, they
would all overlap and this behaviour would not be obvious. For this reason, we work
with the actual ping-times.

4.5.3 Role of deletion probability

The probability of deletion (pD) is the fraction of chosen links (vD) that are deleted
at any given time-step. It can be interpreted as the time-scale of the deletion process
w.r.t the transmission process. For pD = 1, all the vD chosen links are deleted in each
time-step. A value less than 1 implies that only a fraction, pD, of the vD chosen links
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are deleted. Conversely, the time interval required to delete vD links increases by a
factor of 1/pD. As a result, eqn-4.2 becomes

S =
fr∆t

pD
(4.6)

Consistent with eqn-4.6, we observe an increase in the average number of successful
trips, by a factor of 1/pD, at any t (fig-4.8 (a - c)). This is true for any strategy of
deletion, over the behaviour imposed by the rate of change of f(m). For r = 5 and
vD = 1, we see that the rate of decrease of S(t) slows down by a factor of pD and this
is observed for all strategies as shown in fig-4.8 (a - c).

Figure 4.8: Effect of decreased probability of deletion on the average number of successful pings (top)
and the average normalized ping-times (bottom) during link deletion by various strategies (S1 - a, d;
S2 - b, e; S3 - c, f) in the Barcelona road network.

While a value of pD < 1 gives trips more time to traverse the assigned path, it
does not affect the lengths of individual paths in any way. As mentioned earlier, at
any t, there is an increase in S(t). The increase is due to those trips that are able to
traverse longer rerouted paths and reach their destinations. Consequently, the average
distance traversed by all trips starting at t increases and is reflected as an increase in
the normalized ping-time at t. This is shown in fig-4.8 (d - f). We also see that the
rate of increase of < tp > is slower for smaller values of pD. This is because the slow
rate of deletion gives the pings more time to travel the shorter paths before they get
rerouted through longer less efficient paths. This can also be interpreted from eqn-4.4.
The APL of the SCC depends on the density of links in the SCC (kscc) and also on
the size of the SCC itself. But, numerically, we observe that, before the appearance
of isolated nodes, the average degree of the SCC remains quite constant and therefore
the rate of change of kscc = 0.

Since the rate of change of f(m) is a monotonically decreasing function, the overall
slope becomes positive and is scaled by a factor pD. This explains the behaviour of
normalized ping-times in fig-4.8 (d - f), in the region dominated by increasing path-
length. When isolated nodes begin to appear, this argument becomes invalid because
the average degree of the SCC does not remain constant anymore.
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4.6 Strategy for mitigation - Weighted Selection

In the final section of this chapter, we propose a method to mitigate the effect of
deletion on the 1-to-1 transmission process. A reasonable way to arrive at such a
method is to first investigate the process by which deletion affects transmission and
then try to counteract the effect. Working in this direction, we find that the process
of link deletion affects transmission via the elimination of shortest-paths.

Having identified the importance of shortest-paths in sustaining transmission, we
need to design a course of action by which the number of these paths or their lengths
can be suitably optimized. We find that there are two main ways to ensure this: (a)
select an appropriate topology (like SF or SW) so that the average path-length in the
network is small thereby increasing the probability of successful transmission and (b)
given a network topology, select pairs of nodes such that the number of shortest-paths
between them is significantly high. In this section, we work with (b) and discuss the
selection of such nodes, the reason such a selection works and the limitations of this
method.

Figure 4.9: Top - Average change in the number of successful pings during link deletion in ER networks
(blue), SF networks (red), SW networks (green) and Road network (orange) due to weighted selection
of endpoints for individual pings.

As mentioned, we make a weighted selection of start and stop nodes in the trans-
mission process. The start-node is selected with a probability proportional to the
out-degree of the node and the stop-node is selected with a probability proportional
to the in-degree of the node. When interpreted in the context of a traffic-flow, this
method of selection is quite relevant. There is heterogeneity in the importance of stops
in a road network and therefore trips between any two stops are not equally likely.
It is more likely that a trip will happen between two important locations or atleast
to/from an important location. Such locations also tend to be better connected. Since
we are aware of this observation and are attempting to capture this in a model, we
assume that a highly-connected location is most likely any important one and therefore
more trips are assigned between such nodes. This method of weighted selection works
because nodes with high-degree will tend to have better connectivity just by virtue of
high-degree.

We repeat the entire procedure, with weighted selection of start-nodes and stop-
nodes, in all network topologies and for all strategies of deletion. In fig-4.9, we plot
the resulting increase in average number of successful pings as a function of start-time
t. First-up, we observe that this method is highly effective during random deletion. In
case of targeted deletion, it is more effective in ED-based deletion than in EBC based
deletion. During random deletion, there is a maximum increase of more than three
successful ping per time-step while in targeted deletion, the maximum increase is a
little over two pings.

Irrespective of deletion strategy, weighted selection brings about maximum increase
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in SF, ER, SW and the road network, in that order. This brings us to the limitation
of this procedure. This method relies heavily on the number of relatively high-degree
nodes and therefore on the heterogeneity in the degree distribution. For this reason,
we see the most change in SF networks, which basically posses a heavy-tail distribution
and the least change in the road network, which is almost lattice-like. When the degree
distribution is close to homogeneous, there is minimal scope for picking out high-degree
nodes and the result is very close to that of random selection.

While weighted selection of nodes is one mechanism to improve the probability of
successful transmission, more methods can be constructed specific to the problem at
hand. One such method is to assign a less efficient paths to trips, so that they are not
immediately disrupted by the loss of links. Another method would be early rerouting
of vehicles, if their paths are disrupted, rather than waiting until the deleted link is
reached. Similar methods can be developed based on specific requirements.

4.7 Summary

To summarize, in this chapter, we report the results of our study on the process of 1-to-
1 transmission in directed networks and its response to simultaneous deletion of links.
In the first part of the work, we studied the transmission process in models of directed
networks and analyzed the roles of network topology, deletion strategies and 2-node
degree-correlations. We find that EBC based strategy is most disruptive, irrespective of
topology, followed by Ed based deletion and random deletion, in that order. Transmis-
sion on ER networks is relatively more robust during random deletion but during ED
based deletion, it is equally affected in all topologies. While dissortative correlations
do not significantly affect transmission, assortative correlations increase the sensitivity
to various extents depending on topology. We also present qualitative arguments to
deduce the relationship between the two processes by studying the behaviours of the
network metrics and transmission quantifiers.

In the second part, we recast the transmission process as problem of traffic-flow on
a road-network. Using a network derived from the road-intersection data in Barcelona
city, we studied the roles of three process parameters and interpreted the results in
terms of the traffic-flow problem. We find that request-rate only affects the number of
successful pings but not the normalized ping-times while the transmission probability
inversely affects ping-times but not the probability of success. Small values of deletion
probability increase the probability of success while reducing the average ping-times.
Finally, we propose and detail a mechanism to mitigate the loss of transmission during
link deletion based on weighted selection of nodes.
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Chapter 5

Conclusion

The aim of this study was to expand the existing body of knowledge concerning di-
rected complex networks. Complex networks have extensive application in a vast range
of applications like science, engineering, medicine, finance etc. and the science of net-
works has become an enviable tool in systemic analysis. In particular, we have focused
our efforts on exploring the structural, dynamical and functional response of complex
directed networks to random and targeted loss of links. We show that this kind of
approach has a two-fold advantage: Understanding the response of a network to loss of
links helps us to design precautionary measure and introduce fail-safes; alternatively,
investigating the role of deletion strategies makes it possible to design effective strate-
gies for maximal disruption of spreading in the network.

We provide a brief introduction to the field of complex networks, discuss their wide
range of applications and ever-increasing relevance. From local to intermediate to
global scales, we define the most important and relevant network properties like cor-
relations, clustering, connected components, centrality etc. and their corresponding
measures. Based on these properties, we discuss three important standard models of
network generation, namely the Erdös-Rényi model, Barabasi-Albert model and Watts-
Strogatz model, their advantages and limitations. This is followed by brief discussion
of percolation and spreading processes taking place on networks.

We then introduce Degree Preserving Rewiring mechanisms, to tune degree corre-
lations and clustering, in random and scale-free directed networks. Using these mech-
anisms, we explore all the relevant properties, independent of topology. By artificially
tuning the properties, we are able to study the extreme range of values that are not
observed in real-world networks.

• We find that, in case of both correlations and clustering, changing the link-density
in the network does not affect the working of the DPR mechanisms in any funda-
mental way.

• In general, we observe that networks with higher average degrees take longer to
show the same amount of change in properties and the qualitative behaviour of
the mechanisms is altered by the topology itself.

• We find that certain structural side-effects are inherent in the networks, and they
restrict some properties from being tuned in isolation. Particularly in SF networks,
the structural relationships are highly emphasized.

• After briefly discussing the running times for all the algorithms, we show that the
time-complexity is quadratic for both clustering and correlations.
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• When tuning degree-correlations, the behaviour of the limiting value of Spear-
man’s Rho is found to differ considerably from the case of undirected networks.
We observe that, in both ER and SF networks, the limiting values of correlation
approach -1 rapidly for increasing values of parameters of the networks.

Besides the intended purpose of tuning network properties, the proposed mecha-
nisms also reveal structural relationships and topological constraints in directed net-
works. By treating the process of rewiring as equivalent to exploring the space of
second-order maximally random graphs, we are able to explore these relationships.

• We provide analytic arguments to show that the DPR mechanisms, designed to
tune specific types of correlations, also uniquely affect the clustering coefficients.
This is supported by qualitative arguments and numerical corroboration.

• Consequent to the arguments presented, we predict and numerically observe changes
in sizes of the connected components, specific to the type of correlations being
tuned.

• Thus, although we set out to find mechanisms to tune clustering and degree-
correlations in directed networks, we find that the same mechanisms double up as
tools to explore deeper structural relationships in the networks.

Next, we undertake a comprehensive study of the effects of link deletion in directed
networks. We consider ER and SF networks and subject them to various strategies
of breakdown like random failures and Edge Betweenness Centrality (EBC) and Edge
Degree (ED) based deletions. The robustness to breakdown is measured by studying
the behaviours of the strongly and weakly connected components and the efficiency of
the networks. We also explore the effects of 2-node degree-correlations and clustering,
on the robustness to loss of links, in both the network topologies. Our main results are
the following:

• Irrespective of the strategy of deletion, ER networks consistently showed more
robustness than SF networks.

• In ER networks, assortative correlations do not make any difference while dissor-
tative correlations lead to a decrease in the robustness of the SCC and an increase
in the case of WCC.

• In SF networks, both types of correlations lead to a decrease in the resilience of
the connected components.

• The presence of clustering increases the vulnerability of ER networks to all strate-
gies and SF networks to ED based strategies.

• Among the deletion strategies, we find that the loss of highly central links has
the most damaging effect on any network topology while the removal of the least
central links is the least effective.

• Random deletion was moderately effective compared to the EBC and ED based
strategies and the network topology played a distinct role.

• We also study the effects of various types of deletion strategies on three real-
world networks, chosen from the broad areas of transportation and biological
interactions.
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The response of networks to EBC based strategies of deletion is approximately repro-
duced using only local information (node degrees) about the networks. A combination
of degrees of nodes on either ends of a directed edge, given as kini .k

out
j , is found to be

a suitable choice for the definition of ED. For large values of ED and EBC, we observe
a strong positive correlation. This is further supported by the response that strate-
gies S2 and S4 evoke in the various network models. Therefore, ED based strategies
can be used as a computationally viable alternative to launch highly effective targeted
counterattacks on networks to contain unwanted spreading processes. These results
are meant to provide a qualitative picture of the responses of networks to link deletion
and the roles of various network properties in an idealistic scenario. Exact results for
real-world networks require a narrow and focused effort and may diverge considerably
from those of network models.

Having studied the structural effects, we proceed to explore the dynamical response
to link deletion in directed networks. We study the dynamics of a 1-to-1 transmission
process, taking place simultaneously with random or targeted link deletion, on a net-
work. In the first part of this study, we analyze the transmission process in models of
directed networks and analyze the roles of network topology, deletion strategies and
2-node degree-correlations.

• We find the centrality based deletion to be the most disruptive, irrespective of
topology, followed by edge-degree based deletion and random deletion, in that
order.

• Transmission on ER networks is relatively more robust during random deletion
but during ED based deletion, it is equally affected in all topologies.

• While dissortative correlations do not significantly affect transmission, assortative
correlations increased the sensitivity to various extents depending on topology.

We also provide qualitative arguments to deduce the relationship between the two
processes by studying the behaviours of the network metrics and transmission quanti-
fiers. In the second part of this study, we apply the transmission process on a problem of
traffic-flow on a road-network. Using a network derived from the road-intersection data
in Barcelona city, we study the roles of three process parameters, namely request-rate,
transmission probability and deletion probability and interpret the results in terms of
the traffic-flow problem.

• We find that request-rate only affects the number of successful pings but not the
normalized ping-times while the transmission probability inversely affects ping-
times but not the probability of success.

• Small values of deletion probability result in increased probability of success, while
reducing the average ping-times.

• We also propose a detailed mechanism to mitigate the loss of transmission during
link deletion based on weighted selection of nodes. The extent of mitigative action
is numerically studied.

The results presented in this thesis, while answering many questions, have also
brought up some interesting questions. Starting from the results of rewiring mecha-
nisms, future work could put more emphasis on the algorithmic aspects which were
not prioritized in this work. The study of dynamical processes, even when limited
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to the case of 1-to-1 transmission process, can be extended to include overloading of
nodes/edges and further realistic constraints. Also study of the behavior of dynami-
cal systems on directed networks undergoing link deletion would give rise to a deeper
understanding of the structure-function relationship in directed networks.
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[129] Kauê Dal’Maso Peron, T., da Fontoura Costa, L. & Rodrigues, F. A. The struc-
ture and resilience of financial market networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science 22, 013117 (2012).

[130] May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers.
Nature 451, 893–895 (2008).

[131] Chi, K. T., Liu, J. & Lau, F. C. A network perspective of the stock market.
Journal of Empirical Finance 17, 659–667 (2010).

[132] Zou, C. C., Towsley, D. & Gong, W. Email worm modeling and defense. In
Computer Communications and Networks, 2004. ICCCN 2004. Proceedings. 13th
International Conference on, 409–414 (IEEE, 2004).

[133] Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic
cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

[134] Berche, B., von Ferber, C., Holovatch, T. & Holovatch, Y. Public transport net-
works under random failure and directed attack. arXiv preprint arXiv:1002.2300
(2010).

[135] Kawamoto, H., Takayasu, H., Jensen, H. J. & Takayasu, M. Precise calculation of
a bond percolation transition and survival rates of nodes in a complex network.
PloS one 10, e0119979 (2015).

[136] Iyer, S., Killingback, T., Sundaram, B. & Wang, Z. Attack robustness and
centrality of complex networks. PloS one 8, e59613 (2013).

84



BIBLIOGRAPHY

[137] Martin, S., Carr, R. D. & Faulon, J. L. Random removal of edges from scale
free graphs. Physica A: Statistical Mechanics and its Applications 371, 870–876
(2006).

[138] Wang, J. W. & Rong, L. L. Edge-based-attack induced cascading failures on
scale-free networks. Physica A: Statistical Mechanics and its Applications 388,
1731–1737 (2009).

[139] He, S., Li, S. & Ma, H. Effect of edge removal on topological and functional
robustness of complex networks. Physica A: Statistical Mechanics and its Appli-
cations 388, 2243–2253 (2009).

[140] Goerdt, A. & Molloy, M. Analysis of edge deletion processes on faulty random
regular graphs. Theoretical computer science 297, 241–260 (2003).

[141] Zhang, G. Q., Wang, D. & Li, G. J. Enhancing the transmission efficiency by
edge deletion in scale-free networks. Physical Review E 76, 017101 (2007).

[142] Cartledge, C. L. & Nelson, M. L. Connectivity damage to a graph by the removal
of an edge or a vertex. arXiv preprint arXiv:1103.3075 (2011).

[143] Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex
networks. Physical review E 65, 056109 (2002).

[144] Kashyap, G. & Ambika, G. Link deletion in directed complex networks. Physica
A: Statistical Mechanics and its Applications 514, 631–643 (2019).

[145] for Research Core Team, T. N. Transportation networks for research (2017). URL
https://github.com/bstabler/TransportationNetworks.

[146] Stelzl, U. et al. A human protein–protein interaction network: A resource for
annotating the proteome. Cell 122, 957–968 (2005).

[147] Human protein (stelzl) network dataset – KONECT (2017). URL http://

konect.uni-koblenz.de/networks/maayan-Stelzl.

[148] Openflights network dataset – KONECT (2017). URL http://konect.

uni-koblenz.de/networks/openflights.

[149] Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Physical
review letters 87, 198701 (2001).

[150] Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction–diffusion processes
and metapopulation models in heterogeneous networks. Nature Physics 3, 276
(2007).

[151] Kitsak, M. et al. Identification of influential spreaders in complex networks.
Nature physics 6, 888 (2010).

[152] Nowzari, C., Preciado, V. M. & Pappas, G. J. Analysis and control of epidemics:
A survey of spreading processes on complex networks. IEEE Control Systems
Magazine 36, 26–46 (2016).

[153] Moreno, Y., Nekovee, M. & Pacheco, A. F. Dynamics of rumor spreading in
complex networks. Physical Review E 69, 066130 (2004).

[154] Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic
processes in complex networks. Reviews of modern physics 87, 925 (2015).

85

https://github.com/bstabler/TransportationNetworks
http://konect.uni-koblenz.de/networks/maayan-Stelzl
http://konect.uni-koblenz.de/networks/maayan-Stelzl
http://konect.uni-koblenz.de/networks/openflights
http://konect.uni-koblenz.de/networks/openflights


BIBLIOGRAPHY

[155] Oshida, N. & Ihara, S. Packet traffic analysis of scale-free networks for large-scale
network-on-chip design. Physical Review E 74, 026115 (2006).

[156] Teuscher, C. Nature-inspired interconnects for self-assembled large-scale network-
on-chip designs. Chaos: An Interdisciplinary Journal of Nonlinear Science 17,
026106 (2007).

[157] Kaiser, M. & Hilgetag, C. C. Edge vulnerability in neural and metabolic networks.
Biological cybernetics 90, 311–317 (2004).

[158] Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387,
913 (1997).

[159] Sullivan, J., Novak, D., Aultman-Hall, L. & Scott, D. M. Identifying critical
road segments and measuring system-wide robustness in transportation networks
with isolating links: A link-based capacity-reduction approach. Transportation
Research Part A: Policy and Practice 44, 323–336 (2010).

[160] Knoop, V. L., Hoogendoorn, S. P. & van Zuylen, H. J. Approach to critical
link analysis of robustness for dynamical road networks. In Traffic and granular
flow’05, 393–402 (Springer, 2007).

[161] Herty, M. & Klar, A. Modeling, simulation, and optimization of traffic flow
networks. SIAM Journal on Scientific Computing 25, 1066–1087 (2003).

[162] Coclite, G. M., Garavello, M. & Piccoli, B. Traffic flow on a road network. SIAM
journal on mathematical analysis 36, 1862–1886 (2005).

[163] Zhao, L., Lai, Y.-C., Park, K. & Ye, N. Onset of traffic congestion in complex
networks. Physical Review E 71, 026125 (2005).

[164] Holme, P. Congestion and centrality in traffic flow on complex networks. Advances
in Complex Systems 6, 163–176 (2003).

[165] Yan, G., Zhou, T., Hu, B., Fu, Z.-Q. & Wang, B.-H. Efficient routing on complex
networks. Physical Review E 73, 046108 (2006).

[166] Danila, B., Yu, Y., Marsh, J. A. & Bassler, K. E. Optimal transport on complex
networks. Physical Review E 74, 046106 (2006).

86


