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Abstract

The peninsular part of the Indian continent (South India) is an important region because of the
presence of various geological units. This thesis work focuses on implementing seismic interferometric
techniques to ambient seismic noise recorded using broadband seismometers along the East-West
profile of South India.

Similar to optical interferometry, seismic interferometry (SI) gives us the detailed interior structure
of the Earth by analysing the interference pattern of seismic waves. These interference patterns are
obtained using the cross-correlation of seismic traces with one another. The seismic interferometric
study helps to obtain the tomographic image of the Earth. This will reconstruct the image of velocity
variation in the region of interest. The SI is a vital method for understanding the seismically quiet
areas. With the help of this method, one can extract Green’s function from ambient noise recorded
on the Earth’s surface, then the group or phase velocity computation and at last, the tomographic
imaging. The tomographic imaging involves producing the phase and group velocity maps. In our
work, we obtained the velocity maps for a period range between 3 sec and 15 sec, the group velocity
varied from 2.99 km/s to 3.15 km/s and phase velocity varied from 2.9 km/s to 3.15 km/s. But
this period range and less variation in group/phase velocity were unable to produce high resolution
tomographic image of the region of interest.

Keywords: Ambient Noise, Seismic Interferometry, Green’s Function, Group and Phase Velocity,
Fast Marching Method, Tomography, Inversion
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1 Introduction

Interferometry is a technique in which propagating waves are superposed to extract the infor-
mation about a medium. Fields like astronomy, fiber optics, oceanography, seismology and
remote sensing evolved to investigate the medium properties with the use of interferometry.
This interferometry term tells about the interaction between pairs of the signal so to obtain
the enlightenment about the object under study from the difference of those signals. While
studying optical properties of a particular medium, we use the energy but not the phase which
leads to loose some information about the medium. Hence, to analyze the phase, we use in-
terference between two optical signals or waves with different optical length [Michelson and
Morley, 1887]. To understand the optical properties of the medium, scientists and engineers
are using interferometry for more than centuries.

Similar to optics, in seismology, we use interferometry to investigate the sub-surface properties
of the earth. Unlike the optical interferometry, we have access to phase in seismic interferome-
try, but for better imaging of the earth, we require regular and dense source distribution. The
regularity of sources depend on the geometry of earthquake locations and corresponding record-
ing stations. Also, due to irregular and relatively large distance between the earthquake source
and recording station, high frequencies will be lacking from the waveform because of attenua-
tion and scattering over the distance. This will create the problem in imaging of shallow crustal
structure as it uses the high frequency information from the waveform. So on the demand of
dense sources in global scale motivated scientists to bring up the seismic interferometry into
the light.

1.1 Seismic Interferometry using Ambient Noise

Claerbout [1968] introduced the use of noise in seismic by acquiring the reflection response from
a one-dimensional correlation of the transmission waves. During this period, one conjecture
was emerged saying that: “the cross-correlation of noise recorded at two different locations of
receivers in three-dimensional heterogeneous medium gives a response that would be observed at
one of the locations if there was a source at the other.” Duvall Jr et al. [1993] demonstrated this
method of creating artificial source using the helioseismological data and Lobkis and Weaver
[2001] demonstrated using ultrasound waves based on normal mode expansion.

The technique of converting ambient noise into a deterministic signal to obtain the sub-surface
structure is referred to as passive seismic interferometry [Curtis et al., 2006, Wapenaar et al.,
2010a,b]. The first study was done by Campillo and Paul [2003] for creating impulse response
using coda waves. The seismic noise correlations were used for the first time in 2005 in California
[Shapiro et al., 2005]. The method provided higher spatial accuracy than for conventional
techniques. After that, the popularity of this method increased with the development and
application to many geological objects. The main advantages of this method over the traditional
approaches are: no requirement of artificial source, uniformity and dense illumination of the
region of interest, useful in the regions where no earthquakes are recorded.

Extracting the surface wave empirical Green’s Functions (GF) using ambient seismic noise and
inferring the Rayleigh [Shapiro et al., 2004, Sabra et al., 2005b] and Love waves [Lin et al., 2008,
Xie et al., 2015] group and phase velocities is well studied. The study of surface waves using
cross-correlations obtained from ambient noise is well established because they are dominated
in the GF between two stations on the Earth. Also, the interactions of ocean and atmosphere
with the Earth’s surface generate the ambient noise sources [Longuet-Higgins, 1962]. With the
help of conventional imaging methods, we can obtain the shear wave velocity distribution from
Green’s functions.
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1.2 Green’s Function

Green’s Function (GF) [Green, 1854] between receivers can be estimated using seismic interfer-
ometry (SI). It is an impulse response of the Earth between any two points, which is constructed
by cross-correlation of a pair of seismic time series recorded at two different sensors [Dziewon-
ski and Anderson, 1981, Schuster and Snieder, 2009]. It is used to study the Earth’s elastic
properties and provides insightful views of Earth’s subsurface structure. The cross-correlation
turns noise into the signal as if one of the receivers acted as a virtual sesimic source because of
the absence of a real source. Such a source response is equivalent to the GF convolved with a
wavelet. Hence, SI is called the Green’s function retrieval. If the noise sources are uniformly
and spatially distributed, then the cross-correlation of noise records gives us the wholesome GF
of the medium [Wapenaar and Fokkema, 2006].

1.3 Nature of Ambient Noise

There are many ambient noise sources which depend on the frequency on which those are
observed. Figure 1 shows the power spectral density of seismic noise. This spectrum shows
two main peaks: the first peak called as primary microseisms, appears between 10 to 20 sec
period, which is generated when ocean gravity waves interact with the seafloor and reach near-
surface [Hasselmann, 1963]. The second peak of seismic noise is observed between 1 to 10
sec, known as secondary microseism. The interaction of ocean gravity waves having the same
wavelength as previous and travelling in reverse direction generates the secondary microseism
[Longuet-Higgins, 1950, Stutzmann et al., 2001, 2012]. The interference between this forward
and backward propagating waves create the pressure on the ocean floor at a frequency twice
as high as the swell. This pressure is transmitted into the ground in the form of seismic waves.
Local meteorological phenomena like wind, rain etc. and anthropogenic entities like cars,
factories, cities generate high-frequency seismic noise. The seismic noise is actually composed
of surface waves because the noise sources are excited on the surface of the Earth. Significant
contribution in microseism band of noise generated at seafloor comes from the fundamental
mode. This ambient noise is an economical energy source that is usually regarded as not so
usable and removed from seismic data for analysis because of non-impulsive nature.

1.4 Ambient Noise Surface Wave Tomography

Ambient Noise Surface Wave Tomography (ANSWT) results from the computation of cross-
correlation between seismic traces recorded on all available station pairs and then the measure-
ment of dispersive nature of group or phase velocity associated with Rayleigh waves [Bensen
et al., 2007]. Seismic travel time can be obtained using this dispersion curves and travel time
inversion results in the shear wave velocity distribution in the crust and uppermost mantle
[Shapiro et al., 2005, Sabra et al., 2005b]. The vertical component cross-correlation of seismic
noise at periods ranging between 5 and 50 sec for several station pairs measures the dispersion
curves of fundamental surface wave mode. This emerges the rapid development of ambient
noise surface wave tomography [Moschetti et al., 2007].

The thumb rule for tomography is, performing the forward problem calculation and solving
the inverse problem [Borah et al., 2014]. In ANSWT, an estimate of travel time using surface
wave dispersion curve is considered as forward problem. The travel times are calculated using
Fast Marching Method [Sethian, 1999], which is based on grid-based Eikonal solver. After
this, the travel times are inverted based on subspace inversion gradient methods to obtain the
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Figure 1 – Power spectral density of seismic noise recorded for 6 years on KSJ1 station located in

Antartica [Landès et al., 2010]

tomography image. This is done using Fast Marching Surface Tomography (FMST), Rawlinson
and Sambridge [2004b].

1.5 Aim of the Thesis

The Mohorovičić discontinuity (Moho) has been mapped using joint inversion of receiver func-
tions and Rayleigh wave group velocity beneath the East-West profile of South India at a depth
of ∼40 km which is thicker than that of the late-Archean crust [Saikia et al., 2016, 2017], but it
didn’t have the high resolution group velocity tomographic image at shallow depth (uppermost
part of the crust). In our study, the main aim is to image the shallow Earth’s crust (high
frequency) beneath the East-West profile using cross-correlation of ambient noise and then by
obtaining phase and group velocity maps at lower periods.
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2 Geology of the study area

A craton is an old continental crust formed during Archean (2.5 Ga and older) and remained
stable for over a billion years. The middle to late-Archean Dharwar craton is vital crustal
block of the Indian subcontinent. Along the seismological profile (as shown in Figure 2), the
most essential geological subunits are Archean Dharwar Craton (ADC) and the proterozoic
Cuddapah Basin (CB). The Dharwar Craton (DC) consists of three different lithological units:
(1) Tonalite-trondhjemite-granodiorite (TTG) Peninsular gneisses with composition of age be-
tween 3.36 and 2.7 Ga [Taylor et al., 1984]. (2) Volcano sedimentary greenstone belt having two
different ages, 3.3-3.1 Ga and 3.2-2.7 Ga. (3) K-rich granitoids (N-S going Closepet Granite
(CG)), having age 2.5-2.6 Ga. 2.7-2.5 Ga crustal block wraps the ≥ 3.4-3.0 Ga continental
nucleus in the west part of DC [Beckinsale et al., 1980]. Gneiss, schist belts and diapiric trond-
hjemites are major rock types of DC. DC is divided into Eastern (EDC) and Western (WDC)
domain by N-S orienting belt of Chitradurga Schist Belt (CSB) [Chadwick et al., 1992].

The neo-Archean WDC is surrounded to North by Deccan Volcanic Province (DVP) and
Kaladgi Basin (KB), to the west by Konkan plane and Western Ghats (WG), to the east
by Chitradurga Schist Belt (CSB) and to the south by Southern Granulite Terrain (SGT). The
west end of WDC comprises of coastal plane and WG. The Western Ghats are elavated over
1000 m high and slope gently towards eastern side across the southern Indian peninsular tip.
The Indian continent’s rifting away from Madagascar around ∼85 Ma formed the WG and the
western coast of India [Storey et al., 1995]. The WDC is composed of Archean TTG gneisses,
dated 3.3 to 3.4 Ga [Pichamuthu and Srinivasan, 1984]. The WDC contains Mesoarchean (3.4-
2.7 Ga) volcano-sedimentary successions with the most important period of addition of juvenile
crust during 3.35-3.0 Ga. The mantle is depleted beneath the WDC as early as 3.35 Ga, sug-
gested by geochemical data [Boyet and Carlson, 2005]. It has been observed that the regional
metamorphic grade has increased in the north from greenschist to amphibolite and granulite
in the south of WDC [Stein et al., 2004].

On the other side, during 2.7-2.5 Ga, there was an extenssive juvenille magmatism in the EDC.
This occured after global crustal growth peak around 2.7 Ga [Dey, 2013]. It is mainly com-
posed of the Dharwar batholith (granite), greenstone belts and intrusive volcanic and middle
Proterozoic to the recent sedimentary basins [Pichamuthu and Srinivasan, 1984]. The Protero-
zoic Cuddapah Basin (CB) and the Eastern Ghat (EG) wraps the eastern segment of EDC.
The separation of Rodinia from assembly of Gondwana during 2.6 to 1.2 Ga formed the East-
ern Ghats. The EG has most recently been affected by India–Antarctica rifting [Naqvi and
Rogers, 1987]. The eastern part of CB is presented by thrust faults, and this basin is bounded
by granitic gneisses, dykes and sills [Meert et al., 2010]. The dominant age of dyke swarms is
∼ 2400 Ma and 1800-1100 Ma reported by Ravi Kumar and Singh [2010]. The CB has evolved
from the first igneous activity in the form of the lava flow at about 1850 Ma. This has occured
in the South-Western part of EDC [Chatterjee and Bhattacharji, 2001].

In 1970s, along the East-West profile of South India, crustal structure has been first time imaged
using wide-angle reflection/refraction (Deep Seismic Sounding – DSS) study [Kaila et al., 1979].
Except toward the edges, the East-West profile lies on the flat terrian with an average elevation
of ∼600 m. Along the seismic profile, Kaila et al. [1979], Chowdhury and Hargraves [1981]
inferred seven crustal–scale faults that offset the Moho by ∼7 km. Here average Moho depth
ranges from about ∼36 km in EDC to ∼41 km underneath the WDC. Using traveltime analysis,
wide–angle seismic data was modelled to obtain Moho depth [Mall et al., 2012, Chandrakala
et al., 2015]. There was an argument for the presence of high-velocity layer (HVL, Vp > 7.0
km/s) at the base of the crust in some part of the profile, like beneath the WDC, CB and
the EG. The thickness and velocity of layered Earth beneath the profile is poorly constrained
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Figure 2 – Geological map showing major features along the seismic profile AA′ are: Western Dharwar

Craton (WDC), Eastern Dharwar Craton (EDC), Cuddapah Basin (CB), Chitradurga Schist Belt

(CSB, marked by the dashed black line), Closepet Granite (CG). 38 seismic stations are shown by

black triangles with three-letter code. The upper right inset is a map of India showing the study

region (marked by the red square). This figure is modified from [Saikia et al., 2016]

due to some limitations in the quality of data and insufficient ray coverage. The Moho depth
variation along the profile has been mapped using frequency analysis and common conversion
point migration of receiver functions [Saikia et al., 2016].
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3 Theory

3.1 Terminologies

3.1.1 Cross-Correlation

Cross-correlation calculates the similarity between two signals with respect to the time lag of
one signal with respect to another. In mathematics, it is also called a sliding dot product
[Proakis, 2001]. Here, term sliding defines the shift in the time. Higher the value of cross-
correlation, higher is the similarity of two signals. The cross–correlation of a signal with itself
is called as auto-correlation. In auto–correlation, there will always be a peak at a time lag
of zero and it is called as the energy of signal as it will be square of the amplitude of signal
[Gubbins, 2004].

Suppose we have two signals x(t) and y(t), then the cross–correlation z(t) is given as:

z(t) = x(t)⊗ y(t) ≡
∫ ∞
−∞

x∗(τ)y(τ + t)dτ (1)

If we replace τ by τ − t, then equation 1 becomes

z(t) = x(t)⊗ y(t) ≡
∫ ∞
−∞

x∗(τ − t)y(τ)dτ (2)

In the equations 1 and 2, t defines the time lag between two signals (this means the delay of x
versus y). The ∗ denotes the complex conjugate of time series.
Convolution defines how the shape of one signal gets modified by other signal and it is given
by:

x(t) ∗ y(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ (3)

If we compare equation 2 and 3, unlike the convolution, the integration variable, τ , has the
same sign in the time arguments of x(t) and y(t) in cross-correlation. This means arguments
will have a constant difference (in the case of correlation) instead of constant sum (convolution).
The signal in cross-correlation will not be time flipped and will be time-flipped in convolution.

3.1.2 Green’s Function

Green’s Function (GF) is a solution to an inhomogeneous differential equation with a driving
term given by delta function [Arfken and Weber, 1999]. It is an impulse response obtained
using specified initial and boundary conditions. GF, G(x, s), of a linear differential operator L
acting on distributions over a subset of Euclidean space, at a point s, is a solution of

LG(x, s) = δ(s− x) (4)

where δ is the Dirac delta function [PA, 1941]. This property of a GF can be used to solve
differential equations of the form [Arfken and Weber, 1999]:

Lu(x) = f(x) (5)
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3.2 Cross-Correlation Theorem

The retrieval of surface waves dispersion properties in subsoil using noise was first proposed by
Aki and Richards [2002]. In the random wavefield, we acquire the GF of medium using cross-
correlation of time series recorded between any two points. It includes reflection, scattering and
propagation modes [Weaver and Lobkis, 2005]. In order to prove that the GF can be estimated
from the stack of cross-correlations of noise records, different mathematical approaches were
developed [Weaver and Lobkis, 2001, Snieder, 2004] and various assumptions were made about
noise characteristic properties of the medium [Yao et al., 2009].

It is commonly believed that the diffuse wave fields reveal no information about the medium
in which they propagate. But in ultrasonics, it was shown that the noise correlation function
gives the waveform that would be obtained in a direct measurement [Weaver and Lobkis, 2001].
After this, [Campillo and Paul, 2003] applied this technique in seismology with real data and
thus started a new branch of ambient noise tomography. For cross-correlation theorem, we
follow the derivation proposed by [Gouedard et al., 2008].

Figure 3 – Noise wavefields recorded at stations A and B are given by u(t, rA) and u(t, rB)

Displacement fields x(t, rA) and x(t, rB) recorded at two receivers at locations A and B in a
medium with a random noise field f(t, r), (which is white noise distributed all over the medium)
are shown in Figure 3. The time–domain cross-correlation between the two receiver locations
can be defined as:

C(τ, rA, rB) = lim
T→∞

1

T

∫ T

0

x(t, rA)x∗(t+ τ, rB)dt (6)

The ∗ denotes the complex conjugate. The displacement x(t, r) is given using the Green’s

function Ga (a defines the attenuation for the convergence of integral) [Roux et al., 2005a].

x(t, r) =

∫ ∞
0

dt′
∫
X

Ga(t
′, r, rs)f(t− t′, rs)drs (7)



Ingale Vaibhav Vijay 17

Here f defines the noise starting from rs distributed in the medium X, acting at any time t.
Here t′ and rs are integral variables over time and space respectively. Using equation 7, the
definition of cross-correlation (equation 6) becomes,

C(τ, rA, rB) = lim
T→∞

1

T

∫ T

0

dt

∫ ∞
0

ds

∫
X

drsGa(s, rA, rs)f(t− s, rs)

∗
∫ ∞
0

ds′
∫
X

drs
′G∗a(s

′, rB, rs)
′f ∗(t+ τ − s′, rs′) (8)

If we consider the medium is damping, the large T limit in the correlation is replaced by an
average ensemble, which gives the expectation value denoted by E. As f is white noise, we
obtain:

lim
T→∞

1

T

∫ T

0

f(t− s, rs)f(t+ τ − s′, rs′)dt = E[f(t− s, rsf(t+ τ − s′, rs′)]

= σ2δ(τ + s− s′)δ(rs − rs
′) (9)

where σ is a variance of the white noise. This will give us:

C(τ, rA, rB) = σ2

∫ ∞
0

ds

∫
X

drsGa(s, rA, rs)G
∗
a(s+ τ, rB, rs) (10)

By using the expressions of GF in an attenuated medium, GF of positive and negative lags are
obtained as [Snieder, 2004, Roux et al., 2005b]:

d

dτ
C(τ, rA, rB) = −σ

2

4a
(Ga(τ, rA, rB)−Ga(−τ, rA, rB)) (11)

The first one is called as causal GF and the second one is called anti-causal GF.
When we have small enough damping coefficient and all noise sources behave like white
noise in the medium, we obtain GF of the medium between two stations A and B
by computing time-derivative of the cross-correlation between the wavefields recorded
at those two stations. In the context of seismology, the GF of a medium be-
tween two points A and B represents the recorded signal at A if an impulsive source
is applied at B. This illustration is shown in Figure 4 [Weaver and Lobkis, 2001].

Figure 4 – Left: Seismic noise recorded at sensors A and B. Right: Cross-correlating both the signals

results in causal and anti-causal Green’s functions
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Figure 5 – (a): Two receivers (marked by black triangles and positioned at r1 and r2 are surrounded

by boundary S of noise sources. (b): Receiver at r1 turned into the virtual source (real seismogram)

by seismic interferometry. (c): Sources located within the grey regions contribute the most to Green’s

function

3.3 Formulation of Seismic Interferometry

The basics and fundamentals of seismic interferometry is to estimate the GF between any
two seismic sensors by cross-correlating the ambient noise recorded on those sensors. In simple
words, GF is considered as the recording of seismogram at one location because of the impulsive
source of energy at the other location.

Now consider the following scenario. Suppose we have two receivers at positions r1 and r2 in the
space which are surrounded by energy sources located in an arbitrary space with the boundary
S, as shown in Figure 5. The wavefield starting from sources on boundary S propagates inside
the medium and is recorded by both the receivers. One can compute the cross-correlation of
signals recorded at both the stations. After adding together the cross-correlations for all the
sources on boundary S the wavefield propagating towards the path of the receivers will add
constructively (rise in the energy) and the rest will be destructively added (fall of the energy).
This will result in the GF between two receivers as if one receiver acts like and source and
other as receiver [Wapenaar, 2003, 2004]. If we consider the random noise, all the noise sources
will shoot at the same time or overlapped shifted time, the energy from all sources will add
together naturally [Wapenaar, 2004]. The seismic sources located randomly around the inter-
receiver path gives us the interferometric GF between two receivers. Thus all the sources are
not required to obtain the GF between two receivers [Snieder, 2004].

To elaborate more on seismic interferometry, we have used the demonstration of one-dimensional
seismic interferometry given in [Wapenaar, 2004]. Figure 6 shows the plane wavefront, radiated
by an impulsive unit source at x = xs and t = 0, propagating along the positive x-axis direction.
Following assumptions are made: propagating velocity c is constant and no attenuation inside
the medium. xA and xB are the positions of two receivers along the x-axis. The figure 6
shows the plane wave recorded first on the receiver at xA which is given by Green’s function
G(xA,xs, t). The definition of GF is given by impulse at tA = (xA−xs)/c and hence it is given
by Dirac delta function G(xA,xs, t) = δ(t − tA), where tA defines the arrival time of wave at
xA. Similarly, the impulse response at xB is given by G(xB,xs, t) = δ(t− tB), where tB defines
the arrival time of wave at xB and given by tB = (xB − xs)/c.

Looking at figure 6, the ray path from xs to xA associated with two GFs, G(xA,xs, t) and
G(xB,xs, t) is common. Due to this, traveltime and wavefield from xs to xA will be shared
and get cancelled after computing the cross-correlation, leaving only the traveltime between
two receivers xA and xB. This gives us the impulse response at tB and tA, shown in the figure.
This impulse will be the response of source at xA, observed by the receiver at xB, which is
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Figure 6 – Seismic interferometry in 1D: (a): Plane wavefront emitted by the source at xs and two

receivers are kept at positions xA and xB. (b) and (c): tA and tB denote the recording time when the

wave arrives at xA and xB respectively. (d): The cross-correlation delay is given by tB − tA

given in terms of GF G(xB,xA, t) [Wapenaar, 2004].

Because both wave path and traveltime from xs to xA are common which get cancelled in
cross-correlation, we don’t need to know the propagation velocity c and the actual position xs

of source. The traveltime along the common path from xs to xA cancel each other cause it
is not dependent on the propagation velocity and the length of the wave path. If the source
impulse occurred at t = ts instead of at t = 0, the impulses observed at xA and xB would
be shifted by the same amount ts, which will be cancelled in cross-correlation which means
absolute time ts need not be known.

Now, let us define the cross-correlation of impulse responses at xA and xB as G(xB,xs, t) ∗
G(xA,xs,−t). Here the asterisk symbol denotes the temporal convolution of two signals with
the time reverse of second GF. This converts convolution into cross-correlation which is given
by:

G(xB,xs, t) ∗G(xA,xs,−t) =

∫ ∞
−∞

G(xB,xs, t+ t′) ∗G(xA,xs, t
′)dt′ (12)

After using the definitions of delta function we get

G(xB,xs, t) ∗G(xA,xs,−t) =

∫ ∞
−∞

δ(t+ t′ − tB)δ(t′ − tA)dt′

= δ(t− (tA − tB)) = δ(t− (xB − xA)/c) (13)

which results in

G(xB,xs, t) ∗G(xA,xs,−t) = G(xB,xA, t) (14)

This equation 14 signifies that the cross-correlation of signals at two receivers xA and xB gives
the response at one of those receivers (xB) as if there was a source at (xA). Hence, SI called
Green’s function retrieval.
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Suppose, the source waveform function is defined by source wavelet s(t), then the displacement
response at xA and xB can be written as

u(xA,xs, t) = G(xA,xs, t) ∗ s(t) (15)

u(xB,xs, t) = G(xB,xs, t) ∗ s(t) (16)

Let Ss(t) be the autocorrelation of wavelet of the source function:

Ss(t) = s(t) ∗ s(−t) (17)

The cross-correlation between two displacements u(xA,xs, t) and u(xB,xs, t) is given by

u(xB,xs, t) ∗ u(xA,xs,−t) = G(xB,xs, t) ∗ s(t) ∗G(xA,xs,−t) ∗ s(−t) (18)

u(xB,xs, t) ∗ u(xA,xs,−t) = G(xB,xs, t) ∗G(xA,xs,−t) ∗ s(t) ∗ s(−t) (19)

Using equation 14 and 17, we obtain,

u(xB,xs, t) ∗ u(xA,xs,−t) = G(xB,xA, t) ∗ Ss(t) (20)

3.3.1 Example Scenarios

Example 1 Consider the first example of noise correlations in a medium with random sources
[Garnier and Papanicolaou, 2009]. Figure 7 shows the homogeneous medium with two sensors
x1 and x2 and recorded seismic noise generated by sources all over the space. If the noise distri-
bution is homogeneous around the sensors, then causal and anti-causal parts of correlation are
identical. Another Figure 8 shows the noise sources are spatially localized and are stronger at
the sensor x1. Here the correlation is not symmetric and causal GF is stronger. The situation
will be reversed if the sources were near to x2. In cross-correlation, only the source aligned with
the two stations contribute to the emergence of GF. The source distribution shown in Figure 7
is ideal situation; significant departures can occur and affect the quality of Green’s function.
In figure 8 he noise sources are not homogeneously distributed but have at least relatively
uniform azimuth and correlation has amplitude asymmetry. The phase of the correlation
remains unchanged on either side that allows evaluating the travel time of the waves and can be
used in tomography [Garnier and Papanicolaou, 2009, Weaver et al., 2009, Froment et al., 2010].

Figure 7 – (a): A medium with a homogeneous distribution of noise sources (circles) and x1 and x2

are receivers. (b) and (c): Seismic noise recorded at x1 and x2 respectively. (d): The causal and

anti-causal part of Green’s function
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Figure 8 – (a): A medium with a inhomogeneous distribution of noise sources (circles) and x1 and

x2 are receivers. (b) and (c): Seismic noise recorded at x1 and x2 respectively. (d): The causal and

anti-causal part of Green’s function

Example 2 In Figure 9, the wavefield emitted from a source at position xs got recorded on
receivers xA and xB. These receivers are kept 1200 m apart from each other. The waveform
shown in the figure is shifted by 0.6 sec and after computing the cross-correlation, we get the
impulse response at 0.6 sec ahead of t = 0. This 0.6 sec delay defines the traveltime between
positions xA and xB. If we divide the distance between two receivers (1200 m) by traveltime
obtained from Green’s function (t = 0.6 sec), we obtain the propagation velocity of 2000 m/s.
This velocity estimation suggest us the direct-wave interferometry can be used for tomographic
inversion [Wapenaar, 2004, Snieder, 2004].

Figure 9 – (a) and (b): Seismic noise wavefield recorded first on the station at xA and then on the

station at xB. (c): Cross-correlation delay between signals at xA and xB

3.4 An Overview of Surface Waves

There are two types of elastic waves [Aki and Richards, 2002]: First, P-waves, which involve
the compression of elastic material in the direction of propagation of waves. Second, S waves,
which include shear of elastic material perpendicular to the propagation direction. These two
waves are collectively called as body waves. The interaction between this two waves while
propagating through medium produces another type of elastic waves on the surface of elastic
body.
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Figure 10 – Types of elastic waves

The surface waves mainly involve Rayleigh waves and Love waves. Here, Rayleigh waves have
displacement perpendicular to propagation direction whereas Love waves have displacement
along the direction of propagation. Surface waves have higher amplitude than that of the body
waves because they travel through the surface while body waves travel through the interior of
the earth. Figure 10 shows the principal types of elastic waves propagating in the earth.

3.4.1 Types of Surface Waves

1. Rayleigh Waves: Rayleigh waves are named after Lord Rayleigh [Strutt, 1885], who
predicted the existence of this wave mathematically in 1885. Rayleigh waves travel up
and down with an elliptical and retrograde particle motion confined to the vertical plane
in the propagation direction near the surface of a homogeneous half-space [Stein and
Wysession, 2009]. These are vertically polarized waves. These waves are generated by
the superposition of P and SV waves aligned with the wave propagation direction. SV
waves are S-waves (body waves) propagating in the vertical plane. Figure 11a shows the
particle motion of Rayleigh waves.

2. Love Waves: Love waves were named after A.E.H. Love, a British mathematician, who
mathematically solve the model for this wave in 1911 [Sokolnikoff et al., 1956]. Love
waves have a particle motion, which is transverse to the propagation direction but with
no vertical motion, therefore, it is a horizontally polarized wave with SH motion. Their
side-to-side motion (like a snake wriggling) causes the ground twisting, and that is why
Love waves cause much damage to structures during earthquakes. Figure 11b shows the
particle motion of Love wave.

3. Scholte Waves: Scholte waves are the interface (for example water and solid) waves, the
intensity of the wavefield mainly encountered at the interface and ceases exponentially
above and below that [Scholte, 1947]. The Scholte waves have the same property as of
Rayleigh waves, but the Scholte wave velocity is lower than the lowest velocity in the
medium [Biot, 1952].

Surface waves travel through the surface of the earth and mostly confined in outer layers [Stein
and Wysession, 2009]. These waves cause the destruction and damage associated with the
earthquakes. In the case of far-field, surface waves have lower frequency content than the
body waves and can be distinguished in seismograms. The surface waves are dispersive, which
means their propagation velocity will depend on the frequency content in the wave. This is
because a finite duration wave changes its shape during propagation in a dispersive medium due
to its individual spectral components travel with distinct velocities. The distortion of waves
sometimes causes some problems in the signal transmission and the precise measurement in
the transmission of signals. However, this dispersive nature of surface waves is essential for
tomographic imaging of the earth’s crust.
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Figure 11 – The particle motion of (a) Rayleigh waves and (b) Love waves. Here T denotes different

time values. The figure is adapted from http://www.geo.mtu.edu/UPSeis/waves.html

3.4.2 Wave Propagation

The equations governing the wave propagation in seismology are: First one is for compressional
P-waves with scalar potential φ(x, t):

∇2φ(x, t) =
1

α2

∂2φ(x, t)

∂t2
(21)

Here α defines the compressional wave velocity which is given by:

α =

√
λ+ 2µ

ρ
(22)

where λ and µ are Lammés Parameters and ρ is the density of a medium. Second one is for
shearing S-waves with vector potential Γ(x, t):

∇2Γ(x, t) =
1

β2

∂2Γ(x, t)

∂t2
(23)

Here β defines the shear wave velocity which is given by:

β =

√
µ

ρ
(24)

To understand the propagation of both body waves through elastic earth medium, consider the
plane wave propagating in the z-direction (vertically down). The scalar potential for P wave
satisfying equation 21 is given as:

φ(z, t) = Aei(ωt−kz) (25)

http://www.geo.mtu.edu/UPSeis/waves.html


24 MS Thesis

Figure 12 – P and S waves are propagating in the x− z plane which contains the source and receiver.

The P wave displacement is along the wave vector k. Perpendicular to wave vector, S wave is decom-

posed into SV and SH polarization. The horizontal polarization is SH and the vertical polarization is

SV

where A is the amplitude, ω is frequency content of the wave and k is the wavenumber. The
displacement corresponding to this scalar potential is given by its gradient

u(z, t) = ∇φ(z, t) = (0, 0,−ik)Aei(ωt−kz) (26)

This displacement has a non-zero component only along the propagation direction z. The
vector potential satisfying shear wave equation 23 is given by:

Γ(z, t) = (Ax, Ay, Az)e
i(ωt−kz) (27)

The resulting displacement field is given by curl of vector potential

u(z, t) = ∇× Γ(z, t) = (ikAy,−ikAz, 0)ei(ωt−kz) (28)

whose component along the propagation direction is zero. Thus the only displacement asso-
ciated with propagating shear wave is perpendicular to the propagation direction. The plane
waves travelling on a direct path between the source and the receiver thus propagate in the
x− z plane. There are two types of polarization for S waves: SV waves (vertically polarised
waves), shear waves with displacement in the vertical (x−z) plane and SH waves (horizontally
polarised waves), shear waves with displacement in the horizontal y-direction. The polarization
direction of both P and S waves is shown in Figure 12.

In the interior of the earth, P and SV waves are coupled to each other as they propagate
in the same plane (X-Z) and when they occur on the earth’s surface, this coupling produces
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the Rayleigh waves. However, the SH wave is not coupled to any of the wave as it travels
perpendicular to the X-Z plane and when it arrives at earth’s surface, it becomes Love Wave.
One can extract useful information about the crust and upper mantle using the dispersive nature
of these waves. Rayleigh waves exist in half-space and do not show the dispersive nature if we
consider the half space model. However, in case of a layered model of earth Rayleigh wave
becomes dispersive in nature.

3.4.3 Rayleigh Waves in Half Space

Rayleigh waves are the result of a superposition of P and SV waves. In x − z plane, consider
the wave propagating in the x-direction. The potential associated with P wave motion is given
by

φ = Ae(−ikrz+ik(x−ct)) (29)

Similarly the potential associated with S wave motion is

ψ = Be(−iksz+ik(x−ct)) (30)

Here A and B are wave amplitudes, k is the wavenumber, c is the apparent velocity of the wave
along x-axis, α is P wave velocity, β is S wave velocity and finally r and s defines the ratio of
vertical to horizontal wavenumbers for P and S waves respectively and they are given by

r =

√
c2

α2
− 1 s =

√
c2

β2
− 1 (31)

For solving the wave equation (differential equation) using P and S wave potential, we need to
consider the following boundary conditions:

1. Energy does not propagate away from the surface For this is to happen, energy
needs to be trapped near the surface. That means exponentials e−ikrz and e−iksz must have
negative real exponents so that displacement will tend to zero as z → ∞. As r and s given
by equation 31, it requires c < β < α, so that both the square roots in equation 31 become
imaginary like

r = −i
√
c2

α2
− 1 s = −i

√
c2

β2
− 1 (32)

Here, apparent velocity c, should be less than that of the shear wave velocity

2. Free Surface Boundary Condition This is equivalent to vanishing the traction vector
at the free surface, i.e., at z = 0, the vertical stress components σxz, σyz, σzz must be zero for
all x and y. σyz will be automatically zero as there will not be any y component for both P
and SV waves. We can describe the vertical stress components in terms of potentials by

σxz = 2µexz = µ

(
∂ux
∂z

+
∂uz
∂x

)
= µ

(
2
∂2φ

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2

)
= 0 (33)

σzz = λθ + 2µezz = λ

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂z2
+

∂2ψ

∂x∂z

)
= 0 (34)
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Here λ and µ are Lammés parameters, θ is dilatation and e is strain vector. By substituting
the φ and ψ potentials into above equations of stress components, we obtain:

2rA− (1− s2)B = 0[
α2(r2 + 1)− 2β2

]
A− 2β2sB = 0 (35)

Here we obtain two equations and two unknowns, so other than the trivial solution, we obtain
unique solution for this equations by equating the determinant to be zero:∣∣∣∣ 2r −(1− s2)

α2(r2 + 1)− 2β2 2β2s

∣∣∣∣ = 0

Solving this determinant gives us[
α2(r2 + 1)− 2β2

]
(1− s2)− 4rsβ2 = 0 (36)

If we substitute the values of r and s from equation 32 into equation 36, we obtain(
2− c2

β2

)2

= 4

√
1− c2

α2

√
1− c2

β2
(37)

This is called Rayleigh’s Equation. Here the apparent velocity is constant, i.e., it is not a
function of either wavenumber c(k) or frequency c(ω). The Rayleigh wave velocity is related to
body waves velocity using Poisson’s ratio (ratio of α/β). As body wave velocities are constant,
independent of depth, the Rayleigh wave velocity in homogeneous half-space is independent of
frequency.

3.4.4 Rayleigh waves in an elastic layer over half space

A layer of thickness z = H, with density ρ′, P wave velocity α′ and S wave velocity β′, over the
elastic half space z = 0 with density ρ, P wave velocity α and S wave velocity β

Consider a layer of thickness z = H, with density ρ′, P wave velocity α′ and S wave velocity β′,
over the elastic half-space with density ρ, P wave velocity α and S wave velocity β. One thing
to note here is that the wave will propagate in both positive and negative z-direction, but will
only travel in positive the z-direction in half-space (as shown in Figure 3.4.4). After defining
this geometry of layers, we can define the potentials in the following way: First, the potentials
in half-space are

φ = Ae(−ikrz−ik(x−ct)) (38)

ψ = Be(−iksz−ik(x−ct)) (39)



Ingale Vaibhav Vijay 27

The potentials in layer of thickness z = H are

φ′ = A′e(ikr
′z−ik(x−ct)) +B′e(−ikr

′z−ik(x−ct)) (40)

ψ′ = C ′e(iks
′z−ik(x−ct)) +D′e(−iks

′z−ik(x−ct)) (41)

where the definitions of r, s, r′, s′ are given by

r = −i
√
c2

α2
− 1 s = −i

√
c2

β2
− 1 r′ = −i

√
c2

α′2
− 1 s′ = −i

√
c2

β′2
− 1 (42)

Since the amplitude of the wave decreases with the depth in the half-space, the r and s should
be positive and imaginary. This will happen only if c < β < α. To obtain the solutions for
above potentials, we need to find exact expressions for the amplitudes A′, B′, C ′, D′, A and B
and to obtain this, following boundary conditions needs to satisfy

• At z = H, free boundary condition, all the stress components are zero

• At z = 0, continuity condition, all stress and displacement components are continuous

After applying these boundary conditions, we obtain the solutions for wave amplitudes, i.e.,
amplitudes in layer and half-space by equating the determinant of coefficients of amplitude to
zero. This gives us the velocity of Rayleigh waves c as a function of wavenumber, c(k). By
this means Rayleigh waves become dispersive in the layer above the half space. The graph-
ical solution for Rayleigh waves is shown in the figure 13. Here, the graph of velocity w.r.t.
wavenumber is plotted. The dispersive nature of Rayleigh waves can be described using normal
modes [Stein and Wysession, 2009] and these modes are marked by M11, M12, M21, as shown in
Figure 13. Here M11 is called as fundamental mode. These modes are of two types: Symmetric
modes, in which vertical displacement at the contact between two surfaces have the opposite
sign and Asymmetric modes, in which vertical displacement have the same sign.

Figure 13 – Dispersion curve of normal modes associated with Rayleigh waves. M11 is a fundamental

mode and rest (M12 and M21) are higher modes (overtones). k11 and k12 and k21 are wavenumbers of

normal modes. β′ and β are S wave velocities in a layer of thickness z = H and half-space respectively.

3.4.5 Surface wave dispersion

The sum of two harmonic waves with slightly distinct angular frequencies and wavenumbers is
given by

u(x, t) = A
[
cos(ω1t− k1x) + cos(ω2t− k2x)

]
(43)
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The angular frequencies (ω1 and ω2) and wavenumbers (k1 and k2) can be written in terms of
deviation from their respective average values:

ω1 = ω + δω ω2 = ω − δω ω � δω

k1 = k + δk k2 = k − δk k � δk
(44)

After putting this back to equation 43, we obtain

u(x, t) = A
[
cos((ω + δω)t− (k + δk)x) + cos((ω − δω)t− (k − δk)x)

]
= 2A

[
cos(wt− kx)cos(δωt− δkx)

] (45)

Thus the sum of two harmonic waves becomes the product of two cosine functions and the
resultant waves are also propagating harmonic waves. As δω is smaller than ω, second cosine
term varies more slowly in time than that of the first one. Similarly, δk is smaller than k, the
same cosine term varies more slowly in space and time than that of the first one. So this slower
propagating wave will act as the envelope with frequency δω and wavenumber δk over the faster
propagating wave with frequency ω and wavenumber k. The envelope is superimposed over the
faster propagating wave (carrier wave). The velocity with which this envelope travels is called
group velocity which is given by U = δω/δk. The velocity with which carrier wave travels is
called phase velocity which is given by c = ω/k

3.4.6 Group Velocity Dispersion

The energy in the wave propagates as the envelope of wave packet at a velocity which is called
group velocity. The packet of energy that propagates as a surface wave contains a spectrum
of periods due to its dispersive nature. The period of the wave packet is measured from the
time between successive peaks or troughs. The wave with the longest period travels faster and
appears first on seismogram because of less attenuation through the medium. The straight
forward way to calculate the group velocity is to divide the interstation distance by the travel
time of the wave packet.

Example Suppose the distance between two stations is 1000 km, then the wave group with
period 25 sec and travel time of 295 sec will have group velocity of 1000 km

295 sec
= 3.38 km/s. The

next arriving wave group with period 20 sec and travel time of 310 sec will have group velocity
of 1000 km

310 sec
= 3.22 km/s. This tells us that Rayleigh wave with different frequency or period

travels with different velocity.
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4 Fast Marching Surface Tomography

4.1 Background Information

After obtaining the dispersive nature of group/phase velocity dispersion curves from GF, we
can calculate the travel time of Rayleigh waves. Inverting the travel times lead to determine the
variations in group velocity at a particular frequency in the region of interest. By calculating
the travel times for several frequencies, we can construct a 2D velocity model.

Tomography is a way to understand the internal (unknown) property of medium from line
integral of the already known property of the medium. Ex: Suppose, we know the travel
time of propagating seismic waves and we represent it using data, d, then we can estimate the
seismic wave velocity in the medium (which is represented by model parameters, m) using the
line integral of travel time in the medium over the path length. The linear relation between
model parameters, m and data, d is given by:

d = Gm (46)

The relation between observed data, dobs and the initial set of model parameters, mo is also
given by equation 46. Our main aim is to estimate the model parameters, mest by minimizing
the difference between dobs and model data, dest. Here dest is obtained using intial set of model
parameters, mo. This is considered as an inverse problem where we update mo subject to any
regularization constraints. The protocol of several steps to produce a tomographic image from
seismic data is [Rawlinson et al., 2003, Rawlinson and Sambridge, 2004a, Menke, 2018, Parker
and Parker, 1994, Tarantola, 1987]:

1. Model Parameterization: The physical or seismic properties of the medium are defined
by a set of model parameters and we need to specify them as a first step of tomography.

2. Forward Calculation: This defines the procedure for calculation of model data (syn-
thetic data) given the set of values of model parameters.

3. Inversion: Regularization of model parameter values under the line of perfect matching
of model/synthetic data with the observed data along with the specified constraints.

Let us understand all the above steps with the help of the following example: In tomographic
imaging, consider traveltime as model data and velocity variations as model parameters. For a
continuous velocity medium v(x ), the traveltime of a ray is:

t =

∫
L(v)

1

v(x )
dl (47)

where ray path is given by L(v) and velocity field by v(x). This equation is non-linear cause
traveltime is inversely proportional to velocity.

This non-linear inverse problem can be converted to the linear inverse problem under the as-
sumption that the path between source and receiver is unperturbed in great extent by adjusting
the model parameter values in the inversion. For this, consider the perturbation in velocity as:

v(x ) = v0 (x ) + δv(x ) (48)

The path along which this integration is computed is given by:

L(v) = L0 + δL (49)
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Similarly, the traveltime perturbation is given by:

t = t0 + δt (50)

Then equation 47 for determining travel time becomes:

t =

∫
L0+δL

1

v0 + δv
dl (51)

By expanding the integrand using Geometric series and ignoring the higher-order terms (cause
perturbation is low), we obtain:

δt = −
∫
L0

δv

v2
0

dl +O(δv2 ) (52)

If we define slowness as the inverse of the velocity field, s(x ) = 1/v(x ), the perturbation in
traveltime is given by

δt = −
∫
L0

δsdl +O(δs2 ) (53)

where δs is perturbation in slowness. Hence the traveltime perturbation δt is linearly dependent
on the slowness perturbation δs . This also demonstrates the linearisation of non-linear inverse
problem.

4.2 Description of steps for Tomography

4.2.1 Model Parameterization

The traveltime of a ray from source to receiver is governed by the velocity profile of the medium.
This results in representing the subsurface structure of the earth by variations in wave velocity
or slowness. These variations notify the velocity parameterization. The possible ways to define
the velocity parameterization are:

1. Constant velocity blocks, which defines the ray paths within each and every block.
These blocks are not the first choice for representation of smooth variations in subsurface
structure due to discontinuities in velocity field velocity that resides between adjacent
blocks.

2. Use interpolation function, which helps to define velocity values at the vertices of a
rectangular grid. If we demand to have continuous first and second derivatives in the
velocity field, then its better to use higher order interpolation functions. They are used
in ray tracing method [Thomson and Gubbins, 1982].

Some other uncommon velocity parameterization are:

• Define the velocity variations using a set of interfaces whose geometry is varied to satisfy
the data

• A specific combination of velocity and interfaces parameters.

We can define the above listed velocity parameters with the help of a priori information in
either of the forms given below:

• Presence of natural boundaries like faults or interfaces

• Adequate data coverage to resolve the trade-off between interface and velocity

• Pre-defined protocol of inversion routine
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4.2.2 Fast Marching Method: Forward Problem for Traveltime

In tomography, forward problem is defined by the traveltime calculation between known end-
points through given medium. There are many ways of determining source-receiver traveltimes
like ray tracing (bending and shooting of ray), wavefront tracking schemes (finite difference
solutions of Eikonal equation). There are certain drawbacks in this method of ray tracing
like robustness, speed and uniqueness of the derived ray paths. To overcome these drawbacks,
Rawlinson et al. [2003], Rawlinson and Sambridge [2004a] used Fast Marching Method (FMM)
and then the inversion is carried out [Sethian, 1996]. This method is a variant of wavefront
tracking. This method was initially developed by [Sethian and Popovici, 1999] for tracking
advancing interfaces.

For tracking the evolution of monotonically advancing interfaces via the finite difference solution
of Eikonal equation, we can use a grid-based numerical scheme, FMM [Sethian, 1999, Rawlinson
et al., 2003]. The Eikonal equation [Tarantola, 1987] states that the magnitude of the travel
time gradient at any point along a wavefront is the inverse of the velocity at that point which
can be given as:

|∇xT | =
1

v(x)
= s(x) (54)

where ∇x is a gradient operator, T is traveltime and s(x) is slowness. There is no direct
solution for this Eikonal equation cause ∇xT is not defined when we consider the gradient
discontinuities. So another way to solve the Eikonal equation is to use a weak form of solution
which results in continuous traveltime vector T (x) and may not have continuous ∇xT . One
way to obtain the solution is to introduce the viscous term in the Eikonal equation

|∇xT | = s(x) + ε∇2
xT (55)

where ε is a viscous limit and put constraints on the smoothness of the solution. We obtain
the weak solution corresponding to the first-arriving wavefront in the limit of smooth solution.
This approach of a weak form of solution is used by [Sethian and Popovici, 1999] to solve the
Eikonal equation on a 3D grid. This means FMM uses the first-order upwind difference scheme:

√
max

[
D−xijkT,−D

+x
ijkT, 0

]2
+max

[
D−yijkT,−D

+y
ijkT, 0

]2
+max

[
D−zijkT,−D

+z
ijkT, 0

]2
= sijk (56)

where sijk is the slowness at the grid point (i, j, k). Other terms are given by:

D+xT =
T (x+ δx)− T (x)

δx
D−xT =

T (x)− T (x− δx)

δx
(57)

where T is traveltime and δx is grid spacing. As shown in Figure 14 upwind scheme indicates
that if wave progress from left to right. We should use finite difference scheme that reaches
upwind to the left to get information to construct the solution downwind to the right. This
scheme tells us how to calculate new traveltimes if we know the traveltime on the adjacent grid
points. One important thing is to note that the order in which grid points are updated should
be in the direction of flow (either upwind or downwind). In this method, the grid points on
which first true traveltime arrives are alive grid points. All neighbouring points of one of the
alive point are close points on which traveltimes are correctly assigned. The points on which
we compute the traveltime for the first time and which are away from close points are far
points. In the flow of calculations, far points become close points. The calculation scheme will
continue until all of the far points become alive points; hence, the propagation of wavefront is
traced in the whole medium.



32 MS Thesis

Figure 14 – Illustrating the method of narrow band. The traveltimes for Alive points are accurately

calculated. Close points form a band about the alive points and they are assigned by trial values.

None values are calculated for Far points. Alive points lie upwind of the narrow band whereas far

points lie downwind. The figure is adapted from [Rawlinson et al., 2003]

Figure 15 – Illustration of the FMM in 2-D. (a): The traveltimes at four neighbouring points of

source point (black dot) are estimated using Eq. 34. (b): The smallest of these four values (grey

dots) should be correct, so all close neighbours to this point that are not alive (white dots) have their

values computed, and added to the narrow band defined by the grey dots. (c) The smallest of these

six close points again must be correct, and all neighbouring points have their values computed (or

recomputed). The figure is adapted from [Rawlinson et al., 2003]
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Figure 15 illustrates the evolution of narrow-band method to solve the Eikonal equation in the
medium with the help of waveform given on the source point. Choosing the close points with
the least traveltime means the causality of wave propagation is satisfied. This also guarantees
alive points are evaluated with the causal information. The close point with minimum travel
time is all the time upwind to the adjacent close points. Once the travel time between on all
the grid points is calculated, we invert it using subspace inversion.

4.2.3 Traveltime Inversion

Inversion is the technique where the misfit between model parameters m and observed data
dobs needs to be minimized. The relation between m and d is given by

d = Gm (58)

whereG is called a data kernel. The inversion can be performed in various ways: back-projection
method, gradient methods, global optimization. For traveltime inversion, we follow here the
inversion based on the gradient method. In this case, the underlying medium is divided into
3D blocks where slowness can be defined. Suppose, the traveltime integral is discretized for a
single ray in jth block,

δt = −
∫
Lo

δs dl +O(δs2) (59)

The discretization of above continuous integral gives us

δt =
∑
j

lj∆sj (60)

where ∆sj is slowness in block j and lj is the path length in the corresponding block. This
equation can be written as d = Gm, where d defines the perturbation in traveltime, m defines
the model parameter matrix in terms of velocity perturbation and data kernel is defined by the
path length l. The solution of d = Gm using generalized inverse method provides an estimate
of the model parameter, mest as

mest =
[
GTG

]−1
GTd (61)

Then the misfit becomes dobs − Gmest. Then we update m iteratively again by minimizing
the new misfit until sufficient convergence is achieved. In traveltime tomography, the inverse
problem is commonly underdetermined as the number of model parameters to be estimated is
less than that of total number of observed data points. So to solve such an underdetermined
problem, we need to define the objective function S(m). Along with minimizing the misfit
between observed data and estimated model parameters, introduce a priori information about
the model parameters into the objective function as regularization term:

S(m) = (d−Gm)T (d−Gm) + ε(m−mo)
T (m−mo) (62)

where ε is the damping parameter to control the underdetermined part of the solution and
mo is the a priori information about the model parameters to be estimated. The first term
on the RHS of the above equation is misfit term, which implies minimizing the error between
estimated and observed data. The second term is regularization term (norm of the model
parameter) which helps to minimize non-uniqueness of the solution. The solution is obtained
by minimizing the objective function. This involves minimizing misfit and regularization term
simultaneously. The trade-off between both the terms is controlled by ε. When ε is large,
the weight of norm increases compared with the misfit term, that is why we try to minimize
the norm of the model parameters to more extent. When ε is less, weight of the misfit term
increases compared with the norm term and we try to minimize misfit term to more extent.
This method is called trade-off minimization [Menke, 2018].
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5 Methodology

In this study, we have used a total of 38 seismic stations which were operated by the Council
of Scientific and Industrial Research - National Geophysical Research Institute (CSIR-NGRI)
along ∼660 km East-West profile. As shown in the Figure 2, this East-West profile mainly
consists (from west to east) of Western Dharawar Craton, Eastern Dharawar Craton and Cud-
dapah Basin [Saikia et al., 2017, 2016]. We have used ambient seismic noise recorded on a
total of 38 broadband seismic stations along the East-West profile (station list is described in
Appendix A). Ambient noise data is a continuous recording of Earth’s surface vibration for
a year long period. We have considered only the vertical (Z) component data recorded on a
seismic station. This noise data is cross-correlated and Green’s functions have been extracted.
These GFs are used to compute the dispersion curves. In this project work, we have used basic
Linux c© Shell scripting to edit, store and organize the data. For analysing seismic data, we
have used Seismic Analysis Code (SAC) [Goldstein and Snoke, 2005]. SAC is the best tool
for organizing, editing, processing seismic data. Generic Mapping Tool (GMT) [Wessel et al.,
2013] is used to create geographical figures and plots. Various MATLAB c© and Shell scripts
are used for processing the seismic data.

For ambient noise data processing, we have used the procedure described by Bensen et al.
[2007], shown in Figure 16.

This involves the sequence of the following steps:

1. Initial data preparation

2. Cross-correlation and temporal stacking

3. Computing travel times and phase/group velocity dispersion curves

4. Error analysis and quality control

After performing all the above steps, we follow the following steps to generate the tomographic
image of the region of interest

1. Preparing group/phase velocity maps

2. Computing shear velocity maps

Now we will discuss all these steps in detail:

5.1 Initial data preparation

The initial step of data analysis is to prepare the waveform data for every individual station.
This helps to generate the broad-band ambient noise by removing the earthquake signals and
instrumental irregularities. It is more important when we have a period longer than the mi-
croseism band (∼5 to ∼17 sec). This step composed of few processing steps like removal of
instrument response, mean and trend from the signal. This is followed by bandpass filtering,
time-domain amplitude normalization and then spectral whitening of the seismic signal. This
is applied on a single day seismic data.
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Figure 16 – Schematic illustration of the data processing scheme. The steps involved in preparing

single-station data prior to cross-correlation are mentioned in Phase 1. Phase 2 shows us the procedure

of cross-correlation and stacking. Phase 3 involves dispersion curve measurement and Phase 4 is the

error analysis and data selection process. The figure is adapted from [Bensen et al., 2007]

5.1.1 Temporal Normalization

This is also called time-domain normalization. It reduces the effect of earthquakes, instrumental
irregularities and non-stationary noise sources on cross-correlation. It uses the technique called
one-bit normalization, which keeps only the sign of raw signal. This means replace all the
positive amplitudes of signal by +1 and all the negative amplitudes by -1. This will helps to
enhance the signal to noise ratio (SNR) [Larose et al., 2004, Yao et al., 2009]. This also helps
to remove the narrow data glitches completely.

5.1.2 Spectral Normalization

Spectral normalization is also called whitening. It flattens down the amplitude spectrum by
removing the seismic hum, primary and secondary microseism. It helps to stretch the band of
the ambient noise signal in cross-correlation and combats the degradation caused by consistance
monochromatic sources.

In our case, we had raw seismic data in .ref format. We converted it to .sac format using
ref2sac code. The .ref data was continuous recording and while converting it to .sac format,
we created a one-day (24 hour) long individual segments for each station. We have then
removed the instrument response using the poles and zeros from the one-day long .sac data
from all respective stations (This is exaplained in Appendix B). We applied tapering to remove
the glitches at both the start and end of each of the one-day data. We have removed the
mean from each data to get rid of the linear trend and to make the data centered to its zero
amplitude. Then we applied the bandpass filter, temporal and spectral whitening to flatten
down the microseism and seismic hum, which is present in the data.
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5.2 Cross-Correlation

Here, we perform the cross-correlation between day long ambient noise data from all possible
pairs of stations. Suppose we have n number of stations then it gives us a total of n(n− 1)/2
station pairs. It is usually common to obtain millions of cross-correlations when we have
ambient noise recorded on several seismic stations. This will produce a new time series in
terms of GFs. The cross-correlations are two-sided time functions with both positive and
negative correlation lags (shift from zero in opposite directions). The positive part of the
cross-correlated signal is called causal signal and the negative part is called anti-causal signal.
These represent the waveform propagating in opposite directions between signals. There are
two methods of computing cross-correlations: Geometric cross-correlation and Phase cross-
correlation [Schimmel, 1999].

5.2.1 Geometric Cross-Correlation (CCGN)

The Geometric Cross-correlation or CCGN is used because it is independent of amplitude
changes in time series. The CCGN output ranges between +1 and -1, where +1 signifies the
perfect matching of two time series with coherency (same polarity) and -1 signifies the matching
of time series with the same coherency but with opposite polarity.

Suppose we have two time series, s1(t) and s2(t), the CCGN as a function of time t is given by:

CCCGN(t) =

τ0+T∑
τ+τ0

s1(t+ τ)s2(τ)√
τ0+T∑
τ+τ0

s1(t+ τ)2
τ0+T∑
τ+τ0

s2(τ)2

(63)

where τ is summation index and τ0 is the starting time of both the series s1(t) and s2(t). The
summation of time series is performed over a time window of length T . Here the denominator
is the geometric mean of energy of two time series.

5.2.2 Phase Cross-Correlation (PCC)

It is based on a complex trace (analytical signal) analysis. Suppose we have analytical signal
S(t). If we represent its real part by s(t) and imaginary part by Hilbert Transform [Arfken and
Weber, 1999] of s(t) as H

[
s(t)
]
, then

S(t) = s(t) + iH
[
s(t)
]

= A(t)eiφ(t) (64)

where A(t) is time dependent amplitude which is also called envelope and φ(t) is instantaneous
phase [Bracewell and Bracewell, 1986].

Suppose we have two signals s1(t) and s2(t), we then measure the phase stack coherence to
determine the similarity at every sample

c(t) =
1

2N

τ0+T∑
τ=τ0

|eiφ(t+τ) + eiψ(τ)| (65)

where eiφ(t) and eiψ(t) are amplitude normalized analytic signals of s1(t) and s2(t). At time t
the phase stack is calculated at each time sample τ for the time length of T . All N samples
are added together and 1/2N is normalization factor. When two signals are perfectly coherent,
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then c(t) becomes 1 and when they are coherent with opposite polarity, then c(t) becomes 0.
This makes the amplitude 0, which should be 1 when signals are perfectly anti-correlated. We
expand equation 65 to include anti-correlation part

CPCC(t) =
1

2N

τ0+T∑
τ=τ0

{
|eiφ(t+τ) + eiψ(τ)| − |eiφ(t+τ) − eiψ(τ)|

}
(66)

Using this equation, cross-correlated amplitude ranges between +1 (perfectly correlated) and
-1 (perfectly anti-correlated).

5.2.3 Comparision between CCGN and PCC

Though CCGN and PCC are independent of amplitude content of signals, they differ from each
other. PCC has high oscillation sensitivity whereas CCGN includes fast decay of oscillation at
the end of narrow band wavelet. The SNR of the output of different cross-correlations depends
on waveform complexity. The PCC is highly sensitive to waveform complexity and hence gives
us a higher signal to noise ratio (SNR) than that of CCGN. The root mean square (RMS)
ratios of CCGN to PCC are more than 1, which again interpreted as stronger sensitivity of
waveform similarity in PCC measure. The CCGN gives higher cross-correlation by aligning the
waveforms by their absolute maximum or minimum but not at the zero time lag. However,
in PCC, we obtain higher cross-correlation when waveforms are aligned at zero time lag. Low
amplitude noise within the correlation window will have its most definite impact when PCC is
used and is equally sensitive to all perturbations in the wavelet. PCC permits discrimination
between closely similar waveforms. This will have more advantage of travel time picking.

5.2.4 Stacking

The technique of combining a collection of cross-correlation traces into a single trace is called
stacking [Bensen et al., 2007, Liu et al., 2009]. It is used to attenuate random noise and
amplify the coherent signal. The stacking is a linear superposition method. We compute the
cross-correlation of daily time series and then they are stacked further for whole available data.
Stacking is the average trace of all available cross-correlate traces computed between a pair of
stations over the prescribed time period. Suppose we have N number of cross-correlated traces
c(t), then linear stacking cs(t) is given by

cs(t) =
1

N

N∑
i=1

ci(t) (67)

where i is linear summation index.
In our study, we have used the stacking method called time-frequency phase-weighted stack
(tf-PWS). We can improve the GF convergence when we have poor performance of traditional
linear averaging methods using phase-coherence adapted by tf-PWS [Ventosa et al., 2017].
The phase-weighted stack (PWS) is an arithmatic product of linear stack and the phase stack
[Schimmel and Paulssen, 1997]. The tf-PWS uses time-frequency expansion using S-transform
[Stockwell et al., 1996] as it gives precise phase information.

5.3 Dispersion Curve Measurement

We obtain the Green’s functions after computing daily cross-correlations and then stacking. The
group and phase velocities are measured as a function of the period using Green’s functions.
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This can be done using Frequency Time Analysis (FTAN) [Dziewonski, 1971, Yanovskaya et al.,
2012].

Suppose we have time series s(t), its Fourier transform is

S(ω) =

∫ ∞
−∞

s(t)e(iω)tdt (68)

We obtain the dispersion measurements using the analytic signal which is given in the frequency
domain by,

Sa(ω) = S(ω)(1 + sgn(ω)) (69)

The inverse Fourier transform of the above equation is:

Sa(t) = |A(t)|eiφ(t) (70)

To construct frequency time function, we consider S(w) subjected to narrow Gaussian bandpass
filters with centre frequency ω0

Sa(ω, ω0) = S(ω)(1 + sgn(ω))G(ω − ω0) (71)

where Gaussian function G(ω − ω0) is given by

G(ω − ω0) = e
−α
(

ω−ω0
ω0

)2
(72)

Here α defines frequency-time domain resolution, which is a function of the distance from source
to receiver [Levshin et al., 1992]. We perform the inverse Fourier transform and it results in
2D smooth envelope function, |A(t, ω0| and phase function φ(t, ω0). We obtain group velocity
using |A(t, ω0| and phase velocity using φ(t, ω0). The procedure for group and phase velocity
dispersion measurements is different and we will see them individually.

5.3.1 Group Velocity Dispersion

It comprises a total of 8 steps which are described below:

1. FTAN graph is obtained by performing the log of the square of the envelope of the analytic
signal, log |A(t, ω0)|2. In this step, the group velocity is given by time t of the envelope
function A(t, ω0) and the period is given by center frequency ω0.

2. Then track the dispersion ridge as a function of the period to get a raw group speed curve
[Shapiro and Ritzwoller, 2002].

3. A phase-matched filter is defined in the chosen period band and applied to the waveform
to obtain undispersed signal.

4. Identify the contaminated noise and remove from the undispersed signal. Here, noise
comprises of earthquake signals, multi-path signals, coda waves, seismic waves.

5. Compute the FTAN image of the cleaned waveform by performing log |A(t, ω0)|2 of the
cleaned waveform. Here broader Gaussian filters (broader than which was applied to raw
waveform) is applied to new waveform during phase-matched filtering.

6. Finally, track the dispersion ridge as a function of the period on the FTAN image to
obtain final and filtered group velocity curve.
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5.3.2 Phase Velocity Dispersion

Phase velocity measurements require the additional information along with the envelope func-
tion on which group velocity is measured. At instantaneous frequency ω

φ(t, ω) = k∆− ωt− φs − φa (73)

where traveltime is given by t, interstation distance by ∆, wavenumber by k, source phase by
φs and phase ambiguity term by φa. When we observed phase at the observed group arrival
time tu = ∆/U , and if k = ωsc, we write the expression for phase slowness as:

sc = su + (ω∆)−1(φ(tu) + φs + φa) (74)

Using phase slowness, we obtain phase velocity. For cross-correlations of ambient noise source
phase is zero: φs = 0. The 2π ambiguity part inherent to any phase spectrum gives us the
phase ambiguity term as φa = 2πN , the value of N gives the closest relation between prediction
and observation. These terms give us additional information w.r.t. group velocity so that we
obtain phase velocity dispersion. In ambient noise cross-correlations velocity waveforms are
back-shifted by −π/4, i.e., φa = 2πN − π/4. Then phase slowness becomes

sc = su(ω∆)−1(φ(tu) + 2πN − π/4) (75)

5.4 Traveltime Inversion

After obtaining the phase and group velocity maps, we invert fundamental mode Rayleigh
wave group and phase velocity using Fast Marching Method (FMM). It uses an Eikonal solver
to compute traveltimes and then subspace scheme to solve the inverse problem [Young et al.,
2011, Rawlinson and Sambridge, 2004b]. Three important factors are considered for traveltime
inversion and plotting velocity fields:

1. Damping factor: To prevent the final solution output from staying too far from the initial
model

2. Smoothing factor: To constrain the smoothness of the solution output

3. Dicing factor: To refer to the subsampling of continuous velocity field using cubic B-spline
velocity patches. This will be used to interpolate the velocity grid.

This both are ad hoc variables, but they are used to obtain a smooth output that is not greatly
perturbed from the initial model and to satisfy the data. The steps to follow for tomographic
inversion are given below

• To compute traveltime by FMM, a grid-based Eikonal solver

• To construct initial model for inversion

• To obtain the measure of model roughness and smoothness

• To invert the dispersion data linearly (least square inversion)

• To plot either group or phase velocity maps using color contour maps
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6 Results and Discussion

6.1 Ambient Noise

Ambient noise was recorded along the East-West profile of South India using a total of 38 seis-
mic stations. The data is stored in .sac format at 50 samples per second (Sampling frequency:
50 Hz) between a period of 2nd April 2012 and 24th October 2013 (total 18 months). The data is
available on 3 components, namely North-South, East-West and Vertical components. Here, we
have used vertical component for cross-correlations. In Figure 17, we have shown an example
of 24-hour long ambient noise recorded on three seismic stations, namely DMR, KLR and PMR.

Figure 17 – Example of ambient noise recorded on 3 stations (DMR, KLR and PMR) on Z component

6.2 Cross Correlation and Stacking

We computed the cross-correlations of ambient noise as described in Bensen et al. [2007]. The
instrumental response is corrected by removing poles and zeros from station data. Then the
mean and trend were removed from data. The data has been downsampled from 50 Hz to 5
Hz. Then one-bit normalization is applied to data. In total, we had ambient noise recorded on
38 seismic stations and hence, we have 38∗(38-1)/2 = 703 correlation pairs. We have computed
two types of cross-correlations namely Geometric Cross-Correlation (CCGN) and Phase Cross-
Correlation (PCC). Then we have stacked the cross-correlation output between all available
pairs of seismic stations using tf-PWS method to improve the SNR of GF. We have performed
two types of stacking using tf-PWS. In the first case, we obtained one-sided Green’s functions
(causal part), which signifies the seismic signal travelling from one station to another. In the
second case, we obtained both the causal and anti-causal part of Green’s function (symmetric
GF), signifying that the seismic signal traveling between two stations to-and-fro. Thus we have
obtained the following configurations of stacked Green’s functions:

1. tf-PWS-CCGN (Geometrically cross-correlated with only causal part)
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Figure 18 – Cross-correlation gather (CCGN) for the station ALN. Location of the station is shown in

Figure 2. All cross-correlations are centered around zero time lag. The Green’s functions are arranged

according to an increasing distance between ALN and other stations

2. tf-PWS-CCGN-sym (Geometrically cross-correlated with causal and anti-causal part)

3. tf-PWS-PCC (Phase cross-correlated with only causal part)

4. tf-PWS-PCC-sym (Phase cross-correlated with both causal and anti-causal part)

Among these combinations, we have selected the Green’s functions having a higher value of
SNR. Example, suppose we have all 4 configurations of Green’s functions between two stations,
say ALN and AMR. If tf-PWS-CCGN-sym has higher value of SNR among all of them, then for
further analysis, we have considered tf-CCGN-sym Green’s function. Based on this criterion,
out of 703 station pairs, we have chosen 700 for computing group and phase velocity dispersion.
We have excluded the following station pairs: BHL-YSN, KMK-PVG, KLR-RSP. In Figure 18
and 19, we had shown the Green’s functions obtained using CCGN and PCC technique between
ambient noise recorded on ALN and rest all 37 stations, respectively. The Green’s functions are
arranged (top to bottom of Figure 18 and 19) according to the geographical distance between
ALN station and other stations. If we compare both Figures 18 and 19, we observed here that
the cross-correlations obtained using PCC are less noisy than that of obtained using CCGN.
This here we preferred stacked Green’s functions obtained using PCC over CCGN.
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Figure 19 – Cross-correlation gather (PCC) for the station ALN. Location of station is shown in

Figure 2. All cross-correlations are centered around zero time lag. The Green’s functions are arranged

according to increasing distance between ALN and other stations

6.3 Dispersion of Group and Phase Velocity

The fundamental mode of both phase and group velocity dispersion curves is computed from
stacked GF as described in sections 5.3.1 and 5.3.2. We have computed group and phase
velocities by converting GFs into a frequency-time diagram of signal power as a function of
frequency and group period. The period is extracted from the stacked Green’s functions after
applying Fourier transform on it. The central frequency in each Fourier transform is considered
for the period. For the available stacked Green’s functions, we have obtained a period from 3
sec to 18 sec. For each period, we have obtained group and phase velocities using the amplitude
of wave group and phase of the wave, respectively. The resultant group velocity ranges between
2.9 km/s and 3.3 km/s. In Figure 20, we have shown one example of phase and group velocity
dispersion curve. The predicted group and phase velocities are shown by black and blue lines,
respectively. The group and phase velocities after corrections are indicated by blue triangles and
orange squares respectively. The energy associated with this frequency-time diagram is shown
using color contour. Here yellow color represents the higher value of energy and blue color
represents the lower value. The best observed values of group/phase velocities have a higher
value of energy. This means the group/phase velocity values residing in the yellow contour
region gives us a more accurate estimation. Thus we have selected 3 sec to 14 sec period for
plotting of group and phase velocity maps. The left side of Figure 20 is a basic FTAN measure
and the right side is Phase-Matched FTAN measure. In basic FTAN measure, we didn’t remove
the noise from Green’s functions which are used for computing group and phase velocities with
respect to the period. This may cause error in precise estimation of dispersion curves. So to
improve the quality of the dispersion curve, Phase-Matched FTAN [Levshin and Ritzwoller,
2001] is used. One of the vital use of this method is to improve the signal to noise ratio of the
dispersion measurement. Total 4 steps are used in this method to obtain noise free dispersion
curves:

1. Compute the dispersed signals using basic FTAN and compress them in time by applying
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Figure 20 – Group and phase velocity dispersion curves obtained using FTAN: Group and phase

velocities are shown by black (along with blue triangles) and blue lines (along with orange squares),

respectively. Left: Basic FTAN dispersion curve. Right: Phase Matched filtered FTAN dispersion

curve.

an anti-dispersion or phase-matched filter. This signal is referred to as the compressed
signal

2. Extract the Rayleigh wave by filtering the noise which is isolated from time-compressed
signal.

3. Redispersed the filtered signal by applying inverse phase-matched filter on it and this will
be filtered signal

4. Then the spectral amplitude and corrected group/phase velocities are measured

We have performed the group/phase velocity dispersion measurements only if the interstation
spacing is three times the seismic wavelength for given period [Bensen et al., 2008]. After
plotting the group/phase velocities, we have applied selection rule to extract useful dispersion
curves:- Phase velocity is always greater than that of the group velocity and it is continuously
increasing with the period. The dispersion curves which are not following this rule are discarded.
Hence, we selected 60% of the total obtained dispersion curves for further analysis.
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6.4 Group/Phase Velocity Maps

After computing the group/phase dispersion curves, we have calculated the traveltime between
a virtual source and receiver using FMM (as described in section 4.2.2). We then computed
both group and phase velocity maps using FMST (as described in sections 4.2.3 and 5.4). They
are shown in Figure 21 and 22, respectively for the period range between 3 sec and 15 sec.
For this, we have considered the initial velocity model as a constant velocity model. We have
computed velocity maps for the period range between 3 sec and 15 sec with considering three
factors, namely damping factor, smoothing factor and dicing factor. We kept damping factor as
constant (equals to 1) and varied smoothing factor between 0 and 2. Smoothing factor equals
to 0 means no smoothing. We kept 20 grid points for dicing level in latitude and longitude.
The seismic wavelength was at least 3 times the minimum interstation spacing.

In Figure 21, we have considered the constant velocity background model (group velocity = 3.2
km/s), which is shown by red color in all the plots. In the region of East-West profile of South
India, group velocity varies between 2.99 km/s to 3.15 km/s which signifies the less variation
in group velocity. Although, the variation in velocity increases from period 4 sec to 8 sec and
then starts steadily decreasing till 15 sec period.

In Figure 22, we again considered the constant velocity background model (phase velocity =
3.0 km/s), which is shown by green color in all plots. Here the phase velocity varies between
2.9 km/s and 3.05 km/s, which again show the less variation in group velocity. Here phase
velocity didn’t differ much with respect to the period, unlike group velocity.

In group and phase velocity dispersion curves or map, different period values denote the different
depths. Here we obtained period range from 3 sec to 15 sec, which means roughly a depth from
10 km to 50 km. So this study lacks the information about shallow crustal part (less than 10
km). Also, variations in group velocity are more compared with in phase velocity. This tells
us that the shallow crustal structure along the East-West profile is more sensitive to longer
seismic wavelengths. Also, this less variation in phase velocity misses out the shallow crustal
information at high-resolution scale (i.e., low wavelength).
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       Period = 3 sec                                            Period = 4 sec                                          Period = 5 sec

       Period = 6 sec                                            Period = 7 sec                                          Period = 8 sec

       Period = 9 sec                                            Period = 10 sec                                          Period = 11 sec

       Period = 12 sec                                            Period = 13 sec                                          Period = 14 sec

       Period = 15 sec

Parameters:

Period range: 3 sec to 15 sec

Damping factor: 1

Dicing factor: 20

Smoothing factor: 2

Figure 21 – Group velocity map for South India East-West profile for period range from 3 sec to 15

sec. The parameters for plotting these plots are mentioned in the bottom right of the figure
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       Period = 3 sec                                            Period = 4 sec                                          Period = 5 sec

       Period = 6 sec                                            Period = 7 sec                                          Period = 8 sec

       Period = 9 sec                                            Period = 10 sec                                          Period = 11 sec

       Period = 12 sec                                            Period = 13 sec                                          Period = 14 sec

       Period = 15 sec

Parameters:

Period range: 3 sec to 15 sec

Damping factor: 1

Dicing factor: 20

Smoothing factor: 2

Figure 22 – Phase velocity map for South India East-West profile for period range from 3 sec to 15

sec. The parameters for plotting these plots are mentioned in the bottom right of the figure
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7 Conclusion

The Rayleigh group and phase velocities at lower periods give us information about the shallow
crustal part of the earth. In this study, we have obtained both the group and phase velocity
maps using cross-correlations of the vertical component of ambient noise recorded on 38 broad-
band seismometers along the East-West profile of South India. The cross-correlated functions
were stacked to obtain Green’s function between a virtual source and receiver. The group and
phase velocity dispersion curves were obtained using Green’s functions for the period range of
3 sec to 15 sec using basic and phase-matched FTAN. We then created the phase and group
velocity maps for East-West profile of South India for given period range. In our study, we
didn’t get group and phase velocity dispersions below 3 sec period, which in turn lacks the
information about the shallow crust. The variations in phase velocity were less compared with
that of the group velocity, which was unable to generate the high resolution tomographic image
of the East-West profile of South-India.

8 Future Prospective

We did not have obtained the actual tomographic image of East-West profile of South India to
understand the seismic variations present in the shallow crust using group and phase velocity
maps due to their low resolution content. The further step is to compute 1D shear wave velocity
with to respect depth to understand the shear wave velocity profile in the shallow crust along
the East-West profile of South India.
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A Appendix: Seimograph Network

Details of broad-band seismograph network of South India East-West profile with period of
operation

Sr.No Stn Code Lat (◦N) Long (◦E) Elav (m) Sensor No. Operational Period
1 SKL 13.016 74.833 40 CMG-3T 2012/05-2013/12
2 ALN 13.102 74.995 98 CMG-3T 2012/04-2013/12
3 STD 13.107 75.086 94 151B-120 2013/02-2013/12
4 HSR 13.134 75.120 100 151B-120 2013/02-2013/12
5 KMK 13.219 75.252 841 CMG-3T 2012/04-2013/12
6 BHL 13.268 75.430 805 CMG-3T 2012/04-2013/12
7 SPT 13.347 75.525 750 151B-120 2013/02-2013/12
8 BGS 13.407 75.616 996 CMG-3T 2012/04-2013/12
9 SVR 13.519 75.799 1260 CMG-3T 2012/04-2013/12
10 KDR 13.574 76.016 774 CMG-3T 2012/04-2013/12
11 KLR 13.690 76.175 706 CMG-3T 2012/04-2013/12
12 HSG 13.778 76.282 723 151B-120 2013/02-2013/12
13 MLR 13.864 76.400 668 CMG-3T 2012/04-2013/12
14 UDL 13.884 76.556 648 CMG-3T 2012/04-2013/12
15 DMR 13.987 76.719 589 CMG-3T 2012/04-2013/12
16 HYB 14.063 76.808 608 CMG-3T 2013/02-2013/12
17 AMR 14.077 76.942 605 CMG-3T 2012/04-2013/12
18 LDH 14.142 77.042 620 151B-120 2013/02-2014/01
19 PVG 14.180 77.102 694 CMG-3T 2012/04-2014/01
20 YSN 14.187 77.275 601 CMG-3T 2013/02-2014/01
21 PRR 14.294 77.352 570 CMG-3T 2012/04-2014/01
22 RMG 14.318 77.568 453 CMG-3T 2012/04-2014/01
23 MMP 14.414 77.645 390 CMG-3T 2013/02-2014/01
24 DMM 14.479 77.748 350 CMG-3T 2012/07-2014/01
25 BTP 14.522 77.840 321 151B-120 2013/02-2014/01
26 PRP 14.544 78.014 343 CMG-3T 2012/09-2014/01
27 SKS 14.653 78.209 245 CMG-3T 2012/09-2014/12
28 MDN 14.652 78.370 217 151B-120 2013/02-2014/01
29 RTP 14.734 78.471 171 CMG-3T 2012/09-2014/01
30 DUV 14.830 78.675 185 CMG-3T 2012/09-2014/01
31 PML 14.908 78.913 167 CMG-3T 2012/10-2014/01
32 RSP 14.980 79.016 105 151B-120 2013/02-2014/01
33 SRM 15.038 79.155 222 CMG-3T 2012/10-2014/01
34 PMR 15.100 79.371 123 CMG-3T 2009/05-2014/01
35 MPD 15.141 79.516 105 151B-120 2013/02-2014/01
36 IRD 15.174 79.599 108 CMG-3T 2012/10-2014/01
37 PNU 15.277 79.801 28 CMG-3T 2012/10-2014/01
38 KDL 15.425 79.996 16 CMG-3T 2013/10-2014/01
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B Appendix: Removing Poles and Zeros

The seismic trace or seismogram depends on the instrument response which is convloved with
the ground motion and obtaining the actual ground motion requires the the removal of instru-
ment response. This can be done by specifying the frequency response of the seismometer. This
can be done by giving the amplitude and phase response of the instrument at each frequency.
A more compact representation gives the frequency response as a complex fraction like

T (iω) =
A
∏L

j=1(iω − zj)
B
∏N

k=1(iω − pk)
(76)

The fraction is described by a set of L complex zeros zj at which the numerator is zero, N
complex poles pk at which the denominator is zero, and the constants are A and B . Because the
frequency terms iω are always imaginary and the poles always contain a real part, the denom-
inator never becomes zero, avoiding any singular values. The poles and zeros are incorporated
in the sensors of seismometer which are used to correct the instrument response and calibrated
to its zero value.
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