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Abstract

Entanglement entropy has emerged as an important quantity in quantum �eld
theory. In this report, we present some aspects of entanglement entropy in the
context of string theory. We assume the AdS/CFT Correspondence. String theory
has provided a microscopic description of black hole entropy in the case of certain
black holes. We examine the relation between the black entropy and entanglement
entropy. This relation is described in detail for a special case and comments are
made about approaches in �nding such a relation in general case. In the second and
the main part of this report, we present some �rst and original attempts at studying
the modular invariance of Rényi and entanglement entropies. We clarify subtle
issues in the application of Replica Trick to theories at �nite temperature. We
propose a modular invariant expression for entanglement entropy for free fermion
conformal �eld theories in 2 dimensions, with a �nite size entangling interval and
�nite temperature. We study single Dirac fermion, two correlated Dirac fermions
and multiple correlated Dirac fermions in detail. Comments are also made about
the T-duality invariance and modular invariance of the Rényi entropy for a single
free boson CFT. Our proposal is shown to obey several tests and is consistent with
known answers in limiting situations.
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Chapter 1

Introduction

1.1 Entanglement Entropy

Classical dynamics of physical systems di�ers markedly from their quantum
dynamics. The classical framework does not predict quantization of energy levels in
atoms, interference between particles, etc. which are regularly seen in experiments
and which are an integral part of the quantum framework. But, many consider
the distinguishing characteristic of the quantum nature of physical systems to be
`quantum entanglement' [1].

Quantum entanglement is the strong non-local correlation that exists between
parts of a composite quantum system. Measurements of observables performed on
the parts are found to be strongly correlated, even though before the measurement,
the parts may be separated by arbitrarily large distances. This comes as a simple
consequence of the fact that even if the whole system can be represented as a ray
in some Hilbert space, the parts may not have such a description.

Then, if quantum entanglement is the distinguishing characteristic of quantum
systems, how does one quantify it? Quantifying this property of quantum systems
will eventually help us say which of two given systems is more �quantum". The
answer to the above question was given by John Von Neumann, who generalized the
expression for Shannon's Entropy in information theory to Entanglement Entropy
(EE) in quantum theory. Entanglement entropy, which is also called Von Neumann
entropy, is de�ned as follows:

Consider a quantum system in a pure state |0〉. The density matrix in this
state is

ρ = |0〉〈0| (1.1)

Let A and B be two parts of the quantum system such that the total Hilbert
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space of the quantum system is a direct product of the Hilbert spaces for each of
the parts A and B H = HA ×HB. Then the reduced density matrix for the part
A is de�ned as follows by tracing over the degrees of freedom belonging to part B:

ρA = TrBρ (1.2)

The entanglement entropy of the quantum system with respect to the bipar-
tition A, B is then de�ned as the Von Neumann entropy of the reduced density
matrix of A. This is given as:

SA = −TrA (ρA log ρA) (1.3)

If the quantum system was initially in a pure state |0〉, it turns out that SA =
SB, where SB is de�ned similar to SA except that the partial trace is now over the
degrees of freedom in A.

Entanglement entropy de�ned as above is not a good measure of quantum
entanglement between the partitions A and B if the quantum system is initially in
a mixed state. There are other quantitative measures of quntum entanglement [2]
which one can use in such a case.

1.2 Rényi Entropy

Entanglement entropy can be generalized so as to be applicable to a wider class
of systems. Rényi entropy is one such generalization. It is de�ned as [3] :

Sn(ρA) =
1

1− n
log (TrA (ρA

n)) (1.4)

where n>0 and n 6= 1.
In the limit n → 1, the Rényi entropy reduces to the entanglement entropy.

One of the most important motivation to study Rényi entropy is the fact that it is
di�cult to calculate log ρA. The Rényi entropy on the other hand has ρA

n which is
not as di�cult. Furthermore, the Rényi entropies for di�erent values of n give us
a more re�ned information about the reduced density matrix ρA - the knowledge
of SA

n for all n is equivalent to knowing the full eigenvalue distribution of ρA.
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1.3 Entanglement in quantum �eld theory

Consider a lattice quantum theory in one space and one time dimension, ini-
tially on the in�nite line. Let the lattice spacing be ε and the lattice sites be
labelled by a discrete variable x. Let time t be continuous. Let {φ̂(x)} denote a
complete set of commuting observables in the lattice theory under consideration.
ε→ 0 will be the limit in which we get the quantum �eld theory.

Consider the lattice theory at zero temperature. The theory is then in a pure
state. The density matrix of the lattice quantum theory in this state is given by:

ρ
(
{φ1(x1)}|{φ2(x2)}

)
=

1

Z

〈
{φ1(x1)}|e−βĤ |{φ2(x2)}

〉
(1.5)

where Z = Tre−itĤ is the partition function of the lattice quantum theory.
This may be expressed in the standard way as a path integral:

ρ =
1

Z

∫
[dφ(x, t)]

∏
x

δ(φ(x, 0)− φ2(x2))
∏
x

δ(φ(x, 0)− φ1(x1)) e−S (1.6)

where S =
∫∞

0
Ldt , with L being the Lagrangian. We note an important point

here - the partition function comes with a boundary condition (say in the presence
of a branch cut).

To de�ne the entanglement entropy of the lattice quantum theory, we consider
a bipartition of the theory into two parts A and B. Let the subsytem A be the
set of all the points x in the interval (u1, v1) . Then an expression for the reduced
density matrix ρA may be found from equation (1.6) by sewing together only those
points x which are not in A. This will leave open cut for the interval (u1, v1) along
the line t = 0.

Now we compute the Rényi entropy using the replica trick [4]. We make n
copies of the above geometrical structure, and compute TrρA

n by sewing the copies
together cyclically along the cuts so that φ1(x)(k) = φ2(x)(k+1) for all x in A. Let
Zn(A) denote the path integral on this n-sheeted Riemann surface. Whether we
keep the same or di�erent boundary conditions over the n replicas is an important
issue we will address as we go along. Then

TrρnA =
Zn(A)

Zn
(1.7)

The Rényi entropy is then given by:

Sn =
1

1− n
log (TrρnA) =

1

1− n
log

(
Zn(A)

Zn
1

)
(1.8)
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Using the above equation for Rényi entropy, we can obtain the entanglement
entropy of the lattice quantum theory by taking the limit n→ 1.

SA = lim
n→1

1

1− n
log

Zn(A)

Zn
= − lim

n→1

∂

∂n

Zn(A)

Zn
(1.9)

Since TrρnA =
∑

λ λ
n where λ are the eigenvalues of ρA (which lie in the in-

terval [0, 1)) and since TrρA = 1, the left hand side of the above equation is
absolutely convergent and therefore analytic for all Ren > 1. Then, we can also
take the derivative wrt to n and then take the limit. Thus the procedure to get
the entanglement entropy from the Rényi entropy is well-de�ned.

Recall the lattice spacing ε of the lattice quantum theory. This acts as the UV
cuto� and the limit ε→ 0 gives us the entanglement entropy of the quantum �eld
theory.

1.4 Some results about entanglement entropy

In this section, we review two main results about entanglement entropy. We
work in 1+1 dimensions because in this case the special nature of the 1+1 dimen-
sional conformal group has facilitated the calculations of the entanglement entropy.
The �rst case refers to a �nite-sized entangling interval in a �nite-sized system at
zero temperature. The second case refers to a �nite-sized entangling interval in an
in�nitely long system with �nite temperature β−1.

1. Consider a 1+1 dimensional quantum �eld theory at critical point (thus it
is a conformal �eld theory). Let the whole system have a �nite length L
and the subsystem A be a single interval of length l in the system. Suppose
we impose periodic boundary conditions on the whole system. Then the
entanglement entropy of the system is given by [4]:

SA =
c

3
log

(( L
πε

)
sin
(πl
L

))
+ c′1 (1.10)

2. Consider a 1+1 dimensional quantum �eld theory. Let L → ∞. Let the
system be in a thermal state (mixed state) at a �nite temperature 1

β
. Let

the subsytem A be again an interval of length l. Then the entanglement
entropy of the system is given by [4]:
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SA =
c

3
log

(( β
πε

)
sinh

(πl
β

))
+ c′1 (1.11)

As observed in [4], the constant c′1 is the same in both cases.
In second part of this report (chapters [3], [4], [5] ), we will present some

original attempts in trying to derive the expressions for entanglement entropy in
1+1 dimensional free fermion conformal �eld theories, with a �nite length interval
as the entangling interval in a �nite-sized system at a �nite temperature.

1.5 Black holes in string theory

Black holes have an entropy associated to them. In the early 1970's, a remark-
able similarity was found between laws of thermodynamics and laws of black hole
mechanics. This led Bekenstein to conjecture that black holes have an entropy [5]:

SBH =
1

4

A

l2P
(1.12)

where lP = c3

~G is the Planck length.
This area law dependence of the black hole entropy is puzzling and has no

explanation in general relativity. Also, since the gravitational �eld inside a black
hole is very high, we expect general relativity to break down. Also, entropy is
inherently a quantum notion in the sense that even the thermodynamic entropy is
de�ned as a logarithm of the total number of quantum microstates available to the
particular thermodynamic macrostate. It is not clear why the microstates of the
black hole should localize near the horizon so as to give an area law dependence
to the entropy. These facts motivate us to expect that a full explanation of some
properties of black holes can only be found in a quantum theory of gravity.

In the late 1970's and 1980's, string theory emerged as one of the most promi-
nent candidate for a quantum theory of gravity. Since then, the study of black
holes in string theory has been focussed towards providing an account for the area
law and other properties of the black hole entropy. Black holes in string theory is
a vast topic and we give a very brief presentation here just so as to set the context
for chapter [2] where a special class of black holes is studied following [16].

Black holes in string theory come as solutions to string equations of motion.
Since there are gauge �elds that form part of these solutions and the black holes
carry charge under these gauge �elds, these are charged black holes. If a black hole
carries two charges, say electric (Q) and magnetic (P ), then it is called a dyonic
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black hole (or dyon) and its mass M , as is shown in [6], satis�es the relation
M ≥ a

√
Q2 + P 2 where a is a constant that comes with the solution (technically,

the vacuum expectation value of a scalar �eld of the solution). The lower bound
on the mass is called Bogomol'nyi-Prasad-Sommer�eld (BPS) bound [7].

Some black hole solutions in string theory satisfy the BPS bound. In [8], it
was shown that these BPS states describe extremal black holes. Extremal black
holes are special class of black holes with zero Hawking temperature. These will be
important for us as we discuss the entropy of these black holes in the next chapter.

In 1996, Strominger and Vafa [9] showed that one can excatly reproduce the
area law of the black hole entropy from string theory. Speci�cally, we start with
Type II string theory on K3×S1. Black holes in these theories carry two charges.
Thus they are dyons. We then look for those solutions in string theory which
satisfy the BPS bound. One then counts the exact degeneracy of these states.
The entropy found from this is seen to exactly match the Bekenstein-Hawking
entropy of black holes as obtained from the low-energy e�ective action of the same
string theory.

1.6 The AdS/CFT Correspondence

Equation (1.12) tells us that entropy in a spherical region of spacetime scales
as the square of the radius and not cube. This observation �rst gave rise to the
Holographic Principle - the statement that all the information inside a volume
can be represented as a `hologram' so that the boundary gives all the information
contained in its bulk.

The AdS/CFT Correspondence [10], [11], [12] is a concrete realization of the
Holographic Principle. It provides a relation between a string theory, which is a
theory of quantum gravity and superconformal �eld theory without gravity. More-
over, these theories live in di�erent spacetime dimensions. As originally presented,
the AdS/CFT Correspondence states that - Type IIB string theory on AdS5 × S5

(with appropriate boundary conditions) is dual to conformally invariant N = 4
supersymmetric Yang-Mills theory de�ned on the 4-dimensional boundary of the
AdS5.

In terms of relating the parameters on both sides, the duality takes the form:

gS = g2
YM , a0 =

θ

2π
,Q = N (1.13)

where gS is the string coupling constant, gYM is the Yang-Mills coupling con-
stant of the guage theory, a0 is the constant value of a real scalar �eld in the string
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theory, θ is the instanton angle in the Yang-Mills theory, Q is the quantized �ux
of the 5-form �eld strength in the string theory and N is the N of SU(N) - the
internal symmetry group of the Yang-Mills theory. The supersymmetry group of
AdS5×S5 is the same as that of the N = 4 SYM theory in 3+1 dimensions and the
operators in the SYM theory act as sources for the �elds in the AdS5 supergravity
theory.

The AdS/CFT Correspondence is remarkable in that it is a kind of strong-
weak duality. When the e�ective coupling g2

YMN becomes large, the perturbative
expansions in the SYM theory cannot be trusted but as gSQ becomes large in
this limit, the perturbative calculation done in supergravity on AdS5 × S5 can
be trusted. The �ux Q measures the size of geometry in Planck units and hence
quantum e�ects in AdS5 × S5 correspond to 1

N
e�ects in the gauge theory. Thus

the AdS/CFT Correspondence is an important calculational tool, apart from being
an indicator towards more fundamental properties of quantum gravity.

More general statements of the AdS/CFT Correspondence also exist, which
relate string theory on some product space containing an AdS factor to conformal
�eld theory on the boundary of the AdS.
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Chapter 2

QEF and entanglement entropy

It can be shown that entanglement entropy satis�es an area law [13], [14]:

SA = constant
Area(∂A)

ε2
+ subleading terms (2.1)

where ε is the UV-cuto� and ∂A is the boundary of the entangling surface A

If we compare this to equation (1.12), we see a similarity between leading terms
in entanglement entropy and black hole entropy.

Is this similarity a co-incidence? Black hole entropy, as we argued in Chapter
[1], can shed light on the nature of quantum gravity. We argue for the importance
of entanglement entropy in the present context as follows:

Consider a theory of supergravity as a low-energy limit of a string theory
de�ned in the bulk AdS spacetime. As per the AdS/CFT Correspondence, this
is equivalent to a strongly coupled quantum �eld theory with supersymmetry and
conformal invariance and de�ned on the boundary of the AdS spacetime. Now,
the distinguishing feature of a quantum �eld theory is quantum entanglement
which is quanti�ed by the entanglement entropy. Because the quantum theory of
gravity de�ned in the bulk is equivalent to the boundary quantum �eld theory, the
�quantumness� in the bulk theory should somehow be related to the �quantumness�
in the boundary theory, which is measured by the entanglement entropy. Black
holes provide a natural partition of the Hilbert space of the universe into two and
hence one can measure entanglement entropy with such a partition. This, and the
area laws of the two entropy, motivates a relation between the black hole entropy
in the bulk gravity theory and the entanglement entropy in the boundary �eld
theory.

Having motivated why should black hole entropy and entanglement entropy be
related, in the context of the AdS/CFT Correspondence, we will review the work
[16] in this chapter where an exact equality was shown between quantum entropy
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of black holes in the bulk AdS spacetime (de�ned in the sections that follow) and
entanglement entropy in the boundary conformal �eld theory.

Such a relation is not known for general AdSd+1/CFTd setups. We describe
in the following sections a special case of the problem - that of the AdS2/CFT1.
Speci�ally, following [16], we review the state operator correspondence in CFT1 ,
entanglement entropy and the quantum entropy of extremal black holes in AdS2.

2.1 State Operator Correspondence

We know about radial quantization as a way to quantize a Conformal Field
Theory (CFT). Here, time runs along the radial direction. This makes it possible
to de�ne a one-one map between local operators in the CFT on Sd and states in
the same CFT on Sd−1×R. This is the State Operator Correspodence in a general
CFT [15]

If ξ labels a coordinate on the cylinder Sd−1 × R and z on Sd, then the map

z = e
2πξ
L (2.2)

takes us from Sd−1 × R to Sd.
If φ(z, z̄) is a �eld operator in a CFT on Sd, it corresponds to the following

state in the CFT on Sd−1 × R

|φ〉in = lim
z,z̄→0

φ(z, z̄)|0〉 (2.3)

Now consider the case of CFT1 - 0+1 dimensional CFT.
If we start with the CFT on S1, the state operator correspondence becomes a

map from local operators on S1 to states de�ned in the same CFT on S0 × R.
This can be thought of as a map from operators on the Hilbert space Hc of

CFT1 to states in the product Hilbert space H1×H2. The Hilbert spaces Hc, H1,
H2 are all isomorphic to each other.

The mapping from S1 to S0 × R is -

σ + iτ = 2 tan−1 tanh

(
iθ

2

)
(2.4)

where θ ∈ [0, 2π] ; σ = −π, 0 and −∞ < τ <∞.
Because CFT1 is de�ned only at one spatial point, all operators in CFT1 are

local. If M̂ is an operator at θ = −π
2
on S1, it gets mapped to the state -

|M〉〉 = Mab |a〉1 × |b〉2 (2.5)
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where Mab = 〈a|M̂ |b〉 , the states |a〉 and |b〉 here are de�ned on Hc and
summation is implied.

Because M̂ is localized at θ = −π
2
, the state |M〉〉 is situated at σ = −π,

τ = −∞.
For the above state, reduced density matrix of the CFT (obtained after tracing

over the states in the second copy of H) is -

ρM = (MM †)ac|a〉〈c| (2.6)

where the states |a〉 and |c〉 are now de�ned in H1

As a special case which we will refer to later on, consider the identity operator
on Hc. This gets mapped to the state |I〉〉 = |a〉1 × |a〉2 on S0 × R. The reduced
density matrix corresponding to the state |I〉〉 is ρI = |a〉〈a|. Thus the identity
operator gets mapped to a maximally entangled state.

The CFT de�ned on S1 forms the boundary of Euclidean local AdS2 and the
one de�ned on S0×R forms the boundary of Lorentzian local AdS2 spacetime. In
the following section we prove this statement by presenting AdS2 metric in both
Euclidean and Lorentzian signature.

2.2 Di�erent versions of AdS2 spacetime

The objects of study in this chapter are a special class of black holes called
extremal black holes. Extremal black holes are those charged black holes whose
inner and outer horizons coincide. Equivalently, these are de�ned as black holes
with Hawking temperature TH = 0. Since their Hawking temperature is zero, they
do not radiate and hence are stable. They are described by those solutions of
string theory which satisfy the BPS bound.

Furthermore, we are going to take near-horizon limit of these extremal black
holes. Near-horizon geometry, also sometimes called as the geometry near the
`stretched horizon' is thought to encode all the information about microstates of
the black hole [17]

We start with a Reissner-Nordstrom black hole solution in 3+1 dimensions.
We will take the near-horizon geometry of this 3+1 dimensional black hole and
arrive at AdS2 spacetime. The metric part of the Reissner-Nordstrom solution is:

ds2 = −
(

1− a

ρ

)(
1− b

ρ

)
dτ 2 +

dρ2(
1− a

ρ

)(
1− b

ρ

) + ρ2
(
dθ2 + sin2θ dφ2

)
(2.7)
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where the length scales a and b refer to the inner and the outer horizons.

Now de�ne new coordinates (t, r) as [16]:-

r =
ρ− a+b

2

ε
, t =

ετ

a2
(2.8)

where ε = a−b
2

.

Now we want to take the near-horizon limit of the metric (2.7) in its extremal
form. It is not obvious which limit - the near-horizon limit or the extremal limit -
is to be taken �rst in metric (2.7). If we �rst take the extremal limit (a = b) and
then take the near-horizon limit, we will end up with metric:

ds2 = c

[
−r2dt2 +

dr2

r2
+ r2

(
dθ2 + sin2θ dφ2

)]
(2.9)

where c is a constant.
But this is not the correct near-horizon metric because this way zero-energy

excitations at asymptotic in�nities (r → ±∞) may be �nite-energy excitations
close to the horizon (ρ → a). This is not allowed because AdS2 cannot support
�nite-energy excitations [18]. This order of taking limits does not respect the
instability of AdS2 to �nite energy excitations.

Instead, as shown in [16], the correct way to take near-horizon limit of this
black hole is to take ε → 0 de�ned through equation (2.8) while keeping (t, r)
�xed. This leads to the following near-horizon metric-

ds2 = c

[
−(r2 − 1)dt2 +

dr2

(r2 − 1)
+ r2

(
dθ2 + sin2θ dφ2

)]
(2.10)

In this case, the constant c = a2.
From now onwards, we will focus only on the AdS2 part of this near-horizon

metric. Thus the near-horizon geometry of an extremal black hole contains a local
AdS2 factor with metric-

ds2 = a2

[
−(r2 − 1) dt2 +

dr2

(r2 − 1)

]
(2.11)

upto a reparametrization, (t, r) can be considered to be as the time and the
radial coordinate of the full black hole solution.

Black hole horizons are objects naturally de�ned in a global spacetime. So,
we have to �nd the global extension of the above local AdS2 spacetime to study
the presence of horizons. Local AdS2 spacetime can be extended to global AdS2
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spacetime, keeping the signature of the metric Lorentzian. If (T, σ) are global
coordinates, then the map which achieves this is-

T ± σ = 2 tan−1 tanh
t± η

2
(2.12)

where η = 1
2
log (r−1)

(r+1)
; −π < σ < 0 and −∞ < T <∞.

The Lorentzian global AdS2 metric we thus get is-

ds2 =
a2

sin2 σ

[
−dT 2 + dσ2

]
(2.13)

Geometrically, this represents an in�nite strip, where the coordinate T runs
along the boundaries of the strip.

In our presentation of the AdS/CFT equivalence relating to near-horizon ge-
ometry of a black hole, we would be interested in de�ning partition function on
AdS2 space. For this purpose, we need to know Euclidean versions of the local
and global AdS2 metrics, which we present below.

In equation (2.11), if we put t = −iθ, then we get the Euclidean local AdS2

spacetime -

ds2 = a2

[
(r2 − 1)dθ2 +

dr2

(r2 − 1)

]
(2.14)

If we de�ne a new coordnate α =
√

r−1
r+1

, then the metric above takes the form-

ds2 =
4a2

(1− α2)2

[
dα2 + α2dθ2

]
(2.15)

Since α = 0 has no conical singularity, θ is periodic with period 2π. Thus it is
clear that Euclidean local AdS2 space is a disk.

We can Euclideanize the global AdS2 space as well. In equation (2.13) put
T = −i τ . Then

ds2 =
a2

sin2 σ

[
dτ 2 + dσ2

]
(2.16)

In the state operator correspondence in a CFT, we map a time coordinate
running along a real line to a circle. As the CFT we will consider will form
the boundary of the AdS spacetime, the state operator correspondence will map
the strip-like AdS2 spacetime to a disk-like spacetime, or the Lorentzian to the
Euclidean AdS2. This is the motivation behind presenting both Lorenzian and
Euclidean AdS2 metrics.
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2.3 Quantum entropy of extremal black holes

When we study the entropy of black holes in string theory, the Bekenstein-
Hawking entropy equation (1.12) turns out to be the leading contribution to the
black hole entropy. The Strominger-Vafa result [9] is proved in the case of large
charges of the dynonic black holes under study. The subleading corrections are
either due to the classical �stringy� nature of the theory (α′ corrections) or due
to the quantum nature of the strings (string loop corrections) (or both). There
have been several attempts to study these corrections to the Bekenstein-Hawking
entropy formula. Please see the review [19] for details about these.

These attempts have culminated in the so-called Quantum Entropy Function
(QEF). It gives us a way to compute the fully quantum corrected entropy of
extremal black holes [20].

The partition function is (weighted) sum of degeneracies and hence is useful in
computing the statistical entropy. The near-horizon geometry of an extremal black
hole contains an AdS2 factor and a compact manifold (denoted by K). The parti-
tion function ZAdS2 in this near-hrizon geometry is de�ned as a path integral over
all the string �elds in AdS2×K weighted by e−SE , where SE is the Euclidean action
evaluated in the AdS2. In AdS2 × K backround, using symmetry consideration,
the metric has a general form and the action becomes-

SE ≈ r0(2πvL+K) + 2πvL (2.17)

where r0 is an upper bound on the radius of Euclidean local AdS2, placed so as
to regularize the in�nite volume of AdS2, v is a constant and L is the lagrangian
density integrated over AdS2 coordinates. The term involving r0K comes from the
boundary contribution to SE with K being a constant.

We observe that the term linear in r0 is ambiguous since it can be changed by
changing the boundary terms. However the �nite part in ZAdS2 is independent of
bounary terms and is unambiguous. We write -

Zfinite
AdS2

= e−2πvL (2.18)

Now we adopt a boundary condition where we �x the asymptotic electric �eld
con�guration. In this case the path intergral de�ning ZAdS2 needs to weighted also

by a factor e
−
[
iqi
∮
dθA

(i)
θ

]
. The partition function then becomes -

ZAdS2 = er0(2πvL+K−2π~e·~q)+2π(~e·~q−vL) (2.19)

The �nite part of the partition function now becomes-
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Zfinite
AdS2

= e2π(~e·~q−vL) (2.20)

We de�ne the quantum entropy function QEF as -

QEF ≡ Zfinite
AdS2

(2.21)

By the AdS/CFT Correspondence, the partition function of string theory on
AdS2 ×K is equal to that of the boundary CFT1.

ZAdS2 = ZCFT1 (2.22)

If H is the Hamiltonian of the CFT1,

ZCFT1 = Tr
(
e−2πr0H

)
= e−2πr0E0

∑
~q

d (~q) e−2π~e·~q (2.23)

where E0 is the energy of the ground state of the CFT1. As the spectrum of
extremal black holes have a gap separating the BPS ground states from the non-
BPS excited states, the extremal BPS black hole is described by a CFT having a
similar gap and furthermore, a �nite number d(~q) of energy states corresponding
to the charges ~q.

Therefore,

ZAdS2 = e−2πr0E0

∑
~q

d (~q) e−2π~e·~q (2.24)

Extracting the �nite part of this full partition function and using equation
(2.21),

QEF =
∑
~q

d (~q) e−2π~e·~q (2.25)

The quantity
∑

~q d (~q) e−2π~e·~q is just equal to the total number of states the
CFT1 has. By statistical theory, logarithm of this gives us the entropy of the
system. As this CFT1 describes the extremal black hole, making use of equation
(2.25), we get the result that the full quantum corrected entropy of the extremal
black hole is

SBH = log (QEF) (2.26)
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2.4 Calculating observables in CFT1

The CFT1 has a �nite number of degenerate ground states, say N. Therefore,
the only observables in CFT1 are N ×N matrices. We take linearly independent
unitary matrices as a basis and then the CFT1 has exact U(N) symmetry be-
cause the N degenerate states get rotated into themselves under the action of the
operators.

By AdS/CFT Correspondence, this symmetry must also be present in the string
theory on AdS2×K. Hence, if W is an N ×N matrix acting on CFT1, there must
also be a corresponding transformation W̃ acting on the �elds in string theory.

Then Tr(W ), an observable in CFT1 is equivalent to the partition function of
string theory on AdS2 ×K with a W̃ twist [16].

2.5 States in string theory on AdS2 ×K

Let |W 〉〉 be a state in CFT1 on S
0×R. To |W 〉〉 and |V 〉〉, we want to associate

wave-functionals in string theory fW and fV such that

Inner Product (fw; fV ) = Tr
(
W−1V

)
= Ztwisted

AdS2

(
W−1V

)
(2.27)

For this, we de�ne [16] fW ≡ string theory path integral over the half disk
with a cut corresponding to the transformation W̃ that reaches the bounday of
the half-disk.

2.6 Entanglement Entropy and QEF

We have shown that (equation (2.26)) - SBH = log (QEF).
Now consider the string theory on AdS2 × K in the Hartle-Hawking vacuum

state fHH [21]. Hartle-Hawking vacuum state is a state constructed by path in-
tegrating Euclidean action over the half disk (without any cut) and then time
evolving it from there with Lorentzian signature. Here we are only interested in
its de�nition at t = 0 and not its evolution.

As is de�ned in absence of cuts, the Hartle-Hawking state is a wave-functional
associated to the identity operator acting on CFT1. In section 1, we presented the
state in the CFT on S0 ×R corresponding to the identity operator -
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Î → |I〉〉 = |a〉1 × |a〉2 (2.28)

Thus string theory on AdS2 × K in the Hartle-Hawking vacuum state fHH
correspondes to the CFT1 in a maximally entangled state -

fHH → |I〉〉 (2.29)

The entanglement entropy between the two copies 1 and 2 of the CFT1s is
given by logN . N is equal to the right-hand side of equation (7). Hence the fully
quantum corrected entropy of the extremal black hole in the Hartle-Hawking of
string theory on AdS2 × K to be equal to the entanglement entropy between the
two copies 1 and 2 of CFT1 s which reside in the maximally entangled state |I〉〉 -

QEF = Entanglement Entropy (2.30)

The equality between the Quantum Entropy Function of the black hole and the
entanglement entropy between the boundary CFTs can also be proved by working
fully in the bulk.

Using the replica trick in CFT,

Sent = − lim
n→1

d

dn

Tr (ρn)

(Trρ)n
(2.31)

Generally, Tr (ρn) is obtained from the bulk by calculating the partition func-
tion over an n-fold cover of AdS space. But in the case of AdS2, Tr (ρn) can also
be obtained from the partition function of string theory over all spaces each of
which is asymptotically AdS2 and contains a boundary circle of length n × 2πr0.
Let us denote this partition function by ẐAdS2(n).

It can be shown that ẐAdS2(n) = N e−n2πr0E0 .

Then Tr (ρn) = N e−n2πr0E0 and Tr(ρ) = N e−2πr0E0 and

Sent = − lim
n→1

d

dn

N e−n2πr0E0

Nn e−n2πr0E0
= − lim

n→1

d

dn
N1−n = logN (2.32)

Therefore,

QEF = Entanglement Entropy (2.33)
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2.7 Discussion

In this chapter, which forms the �rst part of this report, we have reviewed the
work of [16]. We have provided motivation for the existence of a relation between
the quantum entropy of black holes in AdSd+1 and the entanglement entropy of
the CFTd that forms the boundary of this spacetime. We have discussed why such
a relation, in a precise form, is signi�cant. There have been many attempts at
�nding such a relation.

The Quantum Entropy Function of extremal black holes describes the fully
quantum corrected entropy of these black holes. In the special case of AdS2/CFT1

, we have reviewd in detail the solution provided in [16] - that the quantum entropy
function of the extremal black holes in AdS2 and the entanglement entropy of the
two CFT1s which form the boundary of the AdS2 are exactly equal.

Finding such a precise relation in the case of general AdSd+1/CFTd has not
been successful as of now.
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Chapter 3

Modular invariance and quantum

entropies: 1

In this and the next two chapters, we present some original attempts at studying
modular properties of Rényi and entanglement entropies. The modular covari-
ant/invariant expressions we derive pass many tests. Besides being interesting
in its own right, the study of modular properties of these quantum entropies re-
veal some subtle issues related with applying the Replica Trick to CFTs at �nite
temperature.

One of our primary motivations to study the modular properties (covariance
or invariance) of Rényi and entanglement entropies is the disparity in literature
between the symmetry properties of these quantities. For example, it can be seen
from the expression of [32] that Rényi entropy is T-duality invariant and shifts un-
der modular transformations by a factor dependent on the modular parameter and
the central charge of the CFT. However, the expression given in [25] is in a par-
ticular spin structure and hence not well-de�ned under modular transformations.
We mention here the speci�cs that the conformal �eld theory (CFT) considered
in [32] is a theory of free bosons on a torus whereas [25] work with a CFT of free
fermions at �nite temperature and in a speci�c spin structure (the Neveu-Schwarz
sector or ν = 3, please see Section [3.2] for more details). But the two CFTs are
equivalent by Fermi-Bose duality at boson compacti�cation radius R = 1. We
shall discuss all these ideas in detail as we go along.

3.1 Modular invariance in CFTs

If we have a CFT de�ned on a �nite spacetime (perhaps in order to take care of
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IR divergences), then we need to provide boundary conditions for the �elds in the
CFT. Choosing the boundary conditions to be periodic (or anti-periodic) naturally
leads to the spacetime being a torus. With this motivation, we will study CFTs
de�ned on a torus.

A torus may be de�ned by specifying two linearly independent lattice vec-
tors on the complex plane and identfying all the points that di�er by an integer
combination of these vectors. If complex numbers ω1 and ω2 represent the lat-
tice generators then their ratio τ = ω1

ω2
is called the `modular parameter' of the

torus and is the only complex parameter that is required to de�ne the torus. The
partition function of the CFT and the correlation functions then depend on the
modular parameter τ .

If we choose one of the latice generators to be along the real axis of the complex
plane, it immediately forces the other generator to lie in the upper (or lower) half-
space. Let us choose the generator to lie in the upper half-space. This means
τ > 0.

A transformation of the type

τ → aτ + b

cτ + d
, ad− bc = 1 (3.1)

where a, b, c, d ∈ Z, is called a modular transformation. The integers a, b, c, d
arranged as a 2× 2 matrix (

a b
c d

)
form the group PSL2(Z). The group is sometimes called the `modular group'.

If we take τ to be the length of one of the lattice generators of the torus, the length
of the other by default becomes 1.

Consider the modular transformation τ → − 1
τ
. This transformation exchanges

the two lattice generators into each other. We observe that such a transformation
is essentially a composition of a scaling and a rotation both of which are conformal
maps. As the CFT should be invariant under any conformal transformation, the
CFT should also be invariant under the transformation τ → − 1

τ
.

Now consider the transformation τ → τ + 1. This is a discrete translation and
the CFT is invariant with respect to this.

It can be shown that the two transformations τ → − 1
τ
and τ → τ + 1 generate

the whole of the modular group [22]. Hence the CFT should be invariant under
the whole of the modular group. This is termed as `modular invariance' of the
CFT. This invariance places constraints on the operator content of the theory.
Furthermore, the modular transformations are now a symmetry of the theory and
hence quantities of interest like the partition function should be modular invariant.
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3.2 Free fermions at �nite temperature

Let us denote the holomorphic component of a fermion �eld by D(z) and
the anti-holomorphic component by D̄(z̄). The free theory in 1+1 dimensions is
described by the action:

S =
1

2π

∫
d2z
(
D̄∂D̄ +D∂̄D

)
(3.2)

Let (z, z̄) take values on a torus. We then need to impose boundary conditions
on the fermion �elds in space and time both of which are �nite. We take space to
be along the real axis. Then the general transformation of the fermion �eld, under
a translation by the lattice generators of the torus, becomes:

D(z + 1) = e2πia D(z) , D(z + τ) = e2πibD(z) (3.3)

where a, b ∈ Z.
The anti-holomorphic component satis�es the same transformation rule. Now,

under the above two translations of z the action must be periodic (i.e. remain
unchanged) because the �eld theory is de�ned on a torus. The fact that the
action is quadratic in each of the fermion �eld component implies the following
possibilities for the boundary conditions [22]:

(a, b) =
(
0, 0
) (

R,R
)

(a, b) =
(
0,

1

2

) (
R,NS

)
(a, b) =

(1

2
, 0
) (

NS,R
)

(a, b) =
(1

2
,
1

2

) (
NS,NS

)

where R stands for Ramond or the periodic boundary condition and NS stands
for Neveu-Schwarz or the anti-periodic boundary condition. A set of numbers (a, b)
which represents one boundary condition on the fermion �elds in conformal �eld
theories is called a `spin structure' of the fermion. For later reference we will
denote these spin structures as follows:
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ν = 1 (a, b) =
(
0, 0
) (

R,R
)

ν = 2 (a, b) =
(
0, 1

2

) (
R,NS

)
ν = 4 (a, b) =

(
1
2
, 0
) (

NS,R
)

ν = 3 (a, b) =
(

1
2
, 1

2

) (
NS,NS

)

3.3 Rényi entropy in a modular invariant CFT

Consider a free fermion CFT in 1+1 dimensions. Let the CFT be de�ned on
a torus. In section [1.3], we have discussed the replica trick used to calculate the
Rényi entropy and subsequently the entanglement entropy. In this section, we
apply the replica trick to a free fermion CFT on a torus, building up on the work
in [25].

In the replica trick as applied to the CFT on torus, we extend the original
torus to an n-fold cover with branch cuts along spatial intervals from 0 to l, where
[0, l] is the entangling interval. This n-fold space can be equivalently thought of
as a single torus, with the same modular parameter as the original one, with the
insertion of twist �elds at the end points of the entangling interval [23].

Let k be the label of the kth replicated torus. Let k range from −n−1
2

to n−1
2

in integral steps. Then the twist �eld σk(z, z̄) is de�ned by its action on the free
fermion �eld:

σk(z, z̄)D(z′) ∼ (z − z′)
k
n

σk(z, z̄) D̄(z̄′) ∼ (z − z′)−
k
n (3.4)

One can show that [24],

TrρnA =

n−1
2∏

k=−n−1
2

〈σk(l, l)σ−k(0, 0)〉 (3.5)

It is convenient to think of the product of un-normalized correlators of the
twist �elds as de�ning the replica partition function.

Zn =

n−1
2∏

k=−n−1
2

Z1〈σk(l, l)σ−k(0, 0)〉 =

n−1
2∏

k=−n−1
2

〈〈σk(l, l)σ−k(0, 0)〉〉 (3.6)
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This de�nition is consistent with equation (1.7) where the partition function
on the n-sheeted Riemann surface Zn(A) appears.

Let us consider the free CFT with one Dirac fermion. This has central charge
c = 1 and consists of two Majorana fermions with correlated spin structures.
Denote the Dirac fermion by (D(z), D̄(z̄)). By de�nition, these have Hermitian
conjugates

(
D†(z), D̄†(z̄)

)
. The local operators in this theory of dimension

(
1
2
, 1

2

)
are -

D(z)D̄(z̄) , D†(z)D̄(z̄) , D(z)D̄†(z̄) and D†(z)D̄†(z̄) .

The modular invariant partition function in this theory can be found by calcu-
lating the partition function in each spin structure and then summing the expres-
sions over all the spin structures. The result is [22]:

Z1 =
1

2

4∑
ν=2

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2 (3.7)

and for future reference, we note that:

Z1[m] =
1

2

4∑
ν=2

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2m (3.8)

where ν = 1, 2, 3, 4 represent the four spin structures described in the previous
section and θν(z|τ) are the Jacobi theta functions. Our de�nitions of the Jacobi
theta functions and some useful identities are given in Appendix A.

The following result was obtained for the replica partition function of this
theory in [25]

Zν
n =

n−1
2∏

k=−n−1
2

Zν
1

∣∣∣∣∣ θ
′
1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
4∆k

∣∣∣∣∣θν( klnL |τ)

θν(0|τ)

∣∣∣∣∣
2

(3.9)

where ∆k = k2

2n2 , ν = 2, 3, 4 is a �xed spin structure, τ = i β
L
and Zν

1 (0|τ) is
ordinary partition function in the νth spin structure . The result would formally
be the same in the case of ν = 1 but the normalized 2-point function of the twist
�elds in this case turns out to be divergent because of the identical vanishing
of θ1(0|τ). The implicit assumption in [25] is that the replica partition function
and hence the Rényi entropy should be computed spin structure by spin structure.
The entanglement entropy following from this way of computing the Rényi entropy
satis�es the relation proposed in [25], based on holography, relating its small and
large interval limits related to the thermal entropy of the same system. However,
applying equation (1.7) in this case, we see that the Rényi entropy cannot be
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de�ned for the spin structure ν = 1. Also, the given expression for replica partition
function is ill-de�ned under modular transformations.

On the other hand, the un-normalized 2-point function, which is what de-
�nes the replica partition function Zn, is non-singular. As emphasized in [26],
entanglement entropy should be a feature of a de�nite quantum �eld theory and
independent of the presentation of that theory. In a CFT of fermions, quantities
which are invariant under di�erent presentations (see bosonization in the next sec-
tion) are the modular invariant partition function and the correlation functions.
Hence, we propose to compute Rényi entropy by �rst obtaining Zn transforming
nicely under modular transformations and then dividing by Zn

1 where Z1 is the
modular-invariant ordinary partition function.

In the next section we explicitly carry out the computation following our pro-
posal and obtain a modular invariant expression for the entanglement entropy.

3.4 Central charge c = 1 theories

Consider a free fermion CFT with only one Dirac �eld - (D(z), D̄(z̄)). This
CFT has central charge c = 1. Let the entangling interval A be an interval of
length l. Following [25], we will �rst bosonize the theory and then �nd the twist
�eld in terms of the boson. Then we will calculate the correlation function of the
twist �eld and �nd the Rényi entropy Sn(A). Taking the limit n→ 1 will give us
the entanglement entropy.

Bosonization [27] is the equivalence between a theory of free (or interacting)
fermions and a theory of free bosons with the same central charge. Bosonization
usually works in 1+1 dimensions. A CFT of one Dirac fermion is equivalent to a
CFT of a compact free boson on a circle, with the circle of radius R = 1 (in our
conventions, α′ = 2. So T-duality acts by R → 2

R
and R =

√
2 is the self-dual

radius).

D(z) = eiφ(z) D̄(z̄) = eiφ̄(z̄)

where holomorphic component of the boson φ(z) has the following propagator

〈φ(z)φ(0)〉 = − log z (3.10)

At a general radius R, the free compact boson has vertex operators labelled by
integers (e,m) :

Oe,m = Ve,m(z) V̄e,m(z̄) (3.11)
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where

Ve,m(z) =: eiαe,mφ(z) : = : ei(
e
R

+mR
2 )φ(z) :

V̄e,m(z̄) =: eiᾱe,mφ̄(z̄) : = : ei(
e
R
−mR

2 )φ̄(z̄) : (3.12)

of conformal dimension :

(
∆e,m, ∆̄e,m

)
=

(
1

2

(
e

R
+
mR

2

)2

,
1

2

(
e

R
− mR

2

)2
)

(3.13)

The operator product expansion between the holomorphic part of the vertex
operators is given by :

Ve,m(z)Ve′,m′(0) ∼ z

(
e
R

+mR
2

)(
e′
R

+m′R
2

)
Ve+e′,m+m′(z) (3.14)

When the boson is compacti�ed at radiusR = 1, the fermion �eld has conformal
dimensions

(
∆, ∆̄

)
=
(

1
2
, 1

2

)
and is given, in the bosonic presentation, by O1,0.

The twist �eld in this single Dirac fermion theory is given, in the bosonic
language, by:

σk = O0, 2k
n

(3.15)

for k = −n−1
2
,−n−1

2
+ 1, · · · , n−1

2
. These operators have dimensions

(
∆, ∆̄

)
=(

k2

2n2 ,
k2

2n2

)
. Since the winding number m for these operators is not an integer,

they are not included in the set of local operators of the theory. This is what one
expects for twist operators. The twist operators have the following OPEs:

σk(z, z̄) V1,0(z′) ∼ (z − z′)
k
n , σk(z, z̄) V̄1,0(z′) ∼ (z̄ − z̄′)−

k
n (3.16)

Having made n-copies of the original torus, now we need to only compute
〈〈σk(z, z̄)σ−k(0, 0) 〉〉 to get the replica partition function. Using the general result
from [28] that:

〈〈 Oe,m(z, z̄)O−e,−m(0, 0) 〉〉 =

∣∣∣∣θ′1(0|τ)

θ1(z|τ)

∣∣∣∣4∆e,m 1

|η(τ)|2
(3.17)

×
∑
e′,m′

q2∆e′,m′ q̄2∆̄e′,m′ e4πi(αe′,m′ αe,mz−ᾱe′,m′ ᾱe,mz̄)

With (e,m) = (0, 2k
n

), z = l
L
and R = 1, this reduces to :
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〈〈 σk
(
l

L
,
l

L

)
σ−k(0, 0) 〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
2k2

n2 1

|η(τ)|2
∑
e,m

q2∆e,m q̄2∆̄e,m e4πi kl
nL
e

=

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
2k2

n2

× 1

2

4∑
ν=1

∣∣θν ( klnL |τ)∣∣2
|η(τ)|2

(3.18)

At this point, we need to decide how to take the product over replicas. We can
take the product over all k in the above expression. We would then have the spin
structures summed over before the replication is carried out. Any replica in the
n-sheeted Riemann surface is then uncorrelated with other replicas. We denote the
replica partition function thus obtained by `uncorrelated replica partition function'
Zu
n -

Zu
n(L, β; l) =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
1
6(n− 1

n) n−1
2∏

k=−n−1
2

1

2

4∑
ν=1

∣∣θν ( klnL |τ)∣∣2
|η(τ)|2

(3.19)

where we have used the result

(n−1)
2∑

k=− (n−1)
2

k2

n2 = 1
12

(
n− 1

n

)
We note that the above expression transforms nicely under modular transfor-

mations (in fact, it is modular-covariant, as will be shown below). However, there
is another way to obtain a modular-covariant replica partition function. We �rst
isolate the contribution to equation (3.19) from a given spin structure ν = 1, 2, 3, 4
of the fermion. This simply corresponds to picking out the respective function θν .
Then, we replicate this contribution n times by taking the product over k. Finally,
we sum over the spin structures. Here, the replicas in the n-sheeted Riemann sur-
face are perfectly correlated in the sense that they are de�ned in the same spin
structure and then the spin structures are summed over. We denote the replica
partition function thus obtained by `correlated replica partition function' Zc

n -

Zc
n(L, β; l) =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
1
6(n− 1

n)
1

2

4∑
ν=1

n−1
2∏

k=−n−1
2

∣∣θν ( klnL |τ)∣∣2
|η(τ)|2

(3.20)

The ordinary (n = 1) modular-invariant partition function is a unique expres-
sion, as is veri�ed by noticing that Zu

n = Zc
n at n = 1. Now, corresponding to the

two replica partition functions we can de�ne two Rényi entropies:
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Su,cn = lim
n→1

1

1− n
log

Zu,c
n

(Z1)n

Which one of these two Rényi entropies (if any) is the correct Rényi entropy
of the modular-invariant free Dirac fermion CFT? We discuss the answer to this
question, which is quite subtle, in the next section. We establish here a few
properties of the two replica partition functions.

Firstly, we note that the two replica partition functions and the corresponding
Rényi entropies can be compared to the non-modular-invariant replica partition
function of [25]:

Z(ν)
n =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
1
6(n− 1

n) n−1
2∏

k=−n−1
2

∣∣θν ( klnL |τ)∣∣2
|η(τ)|2

(3.21)

and the corresponding Rényi entropy :

SnA =
1

1− n
log

Z
(ν)
n

(Z
(ν)
1 )n

(3.22)

However, as pointed out earlier, this can be done only for the spin structures
ν = 2, 3, 4. Also, we observe that two Rényi entroies we have presented are not
linear combinations of the above equation for Rényi entropy.

Secondly, the two types of replica partition functions have di�erent behavior
in the limit l→ 0 :

Zu
n(L, β; l→ 0) ∼

(
l

L

)− 1
6(n− 1

n)
(

1

2

4∑
ν=1

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
)n

Zc
n(L, β; l→ 0) ∼

(
l

L

)− 1
6(n− 1

n) 1

2

4∑
ν=1

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2n (3.23)

where one can identify the second factor in the above equations as the ordi-
nary partition functions of n Dirac fermions with uncorrelated and correlated spin
structures respectively.

Taking the Rényi entropies in this limit, we see that:

Sun =
n+ 1

6n
log

l

L
+ 0 (3.24)

Scn =
n+ 1

6n
log

l

L
+

1

1− n
log

{
1

2

4∑
ν=1

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2n
}

− n

1− n
log

{
1

2

4∑
ν=1

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
}
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The entanglement entropy is Rényi entropy in the limit n → 1. Thus the
entanglement entropy in the limit l→ 0 becomes

S =
c

3
log

l

L
(3.25)

for only the uncorrelated and not the correlated Rényi entropy. Here, the
central charge c = 1 in our case and we have assumed commutability of the two
limits n → 1 and l → 0. Thus the uncorrelated Rényi entropy has the expected
expression for entanglement entropy in this limit [29]. What is the meaning of
the correlated Rényi entropy not having the expected behavior in l → 0 limit?
Does this mean that the correlated replica partition function, inspite of being
modular-invariant is wrong? We will answer these questions in the next section.

Now, we will explicitly check the modular invariance of our expressions for the
two types of replica partition functions and their Rényi entropies. A generator
of the modular group - the transformation τ → − 1

τ
, as described in section [3.1],

exchanges the two cycles of the torus (the two sides of the parallelogram which
represents the torus). We have a branch cut along the horizontal (real) axis, which
under this transformation, becomes a branch cut along the vertical axis. Thus this
transformtation acts as β ↔ L and l→ il. This permits us to use the well-known
transformation of the Jacobi theta functions:

θαβ

(
z

τ

∣∣∣− 1

τ

)
= (−i)αβ (−iτ)

1
2 e

iπz2

τ θβα(z|τ) (3.26)

along with the usual identi�cations: θ11 → −θ1, θ10 → θ2, θ00 → θ3 and θ01 →
θ4 and also the standard modular transformation of the Dedekind eta function:

η

(
−1

τ

)
= (−iτ)

1
2 η(τ) (3.27)

Applying these to the second terms of equations (3.19) and (3.20), we �nd that
we get a multiplicative factor:

e
iπ
6τ (n− 1

n)( l
L)

2

since the summation over ν plays no part in this calculation.
From the θ1 in the denominator of the �rst terms of both these equations, we

get a corresponding factor:

e−
iπ
6τ (n− 1

n)( l
L)

2

which cancels the previous factor. In the end we remain with the multiplicative
factor
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|τ |
1
6(n− 1

n)

Thus under the modular transformation τ → − 1
τ
, both replica partition func-

tions transform as:

Zu,c
n (β, L; il) =

(
β

L

) 1
6(n− 1

n)
Zu,c
n (L, β; l) (3.28)

Perhaps surprisingly, the replica partition function for the torus theory is not
modular invariant due to the multiplicative pre-factor. This factor vanishes at n =
1. The power of the prefactor is c

6

(
n− 1

n

)
, an expression that appears frequently

in the context of the Rényi entropy (in the above case, c = 1).
Now under this same modular transformation, the Rényi entropy shifts as:

Su,cn (β, L) = −n+ 1

6n
log

β

L
+ Sn(L, β) (3.29)

and hence even the entanglement entropy would shift by an additive term.
To have the quantum entropies transforming invariantly under modular trans-

formations, we can modify the prescription for computing the replica partition
functions by multiplying them by an external (l-independent) factor that renders
them modular invariant:

Z̃n
u,c

=

(
β

L

) 1
12(n− 1

n)
Zu,c
n (3.30)

The modular-invariant Rényi entropies are then given by:

S̃n
u,c

=
1

1− n
log

Z̃n
u,c

(Z1)n
(3.31)

which lead to modular invariant entanglement entropies.

We have thus obtained modular invariant expression for the entanglement en-
tropy of free Dirac fermions at �nite temperature with a �nite size entangling
interval.
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3.5 Thermal entropy relation

We see in [25] a relation between small and large interval limit of entanglement
entropy and thermal entropy, which we call the thermal entropy relation:

lim
l→0

(
S(L− l)− S(l)

)
= Sthermal (3.32)

where

Sthermal = β2 ∂

∂β

(
− 1

β
logZ1

)
(3.33)

This relation will be useful in determining which of the two Rényi entropies Su,cn
is the correct one. The overall factor used to make the replica partition functions
modular-invariant is independent of l and hence drops out of the thermal entropy
relation. Now consider the small l behavior of the two types of replica partition
functions. As seen in equation (3.23) Zu

n → (Z1)n but Zc
n 9 (Z1)n (upto an

overall factor of l). It is a physical requirement (see [29]) that for small intervals
the replica partition function should indeed tend to (Z1)n times the given power
of l. Thus, the correct Rényi entropy for small interval should be Sun and not Scn.

Next, consider the large interval limit l→ L. In this case, it has been predicted
on general grounds that the replica partition function should tend to Z1(nτ) [34],
[35], apart from the same power of l as l→ 0. Observe that:

Zc
n(l→ L) =

1

2

(
l

L

)− 1
6(n− 1

n) 4∑
ν=1

n−1
2∏

k=−n−1
2

∣∣∣∣∣θν( kn |τ)

η(τ)

∣∣∣∣∣
2

(3.34)

We now use an identity involving θ functions shifted by a fraction:

n−1
2∏

k=−n−1
2

∣∣∣∣θν (kn − z∣∣∣τ
)∣∣∣∣ =

(
∞∏
p=1

∣∣∣∣(1− q2p)n

1− q2pn

∣∣∣∣
)
|θν(nz|nτ)| (3.35)

where ν = 2, 3, 4. This can be easily derived using the product representation
of θ functions. Using this,

Zc
n(l→ L) =

1

2

(
l

L

)− 1
6(n− 1

n) 4∑
ν=1

∣∣∣∣θν(0|nτ)

η(nτ)

∣∣∣∣2 =

(
l

L

)− 1
6(n− 1

n)
Z1(nτ) (3.36)

Thus for large interval Zc
n is the correct Rényi entropy and not Zu

n , as Z
u
n 9

Z1(nτ). Hence we are led to propose that the correct modular-invariant partition
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function for the free Dirac fermion CFT is Zu
n at small l and is Zc

n at large l. We
then have Sun as the correct Rényi entropy at small l and Scn at large l. Also,

lim
l→0

(
S(L− l)− S(l)

)
= lim

n→1

1

1− n
log

(
Z1(nτ)

(Z1(τ))n

)
= log

{
Z1(

β

L
)

}
− β

L

Z ′1( β
L

)

Z1( β
L

)

= Sthermal (3.37)

The key conclusion of this section is that neither Sun nor Scn is the correct Rényi
entropy for �nite l.

3.6 Central charge c = 2 theories

Consider a free conformal �eld theory of two Dirac fermions with correlated
spin structures. This theory has the ordinary partition function:

Z1[4] =
1

2

4∑
ν=2

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣4 (3.38)

where we are using the notation:

Z1[m] =
1

2

4∑
ν=2

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣m (3.39)

The fundamental �elds of this theory are two Dirac fermion �elds, which we
call D1(z) and D2(z). By de�nition, these have Hermitian conjugates D†i (z) that
are also holomorphic. Combining with their anti-holomorphic components coun-
terparts, the physical operators in the theory of conformal dimensions

(
1
2
, 1

2

)
are:

DiD̄j, D
†
i D̄j, DiD̄

†
j , D

†
i D̄
†
j

where i, j run independently over 1, 2. We thus have 16 local operators of
dimensions

(
1
2
, 1

2

)
. Had the spin structures not been correlated, the allowed oper-

ators would only be those with i = j.
This c = 2 theory can be bosonized into two compact bosons φ1, φ2 that are

orthogonal to each other and are compacti�ed at the self-dual radius, which in our
conventions is R =

√
2. Thus their periodicity is:
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φi → φi + 2
√

2π (3.40)

If φi(z) are the two holomorphic components of the bosons and φ̄i(z̄) the anti-
holomorphic components, the Dirac �elds are given by:

D1(z) = e
i√
2
φ1(z)

e
i√
2
φ2(z)

, D2(z) = e
i√
2
φ1(z)

e
− i√

2
φ2(z)

(3.41)

The Hermitian conjugates have the same expressions but with i → −i, while
the anti-holomorphic conjugates have φi → φ̄i without any change of sign on i.

The allowed general vertex operator in the theory is:

O(z, z̄) = e
i√
2

(ej+mj)φj(z) e
i√
2

(ek−mk)φ̄k (3.42)

where the indices j, k are independently summed over 1, 2.
The 16 local operators obtained after combining the holomorphic and anti-

holomorphic components of the Dirac fermions correspond to all pairs of orthogonal
vectors of (length)2 = 2 in the unit 2 dimensional square lattice:

[(e1, e2); (m1,m2)] = ±[(1, 1); (0, 0)],±[(1,−1); (0, 0)],±[(0, 0); (1, 1)],±[(0, 0); (1,−1)]

±[(1, 0); (0, 1)],±[(1, 0); (0,−1)],±[(0, 1); (1, 0)],±[(0, 1); (−1, 0)]

In order to �nd the replica partition function, we need to �nd the twist �elds
which satisfy equations

σk(z, z̄)Di(z
′) ∼ (z − z′) kn , σk(z, z̄)D̄i(z̄′) ∼ (z̄ − z̄′)− kn

From these equations, we see that the monodromy induced by the twist �eld
is:

e
i√
2
φ1(z)

e
i√
2
φ2(z) → e

2πik
n e

i√
2
φ1(z)

e
i√
2
φ2(z)

e
i√
2
φ1(z)

e
− i√

2
φ2(z) → e

2πik
n e

i√
2
φ1(z)

e
− i√

2
φ2(z)

From the above equations, we see that the twist �eld must leave the boson
φ2 inert (otherwise it cannot introduce the same monodromy on both D1(z) and
D2(z)). Also the twist �eld must shift the boson φ1 by a fraction k

n
of its period:

φ1 → φ1 + 2
√

2π
k

n
(3.43)

Then, we see that the twist �eld should be:

σk(z, z̄) = e
√

2i k
n
φ1(z) e−

√
2i k
n
φ̄1(z̄) (3.44)

34



If we observe closely, we will see that the twist �eld here is the same as that in
the c = 1 theory, except that it is evaluated at radius R =

√
2. Due to this change

in the radius, the conformal dimension is ∆k = k2

n2 , which is twice that in the case
of the single Dirac fermion. This ensures that

∑
k ∆k = c

24

(
n− 1

n

)
with c = 2, as

required.
To calculate the two-point correlator of the twist �eld, we use the equation

(3.17) and get:

〈〈σk(z, z̄)σ−k(0, 0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
4k2

n2 1

|η(τ)|4
∑
ei,mi

q2(∆e1,m1+∆e2,m2)q̄2(∆̄e1,m1+∆̄e2,m2)e4πi kl
nL
e1

where ∆ei,mi = 1
2

(
ei+mi√

2

)2

, ∆̄ei,mi = 1
2

(
ei−mi√

2

)2

and η(τ) is raised to 4th power

because there are two bosons whose spectra are to be summed over. Also, consider
only the sum in the above expression, which becomes:

F (k) ≡
∑
ei,mi

q
1
2((e1+m1)2+(e2+m2)2) q̄

1
2((e1−m1)2+(e2−m2)2) e4πi kl

nL
e1

De�ne e1 = n1+n2+n3+n4

2
, e2 = n1−n2−n3+n4

2
, m1 = n1−n2+n3−n4

2
and m2 =

n1+n2−n3−n4

2
. Since all ei,mi are integers, all ni are either integers or half-integers

and
∑

i ni should be even. Then F (k) becomes:

F (k) =
∑
ni∈Z

[
1 + (−1)

∑
i ni

2

]
q(n2

1+n2
3) q̄(n2

2+n2
4) e2πi kl

nL

∑
i ni

+
∑

ni∈Z+ 1
2

[
1 + (−1)

∑
i ni

2

]
q(n2

1+n2
3) q̄(n2

2+n2
4) e2πi kl

nL

∑
i ni

Using the de�nitions of theta functions given in Appendix A, we see that the
above sums become (in that order):

F (k) =
1

2

[
|θ3(z|τ)|4 + |θ4(z|τ)|4 + |θ1(z|τ)|4 + |θ2(z|τ)|4

]
where z = kl

nL
.

Hence, the two-point correlation function of the twist �elds is:

〈〈 σk(z, z̄) σ−k(0, 0) 〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
4k2

n2

× 1

2

4∑
ν=1

∣∣θν ( klnL |τ)∣∣4
|η(τ)|4

(3.45)

The uncorrelated replica partition function, is given by product over all k of
the above expression:
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Zu
n(L, β; l) =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
c
6(n− 1

n) (n−1)
2∏

k=− (n−1)
2

1

2

4∑
ν=1

∣∣θν ( klnL |τ)∣∣4
|η(τ)|4

(3.46)

with central charge c = 2.
The correlated replica partition function, on the other hand, is given by the

same product as above but the sum over ν taken later:

Zc
n(L, β; l) =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
c
6(n− 1

n)
1

2

4∑
ν=1

(n−1)
2∏

k=− (n−1)
2

∣∣θν ( klnL |τ)∣∣4
|η(τ)|4

(3.47)

The two Rényi entropies are easily obtained from these and so are the entan-
glement entropies in the respective limits l→ 0 and l→ L.

As before, we can modify both the replica partition functions by multiplying

with the pre-factor
(
β
L

) c
6(n− 1

n)
(with c = 2), to make them modular invariant. The

entropies thus obtained are modular invariant too.
Here, we would like to mention that although this result looks like a straightfor-

ward generalization of that obtained for a single Dirac fermion, it does not actually
follow directly from it. The reason is that one needs a bosonic dual theory in order
to write the twist �eld. For two Dirac fermions with correlated spin structures, the
bosonic dual is not simply two copies of that for the single Dirac fermion. Rather
the bosonic dual is two copies of bosons, compacti�ed at R =

√
2, a di�erent CFT

with a completely di�erent spectrum of operators.
In the next chapter, we will present a conjecture for the replica partition func-

tion for any number of free Dirac fermions at �nite temperature in 1+1 dimensions.
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Chapter 4

Modular invariance and quantum

entropies: 2

4.1 A conjecture for any number of fermions

Consider a 1+1 dimensional CFT of m free Majorana fermions (or m
2
Dirac

fermions, where m is even) at �nite temperature β−1 and in a system of �nite
spatial size L. Let an interval [0, l] be the entangling interval for the study of
entanglement entropy. This theory has a central charge c = m

2
.

Seeing the success of our procedure, we propose that the correlated replica
partition function for this theory is:

Zc
n[m] =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
m
12(n− 1

n)
1

2

4∑
ν=1

(n−1)
2∏

k=− (n−1)
2

∣∣θν ( klnL |τ)∣∣m
|η(τ)|m

(4.1)

and the uncorrelated replica partition function for this theory is:

Zu
n [m] =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
m
12(n− 1

n) (n−1)
2∏

k=− (n−1)
2

1

2

4∑
ν=1

∣∣θν ( klnL |τ)∣∣m
|η(τ)|m

(4.2)

We have veri�ed the correctness of the above proposal for m = 2, 4.
We emphasize that our expressions for the replica partition functions are con-

jectural in nature and does not have direct derivations without constructing the
twist �elds in terms of bosons.

Furthermore, we also propose the usual modi�cation of the replica partition
functions to render them modular invariant. In the above case the modi�cation

term will be:
(
β
L

)m
24(n− 1

n)
.
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4.2 Multiple correlated fermions and lattice bosons

For d ≥ 3, the theory of m = 2d free Majorana fermions (equivalently, d Dirac
fermions) with correlated spin structures (on the original copy of the torus) is dual
to a speci�c compacti�cation of d free bosons on a target-space torus:

T c = Rd/Γd

where Γd is the root lattice of Spin(2d) at self-dual radius R =
√

2. This root
lattice can be achieved by starting with a rectangular torus and choosing a suitable
constant metric and B-�eld. The ordinary partition function is well-known and has
been directly computed within both the fermion as well as boson representation
[30]. It is given by Z1[m] in terms of the de�nitions in equation (3.39).

We �rst identify the bosonic representation of dimensions
(

1
2
, 1

2

)
operators in

the theory. These operators are:

DpD̄q , D
†
pD̄q , DpD̄

†
q , D

†
pD̄
†
q

where p, q = 1, 2, · · · , d. In the free boson theory, let ΛR be the root lattice
and ΛW be the dual weight lattice. Then the vertex operators are:

Owi,w̄i = eiw
iφi eiw̄

iφ̄i (4.3)

where wi, w̄i ∈ ΛW and wi − w̄i ∈ ΛR. Elements of the weight lattice can be
parametrized as:

wi =
1√
2
gijvj, w̄i =

1√
2
gij v̄j (4.4)

where vi, v̄j are integer column vectors and gij is the inverse of gij which itself
is half of the Cartan matrix of Spin(2d). For the di�erence of wi and w̄i to lie in
the root lattice ΛR, we must require that

1√
2
(vi− v̄i) =

√
2ni where ni are integers.

The two-point function of the bosons is:

〈φi(z, z̄)φj(z
′, z̄′)〉 = −gij log |z − z′|2 (4.5)

Hence, the conformal dimension of the above operators is:

(
∆wi , ∆̄w̄i

)
=

1

2

(
gijw

iwj, gijw̄
iw̄j
)

(4.6)
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Thus to reconstruct the fermion operators, we must look for pairs of points of
unit length in the weight lattice that di�er by an element of the root lattice. If ~αi
are the d simple roots of Spin(2d) and ~λi are the fundamental weights then:

~αi · ~λj = δji , gij =
1

2
~αi · ~αj, gij = 2~λi · ~λj (4.7)

One also has the dual relation:(
~λi
)
p

(~αi)q = δpq (4.8)

which will be important in what follows. Here, p, q label the individual com-
ponents of each vector, and the sum is over the vectors (not components).

For the conformal dimensions, we have:

∆wi =
1

2
gijw

iwj =
1

4
gijvivj (4.9)

Therefore to �nd operators of dimension
(

1
2
, 1

2

)
, we must look for sets of integers

vi for which:
gijvivj = 2 (4.10)

From the above equations, it follows that:

gij (~αi)p ( ~αj)q = 2δpq (4.11)

hence the possible vi are given by:

v
(p)
i = (~αi)p , p = 1, 2, · · · , d (4.12)

For the anti-holomorphic part we start by picking it independently from the

same set: v̄
(q)
i = (~αi)q. However, we need to ensure that 1√

2
gij
(
v

(p)
j − v̄j(q)

)
is
√

2

times an integer. This is gauranteed by the fact that

1√
2
gij
(
v

(p)
j − v̄j(q)

)
=

1√
2
gij
[
( ~αj)p − ( ~αj)q

]
=
√

2

[(
~λj
)
p
−
(
~λj
)
q

]
(4.13)

which is indeed in the root lattice. We conclude that the fermion operators are
given in bosonic language by :

Dp(z)D̄q(z̄)→ Op,q(z, z̄) = eiw
(p)iφi(z) eiw̄

(q)j φ̄j(z̄) (4.14)

where w(p)i =
√

2(~λi)p.
We can now look for the twist �eld, an operator σk inducing the monodromy:
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σk : Dp(z)→ e
2πik
n Dp(z) (4.15)

corresponding to a shift:

w(p)iφi(z)→ w(p)iφi(z) +
2πk

n
(4.16)

This in turn will be induced by a shift φi → φi+2πζ
(k)
i where ζ

(k)
i is a constant

vector satisfying:

w(p)iζ
(k)
i =

k

n
(4.17)

for all p. Recalling that the last weight of Spin(2d) is λ(d) =
(

1
2
, 1

2
, · · · , 1

2

)
, we

easily �nd that the shift is given by:

ζ
(k)
i =

√
2k

n
(0, 0, · · · , 1) (4.18)

Thus the twist �eld only shifts the last boson φd. Indeed, the twist �eld has
the explicit form:

σk(z, z̄) = Oζ(k)i,−ζ(k)i = eiζ
(k)iφi(z) e−iζ

(k)iφ̄i(z̄) (4.19)

where one must keep in mind that ζ(k)i = gijζ
(k)
j .

To check that this expression for the twist �eld is correct, we compute its OPE
with Dp(z) to �nd:

σk(z, z̄)eiw
(p)iφi(z

′) ∼ (z − z′)ζ(k)igijw(p)j

= (z − z′)w(p)iζ
(k)
i = (z − z′)

k
n (4.20)

The crucial test of our twist �eld is whether or not it has the desired con-
formal dimensions. From the expression for the twist �eld, its (chiral) conformal
dimension is:

∆k =
1

2
gijζ

(k)iζ(k)j =
1

2
gijζ

(k)
i ζ

(k)
j =

k2

n2
gdd (4.21)

Using gdd = 2λ(d) · λ(d) = d
2
, we get

∆k =
dk2

2n2
(4.22)

from which it follows that:

(n−1)
2∑

k=− (n−1)
2

∆k =
d

24

(
n− 1

n

)
(4.23)
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as expected.

Recall that the ordinary partition function of these theories is [?]:

Z1[2d] =
1

|η(τ)|2d
∑

w,w̄∈ΛW ;w−w̄∈ΛR

qw
2

q̄w̄
2

(4.24)

=
1

2

1

|η(τ)|2d
4∑

ν=2

|θν(0|τ)|2d

where, as usual, w2 = gijw
iwj and similarly for w̄2. The equivalence be-

tween the �rst and the second lines of the above equation is the statement of the
Bose-Fermi equivalence between the lattice bosons and the multiple fermions with
correlated spin structures. To demonstrate this, one starts with the observation
that for Spin(2d), ΛW = ΛR⊕ΛV ⊕ΛS⊕ΛC where ΛV,S,C are the lattices obtained
by shifting ΛR by a fundamental weight in the vector, spinor and the conjugate
spinor representations respectively.

Now we split a generic vector w ∈ ΛW into two classes: those that lie in ΛR∪ΛV

and those in ΛS ∪ΛC . In the former set we can write wi =
√

2
∑

p np(
~λi)p for arbi-

trary integers np, while in the latter set, we can write wi =
√

2
∑

p

(
np + 1

2

)
(~λi)p,

where np are again arbitrary integers. We similarly write w̄i =
√

2
∑

pmp(~λi)p

and w̄i =
√

2
∑

p

(
mp + 1

2

)
(~λi)p in the two respective sets. Finally, the restric-

tion w − w̄ ∈ ΛR is implemented by insering a projection operator that causes
both w and w̄ to lie in ΛR or in ΛV (in the �rst set) or both to lie in ΛS or in
ΛC (in the second set). In this way, we end up with four Jacobi theta functions
θν(0|τ), ν = 1, 2, 3, 4 of which θ1(0|τ) identically vanishes.

Next we turn towards calculating the two-point correlator of the twist �elds.
For the un-normalized two-point function of twist �elds, we �nd:

〈〈 σk(z, z̄) σ−k(0, 0) 〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
2dk2

n2 1

|η(τ)|2d
∑

w,w̄∈ΛW ,
w−w̄∈ΛR

qw
2

q̄w̄
2

e2πi l
L
gij(w

i+w̄i)ζ(k)j

(4.25)

We now make the following rede�nition of wi and w̄i:
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gij(w
i + w̄i)ζ(k)j = (wi + w̄i)ζ

(k)
i =

√
2k

n
(wd + w̄d) (4.26)

=
k

n

d∑
p=1

(np +mp), w, w̄ ∈ ΛR ∪ ΛV

=
k

n

d∑
p=1

(np +mp + 1), w, w̄ ∈ ΛS ∪ ΛC

Then the exponents of q , q̄ and e become squares of integers and half-integers
respectively. Using the de�nitions of theta functions:

〈〈 σk(z, z̄) σ−k(0, 0) 〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
2dk2

n2 1

2

4∑
ν=1

∣∣∣∣∣θν
(
kl
nL
|τ
)

η(τ)

∣∣∣∣∣
2d

(4.27)

Taking the product over k, we get the uncorrelated replica partition function:

Zu
n =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
d
24(n− 1

n) (n−1)
2∏

k=− (n−1)
2

1

2

4∑
ν=1

∣∣∣∣∣θν
(
kl
nL
|τ
)

η(τ)

∣∣∣∣∣
2d

(4.28)

If we product over replicas �rst and sum over spin structures later, we get the
correlated replica partition function:

Zc
n =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
d
24(n− 1

n)
1

2

4∑
ν=1

(n−1)
2∏

k=− (n−1)
2

∣∣∣∣∣θν
(
kl
nL
|τ
)

η(τ)

∣∣∣∣∣
2d

(4.29)

Then, the Rényi and entanglement entropies of this theory are easily obtained
from the above expressions. We can, as usual, modify the above replica partition

functions by multiplying by a prefactor
(
β
L

)m
24(n− 1

n)
. The Rényi and entanglement

entropies thus obtained will be modular invariant.

4.3 Discussion

In this chapter we presented proposals for modular invariant replica partition
functions in the limits l → 0 and l → L, of any number of correlated Dirac
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fermions. Using these, modular invariant Rényi and entanglement entropies are
easily calculated.

The thermal entropy relation, which has independent evidence from hologra-
phy, where quite often the thermal entropy Sthermal = SBH is the entropy of the
black hole in the AdS bulk, proved very important in deciding which Rény entropy
is correct in di�erent limits. We have veri�ed that our proposal as to which replica
partition function is to be used in the two limits l → 0 and l → L satis�es the
thermal entropy relation.

The conjecture we have made ful�lls several criteria:

1. entanglement entropy converges to c
3

log l
L
in the l → 0 limit, in line with

[29];

2. the replica partition function (without the repair term) is modular covariant
as in [32] (please see the next chapter for details);

3. the entanglement entropy in limits when temperature vanishes (q → 0) and
when the spatial size of the system diverges (L → ∞) reduces to known
expressions described in Section [1.4].

4. the thermal entropy relation holds true.

Now, it is interesting to �nd the modular invariant replica partition function
at �nite l. For a generic positive integer n, one can write a variety of partition
functions. Consider the set S = {k1, k2, · · · , kn} where ki = −n−1

2
+ i−1. Suppose

that for a �xed value ki and a �xed spin structure ν, we have a replica partition
function Z

(ν)
n (ki). Partition the set S into subsets S1, S2, · · · , Sr having mj ele-

ments of S in the jth set and denote this partition by Yi where the Y is a reminder
for the often used combinatoric device Young diagram . Now we can de�ne the
replica partition function for the Young diagram Yi:

ZYi
n =

∏
j

 4∑
ν=1

∏
k∈Sj

Z(ν)
n (k)

 (4.30)

Here, the fermion spin structures are correlated within each subset Sj but un-
correlated across di�erent subsets. One can easily verify that the replica partition
function for an arbitrary Young diagram is modular-covariant, with a pre-factor
that can be eliminated as usual. We have seen two particulars cases of Young
diagrams - one where each subset contains a single element (this gives us the un-
correlated replica partition function) and the other where all the elements are in
the single subset (this gives us the correlated replica partition function). Then,
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we conjecture that the full replica partition function is a linear combination (with
l-dependent coe�cients) over all Young diagrams:

Zn =
∑

all partitions

aYi

(
l

L

)
ZYi
n (4.31)

Each Young diagram corresponds to one or more number of Young tableaux,
depending on di�erent permutations of the coe�cients k in equation (4.30). The
sum over these tableaux is implied. The physical intuition behind the above ex-
pression is that as the branch cut of length l expands from 0 to L, the degree of
correlation among replicas steadily increases. The coe�cient a must be such that
only the terms corresponding to Zu

n , Z
c
n contribute at l = 0, L respectively.

We observe that as an application of the above ideas, one can use entanglement
in more general CFTs at �nite size and temperature. In the next chapter we
present the expression for the Rényi entropy of a free boson on a torus, with
compacti�cation radius R. The CFT of the free boson is equivalent to that of a
single Dirac fermion on a torus if the boson is compacti�ed at radius R = 1. We
check the modular covariance of the replica partition function of the free boson at
radius R. This provides a piece of independent evidence for the modular covariance
of the replica partition function of the Dirac fermion proposed by us (when we
specialize to R = 1). Moreover, the replica partition function for the free boson at
radius R is manifestly T-duality invariant.
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Chapter 5

Compact Bosons

5.1 Replica partition function for compact bosons

We recall that the ordinary partition function for a single boson at compacti-
�cation radius R is:

Z1(R) =
1

|η(τ)|2
∑
e,m

q(
e
R

+mR
2 )

2

q̄(
e
R
−mR

2 )
2

=
1

|η(τ)|2
∑
e,m

q

(
2e2

R2 +m2R2

2

) (5.1)

where we have used the fact that q = e−πτ2 .

To calculate the replica partition function, we have to compute the two-point
correlators of the twist �elds Tk (with k = 0, 1, · · · , n− 1) which are de�ned by:

Tk(z, z̄)φ(w) ∼ (z − w)
k
n , Tk(z, z̄)φ̄(w̄) ∼ (z̄ − w̄)−

k
n (5.2)

and one has:

Zn =
n−1∏
k=0

〈〈 Tk(z, z̄)T−k(0, 0) 〉〉 (5.3)

An important part of the computation of this quantity was carrried out in
[31] for a pair of free bosons compacti�ed on a square torus of size R. The result
is a product of a quantum and a classical part. It is rather implicit, involving
integrals of products of fractional powers of theta functions which appear in the
construction of the cut di�erentials of the torus. Unfortunately the classical part,

45



which carries all the R dependence is not invariant under the R → α′

R
and so it

does not satisfy T-duality. Indeed the classical part of the result of [31] has been
corrected in [32]. Accordingly we will analyze the result in the latter reference and
compare it with our proposal for modular invariance.

In our notation, α′ = 2. The replica partition function for a free boson com-
pacti�ed on a radius R, as presented in [32], is:

Zn(R) = Z(1)
n Z(2)

n Z(3)
n (R)Z(3)

n

(
2

R

)
(5.4)

where

Z(1)
n =

1

|η(τ)|2n
n−1∏
k=0

1∣∣W 1
1 (k, n; l

L
|τ)
∣∣

Z(2)
n =

∣∣∣∣∣ θ′1(0|τ)

θ1( l
L
|τ)

∣∣∣∣∣
1
6(n− 1

n)

Z(3)
n (R) =

∑
mj

exp

(
−πR

2

2n

n−1∑
k=0

∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣ n−1∑
j,j′=0

[
cos 2π(j − j′)k

n

]
mjmj′

) (5.5)

We note that here the superscripts do not refer to spin structures and only the
last two factors, which form the classical part of the full replica partition function,
depend on the compacti�cation radius R. T-duality invariance is already manifest
at this stage. Also, W 1

1 and W 2
2 are:

W 1
1 (k, n;

l

L
|τ) =

1∫
0

dzθ1(z|τ)−(1− k
n) θ1(z − l

L
|τ)−

k
n θ1(z − kl

nL
|τ)

W 2
2 (k, n;

l

L
|τ) =

1∫
0

dz̄θ̄1(z̄|τ)−
k
n θ̄1(z̄ − l

L
|τ)−(1− k

n) θ̄1(z̄ − (1− k

n
)
l

L
|τ)

(5.6)

The replica partition function given above converges to the ordinary partition
function in the n→ 1 limit.

We now will investigate the modular transformation of the above replica par-
tition function. We note that:

W 1
1 (k, n;

l

L
|τ) =

1

τ
e−

iπz2

τ
k
n(1− k

n) W 2
2 (k, n;

l

L
|τ) (5.7)

which is the equation (B.41) of [31]. So, under a moodular transformation:

46



∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣→ ∣∣∣∣W 1
1 (k, n)

W 2
2 (k, n)

∣∣∣∣ (5.8)

Following this with a multi-variable Poisson resummation as in [32], we get:

Z(3)
n

(
R;

z

τ
| − 1

τ

)
=

2
n
2

Rn

(
n−1∏
k=0

∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣ 12
)
Z(3)
n

(
2

R
; z|τ

)

Z(3)
n

(
2

R
;
z

τ
| − 1

τ

)
=
Rn

2
n
2

(
n−1∏
k=0

∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣ 12
)
Z(3)
n (R; z|τ)

(5.9)

Thus the product transforms as:

Z(3)
n (R)Z(3)

n (
2

R
)→

(
n−1∏
k=0

∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣
)
Z(3)
n (R)Z(3)

n (
2

R
) (5.10)

Putting everything together, we �nd that:

Zn

(
R;

z

τ
| − 1

τ

)
= |τ |

1
6(n− 1

n) Zn(R; z|τ) (5.11)

which will become modular invariant upon multiplying by the half of the pref-
actor in the above equation.

5.2 Conclusions and outlook

We have found modular invariant expressions for Rényi and entanglement en-
tropies for 1+1 dimensional free fermion CFTs. Since a CFT is well-de�ned only
if it is modular invariant, our results provide a missing link between numerous
results on entropies (which are non-modular invariant) and formal CFTs. There
are several research problems which can be pursued from here:

1. What is the replica partition function at �nite l ?
To answer this question we need to �nd the coe�cients a

(
l
L

)
. One way to

go about �nding these coe�cients is to use combinatorial techniques. These
line of search presents itself naturally as the partitions of the n replicas (with
n a positive integer) are easily representable in terms of Young diagrams.
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2. Does entanglement entropy repect Fermi-Bose duality?
To �nd the replica partition function and the Rényi entropy of the free
fermion CFTs, we had to use bosonization. Thus it is a hybrid calculation,
where both the fermionic and the bosonic descriptions in the Fermi-Bose
duality are used. The expression for the replica partition function for a free
boson (equation (5.4)) is calculated purely in the bosonic picture [32]. We
have checked that both the replica partition function for the free boson and
that for the single Dirac fermion are equal and modular covariant (without
the `repair' term) with the same pre-factor. However, the expression in equa-
tion (5.4) is given in terms of integrals of theta functions whereas the single
Dirac replica partition function equation (4.31) is given explicitly in terms of
theta functions. It would be interesting to compare the former equation at
R = 1 and the latter (when the coe�cients a are determined) to see if they
agree. If they do, it would be a strong evidence that Rényi and entanglement
entropies respect Fermi-Bose duality.

3. What is the replica partition function and hence the entropies for minimal
models?
Minimal models are well-known CFTs with a �nite number of operators. It
would be interesting to �nd the entanglement entropy for minimal models
as these are considered dual to higher spin AdS3.

4. What does modular invariant entanglement entropy mean in the context of
holography?
In holography, using the famous Ryu-Takayanagi prescription [33], the entan-
glement entropy of the CFT is given by area of a minimal surface drooping
in the AdS bulk. It would be interesting to see if the expression derived from
holography is modular invariant or not and why.

5. How can one apply the results derived in this paper to the condensed matter
problems being studied in holography?
Recently, many condensed matter problems like strange metals, non-relativistic
�uids etc. are being studied using holography as a tool. In the conventional
application of CFT to statistical mechanics, modular invariance is an essen-
tial property. We would like to see if we can learn more about strange metals
or higher spin �elds or other interesting topics by taking modular invariant
expressions for entropies.
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Appendix A

De�nitions and conventions

A.1 Conventions

Our 1+1 dimensional theories are de�ned on a torus with a modular parameter
τ and a spatial circle of perimeter L. The entangling interval has length l. The
number R describes the radius of the scalar �eld compacti�cation.

In our conventions, T-duality is implemented by R→ 2
R
and hence the self-dual

radius is R =
√

2. The number of replicas is denoted by n and we calculate nth

Rényi entropy. The �nite temperature is β−1.

A.2 Theta functions

We de�ne the nome q as

q = eπiτ

where |τ | > 0
Also, let

y = e2πiz

As in�nite series, the de�nitions of the Jacobi Theta functions are as follows :

θ1(z|τ) = −
∞∑
−∞

(−1)(n+ 1
2

)q(n+ 1
2)

2

y(n+ 1
2) (A.1)
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θ2(z|τ) =
∞∑
−∞

q(n+ 1
2)

2

y(n+ 1
2) (A.2)

θ3(z|τ) =
∞∑
−∞

qn
2

yn (A.3)

θ4(z|τ) =
∞∑
−∞

(−1)nqn
2

yn (A.4)

The Dedekind Eta function is de�ned as:

η(τ) = q
1
12

∞∏
n=1

(1− q2n) (A.5)

We note the following identity which has been used in di�erent sections of the
report:

θ′1(0|τ) = 2η3(τ) (A.6)
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