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Abstract

We outline an approach which is purely based on symmetry considerations,
for the construction of interaction vertices involving arbitrary spin �elds. We
review existing literature in which this approach is used to construct interac-
tions between bosonic �elds of arbitrary spin. We extend this formalism to
include interaction vertices involving arbitrary spin fermionic �elds. We use
these vertices to derive three point scattering amplitudes and �nd remarkable
factorization properties. Further, we �nd that the form of these amplitudes
in momentum space is identical to the bosonic case.
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Chapter 1

Introduction

The Standard Model of particle physics has been phenomenally successful in
describing physics upto energy scales of a few TeV. It includes spin 1 gauge
bosons(γ,W±, Z, g) which mediate the electromagnetic, weak and strong
forces. It also includes the spin 0 Higgs which generates masses for W±

and Z bosons. The theoretical framework underlying the Standard Model is
quantum �eld theory. The fourth fundamental force of Nature, Gravity, is
described by Einstein's general theory of relativity. While the �eld theories
underlying the Standard Model(QED, QCD and the Electroweak theory) are
renormalizable, general relativity is a non-renormalizable theory and can be
used only as an e�ective �eld theory. However, general relativity has passed
stringent experimental tests for nearly a hundred years now. It is thus likely
that a consistent quantum theory of gravity will be a modi�cation of general
relativity rather than a complete replacement. In particular, it seems plau-
sible that in a consistent quantum theory, gravity would be mediated by a
spin 2 particle, the Graviton. Apart from the gauge bosons, the Standard
Model also leptons(e−, µ, τ, νe, νµ, ντ ), antileptons, quarks(u, c, t, d, s, b) and
antiquarks. These particles possess spin 1

2
.

The fact that particles of spin 0, 1
2
, 1 and possible 2 exist in nature while

particles with higher spin seem to be absent is very puzzling. The most di-
rect method to understand the reason behind this is to construct a consistent
quantum �eld theory of higher spin(spin>2) particles. Several attempts have
been made in this direction. In the section below, we give a brief overview of
these attempts and highlight some of the issues of current interest in higher
spin theories.
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1.1 The history

The earliest attempts to describe higher spin theories were made by Pauli,
Dirac, Fierz, Bargmann and Wigner [1].They derived relativistic wave equa-
tions describing particles of arbitrary spin and initiated the construction of
Lagrangians for the free theories. This was completed for the massive case
by Haagen and Singh [2]. Fronsdal and Fang examined these Lagrangians in
the massless case and discovered remarkable simpli�cations [3]. However, in-
teracting higher spin theories in �at spacetime were di�cult to construct. A
slew of no-go theorems exist which prohibit the existence of such theories [4].
For an accessible overview of several of these theorems, see [5]. However,
most of these results are valid only for theories with manifest locality and
manifest Lorentz invariance. An apparent exception to these theorems is the
construction of cubic vertices in �at spacetime in [6]. However, this theory is
not complete without the addition of quartic and higher order interactions.
In this thesis, we outline the procedure followed in [6] and develop it further.
We begin by describing the symmetries which these theories must possess.

1.2 Poincaré invariance

All theories of Physics must be consistent with the principle of special rela-
tivity which states that the laws of physics must be the same in all inertial
frames. This implies that the equations describing them must retain their
form under Poincaré transformations which include rotations, translations
and boosts. These operations form a group and its Lie algebra is known as
the Poincaré algebra. The generators of the Poincaré group are the Lorentz
generators Jµν and translations generators Pµ. They satisfy the commutation
relations given below.

i [Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ηνσJρµ (1.1)

i [Pµ, Jρσ] = ηµρPσ − ηµσPρ
i [Pµ, Pν ] = 0
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1.3 Gauge invariance

Some theories have an additional symmetry called gauge invariance. We
demonstrate this for the case of the free electromagnetic �elds whose Action
takes the following form.

S = −1

4

∫
FµνF

µν (1.2)

where Fµν = ∂µAν − ∂νAµ and Aµ is the photon �eld. The corresponding
Euler-Lagrange equations are

∂µF
µν = 0 (1.3)

We note that both the action (1.2) and the equations of motion (1.3) are
invariant under a transformation of the form

Aµ → Aµ + ∂µΛ(x). (1.4)

This redundancy in the theory is known as gauge invariance. Choosing Λ(x)
to be a particular function is called gauge �xing. This eliminates spurious
degrees of freedom from the theory. This is illustrated in (2.1).
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Chapter 2

Free �eld theories in light-cone

gauge

To understand theories of interacting arbitrary spin �elds, we must �rst con-
struct the corresponding free theories. In this thesis, our focus will be on
constructing theories of massless �elds of arbitrary spin in Minkowski space-
time. The free �elds are described by gauge theories. They involve many un-
physical degrees of freedom which are ultimately eliminated either by gauge
�xing or the introduction of auxiliary �elds. In the following sections we
describe the light-cone gauge in which all the unphysical degrees of freedom
are eliminated systematically by gauge choice and imposing the constraint
equations. All massless �elds in four dimensions have two degrees of freedom.
This makes the light-cone gauge especially well suited to massless theories
as it deals solely with the physical degrees of freedom.

We de�ne light-cone co-ordinates in Minkowski space-time with signature
(−,+,+,+) by

x+ =
x0 + x3

√
2

, x− =
x0 − x3

√
2

, x =
x1 + ix2

√
2

, x̄ =
x1 − ix2

√
2

.

The corresponding derivatives are

∂+ =
∂0 + ∂3√

2
, ∂− =

∂0 − ∂3√
2

, ∂ =
∂1 + i∂2√

2
, ∂̄ =

∂1 − i∂2√
2

.

The co-ordinate x+ is chosen to be time. The corresponding derivative, ∂+

is the light-cone time derivative. Equations involving ∂+ are the dynamical
equations. They relate the con�guration of the system at one point in light-
cone time to another. Equations free of ∂+ are kinematical equations. They
serve to constrain the con�guration of the system at each instant in time.
We will not illustrate this di�erence for the case of electromagnetism.
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2.1 Electromagnetism in light-cone gauge

We now return to electrodynamics and illustrate the method of light-cone
reduction. Analogous to the de�nition of light-cone co-ordinates, we can
de�ne light-cone components of any vector or tensor. The photon �eld Aµ,
written in terms of its light cone components is Aµ = (A+, A−, A, Ā). Note
that A+ = −A− and A− = −A+. The light-cone gauge is the choice A+ = 0.
Using this in the ν = + component of (1.3), we get

∂2
−A
− + ∂−∂iA

i = 0 (2.1)

We can de�ne an operator 1
∂−

which is the Green function of the di�erential
operator ∂−. This will involve a careful choice of boundary conditions, which
are explained in [7]. With these conditions, we can write

A− = − ∂i
∂−
Ai (2.2)

Aµ originally had four components. Imposing the gauge condition and a
constraint equation, we are able to reduce it to two independent components.
In the A, we show that these correspond to the two helicity eigenstates of the
photon. Plugging all this into (1.2) and performing a few partial integrations,
the Action can be cast in the form

S =

∫
d4x Ā�A (2.3)

2.2 Dirac �elds in light-cone gauge

We now demonstrate a similar reduction procedure for massless Dirac �elds.
We begin by de�ning the following matrices.

γ0 =

(
0 1
1 0

)
γi =

(
0 σi

−σi 0

)
C =

(
iσ2 0
0 −iσ2

)
. (2.4)

Here C is the charge conjugation matrix. The Action describing a free Dirac
�eld is

S =

∫
d4x i Ψ̄γµ∂µΨ (2.5)

At the heart of the light-cone formalism is the separation of dynamical and
kinematical degrees of freedom. To this end, we de�ne the following projec-
tion operators.

P+ ≡
1

2
γ+γ− =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 P− ≡
1

2
γ−γ+ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (2.6)

7



where

γ+ =
1√
2

(γ0 + γ3) =
1√
2

(
0 −1 + σ3

−1− σ3 0

)
γ− =

1√
2

(γ0 − γ3) =
1√
2

(
0 −1− σ3

−1 + σ3 0

)
. (2.7)

That these are projection operators is easy to see as they satisfy

P 2
+ = P+ P 2

− = P− P+P− = 0 P+ + P− = 1.

We can now begin the procedure of light-cone reduction. Let

Ψ =


ψ1

ψ2

ψ3

ψ4

 (2.8)

be a Dirac spinor with Grassmann valued components. Imposing the Majo-
rana condition Ψ = CΨ̄T yields

ψ1 = ψ̄4 ; ψ2 = −ψ̄3 . (2.9)

De�ne

Ψ+ = P+Ψ ; Ψ− = P−Ψ . (2.10)

Acting the projection operators on the Dirac equation yields the following
two equations

∂−Ψ− =
1

2
γ−γi∂iΨ+ , i = 1, 2 (2.11)

∂+Ψ+ =
1

2
γ+γi∂iΨ− , i = 1, 2 (2.12)

This �rst of these is kinematical and can be solved to yield

ψ1 =
∂̄

∂−
ψ2 . (2.13)

The entire spinor can now be written in terms of ψ3 ≡ ψ as

Ψ =


− ∂̄
∂−
ψ̄

−ψ̄
ψ
− ∂
∂−
ψ

 . (2.14)
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This completes the reduction procedure. Using (2.14) in (2.5) and keeping
track of Grassmann signs, we arrive at the form

S =

∫
d4x iψ̄

�
∂−

ψ. (2.15)

2.3 Arbitrary spin �elds in light-cone gauge

In (2.1) and (2.2), we have derived the Action for spin 1 and spin 1
2
�elds

respectively. One of the great advantages of the light-cone gauge is that free
bosonic and fermionic �elds of higher helicity can be described by the same
Action. This is consistent with the fact that all massless �elds in four di-
mension have two physical degrees of freedom. However, the transformation
properties of �elds of di�erent helicity will indeed be di�erent. This can be
seen from the action of the Lorentz generators on the �elds, which are shown
in (3.1).

This simplicity comes at the cost of manifest covariance. The light-cone
reduction yields a Lagrangian that su�ers from a loss of manifest covariance.
The covariance of the free theory is ensured by the fact that it is the gauge
�xed version of a covariant theory. In order to construct interacting theories
in light-cone gauge, we need to �nd another method of checking covariance.
To this end, we represent all the Poincaré generators on the �elds and ex-
plicitly check for the closure of the algebra. The Hamiltonian is one of the
generators of the algebra. We can add interaction terms to this to generate
interacting theories of arbitrary spin. However, maintaining covariance of
the theory demands that the algebra still closes. This imposes several con-
straints on the form of the interactions. In the following chapters, we use
this scheme to derive cubic interaction vertices for theories involving arbi-
trary spin bosons and fermions.
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Chapter 3

Construction of bosonic

interactions

The materiel in this chapter is largely based on the second reference in [9].
This represents original work carried out by the author in collaboration with
Dr. Ananth

We are now in a position to systematically construct interaction vertices
for theories involving arbitrary spin �elds. In this chapter, we focus on the
interactions involving only bosonic �elds. The physical degrees of freedom of
any bosonic �eld are the positive and negative helicity states. We will denote
these by φ and φ̄ respectively. The value of the helicity is determined by the
action of the rotation generators on them. The Action describing a massless,
spin-λ bosonic �eld is

S =

∫
d4x

1

2
φ̄�φ (3.1)

We can construct the Poincaré generators of the free theory following the
procedure in (A). The action of a generator O on a �eld is

δOφ = {φ,O}

We now list the actions of all Poincaré generators on a massless �eld of
helicity λ.

δp−φ = −i∂∂̄
∂+
φ = −δp+φ δp+φ = −i∂+φ = −δp−φ (3.2)

δpφ = −i∂φ δp̄φ = −i∂̄φ
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δjφ = i(x∂̄ − x̄∂ − λ)φ δj+−φ = (x+∂∂̄

∂+
− x−∂+)φ (3.3)

δj+φ = (x+∂ − x∂+)φ δj̄+φ = (x+∂̄ − x̄∂+)φ

δj−φ = (x−∂ − x∂∂̄
∂+

+ λ
∂

∂+
)φ δj̄−φ = (x−∂ − x∂∂̄

∂+
− λ ∂

∂+
)φ

The Hamiltonian for the free �eld theory is (A)

H ≡ P+ =

∫
d3xH =

∫
d3x ∂−φ̄

∂∂̄

∂+

φ , (3.4)

This is rewritten as

H ≡
∫
d3xH =

∫
d3x ∂−φ̄ δHφ , (3.5)

in terms of the time translation operator

δHφ ≡ ∂+φ = {φ,H} , (3.6)

where {, } denotes the Poisson bracket.

The action of all the free Poincaré generators on the �elds are linear. Non
linear actions of these generators represent interacting theories. In particular,
it can be seen from (3.5) that a quadratic term in δHφ represents a cubic
interaction in the Lagrangian. We can thus systematically add non linear
terms and generate all possible interactions. Other dynamical generators
also pick up corrections which can be written in terms of δHφ. We organize
the interaction terms order by order in a coupling constant α. The forms of
the corrections to the Lorentz generators are

δj+−φ = δ0
j+−φ− ix+δαHφ+O(α2)

δj−φ = δ0
j−φ+ ixδαHφ+ δαs φ+O(α2)

δj̄−φ = δ0
j̄−φ+ ix̄δαHφ+ δαs̄ φ+O(α2). (3.7)

Here, δαs and δαs̄ represent corrections to the spin part of the generators. We
assume these to be of the form φ̄φ as this form agrees with the known spin
1 corrections. At cubic order, these do not mix with any of the other terms
and are therefore not relevant to the calculations in this paper.
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3.1 Deriving cubic interaction vertices

We focus on the following three structures for cubic interaction vertices at
order α.

δαHφ1 ∼ φ2φ3 ; δαHφ2 ∼ φ1φ3 ; δαHφ3 ∼ φ1φ2 , (3.8)

where the �elds φ1, φ2 and φ3 have integer spins λ1, λ2 and λ3 respectively.
The �rst of these structures, at the level of the action would correspond to
terms of the form

S ∼
∫

d4x φ̄1 φ2 φ3 + c.c. . (3.9)

We enhance this basic form with derivatives to arrive at the Ansatz

δαHφ1 = αA∂+µ
[
∂̄a∂+ρφ2∂̄

b∂+σφ3

]
, (3.10)

where µ, ρ, σ, a, b are integers and A is a numerical factor that could depend
on the variables and spins. Note that terms of the form φ̄2φ̄3 in δ

α
Hφ1 are in-

dependent of terms of the form φ2φ3 and hence will not `talk' to one another.
The commutators

[δj, δ
α
H]φ1 = 0 ,

[δj+− , δαH]φ1 = −δHφ1 , (3.11)

impose the following conditions on our Ansatz

a+ b = λ2 + λ3 − λ1

µ+ ρ+ σ = −1 . (3.12)

Since a, b > 0, the �rst of these conditions1 implies that the vertex cannot
exist unless λ2 + λ3 > λ1. Now, let λ ≡ λ2 + λ3 − λ1 so the �rst equation of
(4.6) reads a + b = λ. There are precisely (λ + 1) possible values for a pair
(a, b). We now rewrite our Ansatz in (4.5) as a sum of these (λ+ 1) terms

δαHφ1 = α
λ∑
n=0

An ∂
+µn

[
∂̄n∂+ρnφ2 ∂̄

(λ−n)∂+σnφ3

]
+ c.c. . (3.13)

The next set of commutators are[
δj̄− , δH

]α
φ1 = 0 [δj+ , δH ]α φ1 = 0 , (3.14)

1Note that this reduces to the condition in [6] if we set λ1 = λ2 = λ3.
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and yield the following conditions

λ∑
n=0

An

{
(µn + 1− λ1)∂+(µn−1)∂̄(∂̄n∂+ρnφ2∂̄

(λ−n)∂+σnφ3)

+(ρn + λ2)∂+µn(∂̄(n+1)∂+(ρn−1)φ2∂̄
(λ−n)∂+σnφ3) (3.15)

+(σn + λ3)∂+µn(∂̄n∂+ρnφ2∂̄
(λ−n+1)∂+(σn−1)φ3)

}
= 0 ,

λ∑
n=0

An

{
n ∂+µn(∂̄(n−1)∂+(ρn+1)φ2∂̄

(λ−n)∂+σnφ3)

+(λ− n)∂+µn(∂̄n∂+ρnφ2∂̄
(λ−n−1)∂+(σn+1)φ3)

}
= 0 . (3.16)

These conditions are satis�ed if the coe�cients obey the following recursion
relations.

An+1 = −(λ− n)

(n+ 1)
An = (−1)(n+1)

(
λ

n+ 1

)
A0 ,

ρn+1 = ρn − 1 ; σn+1 = σn + 1 ; µn+1 = µn , (3.17)

with the last condition showing that µn is independent of n. The following
�boundary" conditions are also necessary.

ρ
n=λ

= −λ2 σ n=0 = −λ3. (3.18)

The solution of the recursion relations for ρ, σ and µ subject to (3.18) is

ρn = λ− λ2 − n ; σn = n− λ3 ; µn = λ1 − 1 . (3.19)

Thus (3.13) reads

δαHφ1 = α

λ∑
n=0

(−1)n
(
λ

n

)
∂+(λ1−1)

[
∂̄n∂+(λ−λ2−n)φ2 ∂̄

(λ−n)∂+(n−λ3)φ3

]
. .

(3.20)

Since

H =

∫
d3x ∂−φ̄1 δHφ1, (3.21)

the interaction Hamiltonian is

Hα = α

∫
d3x

λ∑
n=0

(−1)n
(
λ

n

)
φ̄1 ∂

+λ1
[
∂̄n∂+(λ−λ2−n)φ2 ∂̄

(λ−n)∂+(n−λ3)φ3

]
+ c.c. .(3.22)
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Notice that if we set λ1 = λ2 = λ3 = λ′ in (3.22)with λ′ odd, Hα vanishes.
Hence, a non-vanishing self-interaction Hamiltonian, for odd integer spins
exists, if and only if we introduce a gauge group. However, a consistent non-
trivial vertex, coupling three �elds of di�erent spins, exists irrespective of
whether the spins are even or odd.

We note that if the action obtained from the above Hamiltonian is to describe
a theory involving �elds of odd integer spins with cubic self interaction terms,
the existence of a gauge group is forced upon the theory. Interestingly, the
three �elds could, in principle, carry di�erent gauge groups.

3.2 Factorization properties and perturbative

relations

We now rewrite the above results in the language of spinor helicity [8] where
a four-vector is expressed as a bispinor using paȧ = pµσ

µ
aȧ, with det(paȧ)

yielding −pµpµ. The spinor products are

< kl >=
√

2
(kl− − lk−)√

k−l−
[kl] =

√
2

(k̄l− − l̄k−)√
k−l−

(3.23)

Equation (3.22) involves the sum of two kinds of terms: φ̄φφ and φφ̄φ̄. In
Fourier space, the coe�cient of the second kind of term φ1(p)φ̄2(k)φ̄3(l)δ4(p+
k+l) up to a sign reads

pλ1−
kλ2− l

λ3
−

(lk− − l−k)λ2+λ3−λ1 , (3.24)

which may be rewritten as

1√
2λ

< pk >
(−λ1+λ2−λ3) < kl >

(λ1+λ2+λ3) < lp >
(−λ1−λ2+λ3) . (3.25)

It is clear that (??) exhibits the factorization property mentioned in the
introduction. It is clear from the expression that given vertices for spins
(λ1, λ2, λ3) and (λ′1, λ

′
2, λ
′
3), their product yields the vertex for (λ1 + λ′1, λ2 +

λ′2, λ3 +λ′3). As a corollary, note that the coe�cient for the coupling of three
�elds (nλ1, nλ2, nλ3) is the n-th power of the coe�cient for the coupling
(λ1, λ2, λ3).
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Chapter 4

Construction of fermionic

interactions

The materiel in this chapter is largely based on the third reference in [9].
This represents original work carried out by the author in collaboration with
Dr. Ananth

We can extend the method of the previous chapter to construct interaction
vertices involving fermions. Recall from (1) that the light-cone Action for a
fermionic �eld of half-integer spin λ is

S =

∫
d4x iψ̄

�
∂−

ψ. (4.1)

From (A), the Poincaré generators represented on this �eld are

δp−ψ = −i∂∂̄
∂+
ψ = −δp+ψ δp+ψ = −i∂+ψ = −δp−ψ (4.2)

δpψ = −i∂ψ δp̄ψ = −i∂̄ψ

δjψ = i(x∂̄ − x̄∂ + λ)ψ δj+−ψ = (x+∂∂̄

∂+
− x−∂+ − 1

2
)ψ (4.3)

δj+ψ = (x+∂ − x∂+)ψ δj̄+ψ = (x+∂̄ − x̄∂+)ψ

δj−ψ = (x−∂ − x∂∂̄
∂+

+ (λ+
1

2
)
∂

∂+
)ψ δj̄−ψ = (x−∂ − x∂∂̄

∂+
− (λ+

1

2
)
∂

∂+
)ψ.

Note that ψ̄ carries helicity of λ which is a positive half integer, in contrast
with the bosonic case where φ̄ carried negative helicity. Another di�erence,
from the bosonic case, is the presence of a third piece in δj+− .
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4.1 Deriving cubic interaction vertices

To begin the construction of interaction vertices, we start with the Hamil-
tonian for a free theory involving a massless boson of spin λ and a massless
fermion of spin λ′.

H =

∫
d3x

(
−φ̄ ∂∂̄ φ + iψ̄

∂∂̄

∂−
ψ

)
=

∫
d3x

(
∂−φ̄ δHφ+ iψ̄ δH ψ

)
. (4.4)

As we did in the bosonic case, we add non-linear terms order by order in a
coupling constant α to the Hamiltonian. The dynamical generators pick up
corrections which have that same form as in 3.7.

We make a preliminary Ansatz for δαHφ1 of the skeletal form φ̄1ψ2ψ3 where
the �elds φ1, ψ2 and ψ3 have spins λ1, λ2 and λ3 respectively. λ1 is an integer
while λ2 and λ3 are half-integers. From (??), we can see the corrections to
all other dynamical generators can be expressed in terms of δαHφ. The precise
form of the Ansatz is

δαHφ1 = αA∂+µ
[
∂a∂+σψ2∂

b∂+ρψ3

]
, (4.5)

where µ, ρ, σ, a, b are integers and A is a numerical factor that could depend
on the variables and spins.

To ensure that the theory resulting from such a vertex is Lorentz covari-
ant, we demand the closure of the Poincaré algebra at this order in α. We
begin by demanding closure with the simplest kinematical generators.

[δj, δ
α
H]φ1 = 0 [δj+− , δH]α φ1 = −δαHφ1 ,

which impose the following constraints on a, b, µ, ρ and σ.

a+ b = λ1 + λ2 + λ3 ≡ λ

µ+ ρ+ σ = −2 . (4.6)

We then demand,

[
δ−j , δH

]α
φ1 = 0

[
δj̄+ , δH

]α
φ1 = 0 , (4.7)
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which yield the following constraints,

λ∑
n=0

An

{
− (µn + 1 + λ1)∂+(µn−1)∂(∂n∂+ρnψ2∂

(λ−n)∂+σnψ3)

−(σn + λ2 +
1

2
)∂+µn(∂(n+1)∂+(σn−1)ψ2∂

(λ−n)∂+ρnψ3) (4.8)

−(ρn + λ3 +
1

2
)∂+µn(∂n∂+σnψ2∂

(λ−n+1)∂+(ρn−1)ψ3)

}
= 0 ,

λ∑
n=0

An

{
n ∂+µn(∂(n−1)∂+(σn+1)ψ2∂

(λ−n)∂+ρnψ3)

+(λ− n)∂+µn(∂n∂+σnψ2∂̄
(λ−n−1)∂+(ρn+1)ψ3)

}
= 0 . (4.9)

The solution to these constraints is given below.

An = (−1)(n)

(
λ

n

)
; σn = −λ−λ2+n−1

2
; ρn = n−(λ3+

1

2
) ; µn = −(λ1+1) .

Thus (4.5) reads

δαHφ1 = α
λ∑
n=0

(−1)n
(
λ

n

)
1

∂+(λ1+1)

[
∂n

∂+(λ−n)

∂+(λ2+ 1
2

)
ψ2 ∂

(λ−n) ∂+n

∂+(λ3+ 1
2

)
ψ3

]
. (4.10)

Using this, from (4.4) we obtain the Hamiltonian and thus the Action

S =

∫
d4x

[
1

2
φ̄1�φ2 + iψ̄2

�
∂−

ψ2 + iψ̄3
�
∂−

ψ3 (4.11)

+αφ̄1

λ∑
n=0

(−1)n
(
λ

n

)
1

∂+λ1

[
∂n

∂+(λ−n)

∂+(λ2+ 1
2

)
ψ2 ∂

(λ−n) ∂+n

∂+(λ3+ 1
2

)
ψ3

]]
This Action may be supplemented with a variety of other interactions. In
particular, the algebra tells us that if φ1 has odd helicity and is to have cu-
bic self-interactions, then it must carry an internal symmetry group with an
antisymmetric structure constant [9]. We can thus have two kinds of vertices
having the schematic forms taφ̄

a
1ψ

b
2ψ3b and φ̄

a
1ψ

b
2ψ

c
3fabc. The �rst of these has

the bosonic �eld in the Adjoint representation of the gauge group(ta is its
generator) with the fermionic �elds in any other representation. The second
vertex has all three �elds in the same representation and linked by an anti-
symmetric structure constant.
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For example, consider the case where (λ1, λ2, λ3) = (1, 1
2
,−1

2
). With an

SU(3) internal symmetry, the �rst kind of vertex is the coupling of gluons to
quarks in QCD with the second variety corresponding to the cubic coupling
in N = 4 SYM. If we compare this second type of vertex, we �nd an exact
match with [10] (line 5, equation 3.13).

4.2 Relation to scattering amplitudes

We now evaluate the three point amplitude resulting from the vertex in (4.11)
using the spinor helicity notation introduced in (3.2). The cubic vertex from
(4.11) in momentum space is

α

∫
d4p

(2π)4

d4k

(2π)4

d4l

(2π)4
(2π)4δ4(p+ k + l)

(k−l − l−k)λ

pλ1− k
λ2+ 1

2
− l

λ3+ 1
2

−

˜̄φ1(p)ψ̃2(k)ψ̃3(l) ,

(4.12)
To obtain the amplitude, we simply put all three �elds on mass shell. Along
with the constraint (p2 = 0) on the momenta, this yields a numerical factor
for bosonic �elds and a factor proportional to the square root of momentum
for fermionic �elds (from Appendix A). The �nal amplitude has the following
form

< pk >
(−λ1+λ2−λ3) < kl >

(λ1+λ2+λ3) < lp >
(−λ1−λ2+λ3) . (4.13)
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Chapter 5

Discussion and future directions

The tree level, three point amplitude obtained in (4.13) has exactly the same
form as the amplitude for scattering of three bosons derived in (3.25). This
is a simple and unifying form for three point amplitudes. This represents
an o�-shell generalization of the KLT relations. These results are consis-
tent with the general result for three point amplitudes derived in [11] using
S-matrix arguments, in [12] using little group scaling and [13, 14] using a
Fock-space approach.

The next logical step in this procedure would be to derive quartic interaction
vertices for higher spin theories. However, this is algebraically involved. For
spin 1 quartic self-interactions, the closure of some commutators impose the
Jacobi identity on the structure constants. It is gratifying to see that the
internal symmetry group emerges from purely algebraic considerations.

Another application of this method would be to derive interaction vertices in
non-�at backgrounds. The corresponding isometry algebra must be used to
generate constraints on the form of the interactions. In (B), we have derived
cubic interaction vertices for a spin 2 �eld on an AdS4 background from �rst
principles. This derivation is based on [15]. This will serve as a check when
we obtain the results using our approach. If successful, this might provide
a Lagrangian origin to Vasiliev's equations of motion [?]. It would also be
interesting to investigate whether KLT-like relations extend to curved back-
grounds.

A third way in which our method might prove useful is to shed light on
the elusive N = (2, 0) theory in six dimensions [17]. The application of these
techniques to superconformal theories is not new and it has already proven
successful in deriving N = 4 super Yang-Mills [18]. In the particular case
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of the N = (2, 0) theory, the minimal assumptions in our method might
prove useful in discovering any new degrees of freedom or algebraic structure
present in the theory.
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Appendix A

Light-cone formalism

In this appendix, we illustrate the method to obtain light-cone realizations of
the Poincaré generators on �elds. We consider the case of a free scalar(complex)
theory. The Action is,

S =

∫
d4x L =

1

2

∫
d4x ∂µφ̄∂

µφ. (A.1)

This Action is invariant under a all transformations of the Poincaré group
ISO(3, 1). Each symmetry will have a corresponding conserved current.
These currents can be used to construct charges which act as generators
of the symmetry. We use this procedure to construct all the generators of
the Poincaré algebra. For now, we note that after integrating by parts, (A.1)
can be rewritten as

S =

∫
d4x (∂−φ̄∂+φ+ φ̄∂∂̄φ). (A.2)

The canonical momentum corresponding to φ is

π ≡ ∂L
∂(∂+φ)

= ∂−φ̄ (A.3)

The Noether cuurent associated with translations is the energy momentum
tensor.

T µν =
∂L

∂(∂µφ)
∂νφ− ηµνL (A.4)

The conserved charges are

P µ =

∫
Σ

d3x T+µ =

∫
Σ

d3x (∂−φ̄∂
µφ− η+µL) (A.5)
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Here Σ is a hypersurface of constant x+ and d3x = dxd̄xdx−. The action of
these generators on the �elds is

δOφ ≡ {φ,O} (A.6)

Acting in this way on the �elds, these generate spacetime translations. In
particular, the light-cone Hamiltonian, P+ = −P− generates time transla-
tions.

P+ = −
∫

Σ

d3x (∂−φ̄∂
−φ+ L) = −

∫
Σ

d3x (∂−φ̄∂
−φ+ ∂−φ̄∂+φ+ φ̄∂∂̄φ)

=

∫
Σ

d3x ∂−φ̄
∂∂̄

∂−
φ (A.7)

The remaining generators are the conserved charges derived from the Noether
current corresponding to the Lorentz transformations. The currents are

Mµνρ = xνT µρ − xρT µν . (A.8)

The corresponding charges are

Jµν =

∫
Σ

d3xM+µν =

∫
Σ

d3x (xµ
∂L

∂(∂+φ)
∂νφ− xν ∂L

∂(∂+φ)
∂νφ)

=

∫
Σ

d3x ∂−φ̄(xµ∂ν − xν∂µ)φ (A.9)

So far, we have only considered spinless �elds. In the case of �elds with spin,
the Lorentz generators receive an additional spin dependant contribution. We
illustrate this for a massless spin 1(Aµ) �eld below. To �nd the contribution
arising from the spin of the �eld, we �nd the change in the �eld at the same
value of the co-ordinate under a Lorentz transformation xµ → Λµ

νx
ν .

δAµ ≡ A′µ(x)− Aµ(x) = ωµνA
ν + ∂µξ (A.10)

Here ξ is a gauge transformation which we use to preserve the gauge choice
by requiring δsA

+ = 0. This gives,

ξ = − 1

∂−
ω−iA

i (A.11)

From this, we have

δsA
µ = ωµ νA

ν + ∂µξ (A.12)
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We now consider the transformation of the combination 1√
2
(A1 + iA2).

δs(
1√
2

(A1 + iA2)) =
1√
2

(ω1
ν + iω2

ν)A
ν + ∂ξ (A.13)

De�ne

ω ≡ ω12 ω− ≡
1√
2

(ω−1 + iω−2) (A.14)

Then

δsA = (−iω − iω−
∂̄

∂−
+ iω̄−

∂

∂−
)A (A.15)

It is easy to see that A is indeed a helicity eigenstate and has helicity 1. It
is straightforward to obtain the action of the generator for a �eld of helicity
λ. The resulting expressions are displayed in (3.3) for the bosonic case and
(4.3) for the fermionic case.
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Appendix B

Light-cone gravity in AdS4

In this Appendix, we will describe how pure gravity is formulated in light-
cone gauge in an AdS4 background. This is achieved by making suitable
gauge choices and using the constraint relations to eliminate the unphysical
degrees of freedom. This will allow us to describe the Action of light-cone
gravity on AdS4 in a closed form purely using the physical degrees of freedom.
We also perform a perturbative expansion of this gauge-�xed Action to �rst
order in the gravitational coupling constant and comment on the interaction
vertex.

B.1 Preliminaries

The Einstein-Hilbert action reads

SEH =

∫
d4xL =

1

2κ2

∫
d4x
√
−g (R − 2 Λ ) , (B.1)

where g = det gµν , R is the curvature scalar, Λ is the cosmological constant
of AdS4and κ2 = 8πGN is the coupling constant in terms of the Newton
constant. This is the Action on manifoldM with boundary ∂M . The Action
thus has the form

SEH =

∫
M

d4xLM +

∫
∂M

d3xL
∂M
. (B.2)

Three levels at which this theory can be studied, roughly in order of pre-
cision, are: on-shell, o�-shell and o�-shell+boundary terms. Our analysis
is closely tied to the equations of motion, does not require boundary terms
and hence falls into the second of these three categories. We note that one
may add boundary terms [22] to (B.1) that cancel surface terms resulting
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from partial integrations. In an arbitrary gauge, such a cancelation between
boundary terms is not always guaranteed however, the di�erence is always
a local function of the boundary �elds. It is the �rst term in (B.2) that we
derive in the following pages.

The light-cone gauge approach to formulating pure gravity in �at spacetime
backgrounds has been studied in [23, 24, 25]. Here we formulate pure grav-
ity in AdS4 characterized by a cosmological constant Λ. As one would ex-
pect, this involves considerable deviations from the �at background approach
of [23] and we comment on these changes as and when they occur.

B.2 AdS4

Consider a �ve-dimensional �at spacetime with metric η
MN
≡ (−1, 1, 1, 1,−1)

and co-ordinates ξM , M = 0 . . . 4. On this manifold, AdS4 is de�ned as the
four-dimensional hypersurface

−(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 − (ξ4)2 = R2 , (B.3)

with radiusR. We now introduce local (Poincaré) co-ordinates xµ ≡ (x0, x1, z, x3)
on AdS4

ξ0 =
R

z
x0 ξ1 =

R

z
x1 ξ3 =

R

z
x3 , (B.4)

ξ2 =
1

2z

[
R2 − {−(x0)2 + (x1)2 + (x3)2 − z2}

]
, (B.5)

ξ4 =
1

2z

[
R2 + {−(x0)2 + (x1)2 + (x3)2 − z2}

]
, (B.6)

which satisfy (B.3). z plays the role of a radial coordinate and divides the
spacetime into two regions. We work here in the `patch' z > 0 with z = 0
being part of the AdS boundary. The induced metric on this space is

g(0)
µν = ∂µξ

M∂νξ
Nη

MN
=
R2

z2
ηµν , (B.7)

where ηµν is the usual Minkowski metric. We now switch to light cone co-
ordinates xµ ≡ (x+, x−, x1, z) where

x± =
x0 ± x3

√
2

. (B.8)

The cosmological constant for AdS4 is

Λ = − 3

R2
. (B.9)
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B.3 Light-cone formulation

Our aim is to study �uctuation on the AdS4background. The dynamical
variable is the metric gµν , which in the absence of all perturbations must

reduce to g
(0)
µν . We work in light-cone gauge by making the following three

gauge choices [23]

g−− = g−i = 0 , i = 1, z . (B.10)

Note that these choices are consistent with g
(0)
µν since, in light-cone coordi-

nates, η−− = η−i = 0. A fourth gauge choice will be made shortly.

The metric is parametrized as follows

g+− = − eφ ,
gi j = eψ γij .

(B.11)

The �elds φ , ψ are real while γij is a 2 × 2 real, symmetric matrix.

The Euler-Lagrange equations corresponding to the Einstein-Hilbert Action
read

Rµν −
1

2
gµνR = −Λ gµν . (B.12)

The light-cone formulation of the theory relies on the fact that a subset of
these Euler-Lagrange equations (those not involving time derivatives) are
constraint equations. The �rst relevant constraint relation is R−− = 0 which
reads

2 ∂− φ ∂− ψ − 2 ∂−
2 ψ − (∂− ψ)2 +

1

2
∂− γ

kl ∂− γkl = 0 . (B.13)

A simple solution to this constraint relation may be obtained by making a
fourth gauge choice

φ =
1

2
ψ . (B.14)

This reduces equation (B.13) to a quadrature and yields

ψ =
1

4

1

∂−
2 (∂−γ

ij∂−γij) + 2 ln
R2

z2
, (B.15)

The second term, in ψ, is essential to ensure that gij and g+− reduce correctly

to g
(0)
ij and g

(0)
+− respectively.
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In a �at background [23, 24] the solution to ψ is simply ψ�at= 1
4

1
∂−

2 (∂−γ
ij∂−γij)

and the second term in (B.15) is absent.

We now compute the determinant of γij from the second relation in (B.11)
which implies that

det g
(0)
ij = (

R2

z2
)
4

det γ
(0)
ij , (B.16)

with the { }(0) superscripts implying that all �uctuations are switched o�. In
this limit, the metric is simply R2

z2
times the Minkowski metric so the L.H.S

of (B.16) is (R
2

z2
)
2
thus implying that

det γ
(0)
ij = (

z2

R2
)
2

. (B.17)

Note that in contrast to our result above, on a �at background, γij is unimod-
ular [23, 24]. We choose the determinant of γij (which includes �uctuations)
to be the same as in (B.17). This will ensure that the �uctuation-�eld, to be
introduced shortly, is traceless and makes our calculations easier.

The second constraint relation is R−i = 0 which yields

g−i = −e−φ
1

∂−

[
γij eφ− 2ψ 1

∂−

{
eψ
( 1

2
∂− γ

kl ∂j γkl − ∂− ∂j φ

− ∂− ∂j ψ + ∂jφ ∂− ψ
)

+ ∂l

(
eψ γkl ∂− γjk

)}]
.

(B.18)

B.3.1 Light-cone Action

The light-cone Action for gravity is

S =

∫
d3x

∫
dz L =

1

2κ2

∫
d4x
√
−g

(
2g+−R+− + gijRij − 2Λ

)
. (B.19)

We now compute each term in the above expression, using the results listed
thus far. We derive the following closed form expression for the Action in
AdS4purely in terms of the physical degrees of freedom.

S =
1

2κ2

∫
d3x

∫
dz

{
z2

R2
eψ
(

2∂+∂−φ+ ∂+∂−ψ −
1

2
∂+γ

ij∂−γij

)
− z

2

R2
eφγij

(
∂i∂jφ+

1

2
∂iφ∂jφ− ∂iφ∂jψ −

1

4
∂iγ

kl∂jγkl +
1

2
∂iγ

kl∂kγjl

)
− z2

2R2
eφ−2ψγij

1

∂−
Ai

1

∂−
Aj +

2

R2
eφγzz − 2

z2

R2
eψ eφ Λ

}
, (B.20)
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with

Ai = eψ
(

1

2
∂−γ

jk∂iγjk − ∂−∂iφ− ∂i∂−ψ + ∂iφ∂−ψ

)
+∂k

(
eψγjk∂−γij

)
.

In obtaining this result, we have dropped several boundary terms following
the arguments outlined in Section B.1.

Deviations from �at spacetime results

The three main di�erences between our result (B.20) and the �at background
Action in [23, 24] are the overall factor of z2

R2 in front of each line, the penul-
timate term proportional to γzz and the last term, prorptional to the cosmo-
logical constant.

B.4 Perturbative expansion

In this section we obtain a perturbative expression, to cubic order in the
�elds, for the Action in (B.20). We do this by making the following choice

γij =
z2

R2

(
eH
)
ij
,

H =

(
h11 h1z

h1z −hzz

)
, (B.21)

with hzz = −h11 as explained below equation (B.17). In terms of these �elds,
equation (B.15) reads

ψ = −1

4

1

∂−
2

[
∂−hij∂−hij

]
+ 2 ln

R2

z2
+ O(h4) . (B.22)

In order to obtain a perturbative expansion of (B.20) we simply use the
results (B.21) and (B.22).

We now rede�ne

h → 1√
2κ

h . (B.23)

In terms of these �elds, the Action at O(h2) is

S2 =

∫
d3x

∫
dz L2 , (B.24)
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with

L2 = +
R2

2z2
∂+hij∂−hij −

R2

4z2
∂ihkl∂ihkl − 2

R2

z3
hik∂khiz +

R2

z4
hzkhkz .

In the above we have made use of both (B.9) and the fact that hkk = 0.
Notice from (B.20) that the cosmological constant only appears in interaction
vertices involving an even number of �elds.

At O(h3), the Action reads

S3 =

∫
d3x

∫
dz

1√
2
L3 , (B.25)

where

L3 = κ

{
− 2

R2

z3
hiz

1

∂−
(∂−hlm∂ihlm)− 12

R2

z3
hiz∂iφ

(0) − 16
R2

z4
hzzφ

(0) + 16
R2

z4
hiz

1

∂−
(hlz∂−hil)

−4
R2

z3
hiz

1

∂−
(∂khlk∂−hil)− 4

R2

z3
hiz

1

∂−
(hlk∂−∂khil) +

1

2

R2

z2
∂khik

1

∂−
(∂−hlm∂ihlm)

+3
R2

z2
∂khik∂iφ

(0) + 4
R2

z3
∂khzkφ

(0) − 4
R2

z3
∂khik

1

∂−
(hlz∂−hil) +

R2

z2
∂khik

1

∂−
(∂lhml∂−him)

+
R2

z2
∂khik

1

∂−
(hlm∂−∂mhil)−

1

2

R2

z2
∂khik∂lhijhjl + 2

R2

z3
hiz∂khijhjk

+
R2

z2
hij∂i∂jφ

(0) + 2
R2

z4
hzzφ

(0) +
R2

3z4
h3
zz + 4

R2

z3
∂iφ

(0)hiz

+
R2

4z2
hij∂ihkl∂jhkl −

R2

6z3
∂zh

3
kk −

R2

2z2
hij∂ihkl∂khjl

}
.

* * *
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